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Signatures of Quantum Behavior in Single-Qubit Weak Measurements
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With the recent surge of interest in quantum computation, it has become very important to develop clear
experimental tests for ‘‘quantum behavior’’ in a system. This issue has been addressed in the past in the
form of the inequalities due to Bell and those due to Leggett and Garg. These inequalities concern the
results of ideal projective measurements, however, which are experimentally difficult to perform in many
proposed qubit designs, especially in many solid-state qubit systems. Here, we show that weak continuous
measurements, which are often practical to implement experimentally, can yield particularly clear
signatures of quantum coherence, both in the measured correlation functions and in the measured power
spectrum.
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Since the inception of quantum mechanics, physicists
have tried to formulate a concise statement of its essential
difference from classical mechanics [1,2]. In the past, this
has been an important endeavor mainly because it has
facilitated the everyday use of quantum mechanics: by
developing intuition about the nonclassical aspects of the
theory, one is better able to apply it to explain data. More
recently, a remarkable new benefit has emerged from the
effort. It turns out that some of the most subtle nonclassical
features of quantum mechanics actually have promising
applications potential. Researchers have proposed quan-
tum computers and other quantum-information devices
that could rely on quantum mechanical entanglement ef-
fects to qualitatively outperform their classical counter-
parts in some important tasks (see Refs. [3,4]).

Concerted effort is now being directed toward the fab-
rication and control of quantum systems that could con-
stitute the components of a quantum-information device. In
particular, various two-state systems are being studied to
see if they can be made to serve as ‘‘qubits’’ [5], the quan-
tum computation analogue of the classical bit. An impor-
tant practical issue arises naturally in such research. One
would like to be able to verify that a given candidate
system is capable of exhibiting rudimentary quantum be-
havior before attempting to construct an elaborate appara-
tus that can execute some task. How can an experimentalist
demonstrate that a given system is being ‘‘quantum’’ rather
than ‘‘classical’’? Sometimes, researchers present oscilla-
tory data and claim that their system is undergoing quan-
tum Rabi oscillations. While generally the most likely
source of the behavior is quantum mechanical oscillations,
an alternate, classical explanation of the oscillations is also
generally possible.

In a profound and well-known paper [6], Bell formulated
inequalities that must be obeyed by any local hidden vari-
ables theory; a system that violates the inequalities is nec-
essarily exhibiting nonclassical behavior. Unfortunately,
the practical requirements involved in a test of Bell’s
theorem can be demanding. The system being tested must
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have 2 degrees of freedom that can be entangled, spatially
separated, and then separately measured. These require-
ments are often too stringent to permit initial assess-
ments of the potential of a candidate system to serve as a
qubit.

In a different context, while seeking ways to test the
predictions of quantum mechanics for macroscopic varia-
bles, Leggett and Garg have provided ‘‘Bell inequalities in
time’’ [7]. These inequalities are designed for testing a
system with just 1 degree of freedom and therefore can be
much easier to apply in the laboratory than Bell’s original
inequalities. However, they still assume the ability to per-
form projective measurements on the system. In many
systems that are currently under consideration as candidate
components for quantum computers, repeated projective
measurements are difficult or impossible to perform.
Especially in solid-state systems such as superconducting
Josephson junction qubits [8] one often performs only
‘‘weak’’ continuous measurements that probe the system
gradually and indicate its state after accumulating enough
information.

In this Letter, we show how the Bell inequalities in time
can be formulated to test a system that is probed with weak
continuous measurements [9–12] rather than projective
measurements. We show certain advantages to using
weak measurements (which also proved useful in quantum
optics [13]). We provide an analysis of the weak-
measurement signal of a two-state system, pointing out
constraints that hold (under appropriate conditions) for a
classical but not for a quantum mechanical two-state sys-
tem. When experimental data violate these constraints one
has a distinct signature of quantum behavior.

To formulate weak-measurement Bell inequalities in
time consider a system with a physical characteristic de-
scribed by the variable Q�t�. Assume that the system con-
forms with the following two axioms of macrorealism [7]:
(A1) Q�t� has a well-defined value at all times, and (A2) it
is possible to obtain the value of Q�t� with a noninvasive
measurement. Assume further that Q�t� is bounded above
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and below so that, without loss of generality, we can
arrange definitions so that jQ�t�j � 1.

