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ABSTRACT

The quantum evolution of an individual solid-state qubit during the process of its continuous measurement can
be described by the recently developed Bayesian formalism. In contrast to the conventional ensemble-averaged
formalism, it takes into account the measurement record (in a way similar to the standard Bayesian analysis) and
therefore is able to consider individual realizations of the measurement process. The formalism provides testable
experimental predictions and can be used for the analysis of a quantum feedback control of solid-state qubits.
The Bayesian formalism can be also applied to the continuous measurement of entangled qubits; in particular,
it shows how to create a fully entangled pair of qubits without their direct interaction, just by measuring them
with an equally coupled detector.
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1. INTRODUCTION

The approach of Bayesian analysis to the problem of continuous quantum measurement is a relatively new subject
for the solid-state community, even though this approach has a long history1 as a general quantum framework
and is rather well developed, for example, in quantum optics2, 3 (for more references, see Ref.4) The main problem
considered in this paper is a very simple question: what is the evolution of a quantum two-level system (qubit)
during the process of its measurement by a solid-state detector (Fig. 1)? In spite of simplicity of the question,
the answer is not trivial.

The textbook \orthodox" quantum mechanics5 says that the measurement should instantly collapse the
qubit state, so that after the measurement the qubit state is either j1i or j2i, depending on the measurement
outcome. [The measurement basis is obviously de�ned by the detector; in particular, it is a charge basis for the
examples of Figs. 1(a) and 1(b).] Such answer is suÆcient for typical optical experiments when the measurement
is instantaneous (a scintillator 
ash or a photocounter click). However, for typical solid-state setups (as well as
for some more advanced setups in quantum optics2, 3) the instantaneous collapse is not a suÆcient answer. In
particular, in the examples of Fig. 1 typically the detector is weakly coupled to the qubit, so the measurement
process can take a signi�cant time and therefore the collapse should be considered as a continuous process.
The notion of a continuous evolution due to measurement is well accepted in the solid-state community and is
usually considered within the framework of the Leggett's formalism.6 This formalism gives the decoherence-
based answer to the question posed above. It says that the nondiagonal matrix elements of the qubit density
matrix (obtained by tracing over the detector degrees of freedom) gradually decay to zero, while the diagonal
matrix elements do not evolve (assuming that the qubit does not oscillate by itself, H = 0, where H describes
the tunneling between j1i and j2i). So, after the completed measurement we have an incoherent mixture of the
states j1i and j2i.

Let us notice that these two answers to our question obviously contradict each other and the \orthodox"
answer cannot be obtained as some limiting case of the decoherence answer. The resolution of the apparent
contradiction is simple: two approaches consider di�erent objects. The decoherence approach describes the
average evolution of the ensemble of qubits, while the \orthodox" quantum mechanics is designed to treat a
single quantum system. This di�erence also explains the inability of the decoherence formalism to take the
measurement outcome into account.

Obviously, it is desirable to have a formalism which would combine advantages of the two approaches and
describe the continuous measurement of a single qubit. Then the \orthodox" result would be a limiting case for
very fast (and \strong") measurement, while the decoherence result could be obtained by an ensemble averaging.
The Bayesian formalism4, 7 which is the subject of this paper has been developed exactly for that purpose
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Figure 1. (a) General schematic of a continuously measured solid-state qubit and two particular realizations of the setup:
(b) a qubit made of double quantum dot (DQD) measured by a quantum point contact (QPC) and (c) a qubit based on
single-Cooper-pair box (SCPB) measured by a single-electron transistor (SET).

(some extensions of the Bayesian formalism will be discussed later). Notice that the formalism has been also
reproduced8 in a somewhat di�erent language (using the terminology of quantum trajectories, quantum jumps,
and quantum state di�usion) by the team which has previously developed2 a similar theory in quantum optics. It
is important to stress that the Bayesian approach is not a phenomenological theory which just correctly describes
two previously known cases. It claims the description of a real and experimentally veri�able evolution of a single
qubit in a process of measurement.

Simply speaking, the Bayesian formalism gives the following answer to the question posed above (for H = 0).
During the measurement process the diagonal matrix elements of the qubit density matrix evolve according to
the classical Bayes formula9, 10 which takes into account the noisy detector output [I(t) in Fig. 1] and describes
a gradual qubit localization into one of the states j1i or j2i, depending on I(t). The evolution of nondiagonal
matrix elements can be easily calculated using somewhat surprising result that a good (ideal) detector preserves
the purity of the qubit state, so that the decoherence is actually just a consequence of averaging over di�erent
detector outcomes I(t) for di�erent members of the ensemble. (Nonideal detectors also produce some amount of
qubit decoherence, which is calculated within the formalism.)

Notice that in the case of an ideal detector, our result can actually be considered as a simple consequence of
the so-called Quantum Bayes Theorem (we borrow this name from the book on quantum noise by Gardiner,11

even though it is not a theorem in a mathematical sense). However, the application of this \theorem" is not
always straightforward, so instead of applying it as an ansatz, we derive the Bayesian formalism for particular
measurement setups, starting from the textbook quantum mechanics.

It is diÆcult to avoid philosophical questions discussing a problem related to quantum measurements. In brief,
the Bayesian approach philosophy is exactly the philosophy of the \orthodox" quantum mechanics. A minor
technical di�erence is that instead of assuming instantaneous information on measurement result corresponding
to instantaneous \orthodox" collapse, we consider a more realistic case of continuous information 
ow.

Finally, let us mention that the problem of solid-state qubit evolution due to continuous measurement has
been recently a subject of theoretical study by many groups (see, e.g.12{22). However, most of the obtained
results are limited by the assumption of ensemble averaging (except the results obtained by Australian group8, 18

which also studies single realizations of the measurement process).

