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Research accomplishments
since last review

3 journal papers published + 4 submitted (18 journal papers
published + 4 submitted since start of the grant in 2004)

e Analyzed relation between entanglement and Bell inequality
violation in phase qubits; analyzed effect of decoherence
on Bell inequality violation in phase qubits

e Performed numerical analysis of the V(iswap) gate fidelity
for phase qubits; identified effect of non-local decoherence
on the y-matrix of the quantum process tomography

e Developed theory of quantum efficiency of binary-outcome
solid-state gqubit detectors (incl. phase gubit measurement)

e Continued work on quantum uncollapsing
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Entanglement vs. Bell inequality
for phase qubits

Only 1.1% of entangled states violate Bell (CHSH) inequality
(our numerical result for Hilbert-Schmidt metric)

Therefore, under decoherence, entanglement-survival duration t¢
Is significantly longer than Bell-inequality-violation duration tg
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For present-day parameters of phase qubits Kofman & Korotkov,

entanglement should last 8 times longer than ~ PRA 77, 052329 (2008)

Bell inequality violation (470 ns vs. 60 ns) Eg;mgﬁq'a?;?ig_gg’gfflig7
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Analysis of QPT (quantum process
tomography) for phase qubits
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qubita qubit b Analyzed models
of decoherence:

e Local decoherence (T4, T,)

e Non-local: correlated
dephasing (e.g. due to
correlated flux noise)

e Noisy coupling (fluctuating
capacitance)

How to distinguish mechanisms?

(modified basis: I, X, -1Y, Z) Kofman & Korotkov,
in preparation
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Weak decoherence = different
mechanisms approx. additive:

A = Xideal T d}(dec.l T d}(dec.z T

_ocal decoherence

S/h =20 MHz,
T,=90ns, T, =60 ns

Non-local decoherence
(correlated dephasing)

S/h =20 MHz,
TZCorr =90 ns

new peaks in Re y:
(1Z,Z1) and (Z1,12)
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S/h=20MHz, T, =T,/2=90ns, T, .,y =50 ns

Corr.

guantitative comparison with experiment in principle possible
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C,(t) =Cx + AC,(t)
Fnoisy coupl. ~ 1/(90 ns)
S/h =20 MHz

Same peak positions as ideal,
but increasing peaks in Imy:
(XX,Z22), (YY,ZZ), and symm.

Comparison with experimental
data (Martinis group)

No noticeable evidence
for correlated dephasing
or noisy coupling

at present experimental
accuracy
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Quantum efficiency of binary-outcome
solid-state qubit detectors

Quantum efficiency of linear solid-state detectors has been well studied. Let us introduce it
similarly for binary-outcome qubit detectors (comparing actual decoherence with QM bound).

Assume QND detector (otherwise 10+18=28 parameters needed), then 6 parameters:
fidelities Fy and F,, decoherences D, and D,, and phases ¢, and ¢,

-Dy i .
qubit evolution (Poo ,001}_)1[F0p00 \/Fo(l—Fl)e 0e'¢0,001] probability: Py =
for result O:

P Pu Pl c.c. (1-F)py, Fopoo + (1= F)py
(similar Day it
for result 1) on average: [Poo ,001} N Py € av g fav Lot
plo pll C.C. pll
informational bound on > D
ensemble decoherence: DaV - mln In[\/F (1 F ) + \/(1 F )F ]

So, let us define quantum n= D / D
efficiency as: av

Mo1) = Prmin /(Do(2) + Dmin)
(averaged) (for each outcome)

Why need? For quantum feedback, non-unitary gates, etc. :
Korotkov, arXiv:0808.3547 ¢
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Indirect projective measurement
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fidelity F;=1-exp(-I';t)
Mo = 1, 7 = 1, 7 =1 (much better!)

Phase qubit detection (n, and n undefined
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Korotkov, arXiv
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Featured as

Top story in
Nature News
Nature 454, 8 (2008)
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Experiment (Martinis group)

Katz, Neeley, Ansmann, Bialzak, Lucero, O’Connell,
Wang, Cleland, Martinis, Korotkov, arXiv:0806.3547
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Theory (Korotkov and Jordan, PRL-06,
long paper in preparation)

Partial collapse can be fully undone:
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Research topics for the next year

Analyze efficiency of multi-qubit measurement

Compare performance of various ways to measure
phase qubits

Analyze benefits of tunable coupling in reducing
measurement back-action

Continue analysis of quantum process tomography
for phase qubits
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