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Abstract— This paper presents a fixed-lag smoothing algo-
rithm for tracking the motion of a mobile robot in real time.
The algorithm processes measurements from proprioceptive
(e.g., odometry, inertial measurement unit) and exteroceptive
(e.g., camera, laser scanner) sensors, in order to estimate the
trajectory of the vehicle. Smoothing is carried out in the
information-filtering framework, and utilizes iterative mini-
mization, which renders the method well-suited for applications
where the effects of the measurements’ nonlinearity are signifi-
cant. The algorithm attains bounded computational complexity
by marginalizing out older states. The key contribution of this
work is a detailed analysis of the effects of the marginaliza-
tion process on the consistency properties of the estimator.
Based on this analysis, a linearization scheme that results in
substantially improved accuracy, compared to the standard
linearization approach, is proposed. Both simulation and real-
world experimental results are presented, which demonstrate
that the proposed method attains localization accuracy superior
to that of competing approaches.

I. INTRODUCTION AND RELATION TO PRIOR WORK

In this work, we focus on the problem of motion tracking
for autonomous vehicle navigation. The simplest solution to
this problem is dead reckoning, which consists of simply
integrating proprioceptive (e.g., odometry) measurements, to
obtain estimates of the vehicle’s position and orientation.
This process is straightforward, but results in rapid error
accumulation, and leads to unacceptably large estimation
uncertainty in most cases. To improve the accuracy of the
estimates, additional sensory information is needed. This can
be obtained from an exteroceptive sensor (e.g., a camera) that
tracks static features in the environment to infer the vehicle’s
ego-motion. The task of fusing proprioceptive measurements
and observations of local features for motion estimation is
the focus of our work. We note that we are only interested in
processing local motion information, i.e., we do not address
loop closing or localization using a priori known landmarks.

Several approaches have been proposed for the task of
motion tracking using feature observations. The simplest
(and most computationally efficient) among these use the
measurements to derive probabilistic constraints between
pairs of consecutive poses (e.g., [1]–[5] and references
therein). However, when a feature is observed multiple times,
we can derive constraints involving all the poses from which
the feature is seen [6]. Thus, in the (common) case where
features are detected multiple times, pairwise processing is
not appropriate. Instead, we must maintain estimates of a
sliding window of poses, to be able to process all the relative-
motion information provided by the feature measurements.

Methods that estimate the state in a sliding window of time
are commonly called fixed-lag smoothing algorithms [7].

While extended Kalman filtering (EKF)-based fixed-lag
smoothing approaches to motion estimation have appeared
in the literature (e.g., [6]), these are susceptible to a gradual
buildup of linearization errors. This issue is especially signif-
icant in the context of motion tracking, where the absence of
landmarks with a priori known positions means that errors
continuously accumulate. For this reason a number of tech-
niques have been proposed, primarily in the computer-vision
literature, that iteratively re-linearize the measurements to
better treat nonlinearity [8]–[12]. In all these approaches a
sliding window of active states is maintained, comprising
both camera poses and features, and iterative minimization is
employed for obtaining estimates of all the currently active
state variables. As the camera moves in space new states
are being added, while old ones are discarded. A common
limitation of the aforementioned techniques is, however, that
the way in which older states are discarded is not optimal.
Specifically, these are assumed to be fixed, and are used
to “bootstrap” the trajectory estimates. This approximate
approach ignores the uncertainty of the discared states, and
results in suboptimal estimation.

The theoretically sound method for discarding older states
from the sliding window is the process of marginaliza-
tion [13]–[15]. This process, which appropriately accounts
for the uncertainty of the older poses, is employed in our
work. Specifically, the main contributions of this work are
the following:
1) We describe in detail the derivation of the marginal-
ization equations, and additionally, we present an analysis
of the effects of the marginalization on the consistency of
the state estimates. In particular, we show that due to the
marginalization process, two different estimates of the same
states are used in computing certain Jacobian matrices in
the estimator. In turn, this is shown to cause an infusion
of information along directions of the state space where no
actual information is provided by the measurements (the un-
observable directions of the state space). This “artificial”
information causes the estimates to become inconsistent over
time, i.e., it causes the actual error covariance to be larger
than that reported by the estimator [16].
2) Based on our analysis, we propose a simple modification
in the choice of linearization points, which prevents the
introduction of artificial information in the estimator. The
resulting algorithm is shown, through both simulation results



and real-world experiments, to perform better than compet-
ing approaches. In fact, our results show that the attained
accuracy is almost indistinguishable to that of the full-state
maximum-a-posteriori (MAP) estimator, for the cases exam-
ined. This shows that in choosing the linearization points one
has to take into account the observability properties of the
system at hand, to ensure that the linearized system shares
the same properties.