2. SIMPLE MODEL

Even though Bayesian approach is applicable to a broad range of measurement setups, let us start with a
particularly simple setup [Fig. 1(b)] consisting of a double quantum dot occupied by a single electron, the
position of which is measured by a low-transparency Quantum Point Contact (QPC) or (which is almost the
same) by just a tunnel junction [Fig. 2(a)]. Basically following the model of Ref.12 we assume that the detector
barrier height depends on the location of the electron in either dot 1 or 2; then the current through the tunnel
junction (which is the detector output) is sensitive to the electron location.
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Figure 2. (a) Tunnel junction as a detector of the double-quantum-dot qubit. The electron location in the DQD a�ects
the detector barrier height. The noisy current I(t) (detector output) re
ects the evolution of the qubit density matrix
�ij(t). (b) Idea of the Bayesian formalism derivation via Bloch equations. The number n of electrons passed through the
detector is periodocally collapsed (forced to choose a de�nite value) at moments tk.

The Hamiltonian of the system, H = HQB + HDET + HINT , consists of terms describing the double-dot
qubit, the detector, and their interaction. The qubit Hamiltonian,

HQB =
"

2
(cy2c2 � cy1c1) +H (cy1c2 + cy2c1); (1)

is characterized by the energy asymmetry " between two dots and the tunneling strength H (we assume real H

without loss of generality). The detector and interaction Hamiltonians can be written as HDET =
P

lEla
y
lal +P

r Era
y
rar +

P
l;r T (a

y
ral + aylar), HINT =

P
l;r(�T=2)(c

y
1c1 � cy2c2)(a

y
ral + ayl ar), where both T and �T are

assumed real and their dependence on the states in electrodes (l; r) is neglected. For simplicity we assume zero
temperature (Bayesian formalism at �nite temperatures has been considered in Refs.4, 8, 23, 24). If the electron
occupies dot 1, then the average current through the detector is I1 = 2�(T +�T=2)2�l�re

2V=�h (V is the voltage
across the tunnel junction and �l;r are the densities of states in the electrodes), while if the measured electron is
in the dot 2, the average current is I2 = 2�(T ��T=2)2�l�re

2V=�h.

The di�erence between the currents,
�I � I1 � I2; (2)

determines the detector response to the electron position. Because of the detector shot noise, the two states
cannot be distinguished instantaneously and the signal-to-noise ratio (S/N) gradually improves with the increase
of the measurement duration. The S/N becomes close to unity after the \measurement" time

�m =
(
p
S1 +

p
S2)

2

2(�I)2
; (3)

where the spectral densities S1 and S2 of the detector shot noise for states j1i and j2i are given by the Schottky
formula, S1;2 = 2eI1;2. [Actually, Eq. (3) exactly corresponds to S/N=1 for S1 = S2, while for S/N6=1 it gives
the proper asymptotic scaling at t � �m.] To avoid an explicit account of the detector quantum noise we will
consider only processes at frequencies ! � eV=�h; in particular, we assume max(�h��1m ; j"j; jH j)� eV .

Notice that due to electron charge discreteness and stochastic nature of tunneling, the total number n(t) of
electrons passed through the detector is sometimes a more convenient magnitude to work with than the current
I(t) = e dn(t)=dt. In particular, we will use n(t) instead of I(t) for the Bayesian formalism derivation in the next
section.

3. DERIVATION OF THE BAYESIAN FORMALISM VIA \BLOCH" EQUATIONS

The \conventional" ensemble-averaged equations for the qubit density matrix �ij(t),

_�11 = � _�22 = �2 H
�h
Im �12; (4)

_�12 = i
"

�h
�12 + i

H

�h
(�11 � �22)� �d �12; (5)
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do not take into account any information about the detector outcome and describe the e�ect of continuous
measurement by the ensemble decoherence rate12 �d = (

p
I1 �

p
I2)

2=2e. (Notice a relation �d�m = 1=2; as will
be seen later, this means that the detector is ideal).

Equations (4){(5) imply tracing over all detector degrees of freedom, including the measurement outcome. An
important step towards taking into account the measurement record was a derivation12 of \Bloch" equations for
the density matrix �nij(t) which is divided into components with di�erent number n of electrons passed through
the detector:

_�n11 = �I1
e
�n11 +

I1
e
�n�111 � 2

H

�h
Im �n12 ; _�n22 = �I2

e
�n22 +

I2
e
�n�122 + 2

H

�h
Im �n12 ; (6)

_�n12 = i
"

�h
�n12 + i

H

�h
(�n11 � �n22)�

I1 + I2
2e

�n12 +

p
I1I2
e

�n�112 : (7)

Eqs. (4){(5) can be obtained from the Bloch equations using summation over n and relation �ij =
P

n �
n
ij .

(Absence of nondiagonal in n matrix elements �nmij is related to the assumption of large detector voltage.12 )

Despite the Bloch equations carry the total number n of electrons passed through the detector, they cannot
take into account the whole measurement record n(t) for a particular realization of measurement process. We
should make a simple but important step for that: we should introduce a suÆciently frequent collapse of n(t)
corresponding to a particular realization of the measurement record.4 This idea is illustrated in Fig. 2(b).
Including \detector" into the quantum part of the setup, we anyway have to deal with a classical information, so
we introduce a classical \pointer" which periodically (at times tk) forces the system \qubit+detector" to choose
a de�nite value for n(tk). An obvious drawback of such construction is that it is absolutely not clear what should
be a sequence of tk (in other words, how strongly the detector and pointer should be coupled). Fortunately, for
a model described in the previous section the results do not depend on the choice of tk if �tk � tk � tk�1 are
suÆciently small, so the natural choice is �tk ! 0.

Technically the procedure is the following. During the time between tk�1 and tk the \qubit+detector" evolves
according to the Bloch equations (6){(7), while at time tk the number n is collapsed in the \orthodox" way.5

This means that the probability P (n) of getting some n(tk) is equal to

P (n) = �n11(tk) + �n22(tk); (8)

while after a particular nk is picked, the density matrix �nij is immediately updated (collapsed):

�nij(tk + 0) = Æn;nk �ij(tk + 0); �ij(tk + 0) =
�nkij (tk � 0)

�nk11 (tk � 0) + �nk22 (tk � 0)
; (9)

where Æn;nk is the Kronecker symbol. After that the evolution is again described by Eqs. (6){(7) with n shifted
by nk until the next collapse occurs at t = tk+1, and so on. This procedure is the main step in the derivation of
the Bayesian formalism.

