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Mesoscopic Quadratic Quantum Measurements
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We develop a theory of quadratic quantum measurements by a mesoscopic detector. It is shown that
the quadratic measurements should have nontrivial quantum information properties, providing, for
instance, a simple way of entangling two noninteracting qubits. We also calculate the output spectrum of
a detector with both linear and quadratic response, continuously monitoring two qubits.
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FIG. 1. Diagram of a mesoscopic detector measuring two
qubits. The qubits modulate amplitude t of the tunneling of
detector particles between the two reservoirs.
The problem of quantum measurements with meso-
scopic solid-state detectors attracts considerable current
interest (see, e.g., chapters on quantum measurements in
[1]). This interest is motivated in part by the important
role of measurement in quantum computing and in part
by the possibility, provided by the mesoscopic structures,
to study the transition between quantum and classical
behavior in systems that are large on the atomic scale.
Although mesoscopic detectors can be quite different and
include, e.g., quantum point contacts (QPC) [2–8], nor-
mal and superconducting single-electron transistors
(SETs) [9–15], SQUID magnetometers [16], and generic
mesoscopic conductors [17,18], the operating principle of
almost all of them is the same. A measured quantum
system controls the transmission amplitude t of some
particles (electrons, Cooper pairs, or magnetic flux
quanta) between the two reservoirs, and their flux pro-
vides information on the state of the system [19]. In
general, the amplitude t varies together with some control
operator x, and for sufficiently weak detector-system
coupling, the dependence t�x� can be approximated as
linear. The dynamics of such linear measurements is
well understood (see, e.g., [20,21]).

At some special bias points, however, the linear re-
sponse coefficient of the t�x� dependence vanishes and
this dependence becomes quadratic. This can happen, for
instance, if the amplitude t is formed by two or more
interfering tunneling trajectories. Known examples of
such situations include dc SQUIDs and superconducting
SETs. In this work, we show that a quantum detector
operating at such a special point should enable measure-
ments of product operators referring to separate systems
and have nontrivial quantum information processing
properties, e.g., create a simple entanglement mechanism
for noninteracting qubits. Specifically, we consider the
measurement of two qubits (Fig. 1), which is the simplest
system that reveals the characteristics of quadratic detec-
tion. The two qubits are assumed to be coupled to one
detector through their basis-forming variables �jz, j �
1; 2, i.e., x � c1�1

z � c2�2
z so that
0031-9007=04=93(5)=056803(4)$22.50 
t�x� � t0 � �1�1
z � �2�2

z � 	�1
z�2

z : (1)

The last term in this equation appears due to the nonline-
arity of t�x�. For the two qubits, Eq. (1) represents the
most general dependence of t on �jz, whereas for mea-
surements of other systems, Eq. (1) can be justified as the
Taylor’s expansion in the weak detector-system coupling.
Higher-order terms in this expansion would affect mea-
surements of a larger number of qubits.

The Hamiltonian of the detector-qubit system is

Ht � H0 �Hd � t�f�jzg�� ty�f�jzg�y; (2)

where H0 � ��1=2�
P
j�1;2�"j�

j
z � �j�

j
x� � ��=2��1

z�
2
z .

Here �j is the tunnel amplitude and "j is the bias of the
jth qubit, � is the qubit interaction energy, Hd is the
detector Hamiltonian, and y,  are the detector opera-
tors that create excitations when a particle is transferred
forward or backward between the detector reservoirs. For
instance, for the QPC detector, y;  describe excitation
of electron-hole pairs in the QPC electrodes.

We make two assumptions about the detector: the
tunneling between reservoirs is weak and can be de-
scribed in the lowest nonvanishing order in t, and the
characteristic time scale of tunneling is much shorter
than that of the qubit evolution due to H0. For the QPC
detector this means that the QPC is in the tunneling
regime and the voltage across it is much larger than the
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qubit energies. Under these assumptions, the dynamics of
measurement depends only on the correlators

�� �
Z 1

0
dth�t�yi; �� �

Z 1

0
dthy�t�i; (3)

which set the scale ��  2Re�� of the forward and
backward detector tunneling rates. In Eq. (3), the angled
brackets denote averaging over internal degrees of free-
dom of the detector reservoirs taken to be in a stationary
state. The correlators h�t�i, hy�t�yi that do not con-
serve the number of particles are assumed to vanish.