Choose two nonvanishing time intervals �1 and �2.
Then, for any initial time t, by axiom (A1) the three
numbers Q�t�, Q�t� �1�, and Q�t� �1 � �2� give charac-
teristics of the system at times t, t� �1, and t� �1 � �2.
They satisfy the inequality

Q�t�Q�t� �1� �Q�t� �1�Q�t� �1 � �2�

�Q�t�Q�t� �1 � �2� � 1; (1)

proved simply by maximizing the left-hand side under the
constraints jQ�t�j; jQ�t� �1�j; jQ�t� �1 � �2�j � 1 [14].

When making weak measurements of the system, in-
stead of obtaining simply Q�t�, one collects a noisy signal

I�t� � I0 � ��I=2�Q�t� � ��t�; (2)

where ��t� represents white noise [15] with vanishing time
average h��t�i � limT!1

1
T

RT=2
�T=2 ��t�dt � 0 and with

�-function correlator h��t���t� ��i � S0

2 ����; S0 is the
spectral density. The symbol I�t� is appropriate since the
measured signal could be the current through a device like
a quantum point contact (QPC) [16,17] (although our
analysis is not limited to this case). The background signal
is I0 and �I is the difference between the signal associated
with Q�t� � 1 and Q�t� � �1. By appropriately averaging
I�t� to minimize noise, one can obtain information about
Q�t�. In particular, for � > 0 the time-averaged current
correlation is

KI��� � h�I�t� � I0	�I�t� �� � I0	i

� ��I=2�2hQ�t�Q�t� ��i � ��I=2�h��t�Q�t� ��i:

(3)

We have used Eq. (2) and the fact that hQ�t���t� ��i � 0,
for a classical or a quantum system, as long as the state of
the system does not anticipate the future random noise in
the detector. Since it is possible to make measurements
without disturbing the system [axiom (A2)], there is no
reason that any correlation has to arise between the noise
that registers in the detector and the physical characteristic
Q�t� of the system being measured. In particular, this
implies that, in principle, one can arrange

h��t�Q�t� ��i � 0: (4)

Indeed, even experimentally plausible detector designs
exist [18] that use ‘‘ideal negative-result’’ measurements
[7] to minimize classical backaction of the detector on the
system. Moreover, we have considered a model of weak
continuous measurement in which detector noise linearly
perturbs one of the energy parameters in the qubit
Hamiltonian; despite the backaction explicitly included
in this model, the backaction correlator in (4) still vanishes
assuming good symmetric oscillations.

Using Eq. (4) we get KI��� � ��I=2�2hQ�t�Q�t� ��i.
Averaging the inequality (1) over time t, we conclude
20040
KI��1� � KI��2� � KI��1 � �2� � ��I=2�2: (5)

This is a Bell inequality in time for weak measurements.
We will show momentarily that it is violated by a quantum
system. Note that, aside from being convenient for appli-
cation to realistic experiments, this form of the inequality
has a compelling advantage over the projective measure-
ment version. In the projective measurement version [7],
one takes an ensemble average rather than a time average
of the inequality (1) in order to arrive at an inequality that
is violated in the quantum case. In addition, one introduces
ensembles: one ensemble which is measured at times t; t�
�1 to provide the ensemble average of Q�t�Q�t� �1�, one
ensemble measured at times t� �1, t� �1 � �2 to provide
the ensemble average ofQ�t� �1�Q�t� �1 � �2�, and one
ensemble measured at times t; t� �1 � �2 (but definitely
not at time t� �1) to provide the ensemble average of
Q�t�Q�t� �1 � �2�. Only by refraining from measuring
at time t� �1 can one preserve the interference effects in a
quantum system that alter the value of Q�t�Q�t� �1 � �2�
and bring about a violation of the inequality. Because
ensembles play such an important role, an additional ex-
plicit axiom of macrorealism called ‘‘induction’’ was in-
troduced in Ref. [7] to stipulate that all ensembles have
identical properties.

In the case of weak continuous measurements, no en-
sembles need to be introduced since a quantum system
subjected to sufficiently weak measurements still can pre-
serve quantum coherence [12]; the correlators appearing in
(5) all refer to time averages of measurements performed
continuously on a single system.

