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Abstract— This paper presents a method for estimating the
six-degrees-of-freedom transformation between a camera and
the body of the robot on which it is rigidly attached. The
robot maneuvers in front of a planar mirror, allowing the
camera to observe fiducial features on the robot from several
vantage points. Exploiting these measurements, we form a
maximum-likelihood estimate of the camera-to-body transfor-
mation, without assuming prior knowledge of the robot motion
or of the mirror configuration. Additionally, we estimate the
mirror configuration with respect to the camera for each image.
We validate the accuracy and correctness of our method with
simulations and real-world experiments.

I. INTRODUCTION

Mobile robots are often used in applications that require
precise motion control among static or moving obstacles
(e.g., parallel parking, navigating in cluttered spaces, avoid-
ing overhanging obstacles, etc). The main prerequisite for
designing controllers for these tasks is that the robot has
precise estimates of the position and orientation (pose) of its
body with respect to obstacles in the environment. Obtaining
these estimates is a two-step process: first the measurements
of different sensors must be fused to determine the sensor
pose, and subsequently the sensor-pose estimate must be
transformed to the robot-body pose estimate.

The first step of this process requires that the sensor-to-
sensor transformation be known for combining the mea-
surements, while the second step requires the sensor-to-
robot-body transformation. The problem of sensor-to-sensor
calibration has recently received significant attention and a
number of approaches exist (e.g., for odometry-camera [1],
IMU-camera [2], [3], or laser scanner-camera [4], [5], [6]).
However, very little attention has been devoted to de-
termining the sensor-to-robot-body transformation. This is
necessary in order to precisely determine the distances of
points on the robot body to obstacles detected by the robot’s
exteroceptive sensors (e.g., cameras, laser scanners, etc).

In most cases in practice, if CAD plots of a robot
are available to a user, the sensor-to-robot transformation
is approximated by measuring the position of the sensor
with respect to the robot’s center and assuming that the
sensor’s main axes are aligned with those of the robot body
(for orientation). If no technical drawings of the robot are
available, the same process can still be applied, by using a
bounding box to approximate the robot shape. In both cases,
the error in the sensor-to-robot transformation must be taken
into account during path planning, by introducing a safety

margin. Furthermore, when additional sensors or electronics
are installed on the robot that exceed the dimensions of the
bounding box, the same process needs to be repeated. Any
such approximate method for determining the sensor-to-robot
transformation limits the space where the robot can operate
in and increases the probability of collisions.

Our objective in this paper is to automate the process of
determining the sensor-to-robot transformation for the case
of a mobile robot equipped with a camera. Considering
the most limiting situation, where no part of the robot is
within the camera’s field of view, we concentrate on the
case that the robot can observe points on its body through
its reflection on a planar mirror. In our formulation, no
prior information about the camera motion or the mirror
position and orientation is assumed. The configuration of
the mirror and the camera-to-robot transformation are treated
as unknowns to be estimated. The measurement model
derived for this problem is described in Section III-A, while
Section III-B presents the estimator used for determining the
unknown transformation from multiple camera images. The
proposed algorithm is tested both in simulation (Section IV)
and experimentally (Section V) to evaluate its accuracy
and investigate its sensitivity to parameters of the system.
Finally, Section VI discusses the conclusions of this work
and suggests interesting directions of future research.

II. RELATED WORK

Seemingly the problem closest to the one considered here
is that of hand-eye calibration, i.e., that of determining the
6 degrees-of-freedom transformation between a camera and
a tool both mounted on a robot manipulator [7], [8], [9],
[10], [11]. However, the hand-eye calibration problem is
solved by correlating the measurements of two sensors: the
camera and the actuators’ encoders measuring the robot-
joints’ displacements. This process allows one to determine
the pose of the camera with respect to the robot base.
Subsequently the camera-to-tool transformation is calculated
by combining the estimated camera-to-robot-base transfor-
mation with the robot-base-to-tool one (assumed known from
the robot kinematics and CAD plots depicting the location
of the tool with respect to the last robot joint). Unless
precise technical drawings of the robot are available, hand-
eye calibration methods cannot be used for determining the
transformation between the camera and any point on the
robot body.