We note that fixed-lag information smoothing algorithms
have also appeared in [14], [15]. However, the effects of the
marginalization process on the consistency of the estimates
are not discussed in these publications. To the best of our
knowledge, this is the first work to address this issue. The
effects of the choice of linearization points on the consistency
of an estimator have been explored before, but only in the
context of EKF-based estimators (see, e.g., [17]).

II. FIXED-LAG SMOOTHING

A. Full-state MAP estimation
We begin by first discussing the full-state maximum-a-

posteriori (MAP) estimator [18], which serves as the basis of
the fixed-lag smoothing algorithm, and subsequently describe
the marginalization process. This section also introduces the
notation that will be used throughout the paper.

At time-step k, the full-state MAP estimator simultane-
ously estimates the entire history of robot poses, r0:k =
{r0, . . . , rk}, as well as the positions of all features observed
by the robot, l1:n = {l1, . . . , ln}. We denote the dimension
of each robot pose and each landmark position by dr and dℓ,
respectively. Three sources of information are available to the
estimator: (i) The prior information for the initial robot pose,
described by a Gaussian pdf with mean r̂p0 and covariance
matrix Rp(0). (ii) The robot motion model, described by:
ri+1 = f(ri,ui)+wi, where ui is the measured control input
(e.g., odometry), and wi is the process noise1, assumed to
be zero mean, white, and Gaussian, with covariance matrix
Qi. (iii) Finally, the third source of information are the
robot-to-landmark measurements (e.g., camera observations),
described by: zij = h(ri, lj) + nij , where nij is the
measurement noise vector, assumed to be zero-mean, white,
and Gaussian, with covariance matrix Rij .

The MAP estimator computes the state estimates that
maximize the posterior pdf:

p(r0:k, l1:n|z0:k) = p(r0)
∏

(i,j)∈Sa(k)

p(zij |ri, lj)
k−1∏
i=0

p(ri+1|ri,ui)

where the set Sa(k) contains the pairs of indices (i, j) that
describe all the robot-to-landmark measurements through
time k. Maximizing the posterior is equivalent to minimizing
the cost function:

c(xk) =
1

2
||r0 − r̂p0 ||Rp(0) +

1

2

∑
(i,j)∈Sa(k)

γhij +
1

2

k−1∑
i=0

γfi

(1)

1In the most general case, the process noise may appear in the motion
model nonlinearly: ri+1 = f(ri,ui,wi). The treatment of this more
general case proceeds analogously, by linearization of the motion model
with respect to the noise. We here present the additive-noise case for clarity.

where xk denotes the vector containing all the estimated
states, (i.e., all the states in {r0:k, l1:n}), and

γhij = ||zij − h(ri, lj)||Rij , γfi = ||ri+1 − f(ri,ui)||Qi

with the notation ||a||M = aTM−1a.
c(xk) is a nonlinear cost function, which can be minimized

using iterative Gauss-Newton minimization [13]. At the ℓ-th
iteration of this method, a correction, ∆x(ℓ), to the current
estimate, x(ℓ)

k , is computed by minimizing the second-order
Taylor-series approximation of the cost function:

c(x
(ℓ)
k +∆x) ≃ c(x(ℓ)) + b(ℓ)T∆x+

1

2
∆xTA(ℓ)∆x (2)

where b(ℓ) = ∇c(x
(ℓ)
k ) and A(ℓ) = ∇2c(x

(ℓ)
k ) denote the

gradient and Hessian of c with respect to xk, evaluated at
x
(ℓ)
k . Specifically, b(ℓ) is given by

b(ℓ) = bp
0(x

(ℓ)
k ) + bh

Sa(k)
(x

(ℓ)
k ) + bf

0:k(x
(ℓ)
k ) (3)

where the three terms are due to the prior at time-step 0,
the robot-to-landmark measurements indexed by Sa(k), and
the odometry measurements in the time interval [0, k − 1],
respectively:

bp
0(x

(ℓ)
k ) = ΠT

dr
Ap(0)(r

(ℓ)
0 − r̂p0), (4)

bh
Sa(k)

(x
(ℓ)
k ) = −

∑
(i,j)∈Sa(k)

H
(ℓ)T
ij R−1

ij

(
zij − h(r

(ℓ)
i , l

(ℓ)
j )

)
(5)

bf
0:k(x

(ℓ)
k ) =

k−1∑
i=0

G
(ℓ)T
i Q−1

i

(
r
(ℓ)
i+1 − f(r

(ℓ)
i ,ui)

)
(6)

In these expressions we denote Ap(0) = Rp(0)
−1, and

Πdr
=

[
Idr 0 0 . . .