We now show that a quantum mechanical two-state
system undergoing weak measurements violates (5) under
appropriate conditions. For concreteness we focus on a
double quantum dot system measured by a QPC
[12,16,19–22]. Consider the density matrix � of the sys-
tem with basis chosen so that the quantity Q�t� � �11 �
�22. Measurements and Hamiltonian evolution both
change �. The following stochastic equations (in
Stratonovich form) can be derived using informational
(Bayesian) analysis or by treating the measurement device
as a quantum system with finite coupling to the system
being probed and then performing sufficiently frequent
projective measurements on the measurement device [12]

_�ij��ij
1

S0

X
k

�kk

��
I�t��

Ik�Ii
2

�
�Ii�Ik�

�

�
I�t��

Ik� Ij
2

�
�Ij�Ik�

�
��ij�ij�

i
@
�H ;�	ij: (6)

Here, H is the system Hamiltonian and I�t� is the mea-
surement result (2) [19]. The system decoherence rate is

�ij � �1=�� 1�
�Ii�Ij�2

4S0
, where the ideality � is unity for an

ideal detector like a QPC [12,20]. The value Ik is the
current through the detector when the system is in state
jki. For our one-qubit case, k � 1; 2 and I1;2 � I0 
 �I=2.
For simplicity, we take the Hamiltonian to have the form
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H � ��=2��j1ih2j � j2ih1j� and denote �12 � �. Pro-
ceeding as in [21], stochastic equations imply

hQ�t�Q�t���i�hQ2�t�ie���=2

�
cos ~���

�

2 ~�
sin ~��

�

�h2Im�12�t�Q�t�ie
���=2 �

~�
sin ~��; (7)

h��t�Q�t� ��i �
�I
2
h2 Im�12�t�Q�t�ie

���=2 �
~�

sin ~��

�
�I
2
�1� hQ2�t�i	

� e���=2

�
cos ~���

�

2 ~�
sin ~��

�
; (8)

where ~� �
�����������������������
�2 � �2=4

p
and the total decoherence rate is

� � �� ��I�2=4S0 � ��I�2=4S0�. Thus, the current cor-
relation (3) in the quantum case has the form [21,22]

KI��� � ��I=2�2e���=2

�
cos ~���

�

2 ~�
sin ~��

�
: (9)

The second correlator, (8), shows an inevitable back-
action of noise from the detector into the evolution of the
system. This ‘‘invasiveness’’ is an essential difference
between a quantum system and a macrorealistic system
satisfying axiom (A2) above. For an ideal (� � 1) detector
and in the weak coupling regime �� �, we find that
hQ2�t�i ! 1=2 and h2 Im�12�t�Q�t�i 
 �=�, so that the
two correlators (7) and (8) give an equal contribution to
the total correlation function (9).

Choosing �1 � �2 � �� 1=� in the inequality (5) and
using (9), we find in the weak coupling limit (�� �)

KI����KI����KI�2�����I=2�2�1�2�cos���cos2���	:

(10)

This violates the inequality (5) provided that 0<
cos����< 1. We get a maximum violation of (5) by
choosing � � �=3�; in this case the left-hand side be-
comes �3=2���I=2�2. When experimental data violate in-
equality (5), it demonstrates that the sample is not a
macrorealistic system being probed by noninvasive mea-
surements. If an experimentalist struggles to make non-
invasive measurements but finds that the data inevitably
violate (5), this provides evidence that the system is be-
having nonclassically. Naturally, when the decoherence
rate � becomes large in (9), it is no longer possible [23]
to violate the inequality (5).

Often, instead of directly considering the correlator (3),
it is experimentally convenient to analyze its power spec-
trum SI�!� � 2

R
1
�1 d�KI���e

i!�. We now derive inequal-
ities that constrain the area under peaks in the spectrum.
The presence of large area peaks that violate these inequal-
ities should be regarded as evidence that the sample is not a
macrorealistic system. We employ a lemma that relates the
frequency filtration of the spectrum using a frequency
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window and time averaging of the current using a time
window:
Z 1
�1
�SI���!� � S0	f�!�

d!
2�
�

1

�
hjJ��; t�j2i; (11)

where J�t� � ��I=2�Q�t� is the ‘‘pure’’ signal. Here, f�!�
is a frequency window that goes to zero as j!j increases.
The Fourier transformed current signal is J��; t� �R
1
�1 J�t� ��e

i��g���d� with time averaging over a time
window g���; it is related to the frequency window as
f�!� � 1

2�

R
1
�1 g���g

��t� ��ei!�d�dt. If one chooses a
Gaussian window f�!� � e�!