2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
Acropolis Convention Center
Nice, France, Sept, 22-26, 2008

978-1-4244-2058-2/08/$25.00 ©2008 IEEE. 3865



{M}
z

y

x

p/

{C}

p

{B}

n

Fig. 1. An observation of a point reflection in the mirror.

At this point, we turn our attention to briefly describing
cases where mirrors have been employed in robotics and
computer vision applications. In [12], the authors present
a Bayesian method for a humanoid robot attempting to
distinguish itself (as seen in a mirror) from a human in its
field of view. This is the so-called self-recognition problem,
which is considered a test of intelligence in social animals.

Reflections from mirrors have also been used as “virtual
cameras” [13] rigidly connected to a real camera to per-
form stereo vision using a single camera and planar [14],
[15], [16], or conic mirrors [17]. Stereo vision is also
accomplished using reflections from free-form surfaces [18],
while systems with more view points are also possible [19].
Additionally, stereo systems using one moving mirror or a
moving camera and two static spherical mirrors of known
radii are presented in [20] and [21]. Finally, Jang et al.
demonstrated a moving planar mirror system for 3D scene
reconstruction [22]. Using a combination of fiducial points
on the mirror and vanishing points in the reflections, they
solve for the position of the mirror with respect to the
camera. The 3D scene is determined based on synthetic
stereo from multiple reflections.

In contrast to the approaches above, we do not use more
than one view per time instant (i.e., the points of interest
are only visible through the reflection). Additionally, we do
not require the dimensions or the position of the mirror with
respect to the camera to be known. Instead, using images of
the robot-points’ reflections on consecutive camera images
we determine the mirror configuration and the camera-to-
robot transformation.

III. ESTIMATING THE TRANSFORMATION

In this section, we describe our approach for estimating
the transformation between the camera frame, {C}, and a
different frame of interest, {B}, both of which are rigidly
attached to a robot. Frame {B} could be the robot-body
frame itself, or a frame affixed on any other sensor of the
robot (cf. Section V). Without loss of generality, we will refer
to frame {B} as the “body frame.” The main contribution

of this paper is a method for estimating the transformation
between {B} and {C}, using the mirror reflections of known
points in multiple images.

We consider a scenario in which the robot moves in front
of a planar mirror (or equivalently, in which the mirror moves
and the robot remains static). During this motion, the camera
records Nc images of the robot’s reflection; each image
contains the reflections of Np points, whose coordinates in
{B} are known. In Fig. 1, the setup for one camera pose
and one feature is shown. All the recorded measurements are
utilized in a maximum-likelihood estimator for determining
the transformation between the frames {B} and {C}.

A. Measurement Model

First, we present the measurement model that describes
each of the camera observations. To simplify the presenta-
tion, in this section we focus on the case of a single point,
observed in a single image. The treatment of multiple points
is discussed in the next section. Consider a point p, whose
position with respect to frame {B}, Bp, is known1, for
instance from a CAD plot of the robot. The reflection of this
point, p′, is observed by the camera, and this observation is
described by the perspective projection model:

z =
1
p3

[
p1

p2

]
+ η = h(Cp′) + η, Cp′ =

p1

p2

p3

 (1)

where η is the measurement noise, assumed to be zero-
mean Gaussian with covariance matrix σ2

ηI2, and Cp′ is the
position of the reflected point with respect to the camera
frame (cf. Fig. 1). Our goal is to express Cp′ as a function
of the known position vector Bp, the unknown transfor-
mation (rotation and translation) between the camera and
body frame, {CBR,CpB}, and the unknown configuration
of the mirror with respect to the camera. As shown in the
following derivations, only three degrees of freedom of this
configuration affect the measurement equation.

Without loss of generality, we assign a coordinate frame
{M} to the mirror, such that its x-y plane is the reflective
surface, and the z axis is pointing towards the robot (cf.
Fig. 1). Specifically, with all quantities expressed in the
mirror frame, the reflection of a point Mp is a point Mp′

whose z coordinate is negated:

Mp′ = AMp, where A =

1 0 0
0 1 0
0 0 −1

 . (2)

Note that matrix A can be written as

A = I3 − 2e3eT
3 (3)

where I3 is the 3× 3 identity matrix, and e3 = [0 0 1]T is
the unit vector along the z axis, i.e., the unit vector normal
to the mirror.