Let us discuss now the relation of this procedure to the classical Bayes theorem9, 10 which says that a posteriori
probability P (BijA) of a hypothesis Bi after learning an information A (Bi form a complete set of mutually
exclusive hypotheses) is equal to

P (BijA) = P (Bi)P (AjBi)P
k P (Bk)P (AjBk)

(10)

where P (Bi) is a priori probability of the hypothesis Bi (before learning information A) and P (AjBi) is the
conditional probability of the event A under hypothesis Bi.

Assuming for a moment H = 0 and " = 0 in the qubit Hamiltonian (so that the qubit evolution is due to
measurement only), it is easy to �nd4 that Eqs. (6){(7) and our procedure (9) lead to the qubit evolution as

�ii(tk) =
�ii(tk�1)Pi(�nk)

�11(tk�1)P1(�nk) + �22(tk�1)P2(�nk)
; (11)

�12(tk) = �12(tk�1)
[�11(tk)�22(tk)]

1=2

[�11(tk�1)�22(tk�1)]1=2
; (12)
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where �nk = nk � nk�1 is the number of electrons passed through the detector during time �tk and

Pi(n) =
(Ii�tk=e)

n

n!
exp(�Ii�tk=e) (13)

is the classical Poisson distribution for this number assuming either qubit state j1i or j2i. One can see that the
diagonal matrix elements �ii exactly obey the classical Bayes formula (10), i.e. as if the qubit is really either in
the state j1i or j2i, but not in both simultaneously. Actually, this fact is not much surprising because at least
in some sense �ii are the probabilities. Equation (12) is a little more surprising and says that the measurement
preserves the degree of qubit purity �12=(�11�22)

1=2; for instance, a pure state remains pure during the whole
measurement process.

After introducing the main procedure (9), further derivation of the Bayesian formalism is pretty simple
and depends on whether we want to consider �nite detector response, j�I j � I0 � (I1 + I2)=2 or a weak
response, j�I j � I0. In the �rst case each event of tunneling through the detector carries signi�cant information
and signi�cantly a�ects the qubit state, so a reasonable \experimental" setup implies recording the time of
each tunneling event. Then during the time periods when no electrons are passing through the detector, the
evolution is essentially described by the Bloch equations (6){(7) with n = 0, while the frequent collapses [�tk �
min(e=I1; e=I2; �h=H; �h=")] just restore the density matrix normalization, leading to the continuous (but not
unitary!) qubit evolution4, 8:

_�11 = � _�22 = �2 H
�h
Im �12 � �I

e
�11�22; _�12 =

i"

�h
�12 +

iH

�h
(�11 � �22) +

�I

2e
(�11 � �22)�12: (14)

However, at moments when one electron passes through the detector, the qubit state changes abruptly (corre-
sponding to �nk = 1 and �tk ! 0 in Eqs. (11){(12)):

�11(t+ 0) =
I1�11(t� 0)

I1�11(t� 0) + I2�22(t� 0)
; �22(t+ 0) = 1� �11(t+ 0); (15)

�12(t+ 0) = �12(t� 0)

�
�11(t+ 0) �22(t+ 0)

�11(t� 0) �22(t� 0)

�1=2
: (16)

These abrupt changes are usually called \quantum jumps".8 Notice that for I1 > I2 the jumps always shift the
qubit state closer to j1i (because detector tunneling is \more likely" for state j1i), while continuous nonunitary
evolution shifts the state towards j2i. On average the evolution is still given by conventional Eqs. (4){(5).

The case of a weak detector response, j�I j � I0, is more realistic from the experimental point of view. In
this case the measurement time �m as well as the ensemble decoherence time ��1d are much longer than the
average time e=I0 between electron passages in the detector. If the tunneling in the qubit is also suÆciently slow,
�h=H � e=I0, we can completely disregard individual events in the detector and consider the detector current I(t)
as quasicontinuous. Then Eq. (11) for the evolution due to measurement only (neglecting H and ") transforms
into the equation which again has clear Bayesian interpretation:

�ii(t+ �) =
�ii(t)Pi(I)

�11(t)P1(I) + �22(t)P2(I)
; I � 1

�

Z t+�

t

I(t0) dt0 (17)

where I is the detector current averaged over the time interval (t; t + �) and Pi(I) are its classical Gaussian
probability distributions for two qubit states:

Pi(I) =
1

(2�D)1=2
exp[� (I � Ii)

2

2D
]; D = S0=2�; (18)

(here S0 = 2eI0 is the detector noise), while Eq. (12) essentially does not change.

Di�erentiating Eqs. (17) and (12) over time and including additional evolution due to H and ", we obtain
the main equations of the Bayesian formalism:

_�11 = � _�22 = �2 H
�h
Im �12 + �11�22

2�I

S0
[I(t)� I0]; (19)

_�12 = i
"

�h
�12 + i

H

�h
(�11 � �22)� (�11 � �22)

�I

S0
[I(t)� I0] �12: (20)
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In each realization of measurement the noisy detector outcome I(t) is di�erent; however, for each realization we
can precisely monitor the evolution of the qubit density matrix, plugging experimental I(t) into Eqs. (19){(20).
Let us stress again that these equations show the absence of any qubit decoherence during the process of measure-
ment. Pure initial state remains pure; moreover, initially mixed state gradually puri�es during the measurement
if H 6= 0.4, 7 The gradual state puri�cation is essentially due to acquiring more and more information about the
qubit state from the measurement record.

While the qubit state does not decohere in each individual realization of the measurement, di�erent members
of the ensemble evolve di�erently because of random I(t). Averaging Eqs. (19){(20) over random I(t) and using
the relation [which follows from Eqs. (8), (11), and (13)]

I(t)� I0 =
�I

2
(�11 � �22) + �(t); (21)

where �(t) is a zero-correlated (\white") random process with the same spectral density as the detector noise,
S� = S0, we obtain conventional Eqs. (4){(5). Therefore, the ensemble-averaged decoherence in our model is
just a consequence of averaging over the measurement outcome.

