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Research accomplishments
since last review

• 3 journal papers published + 4 submitted (18 journal papers
published + 4 submitted since start of the grant in 2004)

• Analyzed relation between entanglement and Bell inequality
violation in phase qubits; analyzed effect of decoherence 
on Bell inequality violation in phase qubits

• Performed numerical analysis of the √(iswap) gate fidelity 
for phase qubits; identified effect of non-local decoherence 
on the χ-matrix of the quantum process tomography

• Developed theory of quantum efficiency of binary-outcome
solid-state qubit detectors (incl. phase qubit measurement)

• Continued work on quantum uncollapsing
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Kofman & Korotkov, 
PRA 77, 052329 (2008)

Entanglement vs. Bell inequality 
for phase qubits

Only 1.1% of entangled states violate Bell (CHSH) inequality
(our numerical result for Hilbert-Schmidt metric)

For present-day parameters of phase qubits 
entanglement should last 8 times longer than 

Bell inequality violation (470 ns vs. 60 ns)

Therefore, under decoherence, entanglement-survival duration τE
is significantly longer than Bell-inequality-violation duration τB

BeIl ineq. also studied in 
Kofman, arXiv:0804.4167
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Analysis of QPT (quantum process
tomography) for phase qubits
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How to distinguish mechanisms?
(modified basis: I, X, -iY, Z)

Analyzed models 
of decoherence:

• Local decoherence (T1, T2)
• Non-local: correlated 

dephasing (e.g. due to 
correlated flux noise) 

• Noisy coupling (fluctuating
capacitance)

Kofman & Korotkov, 
in preparation
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 Effects of decoherence on iSWAP gate

Local decoherence

Non-local decoherence
(correlated dephasing)
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new peaks in Re χ:
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1 2 2, .corr/ 20 MHz, / 2 90 ns,  50 nsS h T T T= = = =

Energy relaxation & correlated dephasing

quantitative comparison with experiment in principle possible
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Decoherence due to noisy coupling

noisy coupl.

( ) ( )
1/(90 ns) 

/ 20 MHz

xx xC t C C t
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= + Δ
Γ =

=

Re

No noticeable evidence 
for correlated dephasing 
or noisy coupling 
at present experimental 
accuracy χ Im χ

Reχ Im χ

iSWAP :

Same peak positions as ideal, 
but increasing peaks in Im χ:
(XX,ZZ), (YY,ZZ), and symm.

Comparison with experimental 
data (Martinis group)
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Quantum efficiency of binary-outcome 
solid-state qubit detectors

Korotkov, arXiv:0808.3547

Quantum efficiency of linear solid-state detectors has been well studied. Let us introduce it 
similarly for binary-outcome qubit detectors (comparing actual decoherence with QM bound).

Assume QND detector (otherwise 10+18=28 parameters needed), then 6 parameters:
fidelities F0 and F1, decoherences D0 and D1, and phases φ0 and φ1
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qubit evolution
for result 0:

probability:

(similar 
for result 1)

on average:

informational bound on
ensemble decoherence: 0 1 0 1min ln[ (1 ) (1 ) ]avD D F F F F≥ = − − + −

Why need? For quantum feedback, non-unitary gates, etc.

min / avD Dη = 0(1) 0(1)min min/( )D D Dη = +
(for each outcome)

So, let us define quantum
efficiency as:

(averaged)
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Quantum efficiency for several models

Linear detector in binary mode
(compare result r with a threshold rth)
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Korotkov, arXiv:0808.3547
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Quantum uncollapsing

Featured as 
Top story in
Nature News 
Nature 454, 8 (2008)

Partial collapse can be fully undone:

× =
| 1〉 | 1〉 | 1〉

| 0〉 | 0〉 | 0〉

(Korotkov and Jordan, PRL-06, 
long paper in preparation)

Experiment (Martinis group)
Katz, Neeley, Ansmann, Bialzak, Lucero, O’Connell, 
Wang, Cleland, Martinis, Korotkov, arXiv:0806.3547

Theory

uncollapsing works 
with good fidelity!

QPT resultsBloch
sphere
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Research topics for the next year

• Analyze efficiency of multi-qubit measurement

• Compare performance of various ways to measure
phase qubits

• Analyze benefits of tunable coupling in reducing 
measurement back-action

• Continue analysis of quantum process tomography 
for phase qubits 
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