1Throughout this paper, Xy denotes the expression of a vector y with
respect to frame {X}, X

W R is the rotation matrix rotating vectors from
frame {W} to frame {X} , and XpW are is the position of the origin of
frame {W}, expressed with respect to frame {X}.
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The vector from the origin of the camera frame to the
reflected point p′, expressed in the camera frame, is:

Cp′ = C
MRMp′ + CpM

= C
MRAMp + CpM . (4)

Substituting the expression Mp = C
MRT

(
Cp− CpM

)
and

rearranging terms in the above equation yields
Cp′ =

(
C
MRAC

MRT
)
Cp +

(
I3 − C

MRAC
MRT

)
CpM (5)

Recalling the definition of A in (3), we write:
C
MRAC

MRT = C
MR

(
I3 − 2e3eT

3

)
C
MRT

= I3 − 2CnCnT, (6)

where Cn = C
MRe3 is the mirror’s normal vector expressed

in frame {C}. Substitution in (5) yields:
Cp′ =

(
I3 − 2CnCnT

)
Cp + 2

(
CnTCpM

)
Cn

=
(
I3 − 2CnCnT

)
Cp + 2dCn (7)

where we have defined d = CnTCpM , which is the camera-
to-mirror distance. At this point, we employ the following
expression for the position of the point p in the camera
frame:

Cp = C
BRBp + CpB (8)

Using this expression in (7), we obtain:
Cp′ =

(
I3 − 2CnCnT

) (
C
BRBp + CpB

)
+ 2dCn (9)

Finally, by letting v = dCn denote the vector from the origin
of the camera frame to the mirror surface, and rearranging
terms, the expression becomes

Cp′ =
(
I3 − 2

vvT

vTv

)
C
BRBp +

(
I3 − 2

vvT

vTv

)
CpB + 2v.

This equation, along with (1), defines the measurement
model for observing the reflection of the point p. It involves
the known position, Bp, of the point with respect to frame
{B}, the unknown transformation, {CBR,CpB}, between the
camera and the body frame, and the configuration of the
mirror with respect to the camera. We point out that, even
though the transformation between the mirror and camera
frame has six degrees of freedom, only three of these
degrees of freedom appear in the measurement equation.
These are expressed by the vector v = dCn, which has
two degrees of freedom from the mirror normal, Cn, and
one degree of freedom from the camera-to-mirror distance, d.
The remaining three degrees of freedom, which correspond to
rotation about v and to translations of the origin of the mirror
frame in the mirror plane, do not affect the measurements,
and are unobservable.

B. Maximum Likelihood Estimation of the Transformation

We now proceed with the description of a maximum
likelihood estimator (MLE) for determining the unknown
transformation between the camera and body frames. We
consider the case where Np points in the body frame, denoted

as Bpi, i = 1 . . . Np, are observed in Nc images of the
camera. The observation of the ith point in the jth image
(j = 1 . . . Nc) is given by the equation (cf. (1)):

zij = h(Cjp′i) + ηij , where

Cjp′i =

(
I3 − 2

vjvT
j

vT
j vj

)
C
BRBpi +

(
I3 − 2

vjvT
j

vT
j vj

)
CpB

+ 2vj

The vector vj describes the mirror configuration when the
jth image is recorded. In the following, we use Z to denote
the set of all available measurements.

It is interesting to examine the number of unknown
parameters that exist in our problem. The unknown camera-
to-body transformation {CBR,CpB} introduces six degrees
of freedom, while each new image introduces an additional
three unknowns, corresponding to the mirror configuration
vj . Thus, the total number of unknown parameters is 6+3Nc.
On the other hand, each point observation provides two
independent scalar measurements (the image coordinates
of the projection), and thus we obtain a total of 2NpNc
measurements, which we employ for estimating all unknown
parameters. When the number of measurements equals or
exceeds the number of unknowns, we expect to be able to
compute a solution for all unknown parameters. It should
be noted that a minimum of Np = 3 non-collinear points
observed in Nc = 3 images from different viewing angles are
required for obtaining a solution. The 3 non-collinear points
are necessary to define a coordinate frame. If only points
on a single line are used, the frame’s rotation about the line
cannot be determined. Moreover, using only 2 camera views
(or more which differ by rotations about a single axis) is not
sufficient to uniquely determine the transformation between
the camera and robot-body frames [23].