]
, with Idr

being the dr×dr identity
matrix. The matrices H

(ℓ)
ij and G

(ℓ)
i are the Jacobians of

the measurement function, h(ri, lj), and of the function
gi = ri+1 − f(ri,ui), with respect to xk, evaluated at
x
(ℓ)
k . Since both the measurement function and the motion

model involve only two states (either one robot pose and one
landmark, or two consecutive robot poses), the structure of
both H

(ℓ)
ij and G

(ℓ)
i is very sparse. In particular,

H
(ℓ)
ij =

[
0 . . . H

(ℓ)
Rij

. . . H
(ℓ)
Lij

. . . 0
]

(7)

where H
(ℓ)
Rij

and H
(ℓ)
Lij

are the Jacobians of h with respect to
the robot pose and the landmark position, respectively, and

G
(ℓ)
i =

[
0 . . . −Φ

(ℓ)
i Idr . . . 0

]
(8)

where Φ
(ℓ)
i is the Jacobian of f(ri,ui) with respect to ri.

In the Gauss-Newton method, and for small-residual prob-
lems, the Hessian matrix can be well approximated by [13]:

A(ℓ) = Λp
0 +Λh

Sa(k)
(x

(ℓ)
k ) +Λf

0:k(x
(ℓ)
k ), (9)

Λp
0 = ΠT

dr
Ap(0)Πdr (10)

Λh
Sa(k)

(x
(ℓ)
k ) =

∑
(i,j)∈Sa(k)

H
(ℓ)T
ij R−1

ij H
(ℓ)
ij (11)

Λf
0:k(x

(ℓ)
k ) =

k−1∑
i=0

G
(ℓ)T
i Q−1

i G
(ℓ)
i (12)



In the above notation, Λp
0 represents the information due

to the prior at time 0, Λh
Sa(k)

(x) represents the information
matrix due to the measurements indexed by Sa(k), evaluated
using linearization about x, and Λf

0:k(x) is the information
matrix due to the process model for the time interval [0, k],
evaluated using linearization about x.

The value of ∆x(ℓ) minimizing the cost function (2) is
found by solving the linear system:

A(ℓ)∆x(ℓ) = −b(ℓ) (13)

Due to the sparse structure of H
(ℓ)
ij and G

(ℓ)
i , the Hessian

matrix A(ℓ) is sparse (see Fig.1). This can be exploited to
speed-up the solution of the above linear system [13], [18].

B. Marginalization of old states

As the robot continuously moves and observes new fea-
tures, the size of the state vector xk constantly increases
(approximately linearly in time, if the density of features is
constant). Therefore, in order to obtain an algorithm with
bounded computational complexity, suitable for real-time
applications, we resort to marginalization of older poses. In
this section, we derive the marginalization equations from
the perspective of minimization of the cost function c.

We consider the following scenario: The robot collects
measurements during the time interval [0, k], and full-state
MAP estimation is carried out at time-step k. Then, the states
xm = {r0, . . . , rm−1, l1, . . . , lml

} (i.e., the m oldest robot
poses and the ml oldest landmarks, which we can no longer
observe) are removed (i.e., marginalized out), and only the
states xr = {rm, . . . , rk, lml+1, . . . , ln} remain active in
the sliding window. The robot keeps moving and collecting
measurements in the time interval [k+1, k′], and as a result,
the history of states is augmented by the new robot and
landmark states xn = {rk+1, . . . , rk′ , ln+1, . . . , ln′}. Now,
at time-step k′, the sliding window contains the states xr

and xn, and we would like to compute the MAP estimate
for these states.

To compute the optimal MAP estimate at time k′, one has
to minimize a cost function c(xk′), which is analogous to
the one in (1). This cost function has a special structure:

c(xk′) = c(xm,xr,xn) = cn(xr,xn) + cm(xr,xm) (14)

The term cn(xr,xn) in the above expression contains all
quadratic terms that involve states in xr only, states in xn

only, or terms involving one state in xr and one in xn. On
the other hand, cm(xr,xm) contains all quadratic terms that
involve states in xm only, as well as terms involving one state
in xm and one in xr. Since states marginalized at time-step k
do not participate in any measurements after that time (they
are older robot poses, and features that can no longer be
seen), there do not exist terms jointly involving states in xn

and xm.
It is important to observe that even though the states xm

and the associated measurements are no longer kept in the
estimator, their exact values are not known, and therefore
the above minimization needs to be performed with respect
to xm as well. In what follows, we show what data we

need to keep after the marginalization at time-step k, to be
able to carry out this minimization. We start by utilizing
the decomposition of the cost function in (14), to employ
the following property, which holds for any multi-variable
optimization problem:

min
xm,xr,xn

c(xm,xr,xn) = min
xr,xn

(
min
xm

c(xm,xr,xn)

)
= min

xr,xn

(
cn(xr,xn) + min

xm

cm(xr,xm)

)
(15)