The measurement contribution to the evolution of the
qubit density matrix � is obtained by standard lowest-
order perturbation theory in tunneling. To describe qubit
dynamics conditioned on a particular outcome of the
measurement, we keep in the evolution equation the num-
ber of particles n transferred through the detector. Since
the correlators that do not conserve n vanish, only the
terms diagonal in n contribute to the evolution. In the
‘‘measurement’’ basis of eigenstates of the �jz operators,
j""i, j"#i, j#"i, and j##i, in which each state jki is charac-
terized by the value tk of the transmission amplitude (1),
t1 � t0 � �1 � �2 � 	, t2 � t0 � �1 � �2 � 	, etc., the
measurement contribution to _� is

_�nkl � ��1=2���� � ����jtkj
2 � jtlj

2��nkl � ��tkt
�
l �

n�1
kl

���t�ktl�
n�1
kl � i��H; �n�kl: (4)

Here �H �
P
j�"j�

j
z � ���1

z�
2
z is the renormalization

of the qubit Hamiltonian due to coupling to the detec-
tor: �"j � Re��jt

�
0 � �j0	

�� Im��� � ��� and �� �

Re��1��2 � t0	�� Im��� � ���, where j; j0 � 1; 2, j0 � j.
Equation (4) is the basis for our quantitative discussion of
quadratic measurements. It generalizes to an arbitrary
detector and two qubits, the equation obtained in [5] for
a qubit measured with the QPC in the tunnel regime.

Disregarding the index n in Eq. (4), we obtain the
equation for the measurement-induced evolution of the
qubit density matrix averaged over different measurement
outcomes. Together with the evolution due to the qubit
Hamiltonian H0 this equation is

_� kl � ��kl�kl � i�H0; ��kl: (5)

Here �kl  �1=2���� � ���jtk � tlj2, and we included in
H0 two renormalization terms: �H (4) and �H0 due to
phases ’kl  arg�tkt�l � of the transfer amplitudes in
Eq. (4) defined by ��H0; ��kl � ��� � ���jtktlj sin’kl�kl.

Evolution (5) of the qubit density matrix is reflected in
the detector current. The form of the current I operator in
the qubit space is obtained by the same lowest-order
perturbation theory in tunneling that leads to Eq. (5):

I � ��� � ���tyt: (6)

This equation can be used to calculate both the dc current
hIi � TrfI�0g, where �0 is the stationary solution of
Eq. (5), and the current spectral density
056803-2
SI � S0 � 2
Z 1

0
d� cos!��TrfIeL��I�0�g � hIi2�: (7)

Here S0 � ��� � ���Trft
yt�0g, and eL��A� denotes the

evolution of the matrix A during time interval � governed
by Eq. (5).

Decay of the off-diagonal matrix elements Eq. (5) is
the result of averaging over the measurement outcomes.
However, since n is the classical detector output, it is
legitimate to ask a question about the qubit evolution
for a specific measurement outcome n. Such a ‘‘condi-
tional’’ description of the measurement dynamics (see,
e.g., [21]) is convenient for the calculation of more com-
plicated correlators involved, for instance, in problems of
feedback control of the measured system. In our case, it is
obtained by first solving Eq. (4) in terms of n. Noticing
that Eq. (4) coincides in essence with the recurrence
relations for the modified Bessel functions In and assum-
ing the initial condition �nkl�0� � �kl�0��n;0 we get

�nkl�����kl�0����=���
n=2In�2�jtktlj

�������������
����

p
�

�expf��1=2���������jtkj2�jtlj2��� in’klg:

(8)

Following the same steps as in [21], the qubit density
matrix conditioned on the particular ‘‘observed’’ number
n of transferred particles is obtained then by selecting the
term with this n in Eq. (8) and normalizing the resulting
reduced density matrix. For weak detector-qubit cou-
pling, j�jj; j	j � jt0j, when individual tunneling events
do not provide significant information on the qubit state,
it is convenient to condition the evolution on the quasi-
continuous current I�t� in the detector. Then, the
‘‘Bayesian’’ equation for the qubit density matrix is

_� kl � �i�H0; ��kl � �kl�kl

� If�t��kl

"
1

2S0

X
j

�jj�Ik � Il � 2Ij� � i’kl

#
;

(9)

where S0 is the background current noise [see Eq. (7)],
variation of which with the qubit state can be neglected in
the weak-coupling limit, S0 � ��� � ���jt0j2. Also,
Ik � ��� � ���jtkj2 is the average detector current in
the qubit state k, and If�t� � I�t� �

P
k�kkIk is the noise

of the detector current. Equation (9) is written in the Itô
form, in which averaging over If�t� can be done by simply
omitting the terms with it. In the weak-coupling regime,
�kl � �1=2���� � �����jtkj � jtlj�2 � ’2

kljt0j
2�. It is the

same ensemble-averaged decoherence rate as in Eq. (5),
but in Eq. (9) it leads to decoherence only after averaging
over If�t�.