Let the vector of all unknown parameters be denoted by x.
This vector comprises the unknown transformation, as well
as the vectors vj , j = 1 . . . Nc, that describe the mirror
configuration. In our implementation, we adopt the unit-
quaternion representation of rotation [24], and thus x is:

x =
[
CpT

B
C q̄TB vT

1 . . . vT
Nc

]T
(10)

where C q̄B is the unit quaternion representation of the
rotation between frames {B} and {C}. The likelihood of
the measurements is given by:

L(Z; x) =
Np∏
i=1

Nc∏
j=1

p(zij ; x)

=
Np∏
i=1

Nc∏
j=1

1
2πσ2

η

exp
[
− (zij−h(Cjp′

i))
T(zij−h(Cjp′

i))
2σ2
η

]

=
Np∏
i=1

Nc∏
j=1

1
2πσ2

η

exp
[
− (zij−hij(x))T(zij−hij(x))

2σ2
η

]
where the dependence on x is explicitly shown. Maximizing
the likelihood is equivalent to maximizing its logarithm,
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which in turn is equivalent to minimizing the quantity:

J(x) =
Np∑
i=1

Nc∑
j=1

(zij − hij(x))T(zij − hij(x)) (11)

The minimization of this cost function is a nonlinear least-
squares problem, and thus we employ the Gauss-Newton
iterative minimization algorithm for estimating x. During
each iteration k of the algorithm, the estimate is changed
by:

δx(k)=

∑
i,j

H(k)T
ij H(k)

ij

−1∑
i,j

H(k)T
ij

(
zij − hij(x(k))

)
where H(k)

ij is the Jacobian of the measurement zij with
respect to x, evaluated at the current iterate, x(k). The exact
structure of this matrix is given in the Appendix. It is worth
mentioning that because this structure is sparse, the matrix to
be inverted in the above equation is a sparse one. Thus, δx(k)

can be evaluated very efficiently (the computational cost of
the operation can be shown to be linear in the number of
images).

The parameter correction, δx(k), has the following struc-
ture:

δx(k) =


δCp(k)

B

δθ(k)

δv(k)
1
...

δv(k)
Nc

 (12)

where all vectors on the right-hand side are 3 × 1 vectors.
With this notation, the updates for the iterates of the param-
eters CpB and vj are written as:

Cp(k+1)
B = Cp(k)

B + δCp(k)
B

v(k+1)
j = v(k)

j + δv(k)
j , j = 1 . . . Nc

To ensure that the unit-length quaternion constraint is prop-
erly accounted for, a multiplicative error model is used for
the quaternion iterates [24]:

C q̄
(k+1)
B = δq̄(k) ⊗ C q̄

(k)
B , with

δq̄(k) =

[
1
2δθ

(k)√
1− 1

4δθ
(k)Tδθ(k)

]
. (13)

where ⊗ denotes quaternion multiplication. Employing this
formulation for the quaternion updates enables us to have
minimal error parametrization, since δθ(k) is a 3× 1 vector.

After the Gauss-Newton algorithm converges to a mini-
mum (convergence is determined by a threshold on the norm
of δx(k)), the covariance of the resulting parameter estimates
can be determined by the expression:

P = σ2
η

∑
i,j

H(k)T
ij H(k)

ij

−1

(14)

IV. SIMULATIONS

In this section, we present simulation results that demon-
strate the feasibility of computing the camera-to-body trans-
formation using the proposed approach. Moreover, the effects
of several parameters on the estimates’ accuracy are studied.