The above reformulation of the minimization problem entails
no approximation. We now focus on the minimization of cm
with respect to xm. cm is given by:

cm(xr,xm) =
1

2
||r0 − r̂p0 ||Rp(0) +

1

2

∑
(i,j)∈Sm

γhij +
1

2

m−1∑
i=0

γfi

where Sm is the set of indices (i, j) describing all the robot-
to-landmark measurements that involve either marginalized
robot poses or marginalized landmarks (or both). Since the
measurement and process-model functions are nonlinear, the
minimization of cm with respect to xm cannot be carried
out analytically, and we once again employ the second-order
Taylor-series approximation:

cm ≃ cm(x̂r(k), x̂m(k)) + bm(k)
T

[
xm − x̂m(k)

xr − x̂r(k)

]
+

1

2

[
xm − x̂m(k)

xr − x̂r(k)

]T
Am(k)

[
xm − x̂m(k)

xr − x̂r(k)

]
(16)

where bm(k) = ∇cm(x̂r(k), x̂m(k)) is the gradient, and
Am(k) = ∇2cm(x̂r(k), x̂m(k)) the Hessian matrix of cm,
evaluated at the MAP estimates of xr and xm at time-step k:

bm(k) = bp
0(x̂r(k), x̂m(k)) + bh

Sm
(x̂r(k), x̂m(k))

+ bf
0:m(x̂r(k), x̂m(k)) (17)

Am(k) = Λp
0 +Λh

Sm
(x̂r(k), x̂m(k)) +Λf

0:m(x̂r(k), x̂m(k))
(18)

For the following derivations, it will be convenient to define
the block partitioning of the gradient and Hessian of cm as
follows (see Fig. 1):

bm(k) =

[
bmm(k)

bmr(k)

]
Am(k) =

[
Amm(k) Amr(k)

Arm(k) Arr(k)

]
(19)

where the dimensions of the blocks correspond to the dimen-
sions of xm and xr, and the time-step argument (k) denotes
the fact that all quantities in these matrices are evaluated
using the state estimates at time k. At this point, we note
that the cost function in (16) is a quadratic function of xm,
and its minimum with respect to xm is

min
xm

cm ≃ κ+ bT
p (k)(xr − x̂r(k)) +

1

2
||xr − x̂r(k)||Ap(k)

where κ is a constant independent of xr and xm, and

bp(k) = bmr(k)−Arm(k)Amm(k)
−1bmm(k) (20)

Ap(k) = Arr(k)−Arm(k)Amm(k)
−1Amr(k) (21)

Combining this result with that of (15), we see that the
minimization of the cost function c(xm,xr,xn) with respect



to the entire history of states is approximately equivalent to
the minimization, with respect to {xr,xn}, of:

c′(xr,xn) = bT
p (k)(xr − x̂r(k)) +

1

2
||xr − x̂r(k)||Ap(k)

+
1

2

∑
(i,j)∈Sa(k′)

γhij +
1

2

k′−1∑
i=m

γfi (22)

where the set Sa(k
′) contains the (i, j) indices corresponding

to all the active measurements at time-step k′ (i.e., all
measurements involving states in xr and xn). It is important
to note that the above cost function does not depend on
xm. Thus, if after marginalization at time-step k we store
Ap(k), bp(k), and x̂r(k), the above minimization can still
be carried out. The only approximation here lies in the fact
that the term cm has been permanently approximated by the
second-order Taylor series approximation of (16). This will
introduce small errors in the MAP estimates for {xr,xn},
but if the states we chose to marginalize at time-step k are
old, “mature” ones, for which good estimates are available,
the effect of the approximation will be small. On the other
hand, the gain from employing this approximation is that the
states xm and all measurements that directly involve them
can be discarded, yielding an algorithm with constant-time
and constant-memory requirements.

The minimization of c′(xr,xn) at time-step k′ is carried
out by the Gauss-Newton method. Similarly to the previous
case, during the ℓ-th iteration, the correction to the active
states {xr,xn}, is computed by solving the sparse linear
system A(ℓ)∆x = −b(ℓ), where:

b(ℓ) = bp
k(x

(ℓ)
r ) + bh

Sa(k′)(x
(ℓ)
r ,x(ℓ)

n ) + bf
m:k′(x

(ℓ)
r ,x(ℓ)

n )

(23)

A(ℓ) = Λp
k +Λh

Sa(k′)(x
(ℓ)
r ,x(ℓ)

n ) +Λf
m:k′(x

(ℓ)
r ,x(ℓ)

n ) (24)

The terms in the above expressions are defined analogously
to those in (3)-(9), with the exception of bp

k(x
(ℓ)
r ), which is

given by:

bp
k(x

(ℓ)
r ) = Πrbp(k)+ΠrAp(k)(x

(ℓ)
r − x̂r(k)) (25)

with Πr = [Idimxr 0 0 ...].

