
Supplementary Material: Arrow of Time for Continuous Quantum Measurement

In this Supplementary Material, we provide a deriva-
tion of a continuous qubit measurement that connects
Eqs. (1) of the main text to the general Janus sequence
construction. We also show several examples of rare and
seemingly reversed qubit trajectories. Finally, we derive
the distribution of lnR for a qubit with no Rabi drive.

Continuous time symmetry

For the special case of two eigenvalue observables, we
can construct a Janus sequence for the diffusive contin-
uous measurement case. To see this, consider unitary
dynamics followed by partial measurement collapse, such
that a density operator ρ changes after a time-step δt
(up to normalization) as ρ → MrUρU

†M†r , where U is
a unitary time-evolution operator, and Mr is a measure-
ment operator indexed by a normalized result r that we
take to be a continuous variable. For a diffusive mea-
surement to have a sensible continuum limit, it must
come from a valid Gaussian POVM Er = M†rMr ∝
exp(−δt(r−Ah)2/2τ), where Ah is the Hermitian observ-
able being monitored, and τ is a characteristic measure-
ment timescale. In this limit as δt → 0, a succession of
independent Gaussian timesteps then produces a readout
r(t) that is a stochastic process r(t) = Āh(t) +

√
τ ξ(t),

where Āh = Tr[ρAh] is the moving average of Ah.
In the same limit, the unitary dynamics may be written

to first order in time δt as U ≈ 1−iδtH/~, where H is the
Hamiltonian. The Gaussian POVM Er = M†rMr natu-
rally factors as Mr ∝ exp(iδt rAah/2τ − δt(r−Ah)2/4τ),
where we include the anti-Hermitian operator iAah to
allow for additional phase backaction. To first order in
δt, neglecting r2 as state-independent, this yields Mr ∝
1 + δt(r/2τ)A+ δtA2

h/4τ , where A ≡ Ah + iAah contains
Hermitian and anti-Hermitian parts. The r-independent
term with A2

h is not reversible with any simple transfor-
mation of the record r; however, this term may be easily
reversed by a Gaussian POVM for any observable whose
square is a constant c2 (implying Ah has eigenvalues of
only ±c). As such, in what follows we will assume the
form A = α·σ of an effective qubit with Pauli matrix vec-
tor σ, so Ah = Re(α) ·σ and Aah = Im(α) ·σ. Similarly,
we assume a general qubit Hamiltonian H = ~Ω · σ/2.
These considerations then lead to a (Markovian) stochas-
tic differential equation for the normalized qubit state ρ

dρ

dt
=

1

i~
[H, ρ] +

r

τ
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2
− Tr

[
A+A†

2
ρ

]
ρ

]
, (1)

expressed in the time-symmetric (Stratonovich) picture
[1, 2] where dρ/dt ≡ limδt→0[ρ(t + δt) − ρ(t − δt)]/2δt.
This equation reproduces Eqs. (1) in the main text if
Ω = Ωŷ and α = ẑ.

We now examine the requirements for time-reversal
symmetry of Eq. (1). The time reversed solution, ρ̃(t) =
Θρ(T − t)Θ−1, must satisfy the same equation of motion
(1). Direct calculation indicates that is true, provided we
transform to (time-reversed) operators, H̃ = ΘHΘ−1,
and r̃(t)Ã = −r(T − t)ΘAΘ−1. This transformation
is a special case of our general Janus criterion in the
main text. On physical grounds for a spin, we take
the Pauli matrix vector to flip sign under time rever-
sal, ΘσΘ−1 = −σ, but it is straightforward to generalize
this to flip the sign of only one of the Pauli matrices for a
general pseudo-spin [3]. The full inversion gives the time-
reversed symmetries, Ω̃ ·σ̃ = −Ω ·σ, and α̃ ·σ̃ = −α∗ ·σ.
We can define time reversed quantities in one of two
ways. The first is an active transformation, which keeps
the reference frame the same (σ̃ = σ), and the sec-
ond is a passive transformation, which inverts the ref-
erence frame into a left-handed system, (σ̃ = −σ), thus
changing the commutator structure. The active trans-
formation (a) dictates the mappings, r̃a(t) = r(T − t),
Ω̃a = −Ω (analogous to inverting an external magnetic
field), and α̃a = −α∗ (measuring the negated observable
and reversing phase backaction), together with an inver-
sion of the components of the Bloch coordinates, x̃a(t) =
−x(T − t), ỹa(t) = −y(T − t), z̃a(t) = −z(T − t), which
actively flips the spin. On the other hand, the passive
transformation (p) inverts the sign of the measurement
readout, r̃p(t) = −r(T − t), keeps the energy definitions