A. MLE convergence

First, we describe the results of Monte-Carlo simulations,
which verify the correctness of the estimates computed by
the MLE. In Figs. 2(a) and 2(b), we plot the estimation
errors (solid blue lines) and corresponding 3σ values (dashed
red lines) for the camera position and attitude estimates,
respectively. For these plots, 50 Monte Carlo trials were
carried out, in each of which four points were tracked in
250 images. In our simulation setup the robot remains static,
while the mirror moves to generate different views of the
robot. Specifically, the mirror was placed at a distance of
0.5 m in front of the camera, and rotated by a range of
25o about both the vertical and the horizontal directions.
The plots of Figs. 2(a) and 2(b) show that the estimate
errors are commensurate with the computed covariance,
which indicates that the MLE correctly converges to the
global minimum. Regarding the accuracy of the estimates,
we note that the estimate for the translation along the camera
optical axis (z axis) is the least accurate. This makes sense
intuitively, since the estimation of depth using perspective
cameras is typically less accurate than the estimation of
bearing.

The initial estimates in each Monte Carlo trial are selected
as follows: for the body-to-camera transformation, the initial
estimates are corrupted by randomly generated errors, with
standard deviation equal to 2 cm for position, and 5o for
attitude. In a real-world setting, this level of accuracy can
easily be accomplished by manual measurement. For the
mirror normal vector we use as initial guess a vector parallel
to the camera optical axis, and finally for the mirror distance,
a value corrupted by error with standard deviation equal
to 5% is used. It should be pointed out that in all our
simulation tests, the MLE converged to the correct minimum
(after an average of 15 iterations), even though the described
initialization for the mirror configuration is crude. This is
very important for practical purposes, since obtaining an
accurate initial guess for the mirror configuration can be
challenging in an experimental setup.

B. Parameters affecting estimation accuracy

We next turn our attention to studying the accuracy of the
estimated camera-to-body transformation. In particular, we
explore the effects of the following parameters: (i) number
of images, (ii) camera-to-mirror distance, (iii) range of the
mirror’s angular motion, and (iv) number of points tracked on
the robot. We consider a “base” case, in which four points are
observed in 200 images, while a mirror placed at a distance
of 0.5 m is rotated by 25o in two directions. Then, we vary
each of the aforementioned parameters individually, in order
to examine its effects on the estimation accuracy. The plots
of Fig. 3 show the standard deviation for the position and
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attitude estimates. In each subplot, the standard deviation for
the least accurate among the three axes is reported. Some key
observations are the following:
• As expected, increasing the number of images results in

better estimation accuracy. However, the improvement
follows a “law of diminishing return,” i.e., when a large
number of images is already available, the impact of
recording more observations is smaller.

• Changing the distance of the mirror to the camera has a
very significant effect on the accuracy of the estimates.
For instance, for the particular simulation setup keeping
the mirror at a distance of 0.8 m results in standard
deviation for the camera position equal to approximately
1 cm. This level of accuracy can potentially be achieved
with manual measurements alone, and thus in this case
the use of the mirror may not be justified. Hence, it
becomes clear that the mirror distance should be kept
as small as possible.

• As we would expect, increasing the range of the mirror’s
angular motion results in improved estimation accuracy.
The effect on the attained accuracy is significant, and
thus every effort should be made to move the mirror
in the widest range of motion allowed by the camera’s
field of view.

• Increasing the number of observed points increases the
estimation accuracy. We point out that for generating
Fig. 3(d), points were randomly placed in a cube
with side length equal to 20 cm. For each number of
points, 10 Monte Carlo trials were run, and the reported
accuracy is the average of these trials.

V. EXPERIMENTS

The method described in the preceding sections was em-
ployed for computing the transformation between a camera
and the frame attached on a SICK laser scanner. For this
goal, three fiducial points were placed in known positions on
the laser range finder (cf. Fig. 4). The origin of frame {B}
coincides with the top-left fiducial point, while both frames
{B} and {C} are right-hand systems with the axes of {B}
approximately aligned with those of {C}. The three fiducial
points were tracked using the KLT algorithm [25], [26] in
1000 images, recorded by a Firewire camera with resolution
of 1024 × 768 pixels. In this particular configuration, the
camera is placed facing forward, while the SICK is facing
upward2.