Notice that since I(t) contains the white noise contribution, Eqs. (19){(20) are nonlinear stochastic di�erential
equations25 and dealing with them requires a special care. The problem is that their analysis depends on the
choice of the derivative de�nition. Two mainly used de�nitions are the symmetric derivative: _�(t) � lim�!0[�(t+
�=2)��(t��=2)]=� which leads to the so-called Stratonovich interpretation of the stochastic di�erential equations,
and the forward derivative: _�(t) � lim�!0[�(t + �) � �(t)]=� (Itô interpretation). Usual calculus rules remain
valid only in the Stratonovich form,25 so the physical intuition works better when using Stratonovich de�nition.
However, Itô interpretation allows simple averaging over the noise and because of that is usually preferred
by mathematicians. Since we derived Eqs. (19){(20) by a simple �rst-order di�erentiation, we automatically
obtained them in the Stratonovich form (keeping the second-order terms in the expansion, we can obtain di�erent
equations, depending on the de�nition of the derivative). Since sometimes Itô form is more preferable, let us
translate Bayesian equations into Itô form using the following general rule.25 For an arbitrary system of equations

_xi(t) = Gi(x; t) + Fi(x; t) �(t) (22)

in Stratonovich interpretation, the corresponding Itô equation which has the same solution is

_xi(t) = Gi(x; t) +
S�
4

X
k

@Fi(x; t)

@xk
Fk(x; t) + Fi(x; t) �(t) ; (23)

where xi(t) are the components of the vector x(t), Gi and Fi are arbitrary functions, and the constant S� is
the spectral density of the white noise process �(t). Applying this transformation to Eqs. (19){(20), we get the
following equations in Itô interpretation:

_�11 = � _�22 = �2 H
�h
Im �12 + �11�22

2�I

S0
�(t) ; (24)

_�12 = i
"

�h
�12 + i

H

�h
(�11 � �22)� (�11 � �22)

�I

S0
�12 �(t)� (�I)2

4S0
�12 ; (25)

while the relation between pure noise �(t) and the current I(t) is still given by Eq. (21). Notice that the last
term in Eq. (25) does not actually mean the single qubit decoherence (pure state remains pure), but is just a
feature of the Itô form [it directly corresponds to the ensemble decoherence after averaging over �(t)].

4. DERIVATION OF THE FORMALISM VIA CORRESPONDENCE PRINCIPLE

Another derivation7 of the Bayesian formalism for a single qubit can be based on the logical use of the cor-
respondence principle,5 classical Bayes formula, and results of the conventional ensemble-averaged formalism.
Even though this way lacks some advantages of the \microscopic" derivation discussed in the previous section, it
can be applied to a broader class of solid-state detectors, in particular, to the �nite-transparency quantum point
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contact and (with some extension) to the single-electron transistor and SQUID. In this section we will assume a
double-dot qubit measured by a �nite-transparency QPC and treat the detector current I(t) as a quasicontinuous
noisy signal that implies weak detector response, j�I j � I0.

Let us start with a completely classical case when the electron is actually located in one of two dots (and
does not move), but we do not know in which dot, so the measurement gradually reveals the actual electron
location. This is a well studied problem of the probability theory. The measurement process can be described
as an evolution of probabilities (we still call them �11 and �22) which re
ect our knowledge about the system
state. Then for arbitrary � (which can be comparable to �m) the current I averaged over time interval (t; t+ �)
[see Eq. (17)] has the probability distribution

P (I) = �11(t)P1(I) + �22(t)P2(I); (26)

where Pi are given by Eq. (18) and depend on the detector white noise spectral density S0 which should not
necessarily satisfy Schottky formula. After the measurement during time � the information about the system
state has increased and the probabilities �11 and �22 should be updated using the measurement result I and the
Bayes formula (17). This completely describes the classical measurement process.

The next step in the derivation is an important assumption: in the quantum case with H = 0 the evolution of
�11 and �22 is still given by Eq. (17) because there is no possibility to distinguish between classical and quantum
cases, performing only this kind of measurement. Even though this assumption is quite obvious, it is not derived
formally but should rather be regarded as a consequence of the correspondence principle.

The correspondence with classical measurement cannot describe the evolution of �12; however, there is still
an upper limit: j�12j � [�11�22]

1=2. Surprisingly, this inequality is suÆcient for exact calculation of �12(t) in the
case of a QPC as a detector (we still assume H = 0). Averaging the inequality over all possible detector outputs
I using distribution (26) we get the inequality

jh�12(t+ �)ij � hj�12(t+ �)ji � h[�11(t+ �)�22(t+ �)]1=2i = [�11(t)�22(t)]
1=2 exp[�(�I)2�=4S0] (27)

[here the decaying exponent is a consequence of changing �11 and �22 that reduces their average product]. On the
other hand, from the conventional approach we know15, 17, 26, 27 that the ensemble-averaged qubit decoherence
rate caused by a QPC is equal to �d = (�I)2=4S0, where S0 = 2eI0(1�T ) and T is the QPC transparency. This
means that inequality (27) actually reaches its upper bound. This is possible only if in each realization of the
measurement process an initially pure density matrix �ij(t) stays pure all the time, j�12j2 = �11�22. Moreover,
since the phase of �12(t+ �) should be the same for all realizations (to ensure jh�12(t+ �)ij = hj�12(t+ �)ji), the
only possibility in absence of a detector-induced shift of " is

�12(t+ �)

[�11(t+ �)�22(t+ �)]1=2
=

�12(t)

[�11(t)�22(t)]1=2
exp(i"�=�h) (28)

(if the coupling with detector shifts ", we just have to use the shifted value).

As the next step of the derivation, let us allow an arbitrary mixed initial state of the qubit (but still H = 0).
It can always be represented as a mixture of two states with the same diagonal matrix elements, one of which
is pure, while the other state does not have nondiagonal matrix elements. Since nondiagonal matrix elements
for the latter state cannot appear in the process of measurement and since the evolution of the diagonal matrix
elements is equal for both states, one can conclude that Eq. (28) remains valid, i.e. for mixed states the degree
of purity is conserved (gradual puri�cation does not occur at H = 0). The �nal step of the formalism derivation
is di�erentiating Eqs. (17) and (28) over time and adding (in a simple way) the evolution due to H .