We now use the equations obtained above to discuss
several quantitative characteristics of quadratic measure-
ments. We start with the purely quadratic detectors, when
�j � 0, so that I1 � I4 � ��� � ���jt0 � 	j2  I"" and
056803-2
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I2 � I3 � ��� � ���jt0 � 	j2  I"#. In this case, if the
qubits are stationary, H0 � 0, the detector effectively
measures the product operator �1

z�
2
z of the two qubits.

That is, on the time scale of measurement time �m �
4S0=�I"" � I"#�

2, the subspace fj1i; j4ig, in which the states
of the two qubits are the same and the average detector
current is I"", is distinguished from the subspace fj2i; j3ig
in which the states of the two qubits are opposite and the
current is I"#, while the states within these subspaces are
not distinguished. This property of quadratic measure-
ments can be used to design a simple error-correction
scheme for dephasing errors [22].

Next, we consider the case of identical, unbiased, non-
interacting qubits with nonvanishing Hamiltonian, H0 �

���=2�
P
j�

j
x. In this case the two degenerate zero-energy

eigenstates ofH0 can be chosen as fj""i � j##i; j"#i � j#"ig.
In the remaining subspace that is denotedD�, in the basis
fj""i � j##i; j"#i � j#"ig, H0 reduces to ���x and mixes
the states with similar and opposite states of the two
qubits. Accordingly, there are three possible measurement
outcomes characterized by the different dc currents hIi in
the detector, I"", I"#, and �I"" � I"#�=2. These outcomes can
be interpreted as a measurement of the operator �1

y�
2
y �

�1
z�2

z . Conditional Eq. (9) can be used to simulate how the
qubits, on the time scale ’ 4S0=I2a, Ia  �I"" � I"#�=2, are
driven into one of the three outcomes driven by the
specific realization of the detector current. The probabil-
ities of different outcomes depend on the initial state. In
the first two outcomes, the initial state is projected on one
of the fully entangled states of the two qubits, e.g.,

hIi � I"# , j i � �j"#i � j#"i�=
���
2

p
: (10)

Thus, quadratic measurements of two symmetric qubits
provide a simple way of generating entangled states of
qubits that in contrast to linear measurements [23] is
based only on monitoring the dc current.

In the third scenario, when hIi � �I"" � I"#�=2, the two
qubits are confined to the subspace D� and perform
coherent quantum oscillations. Equation for the density
matrix (5) reduced to D� is

_� kl � i���x; ��kl � �
�

0 �12

�21 0

	
; (11)

where �  2��� � ���j	j
2. Solving this equation and

using the fact that the current operator (6) is reduced in
D� to Ia�z, we find the current spectral density (7):

SI�!� � S0 �
8�2I2a�

�!2 � 4�2�2 � �2!2 ; (12)

where S0 � ��� � ����jt0j
2 � j	j2�. Qualitatively, for

�� �, spectral density (12) describes coherent oscilla-
tions of the two qubits with the frequency 2�, twice the
oscillation frequency in one qubit. Similar to the case of
linear measurements [24], the maximum of the ratio of
the oscillation peak to noise S0 is 4. As one can see from
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Eq. (12), this maximum is reached in the case of weak
measurement j	j � jt0j by the ‘‘ideal’’ detector for which
arg�t0	�� � 0 and only �� or �� is nonvanishing. An
interesting feature of the regime of continuous measure-
ment required to observe the oscillation spectra similar
to Eq. (12) is that it is sensitive to the detector backaction.
This means that, in contrast to the dc ‘‘single-shot’’ mea-
surements [as, e.g., in Eq. (10)], continuous measurements
provide information about the quantum properties of the
detector itself.

For different qubit tunnel amplitudes, transitions [with
the rate ��1 ��2�

2=2� for small �1 � �2] between the
states j""i � j##i and j"#i � j#"i mix the measurement out-
comes I"" and I"#. This means that for �1 � �2 there are
only two outcomes that have the same dc current and
differ by current spectral densities. In one, the qubits are
again in the subspace D� and the spectral density is
given by Eq. (12) where now 2� ! �1 ��2. In the other,
the qubits are confined to the subspace orthogonal to D�,
and both the qubit dynamics and the current spectral
density are given by the same Eqs. (11) and (12) with
� ! ��1 � �2�=2.