A planar mirror was maneuvered in different spacial
configurations, and in distances varying between 30 and
50 cm from the camera, in order to generate a wide
range of views. All the measurements were processed in
the MLE described in Section III-B, to obtain an esti-
mate for the transformation between the two frames of
interest. The Gauss-Newton minimization converged after
17 iterations, to the following solution for the transfor-
mation: CpB =

[
−14.80 −15.96 −14.95

]T
cm, and

2This non-standard mounting of the laser scanner is chosen to allow
building 3D models of the environment, by having the robot move while
the SICK records vertical “slices” of its surroundings.
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Fig. 2. The estimation errors and corresponding 3σ bounds for the camera-
to-body transformation, in 50 Monte-Carlo simulation trials. The 3σ values
are computed as three times the square root of the corresponding diagonal
elements of the covariance matrix.

Fig. 4. An example image recorded in the experiment. The three fiducial
points are seen in the corners of the upward-facing SICK laser scanner.
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Fig. 3. The standard deviation for the position and attitude, as a function of various parameters affecting the estimation accuracy: (a) Number of recorded
images. (b) Distance between the mirror and the camera. (c) Range of the mirror’s angular motion. (d) Number of points tracked on the robot body.

CqB =
[
0.0045 0.0774 0.0389 0.9962

]T
. The corre-

sponding 3σ accuracy bounds are
[
1.1 1.6 5.0

]
mm for

the position, and
[
0.24 0.23 0.06

]
degrees for the orienta-

tion estimates. These results agree with the values computed
by manual measurement. Most importantly, we point out that
the accuracy attained by the MLE is substantially higher than
that attained by manual measurement, which demonstrates
the usefulness of the proposed method.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a method for estimating the
6 degrees-of-freedom transformation between the camera
and robot-body frames. To this end, the camera observes
the reflections in a planar mirror of known robot points,
while the robot moves in front of the mirror (or equivalently,
while the mirror moves in front of the camera). The mea-
surements collected are processed in a maximum-likelihood
estimator, which produces estimates for the camera-to-robot-
body transformation, as well as for the mirror configuration
in each of the images. The approach was validated both in

simulation and using real-world experimentation. One of the
key advantages of the proposed method is its ease of use, as
the only information needed are the coordinates of a number
of points on the robot, which can be obtained from CAD
plots. The mirror configuration is concurrently estimated, and
need not be known in advance.

In our future work, we plan to extend this method to
the case where the coordinates of the points on the robot-
body frame are not known a priori, but are estimated
along with the body-to-camera transformation and the mirror
configurations. It can be shown that in this case the scale is
unobservable, and therefore the distance between at least two
of the points should be manually measured. However, this is
not difficult to accomplish, and does not require availability
of CAD plots for the robot. Moreover, we plan to investigate
the observability properties of the camera-to-robot transfor-
mation. Through a nonlinear observability analysis [27], we
intend to identify singular cases of motion, for which the
transformation cannot be determined. This is important for
practical purposes, as it would enable us to avoid such cases,
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and ensure estimates of sufficient accuracy. Finally, we will
seek to compute an initial guess for the sought parameters in
closed form. If such a guess were available, it would enable a
better initialization of the nonlinear optimization algorithm,
which would, in turn, speed up convergence.

APPENDIX A

The Jacobian of the measurement zij with respect to x,
Hij , is given by:

Hij = Hcij

[
Hpij Hqij 0 . . . Hvij︸︷︷︸

j−th image

. . . 0
]

where Hcij is the Jacobian of the perspective projection
model with respect to Cjp′i:

Hcij =
1
p3

[
1 0 −p1p3
0 1 −p2p3

]
and Hpij , Hqij , and Hvij , are the Jacobians of Cjp′i with
respect to the position, rotation, and mirror configuration,
respectively:

Hpij = I3 − 2
vjvT

j

vT
j vj

Hqij =

(
I3 − 2

vjvT
j

vT
j vj

)
bCBRRpi×c

Hvij = 2

(
1−

vT
j
Cpi

vT
j vj

)
I3 − 2

vjCpT
i

vT
j vj

+ 4vjvT
j

vT
j
Cpi(

vT
j vj

)2
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