In this way we reproduce Eqs. (19){(20). However, as seen from the derivation, now they are applicable
to a broader class of detectors (which includes the �nite-transparency QPC) for which �d = (�I)2=4S0. This
relation can also be expressed as �d�m = 1=2 since �m = 2S0=(�I)

2 for a weakly responding detector. As will
be discussed in the next section, this is a condition of an ideal quantum detector.
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5. NONIDEAL DETECTORS

The relation �d�m = 1=2 which is valid for the models of a tunnel junction and QPC as detectors, basically says
that the larger output noise S0 of a detector leads to a smaller backaction characterized by ensemble decoherence
�d. This is quite expected from quantum mechanical point of view (the faster we get information, the faster we
should collapse the measured state). However, it is obviously not necessarily the case for an arbitrary solid-state
detector; for example, the increase of output noise S0 can be due to later stages of signal ampli�cation, which
do not a�ect �d. In other words, it is easy to imagine a bad detector which produces a lot of both output and
backaction noises.

To take into account an extra detector noise, we can phenomenologically add a dephasing rate 
d into the
Bayesian equations:

_�11 = � _�22 = �2 H
�h
Im �12 + �11�22

2�I

S0
[I(t)� I0]; (29)

_�12 = i
"

�h
�12 + i

H

�h
(�11 � �22)� (�11 � �22)

�I

S0
[I(t)� I0] �12 � 
d�12: (30)

This obviously increases the ensemble decoherence rate:

�d =
(�I)2

4S0
+ 
d: (31)

A natural de�nition of a detector ideality (quantum eÆciency) in this case is

� � 1� 
d
�d

=
1

2�d�m
: (32)

An upper limit for � is 100% because of a fundamental limitation

�d�m � 1=2; (33)

which is a by-product of the Bayesian derivation for the case of quasicontinuous detector current { see inequality
(27). The extra dephasing 
d in Eq. (30) can be interpreted

7 as an e�ect of extra environment or (mathematically)
as due to a second detector \in parallel", the output of which is not read out (then we have to average over
possible outputs). It can be also interpreted28 as an e�ect of extra noise Sadd at the detector output, S0 =
(�I)2=4�d + Sadd.

Introduction of the detector ideality � allows us to consider a continuous transition from the conventional
ensemble-averaged result (4){(5) to the \pure" Bayesian result (19){(20). The e�ect of a pure environment can
be considered as a measurement with an extremely bad detector, � = 0. Technically it corresponds to �I = 0 in
Eqs. (29){(30), transforming them into conventional equations. The case of a detector with very small eÆciency,
� � 1, can be treated in two steps: �rst, we analyze the e�ect of the decoherence term (
d � �d), and then
we use the classical (still Bayesian) analysis to relate the qubit density matrix and the measurement outcome.
So, only for good detectors with the eÆciency � comparable to unity, the quantum Bayesian approach discussed
in this paper is really necessary. With the progress of technology, such detectors are becoming available. For
example, the analysis of experimental data of the recent \which path" experiment29 shows that their QPC had
a quantum eÆciency quite close to unity (very crudely, it can be estimated as 80%).

The account of the detector nonideality by introducing extra decoherence rate 
d into Eq. (30) implicitly
assumes the absence of a direct correlation between the output detector noise and the backaction noise a�ecting
the qubit energy asymmetry ". However, such correlation is a typical situation, for example, for a single-electron
transistor as a detector.30 In this case the knowledge of the noisy detector output I(t) gives some information
about the probable backaction noise \trajectory" "(t) which can be used to improve our knowledge of the qubit
state. Compensation for the most probable trajectory "(t) leads to the improved Bayesian equations for the SET
in which Eq. (30) is replaced with28

_�12 = i
"

�h
�12 + i

H

�h
(�11 � �22)� (�11 � �22)

�I

S0
[I(t)� I0] �12 + iK [I(t)� I0] �12 � ~
d�12; (34)
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where K = (d"=d')SI'=S0�h, ' is the electric potential of the SET central electrode, and SI' is the mutual
low-frequency spectral density between the current noise and ' noise. (The energy asymmetry induced by the
measurement is included in ".)

The dephasing rate ~
d should now satisfy equation

~
d = �d � (�I)2

4S0
� K2S0

4
(35)

to correspond to the the ensemble-averaged dynamics still described by Eqs. (4){(5). The obvious inequality
~
d � 0 (in the opposite case the relation j�12j2 � �11�22 would be violated in a single realization of measurement)
imposes a lower bound for the ensemble decoherence rate �d:

�d � (�I)2

4S0
+
K2S0
4

; (36)

which is stronger than the inequality �d�m � 1=2.

Inequality (36) can be easily expressed in terms of the energy sensitivity of an SET. Let us de�ne the output
energy sensitivity as �I � (dI=dq)�2SI=2C where C is the total SET island capacitance, dI=dq is the response
to the externally induced charge q, and we have changed the notation SI � S0 for a more symmetric look of
the formulas. Notice that �I has the same dimension as �h. Similarly, let us characterize the backaction noise
intensity by �' � CS'=2 and the correlation between two noises by the magnitude �I' � (dI=dq)�1SI'=2. Since
in absence of other decoherence sources �d = S'(C�E=2e�h)

2, where �E is the energy coupling between qubit
and single-electron transistor,4, 16 and using also the reciprocity property �q = C�E=e = d"=d', we can rewrite
Eq. (36) as

� � (�I�' � �2I')
1=2 � �h=2: (37)

This is a result known for 20 years31 for SQUIDs (see also15, 32{35).