the same Ω̃p = Ω, and measures the same observable
with reversed phase backaction, α̃p = α∗, while preserv-
ing the coordinates in this frame, x̃p(t) = x(T−t), ỹp(t) =
y(T − t), z̃p(t) = z(T − t). With this understanding,
we can see why Eqs. (1) of the main text are invariant
under the time reversal symmetry transformations dis-
cussed previously. From the passive perspective, taking
x̃(t) = x(T−t), ỹ(t) = y(T−t), z̃(t) = z(T−t) negates the
left-hand side of (1) (main text), while Ω̃ = Ω, and the
reversal of the readout r̃(t) = −r(T − t) partially inverts
the right-hand side of (1) (main text). The remaining
sign reversal (effectively inverting Ω) is accounted for by
the sign-flipped commutation relations of the left-handed
coordinate system. From the active perspective, taking
x̃(t) = −x(T − t), ỹ(t) = −y(T − t), z̃(t) = −z(T − t)
keeps the time derivatives of (1) (main text) invariant,
while Ω̃ = −Ω, and r̃(t) = r(T − t) keeps the right-hand
side of (1) (main text) also invariant.

Examples of seemingly backward-in-time trajectories

As shown in Fig. 2 of the main text, for pure states
undergoing monitored Rabi oscillations it is common to
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FIG. 1. Anomalous monitored Rabi oscillations with period
2π/Ω = 0.5τ , measurement time τ = 2µs, and duration T =
2τ . (top) Pure initial state x(t = 0) = 1, with a seemingly
reversed log-likelihood ratio lnR = −1.40. Comparing to the
histogram in Fig. 2(d) of the main text, such a trajectory
is unlikely. (bottom) Maximally mixed initial state, with a
nearly symmetric log-likelihood ratio lnR = 5.47× 10−5 that
is compatible with either forward or backward evolution.

observe measurement runs that appear reversed (i.e.,
lnR < 0), even for reasonably long durations T . We
show an example of such a seemingly reversed trajectory
in Fig. 1 (top). If we start with a completely mixed state,
however, the resulting purification of the state over time
due to the measurement will reveal the directionality of
time, thus seemingly preventing the evolution from being
time-reversed. Nevertheless, it is still possible, though
unlikely, for a trajectory to erase prior purification and
return to the initially mixed state. The example in Fig. 1
(bottom) shows such a time-ambiguous trajectory that
begins and ends with a mixed state. This example il-
lustrates both wavefunction uncollapse as well as time-
reversal invariance with no time arrow.

Qubit with no Rabi drive

With no Rabi drive, the forward distribution of the
readout r(t) consisting of N independent timesteps δt for
a monitored qubit with initial z-coordinate zi = Tr(σzρ

i)

is PF (r) =
∏N
k=1G+(rk)(1 + zi)/2 +

∏N
k=1G−(rk)(1 −

zi)/2, where the Gaussian distributions G±(rk) are cen-
tered at ±1, respectively, with variances τ/δt that de-
fine the characteristic measurement time τ for obtain-
ing a unit signal to noise ratio [4]. After a duration

T =
∑N
k=1 δt the integrated signal γ =

∑N
k=1 rkδt/T →∫ T

0
r(t)dt/T will fully determine the final qubit state.

Similarly, the backwards evolution starts from the fi-
nal state with z-coordinate zf = Tr(σzρ

f ) and real-
izes the inverted measurement sequence −r(T − t) with
integrated signal −γ, with the distribution PB(−r) =

FIG. 2. Histogram of lnR of 2×106 trajectories, with 2×105

bins, for qubit measurement with no Rabi drive from an initial
state x = 1, compared to analytics (dashed). Analytically,
Perr = 0; the small deviation here arises from numerical error
due to the finite bin size and the divergence at lnR = 0.

∏N
k=1G+(−rk)(1+zf )/2+

∏N
k=1G−(−rk)(1−zf )/2. The

arrow of time estimator R is thus given by

R =
PF
PB

=
cosh γ + zi sinh γ

cosh γ − zf sinh γ
, (2)

where zf is related to zi according to

zf (γ) =
zi cosh γ + sinh γ

cosh γ + zi sinh γ
. (3)

Inserting this relation into the arrow of time estimator,
after some algebra, we find the result

lnR = 2 ln(cosh γ + zi sinh γ). (4)

We can directly find the probability distribution of lnR
by the relation, P (lnR)d(lnR) = PF (γ)dγ. Noting the
result of the derivative, d lnR/dγ = 2zf (γ), we find

P (lnR) =
PF (γ)

2|zf (γ)|

∣∣∣∣
γ=γ(lnR)

(5)

with an implied sum over the two solutions of γ.
The case zi = 0 is special because negative values of

lnR never occur. The final condition is then zf = tanh γ
and the solutions to the equation x = lnR = 2 ln cosh γ
are γ± = ± cosh−1(ex/2). The distribution of x thus
becomes,

P (x) =

√
τ

2πT

ex√
ex − 1

exp

{
− T

2τ
− τ

2T
[cosh−1(ex/2)]2

}
.

(6)
which diverges as x−1/2 for small x = lnR, as shown in
Fig. 2 compared to numerical simulations.
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