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We propose an experiment which demonstrates the undoing of a weak continuous measurement of a
solid-state qubit, so that any unknown initial state is fully restored. The undoing procedure has only a
finite probability of success because of the nonunitary nature of quantum measurement, though it is
accompanied by a clear experimental indication of whether or not the undoing has been successful. The
probability of success decreases with increasing strength of the measurement, reaching zero for a
traditional projective measurement. Measurement undoing (‘‘quantum undemolition’’) may be interpreted
as a kind of quantum eraser, in which the information obtained from the first measurement is erased by the
second measurement, which is an essential part of the undoing procedure. The experiment can be realized
using quantum dot (charge) or superconducting (phase) qubits.
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A careless scientist accidently turns on a quantum de-
tector, disturbing a precious, unknown, quantum state.
Dismayed by this event, he desperately asks if there is a
way to get the state back. Is it possible to undo a quantum
measurement? According to the traditional theory of pro-
jective quantum measurement [1], the answer is no: Wave
function collapse is irreversible; the original state is gone
forever and is impossible to resuscitate. However, as will
be presently discussed, the situation is different for weak
quantum measurements [2–5]. It is possible to fully restore
any unknown premeasured state, though with a probability
less than unity. Such undoing of the measurement distur-
bance [which we will also refer to as a quantum undem-
olition (QUD) measurement] can be accomplished by
making an additional weak measurement, which ‘‘erases’’
the information obtained from the first measurement
(somewhat similar to the quantum eraser of Scully and
Drühl [6]). The success of the undoing procedure is in-
dicated by observing a certain result of the second mea-
surement, in which case the unknown premeasured state is
fully restored. The probability of successfully undoing the
quantum measurement decreases with increasing strength
of the measurement, tending to zero for a projective
measurement.

The possibility of physically undoing (or reversing) a
quantum measurement has been previously discussed by
Koashi and Ueda [7], who have proposed a quantum optics
photon-counting implementation of the idea, using the
Kerr effect. Reversible measurement has also been dis-
cussed by others [8,9] (see also the closely related articles
[10]), though mainly from a more formal perspective. In
this Letter, we investigate the undoing of continuous weak
measurements, particularly applied to solid-state qubits.
We first consider a quantum double dot qubit, measured
by a quantum point contact, a system of extensive experi-
mental investigation [11]. For this system, we discuss how
to practically undo the measurement and calculate the

undoing probability, as well as the mean undoing time.
The second system we consider is a superconducting
‘‘phase’’ qubit [12], measured by a nearby SQUID.
Coherent nonunitary evolution due to measurement has
recently been experimentally verified in this system [13].
We describe the undoing procedure for the phase qubit and
calculate the undoing probability, obtaining a result similar
to the quantum dot system. The undoing procedure de-
scribed for the phase qubit is only slightly more compli-
cated than the experiment already done, providing a
promising candidate for experimental verification. We
briefly discuss the general theory of QUD measurement
and show that our specific results maximize the general
undoing probability, thus constituting ideal measurement
reversal.

Charge qubit.—A double-quantum-dot (DQD) qubit,
measured continuously by a symmetric quantum point
contact (QPC) [14] [Fig. 1(a)], has been extensively
studied in earlier papers. The measurement is characterized
by the average currents I1 and I2 corresponding to the qubit
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FIG. 1 (color online). (a) Schematic of a DQD charge qubit
continuously measured by a QPC. (b) Illustration of the mea-
surement undoing procedure for the charge qubit. The slanted
lines indicate the detector output in the absence of noise, if the
qubit is in state j1i or j2i. The initial accidental measurement can
be undone by waiting until the stochastic measurement result
r�t� � ��I=SI�

R
t
0�I�t

0� � I0�dt0 crosses the origin.
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states j1i and j2i and by the shot noise spectral density SI
[15]. We treat the additive detector shot noise as a
Gaussian, white, stochastic process and assume the detec-
tor is in the weakly responding regime j�Ij � I0, where
�I � I1 � I2 and I0 � �I1 � I2�=2, with QPC voltage bias
larger than all other energy scales, so that the measurement
process can be described by the quantum Bayesian formal-
ism [4].