C. Fixed-lag smoothing algorithm
We can now describe the entire fixed-lag smoothing esti-

mation algorithm (see Algorithm 1). During each estimation
step, updates are computed for all the states that are in
the currently active state vector by solving the sparse linear
system defined by (23) and (24). If the covariance matrix of
the sliding-window estimates is needed, it can be computed
after the iteration converges as the inverse of the information
matrix A(ℓ). Moreover, if desired we can marginalize out a
number of states, so as to reduce the size of the actively
estimated state vector. If, at time-step k, we choose to
marginalize out the states xm and keep only xr, the current
estimate x̂r(k) will take the place of the prior, the prior
information matrix Ap(k) will be computed via (21), and
the vector bp(k) via (20). Once these quantities have been
computed, the states xm and all measurements that directly
involve them can be discarded.

Algorithm 1 Fixed-Lag Information Smoothing
Initialization:
Prior information: Ap(0) = R−1

p (0), Prior estimate:
x̂p = r̂p0 , Prior constant vector for use in (25): bp = 0.

MAP Estimation
Starting from an initial estimate, iteratively compute
corrections to the state by solving the sparse linear system
A(ℓ)∆x = −b(ℓ), where A(ℓ) and b(ℓ) are defined in (23)-
(25), respectively. Repeat until convergence.

Marginalization
• Set the new prior estimate as x̂p = x̂r(k), and compute

Ap and bp via (20) and (21).
• Remove the states xm from the active state vector, and

discard all measurements that involve these states.

It is important to examine the structure of the prior
information matrix Ap. As discussed earlier, in the case of
the full-state MAP, the Hessian matrix A is sparse, which
significantly speeds up computation. We now show that,
typically, the same holds in the case of fixed-lag smoothing.
Fig. 1 illustrates the sparsity pattern of the full-state Hessian,
A, for a typical trajectory. We observe that in the case of
motion tracking, when (i) no loop closures occur, (ii) the
number of landmarks seen by the robot at any time instant
is limited, and (iii) features are not tracked for very long
time periods, then A is a sparse band matrix. Moreover, it
is well-known that the marginalization of a state variable
only introduces fill-in in rows and columns corresponding
to variables directly connected to it via measurements [13].
Therefore, the marginalization of old robot poses and old
landmarks typically results in a sparse matrix Ap, as shown
in Fig. 1. Thus we are still able to employ sparse-matrix
techniques for the solution of the Gauss-Newton system.

III. ESTIMATOR CONSISTENCY

A key benefit of the fixed-lag smoother presented in the
preceding section is the fact that it iteratively re-linearizes
the measurements. This enables the algorithm to reduce the
effects of the linearization errors, and thus to attain improved
accuracy, compared to methods which do not employ re-
linearization (e.g., EKF methods). Clearly, having small
linearization errors is a key requirement for the consistency
of an estimator; if large, unmodeled linearization errors exist,
the accuracy claimed by the estimator will be too optimistic,
and the estimates will be inconsistent. In this section, we
examine a different factor that can cause inconsistency of
the estimates. Specifically, we show that when the Jaco-
bian matrices of the measurements are computed using the
latest available state estimates (the “standard” option), the
smoother will gain fictitious information, along directions of
the state space where no real information is provided by the
measurements. The immediate result of this is inconsistency,
i.e., state estimates whose accuracy is worse than the one
claimed by the estimator. Moreover, the over-confidence of



Fig. 1. Illustration of the sparsity patterns in the matrices appearing in the fixed-lag smoothing algorithm. Here we employ a temporal ordering of the
variables (i.e., robot poses and landmarks enter the state vector in the order they appear in time), although during the solution of the system alternative
variable ordering can be used if desired, to speed-up computations.

the estimator about the accuracy of the state estimates along
certain directions of the state space leads to inaccurate state
updates, and thus a degradation of accuracy, as shown in the
results of the next section.

In what follows, we focus on the scenario described in
Section II-B, i.e., marginalization of the states xm at time-
step k, and a new estimation step at time-step k′. Once
the Gauss-Newton iteration at time k′ has converged, the
information (i.e., inverse covariance) matrix for the active
states is given by

A(k′) = Λp
k +Λh

Sa(k′)(x̂r(k
′), x̂n(k

′))

+Λf
m:k′(x̂r(k

′), x̂n(k
′)) (26)

Our goal is to show that the linearization employed
during the marginalization process results in the addition of
non-existent information to the estimator, by studying the
properties of A(k′). To this end, we first note that A(k′) is
the Schur complement of Amm(k) in the following matrix:

Amar
full (k

′) = Λp
0 +Λh

Sm
(x̂m(k), x̂r(k)) +Λf

0:m(x̂m(k), x̂r(k))

+Λh
Sa(k′)(x̂r(k

′), x̂n(k
′))+Λf

m:k′(x̂r(k
′), x̂n(k

′)) (27)

=

[
Amm(k) Amr(k)Πr

ΠT
r Arm(k) ΠT

r Arr(k)Πr

]
+

[
0 0
0 A(k′)−Λp

k

]
It is important to observe that Amar

full (k
′) represents the avail-

able information for the entire history of states {xm,xr,xn}.
To see why this is the case, recall that the union of
the sets Sm and Sa(k

′) is the set of all measurements
recorded in the time interval [0, k′], and thus the matrices
Λh

Sm
(x̂m(k), x̂r(k)) and Λh

Sa(k′)(x̂r(k
′), x̂n(k

′)), taken to-
gether, represent all the available measurement information.
Similarly, Λf

0:m(x̂m(k), x̂r(k)) and Λf
m:k′(x̂r(k

′), x̂n(k
′)) to-

gether represent all the available process-model information,
while Λp

0 is the prior. Thus, the matrix Amar
full (k

′) is analogous
to the information matrix that would arise from a full-state
MAP estimate at time-step k′, but with the important dif-
ference that in Amar

full (k
′), some of the Jacobian matrices are

evaluated at the state estimates {x̂m(k), x̂r(k)}, while others
are evaluated at {x̂r(k

′), x̂n(k
′)}. We now show that this

difference results in the “infusion” of artificial information
into the estimation process.

To prove this result, we focus on the information provided
to the estimation process by the process model and the

feature measurements. For this reason, for the moment we
consider the case where the prior is zero, i.e., Λp = 0. In
this case, Amar

full (k
′) becomes

Amar
full (k

′) = Λh
Sm

(x̂m(k), x̂r(k)) +Λf
0:m(x̂m(k), x̂r(k))

+Λh
Sa(k′)(x̂r(k

′), x̂n(k
′))+Λf

m:k′(x̂r(k
′), x̂n(k

′))
(28)

On the other hand, if we had carried out a full-state
MAP estimation at time step k′, without having previously
marginalized any states, the information matrix would be:

Anm
full(k

′) = Λh
Sm

∪
Sa(k′)(x̂m(k′), x̂r(k

′), x̂n(k
′))

+Λf
0:k′(x̂m(k′), x̂r(k

′), x̂n(k
′)) (29)

A key result that we prove is that [19]

rank(Amar
full (k

′)) = rank(Anm
full(k

′)) + 1 (30)

This shows that computing the information matrix Amar
full (k

′)

using two different estimates for the states xr leads to an
increase of its rank. Clearly, this increase is incorrect, since
it is not justified by any new measurement information.

Due to limited space the full proof of the above result
cannot be included here, and the interested reader is referred
to [19] for the details of the proofs for both 2D and 3D
motion estimation. Instead, we here provide some intuition
behind the result. Specifically, for the case of 2D motion,
in [19] we show that the matrix Anm

full(k
′) has a nullspace of

dimension three, spanned by the columns of the matrix:

N(x̂m(k′), x̂r(k
′), x̂n(k

′)) =



I2 Jp̂R0 (k
′)

01×2 1
...

...
I2 Jp̂Rk′ (k

′)

01×2 1
I2 Jp̂L1 (k

′)

...
...

I2 Jp̂Ln′ (k
′)


(31)

where p̂Ri (k
′) and p̂Lj (k

′) are the estimates for the i-
th robot position and j-th landmark position, respectively,
computed at time-step k′. The physical interpretation of this
result is that using only the robot-to-landmark measurements,
only the relative positions between the robot poses and



the landmarks can be estimated with bounded uncertainty,
while the global position and orientation of the state vector
cannot be determined. (Note that the first two columns of N
correspond to global translations of the state vector, while
the third column to global rotations).

Turning our attention to the matrix Amar
full (k

′) in (28), we
again point out that in this matrix, two different estimates
for xr appear. These estimates are the ones computed at
the time of marginalization, x̂r(k), and those computed after
the Gauss-Newton iteration at time k′, x̂r(k

′). This is the
only difference between the matrices Amar

full (k
′) and Anm

full(k
′).

Thus, Amar
full (k

′) is essentially a perturbed version of Anm
full(k

′),
with the magnitude of the perturbation being proportional to
||x̂r(k)− x̂r(k

′)||. This perturbation causes the third column
of N(x̂m(k′), x̂r(k

′), x̂n(k
′)) not to belong to the nullspace

of Amar
full (k

′), and the dimension of this nullspace is only two,
instead of three [19]. This means that the estimator acquires
erroneous information about the global orientation, as a result
of the use of two different linearization points for xr.