When the limit � = �h=2 is achieved, the decoherence rate

~
d =
(�I)2

4SI

"
�I�' � �2I'
(�h=2)2

� 1

#
(38)

in Eq. (34) vanishes, ~
d = 0. In this sense the detector is ideal, ~� = ~�2 = 1, where

~� � 1� ~
d
�d

=
�h2(dI=dq)2

SIS'
+

(SI')
2

SIS'
; ~�2 � (�h=2)2

�I�' � �2I'
=

�h2(dI=dq)2

SIS' � S2
I'

; (39)

even though it can be a nonideal detector (� < 1) by the previous de�nition, � = �h2(dI=dq)2=SIS'. Notice a
simple relation between di�erent de�nitions of ideality,

� = ~� = ~�2 =
(�h=2)2

�I�'
=

1

2�d�m
; (40)

in absence of correlation between noises of '(t) and I(t), (SI')
2 � SIS'.

Even though Eqs. (34){(40) were derived for the SET as a detector, it is rather obvious that they are applicable
to virtually any solid-state detector with continuous output (for a dc SQUID the current output should obviously
be replaced by the voltage output). In particular, the conclusion that reaching the quantum-limited total energy
sensitivity � = �h=2 is equivalent to the detector ideality, is quite general.

As we already discussed, the tunnel junction and QPC at zero temperature (actually, for small temperatures
��1 � eV ) are theoretically ideal quantum detectors. The fact that a SQUID can reach the limit of an ideal
detector follows from the results of Ref..31 A normal state SET is not a good quantum detector (� � 1) at
usual operating points above the Coulomb Blockade threshold.4, 16 However, its quantum eÆciency improves
when we go closer to the threshold4, 32 and becomes much better when the operating point is in the cotunneling
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range (below the threshold), in which case the limit of an ideal detector can be achieved.33 Superconducting
SET is generally better than normal SET as a quantum-limited detector and can approach 100% ideality in the
supercurrent regime34 as well as in the double Josephson-plus-quasiparticle regime.35 Finally, the resonant-
tunneling SET36 can reach ideality factor ~�2 = 3=4 at large bias and complete ideality, ~� = ~�2 = 1, in the
small-bias limit.

6. SOME EXPERIMENTAL PREDICTIONS

6.1. Direct experiments

The Bayesian equations tell us that we can monitor the qubit evolution in a single realization of the measurement
process using the record of the noisy detector output. In particular, for an ideal detector we can monitor the
qubit wavefunction (except the overall phase) if the initial qubit state is pure or, for a mixed initial state, after
monitoring for a suÆciently long time so that the gradual puri�cation has enough time to produce a practically
pure state.

This prediction (and hence, the validity of the Bayesian equations) can in principle be tested experimentally.
For example,7 let us �rst prepare the double-dot in the symmetric coherent state, �11 = �22 = j�12j = 1=2,
make H = 0 (raise the barrier), and begin measurement with a QPC [Fig. 1(b)]. According to our formalism,
after some time � (the most interesting case is � � �m) the qubit state remains pure but becomes asymmetric
(�11 6= �22) and can be calculated with Eqs. (19) and (20). To prove this, an experimentalist can use the
knowledge of the wavefunction to move the electron \coherently" into the �rst dot with 100% probability. (Notice
that if the qubit is in a mixed state, no unitary transformation can end up in the state j1i with certainty.)
For instance, experimentalist switches o� the detector at t = � , reduces the barrier (to get �nite H), and
creates the energy di�erence " = [(1� 4j�12(�)j2)1=2 � 1]HRe�12(�)=j�12(�)j2; then after the time period �t =
[� � arcsin(Im�12(�) �h
=H)]=
 the \whole" electron will be moved into the �rst dot, that can be checked by
the detector switched on again. [Here 
 � (4H2 + "2)1=2=�h is the frequency of unperturbed coherent (\Rabi")
oscillations of the qubit.]

Another experimental idea7 is to demonstrate the gradual puri�cation of the double-dot density matrix. Let
us start with a completely mixed (unknown) state (�11 = �22 = 1=2, �12 = 0) of the double-dot qubit with �nite
H . Then using the detector output I(t) and Eqs. (19){(20) an experimentalist gradually gets more and more
knowledge about the randomly evolving qubit state (gradual puri�cation), eventually ending up with almost
pure wavefunction with precisely known phase of Rabi oscillations (we are not talking about the wavefunction
phase, but about the phase of diagonal matrix elements oscillations). The �nal check of the wavefunction can
be similar to that described in the previous paragraph. It can be even simpler, since with the knowledge of the
phase of oscillations it is easy to stop the evolution by raising the barrier when the electron is in the �rst dot
with certainty. Notice that if fast real-time calculations are not available, the moment of raising the barrier can
be random, while lucky cases can be selected later from the record of I(t).

Direct experiments of this kind as well as experiments on quantum feedback control and on Bayesian measure-
ment of entangled qubits (discussed later), are still too diÆcult for realization with the present-day technology.
In the next two subsections we discuss experiments which seem to be realizable (though very hard) at present.

6.2. Spectral density of the detector current

Naively thinking, a qubit with H 6= 0 should perform coherent (Rabi) oscillations with frequency 
 and these
oscillations should lead to an oscillating contribution of the detector current I(t). On the other hand, conventional
Eqs. (4){(5) seem naively to imply that the qubit eventually reaches a stationary state and no oscillations should
be present in I(t) after a suÆciently long observation. So, it is interesting to �nd what is the actual spectral
density of the detector current SI(!) [it is easier to measure this quantity experimentally, than to record I(t)].

The Bayesian formalism predicts23;18, 24 the presence of the spectral peak at the Rabi frequency 
, however,
the height of this peak cannot be larger than 4 times the noise pedestal. In particular, in the case " = 0

SI(!)

S0
= 1 +

4�

(!=
)2 + (!2 �
2)2=
2�2d
: (41)
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Figure 3. (a) Schematic of the proposed Bell-type correlation experiment,37 in which a SCPB qubit is measured by two
SETs during short time periods �A and �B shifted in time by � . The �rst measurement leads to an incomplete collapse
of the qubit initial state (j1i+ j2i)=p2 and a�ects the result of the second measurement. (b) The average result hQBi of
the second measurement for a selected result QA of the �rst measurement. The sign and amplitude of Rabi oscillations
depend on QA, re
ecting the change of the diagonal matrix elements of the qubit density matrix. (c) same as (b) if �=2
pulse is applied immediately after the �rst measurement. Now the phase of oscillations depends on QA. The full-swing
oscillations (with amplitude of 0.5 in the ideal case) indicate a pure qubit state after the �rst measurement.