Let us first assume that there is no qubit Hamiltonian
evolution [this can also be effectively done using ‘‘kicked’’
quantum nondemolition (QND) measurements [16]]. As
was shown in Ref. [4], the QPC is an ideal quantum de-
tector (which does not decohere the measured qubit), so
that the evolution of the qubit density matrix � due to con-
tinuous measurement preserves the quantity �12=

��������������
�11�22
p

,
while the diagonal matrix elements are normalized at all
times and evolve according to the classical Bayes rule:

 

�11�t�
�22�t�

�
�11�0� exp��� �I�t� � I1�

2t=SI�

�22�0� exp��� �I�t� � I2�
2t=SI�

�
�11�0�

�22�0�
e2r�t�;

(1)

where �I�t� � �
R
t
0 I�t

0�dt0�=t and we define the measure-
ment result as r�t� � � �I�t� � I0�t�I=SI. For times much
longer than the ‘‘measurement time’’ Tm � 2SI=��I�2 (the
time scale required to obtain a signal-to-noise ratio of 1),
the average current �I tends to either I1 or I2 because the
probability density P� �I� of a particular �I is

 P� �I� �
X
i�1;2

�ii�0�
�������������
t=�SI

q
exp��� �I � Ii�2t=SI�: (2)

Therefore, r�t� tends to 	1, continuously collapsing the
state to either j1i (for r! 1) or j2i (for r! �1). Critical
to what follows, notice that, if r�t� � 0 at some moment t,
then the qubit state becomes exactly the same as it was
initially, ��t� � ��0�. This curious fact corresponds to an
equal likelihood of the states j1i and j2i and, therefore,
provides no information about the qubit.

Measurement undoing for the charge qubit.—Let the
outcome of the ‘‘accidental’’ first measurement be r0. The
previous ‘‘no information’’ observation suggests the fol-
lowing strategy: Continue measuring, with the hope that
after some time t the stochastic result of the second mea-
surement ru�t� becomes equal to �r0, so the total result
r�t� � r0 � ru�t� is zero, and therefore the initial qubit
state is fully restored. If this happens, the measuring device
is immediately switched off and the undoing procedure is
successful [Fig. 1(b)]. However, r�t� may never cross the
origin, and then the undoing attempt fails.

The success probability Ps for this procedure may be
calculated by noticing that the nondiagonal matrix ele-
ments of � do not enter the probability of the detector
output (2) (this is true only in the case of a zero or QND-
eliminated qubit Hamiltonian), and therefore the calcula-
tion is identical for a classical bit with probabilities P1;2 �
�11;22�0� of being in state ‘‘1’’ or ‘‘2.’’ These probabili-
ties should be updated (using the classical Bayes formula)

with the information obtained from result r0: ~P1 �
P1e

r0=�P1e
r0 � P2e

�r0�, ~P2 � 1� ~P1. Assume for defi-
niteness r0 > 0. We will now calculate the probability
that the random variable r�t� crosses the origin at least
once, known in stochastic physics as a first passage pro-
cess. It follows from (2) that both cases may be described
by two different random walks with the initial condition
r � r0 at t � 0, described by the Green function solution
of the two Fokker-Planck equations

 @tGi�r; t� � �vi@rGi �D@2
rGi � ��r� r0���t�; (3)

supplemented with an absorbing boundary condition at the
origin, whereD � 1=�2Tm� is the diffusion coefficient, and
vi � ��1�i�1=Tm are the two different drift velocities,
depending on the bit state. Equation (3) may be solved
with standard methods [17], and, from the solution, the first
passage time distribution P�i�fpt�t� is found from the proba-
bility current flux at the origin

 P�i�fpt�t� �
r0��������������

4�Dt3
p exp���r0 � vit�

2=�4Dt��: (4)

The probability that r � 0 is ever crossed is found by
integrating (4) over all positive time to obtain Pc;1 �
exp��v1r0=D� � exp��2r0� for the crossing probability
if i � 1 and Pc;2 � 1 if i � 2. This result is intuitive
because, starting at r0 > 0, a negative drift velocity must
cause an eventual crossing, while a positive drift velocity
can only occasionally be beaten by the noise term. The
mean first passage time may also be calculated from (4) to
obtain tc;i � r0=jvij, averaging only over successful at-
tempts. Analogous results for r0 < 0 are straightforward.

Combining these results, the probability Ps � ~P1Pc;1 �
~P2Pc;2 for a successful quantum undemolition measure-
ment is

 Ps � e�jr0j=�er0�11�0� � e
�r0�22�0��; (5)

and the mean waiting time Tundo � ~P1tc;1 � ~P2tc;2 until the
measurement is undone is

 Tundo � Tmjr0j: (6)

Several comments are in order about the main results (5)
and (6). (i) The probability of success Ps given by (5)
becomes very small for jr0j 
 1 (when the measurement
result indicates a particular qubit state with good confi-
dence), eventually becoming Ps � 0 for a projective mea-
surement, recovering the traditional statement of irre-
versibility in this limiting case. (ii) In the important special
case when the initial state is pure, the state remains pure
during the entire process. (iii) Although the starting point
of the derivation (1) assumes that the initial state ��0� is
known, result (5) also applies to the situation where the
initial state is unknown. (iv) Averaging (5) over different
initial states �k�0� with corresponding probabilities P k
leads to the same result (5), just with ��0� replaced by
the averaged density matrix