2=2�2
, the lemma holds for

a Gaussian time window g��� �
���
2
p

�e��
2�2

.
The integral (11) gives the area under a peak in the

power spectrum centered at frequency � provided the
width � of the frequency window is much larger than the
peak width W. Assuming that the peak is sufficiently
narrow, it is possible to have W � �� �. The right-
hand side of (11) involves a time average of jJ��; t�j2 that
is bounded above by its maximum value maxtjJ��; t�j

2,
attained at the time tmax. Defining the phase � by
J��; tmax� � jJ��; tmax�j exp�i�� we note that

jJ��; tmax�j �
Z 1
�1

J�tmax � ��ei������g���d�

�
Z 1
�1
jJ�tmax � ��jj cos������jg���d�

�
Z 1
�1

�I
2
j cos������j

���
2
p

�e��2�2
d�:

In the above, both tmax and � depend on the realization of
the measurement process; however, the final estimate does
not. In the final step, we note that �� � impliesR
j cos������j exp���2�2�d� � �2=

����
�
p

���1� o����	
since the average of the rapidly oscillating absolute value
of cosine is 2=�. The correction term o���� rapidly de-
creases for small �; it is less than 1% for �

� < 0:4. One
concludes that

Z 1
�1
�SI���!� � S0	f�!�

d!
2�

<
8

�2

�
�I
2

�
2
�

1� o
�

�

�

��

(12)

is a bound on the area of any sufficiently narrow peak in the
power spectrum of a macrorealistic system probed non-
invasively. The upper limit of 8=�2��I=2�2 cannot be
improved without further restrictions on the form of I�t�.
To see this, note that the limit in (12) is actually attained by
quasiperiodic rectangular oscillations: Q�t� � QR��t�
’�t�	, where QR�	� � 1 for 2n� < 	 < �2n� 1�� and
QR�	� � �1 for �2n� 1��< 	< 2�n� 1��, for n �
0; 1; . . . , and where ’�t� is a slowly fluctuating phase
[26]. The bound (12) is violated by the quantum power
spectrum [21,22] obtained by Fourier transforming (9)

SI�!� � S0 �

�
�I
2

�
2 4�2�

�!2 ��2�2 � �2!2 ; (13)
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which has an area of ��I=2�2 under the peak at frequency
� [27]. If we assume that power spectrum displays only a
single narrow peak, which is at nonzero frequency, then it
is possible to reduce the bound (12). Consider a peak of
functional form (13) generated by measurements of a
classical system [in this case the peak width is W; it is
not limited from below by ��I�2=4S0]. Suppose the pre-
factor of ��I=2�2 is replaced with ��I=2�2K0, where K0 is
a constant factor. The Fourier transform of this power
spectrum is a correlation function of the form (9) with
the prefactor ��I=2�2 replaced by ��I=2�2K0. Assuming
that this is the output of a classical system, K0 is then
constrained by (5). Taking �1 � �2 � � � �=3� and
W�� 1, we find that K0 � 2=3. Thus, in this case

Z 1
�1
�SI���!� � S0	f�!�

d!
2�
�

2

3

�
�I
2

�
2
: (14)

The assumption of a single narrow peak in SI�!� has led to
a more stringent constraint on the relative peak area of 2=3.
One can find a classical process with a single Lorenzian
peak of area 1=2 [e.g., Q�t� � cos��t� ’�t�	 with slowly
varying phase’�t�]. Thus the exact upper bound in the case
of a single Lorenzian peak is between 1=2 and 2=3.

The three constraints (5), (12), and (14) provide power-
ful and convenient means of testing the nonclassicalness of
a system. Rather than simply pointing to an oscillatory
signal and claiming quantum coherent oscillations, an ex-
perimentalist can use these inequalities to demonstrate
conclusively the violation of macroscopic, noninvasive
behavior. While it is always possible that the experimen-
talist is inadvertently performing invasive measurements
on a classical system, this possibility becomes increasingly
unlikely as more effort is exerted to make the measure-
ments noninvasive. Although we have focused here upon a
single qubit, with little modification one can apply these
constraints to weak measurements on systems with 2 or
more degrees of freedom.
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