Actually, an experimental con�rmation of this formula would not be a direct veri�cation of the Bayesian
formalism, since Eq. (41) can be also obtained by other methods, including the master equation method15, 23, 27

and the method based on the Bloch equations24 (see also Refs.20{22).

6.3. Bell-type experiment

Another experiment which also seems to be much easier than the direct experiments but can unambiguously test
the Bayesian formalism, is a Bell-type experiment in which one qubit is measured by two detectors.37 An idea
(Fig. 3) is to prepare the qubit in a coherent state (j1i + j2i)=p2, then to switch on the �rst detector (A) for
a relatively short time �A (so that the measurement is only partially completed), and to switch on the second
detector (B) a little later. If the �rst measurement changes the qubit state according to the Bayesian formalism,
then the second measurement can check this change. An output from a single run of the measurement are
two charges QA and QB passed through two detectors. Performing the experiment many times and analyzing
the correlation between QA and QB , one can recover the e�ect of the �rst measurement on the qubit state37

(to check the change of the nondiagonal matrix element it is necessary to apply a �/2 pulse right after the
�rst measurement). The main advantage of this Bell-type experiment in comparison with the direct Bayesian
experiments is that the wide bandwidth for the output signal is not necessary; instead, it is traded for the wide
bandwidth of two input lines (switching detectors on and o�), which is much easier to realize experimentally.

7. QUANTUM FEEDBACK CONTROL OF A QUBIT

The Bayesian formalism can be used as a basis for the design and analysis of a quantum feedback control of
a solid-state qubit. As an example, such feedback control can maintain for arbitrary long time the desired
phase of a qubit Rabi oscillations, synchronizing them with a classical reference oscillator, even in presence of
dephasing environment.4, 19 The overall idea is very close to a classical feedback loop [Fig. 4(a)]. The oscillating
qubit evolution is monitored by a weakly coupled detector (C � �h(�I)2=S0H < 1), the phase �(t) of actual
Rabi oscillations is compared with the desired phase �0(t), and the di�erence signal �� is used to control the
qubit barrier height. If qubit is slightly behind the desired phase, then H is decreased, so the oscillations run
faster to catch up; if the qubit is ahead of proper phase, H is increased. It is natural to use a linear control:
Hfb = H(1� F ���), where F is a dimensionless feedback factor.

The only di�erence of this loop from a classical feedback is that even weakly coupled detector disturbs the
qubit oscillations. However, the induced 
uctuations of the oscillation phase are slow, and the information
obtained from the detector happens to be enough to monitor the phase 
uctuations and compensate them. The
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Figure 4. (a) Schematic of the quantum feedback loop maintaining the Rabi oscillations of a qubit by synchronizing
them with a classical harmonic signal. (b) Solid lines: the synchronization degree D as a function of the feedback factor F
for several values of available bandwidth ��1a . While synchronization can approach 100% for wide bandwidth, it worsens
when �a becomes comparable to the oscillation period T = 2�=
. Dashed line (alsmost coinciding with the upper solid
line): analytical result D = exp(�C=32F ). Dotted line: synchronization degree for a direct feedback with �a = T=10.
(From Ref..19 )

quantitative analysis19 shows that in a limit of good synchronization and absence of extra environment the qubit
correlation function Kz(�) � hz(t)z(t+ �)i (here z � �11 � �22) is given by

Kz(�) =
cos
�

2
exp

� C
16F

�
e�2FH�=�h � 1

��
; (42)

and does not decay to zero at � !1. Correspondingly, the degree of the qubit synchronization,D � 2hTr��di�1
(here �d is the desired density matrix corresponding to ideal oscillations) is found to be D = exp(�C=32F ) and
approaches 100% at F � C.

The quality of the qubit oscillations synchronization decreases with the decrease of available feedback band-
width ��1a [Fig. 4(b)]. It also decreases when the qubit is dephased by an extra environment. For a weak
dephasing rate 
e we found numerically19 a dependence Dmax ' 1 � 0:5de where de � 
e=[(�I)

2=4S0]. This
means that the feedback loop can eÆciently suppress the qubit dephasing due to coupling to the environment if
this coupling is much weaker than the coupling to a nearly ideal detector.

Besides the linear feedback Hfb = H(1�F ���), we have also studied the \direct" feedback Hfb(t)=H�1 =
Ff2[I(t) � I0]=�I � cos
tg sin
t and found that it can also provide a good phase synchronization if F=C is
close to 1/4 [Fig. 4(b)]. The direct feedback is much easier for an experimental realization because it does not
require solving the Bayesian equations (29){(30) in real time.

8. BAYESIAN MEASUREMENT OF ENTANGLED QUBITS

The Bayesian formalism has been generalized to a continuous quantum measurement of entangled qubits in
Ref..38 Suppose a detector is coupled to N entangled qubits. In the \measurement" basis there are 2N states jii
of the qubits which correspond to up to 2N di�erent dc current levels Ii of the detector (some of these currents
can coincide, for example, if two or more qubits are coupled equally strong to the detector). It has been shown
that the generalization of Eqs. (29){(30) for this case is28, 38

_�ij =
�i
�h
[Hqb; �]ij + �ij

1

S0

X
k

�kk

��
I(t)� Ik + Ii

2

�
(Ii � Ik) +

�
I(t)� Ik + Ij

2

�
(Ij � Ik)

�
� 
ij�ij ; (43)

where the �rst term describes the unitary evolution due to the Hamiltonian of qubits Hqb and


ij = (��1 � 1)(Ii � Ij)
2=4S0; (44)

while Eq. (21) is replaced by

I(t) =
X
i

�ii(t)Ii + �(t): (45)
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Figure 5. (a) Two qubits made of double quantum dots measured by an equally coupled quantum point contact. (b)
Similar setup made of single-Cooper-pair boxes measured by a single-electron transistor. (c) Two Monte Carlo realizations
of the two-qubit state evolution starting from the fully mixed state for a symmetric setup (�B11 is the diagonal component
of the two-qubit density matrix, corresponding to the Bell state (j"a#bi� j#a"bi)=

p
2). With probability 1/4 the qubits

become fully entangled, �B11 ! 1 (\spontaneous entanglement"); then the detector output is a pure noise (upper inset).
With probability 3/4 the state is gradually collapsed into the orthogonal subspace, �B11 ! 0; then the detector signal
shows a spectral peak at the Rabi frequency 
 with the peak-to-pedestal ratio of 32/3. (From Ref..39 )

Notice that there is no mutual decoherence (
ij = 0) between states jii and jji even for a nonideal detector
if the corresponding classical currents coincide, Ii = Ij . This is because the detector noise cannot destroy the
coherence between states which are equally coupled to the detector.