P
kP k�k�0�. (v) If the qubit is

entangled with other qubits, the QUD measurement re-
stores the initial entangled state; the density matrix in (5)
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in this case can be obtained by tracing over all other qubits.
(vi) After the initial measurement, the state evolution is
given as a one-to-one map, whose inverse is known.
However, the nonunitarity of the inverse makes its realiza-
tion impossible via Hamiltonian evolution; therefore, a
QUD measurement must be probabilistic. (vii) The un-
doing probability averaged over the result r0, Pav � 1�

erf�
����������������
t=�2Tm�

p
�, depends on the ‘‘strength’’ t=Tm of the first

measurement but not on the initial state.
Phase qubit.—The second explicit example of erasing

information and undoing a quantum measurement is for a
superconducting phase qubit [12,13]. The system (similar
to the ‘‘flux’’ qubit) is comprised of a superconducting loop
interrupted by one Josephson junction [Fig. 2(a)], which is
controlled by an external flux �e. Qubit states j1i and j2i
[Fig. 2(b)] correspond to the two lowest states in a quantum
well with potential energy V���, where � is the super-
conducting phase difference across the junction (for con-
sistency with the previous example, we do not use the more
traditional notation j0i and j1i). The qubit is measured by
lowering the barrier (which is controlled by�e), so that the
upper state j2i tunnels into the continuum with rate �,
while state j1i does not tunnel out. The tunneling event is
sensed by a two-junction detector SQUID inductively
coupled to the qubit [Fig. 2(a)].

For sufficiently long tunneling time t, �t
 1, the mea-
surement corresponds to the usual collapse: The qubit state
is either projected onto the lower state j1i (if no tunneling
is recorded) or destroyed (if tunneling happens). However,
if the barrier is raised after a finite time t� ��1, the
measurement is weak: The qubit state is still destroyed if
tunneling happens, while in the case of no tunneling (a
null-result measurement) the qubit density matrix evolves
in the rotating frame as [13,18]
 

�11�t�
�22�t�

�
�11�0�

�22�0�e��t
;

�12�t�������������������������
�11�t��22�t�

p �
�12�0�e�i’�t���������������������������
�11�0��22�0�

p ;

(7)

where the phase ’�t� accumulates because of the change of
energy difference between states j1i and j2i when the
barrier is lowered by changing �e. Notice that, except
for the effect of the extra phase ’�t�, the qubit evolution
(7) is similar to the qubit evolution in the previous ex-
ample; in particular, it also represents an ideal measure-

ment which does not decohere the qubit and has a clear
Bayesian interpretation. Formally, the evolution (7) corre-
sponds to the measurement result r � �t=2 in Eq. (1). The
coherent nonunitary evolution (7) has been experimentally
verified in Ref. [13] using tomography of the postmeasure-
ment state (in Ref. [13], the product �t was actually varied
by changing the tunneling rate �, while keeping the dura-
tion t constant).

Measurement undoing for the phase qubit.—A slight
modification of the experiment [13] can be used to dem-
onstrate measurement undoing. Suppose the tunneling
event did not happen during the first weak measurement,
so the evolution (7) has occurred. The undoing of this
measurement consists of three steps: (i) Exchange the
amplitudes of states j1i and j2i by the application of a �
pulse, (ii) perform another weak measurement, identical to
the first measurement, and (iii) apply a second � pulse. If
the tunneling event did not occur during the second mea-
surement, then the information about the initial qubit state
is erased (both basis states have equal likelihood for two
null-result measurements). Correspondingly, according to
Eq. (7) (which is applied for the second time with ex-
changed indices 1$ 2), any initial qubit state is fully
restored (notice that the phase ’ is also canceled).

The success probability Ps for the undoing procedure is
just the probability that the tunneling does not happen
during the second measurement. If we start with the qubit
state ��0�, the state after the first measurement is given by
Eq. (7). After the � pulse, the occupation of the upper state
is �022 � �11�0�=��11�0� � �22�0�e��t�, so the success
probability Ps � 1� �022�1� e

��t� can be expressed as

 Ps � e��t=��11�0� � e��t�22�0��; (8)

which formally coincides with Eq. (5) for r � �t=2. While
measurement undoing is most important for an unknown
state, in the demonstration experiment the initial state can
be known, and tomography of the final state can be used to
check that it is identical to the initial state.