As the last application of the general theory, we con-
sider two identical qubits measured by a weakly and
symmetrically coupled detector with arbitrary nonline-
arity. It is convenient to discuss this situation in terms of
the total effective spin S of the two qubits, which deter-
mines the amplitude (1) of detector tunneling:

t � t0 � 2�Sz � 	�2S2z � 1�: (13)

The S � 0 state (10) does not evolve in time under the
qubit Hamiltonian and represents one of the measurement
outcomes characterized by the dc detector current I"# and
flat current spectral density SI�!� � ��� � ���jt0 � 	j2.
Three other, S � 1, states are mixed by measurement and
represent the second measurement outcome. We take the
basis of the S � 1 subspace as three energy eigenstates
Sx � �1; 0; 1 with energies f�; 0;��g. The detector in-
duces transitions between these states with the rate inde-
pendent of the transition’s direction, so that the stationary
qubit density matrix in this subspace is �0 � 1=3.
Equations (6) and (13) show then that the dc detector
current for this outcome is hIi � ��� � ����
�2�jt0j

2 � j	j2� � jt0 � 	j2 � 8j�j2�=3; and can be writ-
ten as hIi � �I"" � I## � I"#�=3, where the currents I""; . . .
are introduced in the same way as before, e.g., I"" �
��� � ���jt0 � 2�� 	j2. The background current noise
S0 coincides with hIi with �� � �� replaced by �� � ��.

The system performs oscillations at frequencies � and
2� whose spectral peaks should have Lorentzian form for
weak detector-qubit coupling. Evaluating the current ma-
trix elements from Eqs. (6) and (13), and evolution of the
density matrix from Eq. (5) reduced to the S � 1 sub-
space, we obtain parameters of these Lorentzians in the
spectral density (7):
056803-3
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FIG. 2. Spectra of coherent quantum oscillation in two qubits.
(a) Transition from linear to quadratic measurement: dashed
line, solid line, and dot-dashed line correspond to linear, (� �
0:1t0, 	 � 0), intermediate (� � 	 � 0:1t0), and quadratic
(� � 0, 	 � 0:1t0) cases. (b) Effect of qubit-qubit interaction
on spectrum for ��jt0j2 � 2:0� and � � 	 � 0:1t0.
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! ’ j� ; SI�!� � S0 �
2

3

a2j�j
�!� j��2 � �2

j

; (14)

j � 1; 2 ; �j � ��� � ����jj�j
2 � j	j2�;

a1 � 4��� � ���Re��t0 � 	���� � �I"" � I##�=2;

a2 � 2��� � ����Re�t0	�� � j�j2� � �I"" � I## � 2I"#�=4:

Note that condition �0 � 1=3, used in Eq. (14) and Fig. 2,
implies that the coefficient � of linear measurement
mixing all three S � 1 states, does not vanish identically.
Otherwise, only two states spanning the subspace D�

defined above are mixed, and �0 � 1=2 in this subspace,
as assumed in Eq. (12). In general, there is also a spectral
peak at ! � 0 caused by switching between states with
different average currents. For small but finite �, �� 	,
this peak can be very high, e.g., in the case of an ‘‘ideal’’
detector (�� � argt0	� � argt0�� � 0) its height and
half-width are, respectively, �8	2=27�2�S0 and 6�2��.

Figure 2 shows current spectral density calculated from
Eqs. (5) and (7) for an ideal detector without making a
weak-coupling approximation. Figure 2(a) illustrates the
transition between ‘‘single-qubit’’ oscillations at! ’ � in
the case of linear measurement and oscillations at ! ’
2� for the quadratic measurement. One can see that in
agreement with Eq. (14) the ! ’ � peak is typically
higher than the quadratic peak at double frequency. It is
at the same time more sensitive to qubit-qubit interaction
as illustrated in Fig. 2(b). Even weak interaction �� �
first suppresses and then splits the peak at ! ’ � in two
while affecting the quadratic peak only slightly.

In summary, we discussed quadratic quantum mea-
surements and demonstrated their nontrivial quantum-
information properties. We also calculated output spectra
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of the quadratic detector measuring coherent oscillations
in two qubits. Consistent with the case of classical oscil-
lations, quadratic measurement results in the spectral
peak at frequency that is twice the frequency of individ-
ual qubit oscillations. Quadratic measurements should be
an interesting and potentially useful tool in solid-state
quantum devices.
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