The result of (30) shows that the rank of the information
matrix for the entire state history, Amar

full (k
′), is incorrectly

increased. Using (27) and the properties of the Schur com-
plement, we can find a direct relationship between the rank
of the information matrix for the entire state history and the
information matrix for the currently active states, A(k′):

rank(A(k′)) = rank(Amar
full (k

′))− rank(Amm(k)) (32)

Since Amm(k) is in general a full-rank matrix, we conclude
that the rank of the information matrix for the active states
at time-step k′ is increased by one, compared to its correct
value.

We have thus shown that when no prior estimates are
available, the marginalization process results in an erroneous
increase in the rank of the state information matrix. Anal-
ogous conclusions can be drawn for the general situation,
where prior information also exists. Specifically, in this case
the rank of the information matrix is not increased (the
matrix is already full-rank), but the “addition” of informa-
tion in certain directions of the state space still happens.
The immediate result of this is inconsistent estimates, i.e.,
estimates whose accuracy is worse than that claimed by the
filter. Ultimately, this leads to a degradation of the accuracy
of the state estimates themselves, as shown in the results
presented in Section IV.

A. Improvement of the estimator’s consistency

We now propose a simple solution to the problem of
“creating” artificial information through the marginalization
process. For this purpose, only a slight modification of the
fixed-lag smoothing algorithm is needed. Specifically, in
computing the Jacobians used in (24), we employ the prior
estimates, rather than the current ones, for states for which
a prior exists. Thus, (24) is changed to:

A(ℓ) = Λp
k +Λh

Sa(k′)(x̂r(k),x
(ℓ)
n ) +Λf

m:k′(x̂r(k),x
(ℓ)
n )

In the above the only estimate of xr used is x̂r(k). In [19]
we show that as a result, the rank of the matrix Amar

full (k
′)

does not increase when marginalization takes place (the

nullspace of this matrix is then spanned by the columns of
N(x̂m(k), x̂r(k), x̂n(k

′)), and the influx of invalid informa-
tion is avoided.

We term algorithm resulting from the above modification
Prior-Linearization (PL) fixed-lag smoothing. It is important
to note that, as illustrated in Fig. 1, the number of vari-
ables for which the marginalization process creates prior
information is typically small. As a result, typically only
a small number of states will be affected by the change of
linearization point, and therefore any loss of linearization
accuracy (due to the use of older estimates for computing
the Jacobians in (24)) is small. As indicated by the re-
sults presented in the next section, the effect of this loss
of linearization accuracy is not significant, while avoiding
the creation of fictitious information leads to significantly
improved estimation precision.

IV. RESULTS

In this section, we present simulation and real-world
experimental results that demonstrate the properties of the
proposed PL-smoothing algorithm.

A. Simulation results: 2D localization

In our simulation setup, we consider a robot that moves
on a plane along a circular trajectory of total length equal
to 1200 m. The robot tracks its pose using odometry and
bearing measurements to landmarks that lie within its sensing
range of 4 m. This scenario could arise, for example, in the
case of a robot that moves inside corridors and tracks its
position using camera observations of vertical edges on the
walls. On average, approximately 15 landmarks are visible
at any time, and measurements occur at a rate of 1 Hz
in the simulation setup. Landmarks can be tracked for a
maximum of 20 consecutive time steps, and therefore in
the fixed-lag smoother we choose to maintain a sliding
window which contains 25 robot poses and the landmarks
seen in these poses. In Fig. 2 the results of the PL-smoothing
algorithm are presented, and compared with those obtained
by (i) the fixed-lag smoothing algorithm that utilizes the
standard linearization approach (termed SL-smoother in the
following), and (ii) the full-state MAP estimator.

Specifically, Fig. 2(a) shows the average normalized es-
timation error squared (NEES) for the latest robot pose,
averaged over 50 Monte-Carlo runs, while Fig. 2(b) shows
the RMS localization errors for each of the three robot states
[x, y, ϕ]. In these plots we observe that the PL-smoothing
method significantly outperforms the SL-smoothing ap-
proach, both in terms of consistency (i.e., NEES) and in
terms of accuracy (i.e., RMS errors). Most importantly,
we see that the performance of the PL-smoother is almost
indistinguishable from that of the full-MAP estimator, which
at any time-step carries out estimation using the entire history
of states, and all measurements.