General theory of measurement undoing.—Applying
positive operator-valued measure formalism [2], we can
describe a general quantum measurement with result r by a
linear operator Mr, so that for an initial state � the proba-
bility of result r is Pr��� � Tr�Er��, where Er � Myr Mr,
and the state after measurement is ~� � Mr�M

y
r =Tr�Er��.

Here Er is a positive Hermitian operator, obeying the
completeness relation

P
rEr � 1. In order to undo this

measurement, we should apply the inverse operation char-
acterized by Lr � CM�1

r , where C is a complex number.
Such an operation is physical (i.e., can be realized by a
second measurement yielding a ‘‘lucky’’ result) only if all
eigenvalues of Lyr Lr are not larger than 1 (otherwise,
completeness cannot be satisfied), which leads to the upper
bound jCj2 � minipi, where fpig is the set of eigenvalues
of Er. Therefore, the probability Ps � Tr�Lyr Lr~�� of the
lucky result corresponding to Lr is bounded by
�minipi�=Pr���. Finally, recalling that fpig are probabil-

Γ
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FIG. 2 (color online). (a) Schematic of a phase qubit controlled
by an external flux �e and inductively coupled to the detector
SQUID. (b) Energy profile V���with quantized levels represent-
ing the qubit states. The tunneling event is sensed by the SQUID.
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ities of the result r for eigenvectors of Er, we find the upper
bound for the probability of successful undoing (similar to
the result of Ref. [7]):

 Ps � �minPr�=Pr���; (9)

where � is the initial state and minPr is the probability of
the result r minimized over all possible initial states.
Notice that averaging of Ps over the result r makes it
independent of the initial state: Pav �

P
r�minPr�.

Let us compare the general upper bound (9) for Ps with
the results (5) and (8) of the two previous examples. For the
QPC measurement of the DQD qubit described by Eq. (1),
the operator Er is diagonal in the measurement basis j1i,
j2i and has matrix elements pi � ��SI=t��1=2 exp��� �I �
Ii�2t=SI�d �I, i � 1; 2, related to the probability densities of
the continuous variable �I. Then the upper bound (9) be-
comes min�p1; p2�=�p1�11 � p2�22�, which coincides
with Eq. (5) because p1=p2 � e2r. We conclude that our
undoing strategy is optimal, since the upper bound (9) is
reached. For the example of phase qubit measurement, the
operator Er corresponding to the null-result measurement
(no tunneling) is also diagonal in the measurement basis
j1i, j2i and has matrix elements 1 and e��t, respectively.
Again, Ps given by (8) reaches the upper bound (9), thus
confirming the optimality of the analyzed undoing
procedure.

Explicit general procedure of measurement undoing.—
We briefly discuss a procedure to undo (in principle) an
arbitrary one-to-one measurement Mr for any number N of
entangled charge qubits, using unitary rotations and mea-
surement by a QPC with an extremely strong nonlinearity,
so that tunneling (with rate �) occurs in the QPC only when
all qubits are in the state j1i. For simplicity, assume Mr �������
Er
p

(the generalization is trivial). In the basis of 2N vectors
jii diagonalizing Er, the desired undoing operator Lr ����������������

minjpj
p

M�1
r (see above) is also diagonal: Lr;ii ��������������������������

�minjpj�=pi
q

. It can be realized in 2N steps. The ith step

consists of a unitary rotation of the vector jii into the state
j11 . . . 1i, measurement by the QPC for duration �i �
���1 lnL2

r;ii, and the reverse unitary rotation. In each
step, the no-tunneling result corresponds to the measure-
ment operator, which is almost unity, except for diagonal
matrix element e���i=2 � Lr;ii for the vector jii. The mea-
surement undoing procedure is successful if no tunneling
occurred in all steps. The corresponding success probabil-
ity reaches the upper bound (9).

Undoing continuous measurement of an evolving charge
qubit.—In our first example, we have assumed for sim-
plicity that the qubit is not undergoing Hamiltonian evo-
lution during the measurement process to be undone. We
briefly note that a QUD measurement is also possible when
Hamiltonian evolution is included. In this case, the qubit
evolution is described by the Bayesian equations [4], which
can be used to find the operator Mr from the measurement
record I�t� (the non-normalized version of the Bayesian
equations is more appropriate for this purpose). Then the

desired undoing operator Lr can be realized in three steps,
corresponding to the singular value decomposition of Lr:
unitary rotation, continuous measurement by QPC (with
internal qubit dynamics turned off), and one more unitary
rotation. (The details of this calculation and the explicit
undoing procedure will be presented elsewhere.)
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