Translating Eq. (43) from Stratonovich form into Itô form, we get

_�ij =
�i
�h
[Hqb; �]ij + �ij

1

S0

 
I(t)�

X
k

�kkIk

! 
Ii + Ij � 2

X
k

�kkIk

!
�
�

ij +

(Ii � Ij)
2

4S0

�
�ij ; (46)

while in the ensemble-averaged equations the second term of Eq. (46) [containing I(t)] is averaged to zero.

These Bayesian equations have been applied in Ref.39 to the analysis of a simple setup (Fig. 5) in which
a detector is equally coupled to two similar qubits (both qubits are symmetric, "a = "b = 0, and do not
interact directly with each other). An interesting e�ect has been found in the case when the Rabi frequencies

a = 2Ha=�h and 
b = 2Hb=�h exactly coincide. Then there are two possible scenarios of the two-qubit evolution
due to measurement, starting from a general mixed state. Either qubits become fully entangled collapsing into the
Bell (\spin-0") state (j"a#bi� j#a"bi)=

p
2 (we call this process spontaneous entanglement), or the state falls into

the orthogonal subspace of the two-qubit Hilbert space. Experimentally these two scenarios can be distinguished
by di�erent spectral density SI(!) of the detector current [Fig. 5(c)]. In the case of Bell state, SI(!) is just
the 
at noise S0 of the detector because the signals from two qubits compensate each other, while in the other
scenario SI(!) has a spectral peak at the Rabi frequency, which height is equal to 32�=3 for a weakly coupled
detector (Ca = Cb < 1).39

The probabilities of two scenarios are equal to the contributions of two subspaces in the initial state �(0);
for the case of fully mixed initial state they are equal to 1/4 and 3/4, respectively. The considered setup can
obviously be used for a preparation of the Bell state without direct interaction between two qubits. Notice that
if the state has collapsed into the orthogonal subspace, we can apply some noise which a�ects "a and/or "b
and therefore mixes the two-qubit density matrix, and try the measurement again. In this way the probability
1 � (3=4)M to obtain the Bell state can be made arbitrary close to 100% by allowing suÆciently large number
M of attempts.

In actual experiment the symmetry of the setup cannot be made exact. In this case the Bell state and the
oscillating state are not in�nitely stable and there will be switching between them. The calculations show39

that the switching rate �B!O from the Bell state into the oscillating state is equal to �B!O = (�
)2=2�d
due to slightly di�erent Rabi frequencies [�d = ��1(�I)2=4S0], �B!O = (�C=C)2�d=8 due to slightly di�erent
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coupling, and �B!O = (
a+ 
b)=2 due to an extra environment acting on two qubits separately. The rate of the
return switching is 3 times smaller, �O!B = �B!O=3. Notice that in this case the averaged height of the Rabi
spectral peak is equal to 8�S0, which is exactly twice as much as for a single qubit.

Even though such experiment on spontaneous entanglement is still extremely diÆcult for a realization, it
should be noted that for the observation of the phenomenon the detector quantum eÆciency � should not
necessarily be close to 100%; it should only be large enough to allow distinguishing the Rabi spectral peak with
the peak-to-pedestal ratio of 32�=3.

9. CONCLUSION

We have discussed the basic derivation and some applications of the Bayesian approach to continuous quantum
measurement of solid-state qubits. Even though this is a new subject for the solid-state community, many similar
formalisms have been developed in other �elds of quantum physics. Generally, this type of approach which takes
into account the measurement outcome, is usually called selective or conditional quantum measurement. However,
there is a rather broad variety of formalisms and their interpretations within the approach (for reviews see, e.g.
Refs.3, 40). Some of key words related to this subject are: quantum trajectories, quantum state di�usion, quantum
jumps, weak measurements, stochastic evolution of the wavefunction, stochastic Schr�odinger equation, complex
Hamiltonian, restricted path integral, quantum Bayes theorem, etc. The approach of conditional quantum
measurements is relatively well developed in quantum optics. In particular, the optical quantum feedback control
has been well studied theoretically (see, e.g.41{45) and was recently realized experimentally.46 In the subject of
continuous quantum measurement of single systems the quantum optics is well ahead of the solid-state physics.
However, the interest to this problem in the solid-state community is rapidly growing, and the technology is
coming to the level when experimental studies become possible.

We have discussed in this paper two solid-state experiments which seem to be realizable today. First, it is
the measurement of the spectral peak of the detector current at the Rabi frequency of qubit oscillations and
comparison with the theoretical prediction that the peak-to-pedestal ratio is equal to 4 in the best case (actually,
this behavior is consistent with a recent experiment47 on a single-spin precession; however, the problem is still
not completely clear). Second, the Bell-type correlation experiment with one qubit measured by two detectors
would be able to verify that the qubit state remains pure during the whole measurement process and show the
possibility of monitoring the qubit evolution precisely. This would be the �rst step towards realization of the
quantum feedback control of solid-state qubits. A continuous monitoring of entangled qubits would be another
very interesting experiment. While in quantum optics it took about 10 years from the development of the theory
of continuous conditional quantum measurements to the �rst successful experiments, we hope that this period
will be signi�cantly shorter in the solid-state physics and engineering.
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