The average robot-pose NEES over all Monte-Carlo runs
and all time steps equals 3.19 for the full-MAP, and 3.22
for the PL-smoother. (Since in this case the robot state is
of dimension 3, the “ideal” NEES value for a consistent
estimator equals 3). On the other hand, the average RMS
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Fig. 2. Simulation results for 2D localization using odometry and bearing measurements to features. (a) The average value of the robot-pose NEES over
time. (b) The RMS errors for the robot pose over time. In both cases, averaging occurs over all the Monte-Carlo trials. In these plots, the red solid lines
correspond to the PL-smoothing algorithm, the black dashed lines to the standard-linearization smoother, while the circles to the full MAP estimator.
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Fig. 3. Real-world results for 3D localization using inertial measurements and a monocular camera. (a) The trajectory estimates vs. GPS ground truth.
(b) The reported standard deviation for the 3 axes of rotation.

errors for both estimators are identical to three significant
digits, equal to 1.38 m for position and 3.61o for orientation.
This performance is remarkable, given the fact that the
PL-smoother has a computational cost orders of magnitude
smaller than that of the full-MAP estimator. Moreover, it
becomes clear that the choice of linearization points has a
profound effect on both the consistency and the accuracy of
the estimates (for comparison, the average NEES for the SL-
smoother equals 44.5, while the average position and orien-
tation RMS errors are 1.82 m and 5.58o). We thus see that in
the simulation setup shown here, the proposed PL-smoothing
is capable of attaining accuracy close to that of the “golden
standard” full-state MAP estimator, at a computational cost
constant over time and orders of magnitude smaller than that

of the full-state MAP.

B. Real-world experiment: 3D localization

To validate the performance of the proposed algorithm in
a real-world setting, we tested it on the data collected by
a vehicle moving on city streets. The experimental setup
consisted of a camera registering images with resolution
640×480 pixels, and an ISIS IMU, providing measurements
of rotational velocity and linear acceleration at 100Hz. In this
experiment the vehicle drove for about 23 minutes, covering
a distance of approximately 8.2 km. Images were processed
at a rate of 7.5 Hz, and an average of about 800 features were
detected in each image. Features were extracted using the
Harris corner detector [20], and matched using normalized
cross-correlation.



During the experiment all data were stored on a computer,
and processing was carried out off-line, enabling us to test the
performance of several methods. Specifically, we compare
the performance of the PL-smoother, the SL-smoother, and
an EKF-based fixed-lag smoothing method [6]. All three esti-
mators process exactly the same data, and produce estimates
of the IMU’s 3D pose and velocity, as well as of the IMU’s
biases. Due to the duration of the dataset, and the number of
detected features (approximately 3 million in total), it was
impossible to run a full-state MAP estimator on this dataset.

In Fig. 3(a) the trajectory estimates of the PL-smoother
and the EKF-smoother are shown in the solid and dashed
lines, respectively. Additionally, the dots represent the GPS
measurements, which were available intermittently to provide
ground truth (GPS was not processed in the estimator).
Unfortunately, in this experiment the timestamps of the GPS
ground truth were not precise, and therefore it is impossible
to compute the exact value of the error for each time instant.
However, by inspection of the trajectory estimates, we can
deduce that the position errors of the EKF-smoother at the
end of the trajectory are approximately double those of the
PL-smoother, and are equal to about 0.4% of the traveled
distance. The estimates of the SL-smoother are very close to
those of the PL-smoother, and they are not shown to preserve
the clarity of the figure.

In addition to the estimation errors, it is interesting to
examine the accuracy reported by the three algorithms. To
this end, in Fig. 3(b) we plot the time evolution of the
reported standard deviation for the orientation estimates. The
three subplots correspond to the rotation errors about the x, y,
and z axes, respectively. We observe that, while the reported
accuracies for the rotation about the x and y axes (roll and
pitch) are very similar among estimators, those for the rota-
tion about z (yaw) differ significantly. On one hand, the yaw
uncertainty reported by the EKF remains almost constant
towards the end of the trajectory, and sharply drops for the
SL-smoother. On the other hand, the PL-smoother reports
that the yaw uncertainty continuously increases. Given that
the yaw is unobservable in this experiment, we clearly see
that the PL-smoother provides a better representation of the
actual uncertainty of the state estimates.

V. CONCLUSIONS

In this paper, we presented an algorithm for tracking the
motion of a robot using proprioceptive and exteroceptive
measurements. The method is based on a fixed-lag smoothing
approximation to the full-MAP estimator. In order to attain
bounded computational cost over time, the proposed algo-
rithm employs marginalization of older states, so as to main-
tain a sliding window of active states with approximately
constant size. Through an analysis of the marginalization
equations, we have proven that if the standard approach to
linearization is used (i.e., if the latest estimates of the states
are used for computing Jacobians), erroneous information is
introduced in the estimator, resulting in inconsistency. To ad-
dress this problem we have proposed a modified linearization
scheme, termed PL-fixed lag smoothing, which prevents the

infusion of artificial information, and improves estimation
performance. The proposed algorithm was tested in both
simulation and real-world experiments, and its accuracy was
shown to be superior to that of alternative methods.
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