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RATE EQUATION FOR |2〉 STATE POPULATION

In this section we discuss the rate equation which de-
scribes the |2〉 state population in the randomized bench-
marking (RB) procedure.

Neglecting the population of the |3〉 state and higher
levels, it is natural to describe (phenomenologically) the
average population p|2〉(m) of the state |2〉 after m Clif-
fords using the evolution equation

p|2〉(m+ 1) = p|2〉(m) + γ↑[1− p|2〉(m)]− γ↓p|2〉(m), (1)

where γ↑ is the probability of the |2〉 state excitation per
Clifford, averaged over Cliffords and also over the initial
state in the qubit subspace, while γ↓ is the probability
of returning from the state |2〉 to the qubit subspace,
averaged over Cliffords. We emphasize that Eq. (1) would
be invalid for a particular RB sequence, but we apply it
only assuming averaging over the RB sequences: p|2〉(m),
γ↑, and γ↓ are all the averaged values. So far we have
introduced Eq. (1) phenomenologically; we will discuss
the applicability of this equation later.

The solution to Eq. (1) is

p|2〉(m) = C(1−Γ)m+p∞, p∞ =
γ↑
Γ
, Γ = γ↑+γ↓, (2)

where C is a constant, determined by the initial condi-
tion, C = p|2〉(0) − p∞. In the case Γ � 1 this solution
can be replaced with

p|2〉(m) = [p|2〉(0)− p∞] e−Γm + p∞, (3)

that obviously corresponds to the standard rate equation

dp|2〉(m)/dm = γ↑[1− p|2〉(m)]− γ↓p|2〉(m), (4)

to which Eq. (1) reduces when m is considered as a
quasicontinuous variable (m � 1). Thus, m plays the
role of the dimensionless time, while γ↑ and γ↓ are the
excitation and relaxation rates in this dimensionless time.
Note that if p|2〉(0) = 0, then Eq. (3) becomes p|2〉(m) =
p∞(1− e−Γm).

Also note that if observed probabilities p̃|2〉 are dif-
ferent from actual probabilities p|2〉 due to measurement

infidelity in a linear way, p̃|2〉(m) = Ap|2〉(m) + B[1 −
p|2〉(m)] (here A ≈ 1 is the fidelity of the state |2〉 mea-
surement, while B � 1 is the average probability of
misidentifying a state within the qubit subspace as the
|2〉 state), then Eqs. (1)–(4) remain valid for p̃|2〉(m), but
with the slightly changed rates: γ↑ → γ̃↑ = Aγ↑ + Bγ↓,
γ↓ → γ̃↓ = Γ− γ̃↑, Γ̃ = Γ. Therefore, the rates γ̃↑ and γ̃↓
extracted from the RB results, may slightly differ from
the actual rates γ↑ and γ↓.

Next we discuss the applicability of the rate equation
(1) for the |2〉 state population. A rate equation usually
assumes incoherent processes. However, in our case both
coherent and incoherent processes are important: while
the rate γ↓ is mostly determined by incoherent energy
relaxation, the rate γ↑ is mostly determined (at least for
short gates) by a unitary evolution, though with possibly
fluctuating pulse shapes. Therefore, it is not obvious
if the simple rate equation is applicable. Note that we
do not apply random ±1 pulses for the |2〉 state as was
suggested [1–3] for formal randomization of the coherent
processes. In our opinion, for practical purposes it is
not necessary because of different transition frequencies
ω21 and ω10. To illustrate this argument, let us assume
only coherent excitations of the |2〉 state and consider
the evolution of the wavefunction c0|0〉+ c1|1〉+ c2|2〉 in
the rotating frame based on ω10. Then for a particular
sequence of Cliffords (assuming |c2|2 � 1)

c2(m) = c2(0) +
∑

k
g↑,k e

−i(ω21−ω10)tk , (5)

where the complex number g↑,k is the contribution from
kth Clifford in the sequence (γ↑ = 〈|g↑,k|2〉) and tk is the
start time of kth Clifford. For ω21−ω10 = 2π×−212MHz
and elementary gate time & 10 ns, it is unlikely that
the phase shifts in Eq. (5) are close to exact integers
of 2π. Therefore, even if averaging over Cliffords and
initial states does not provide full randomization in the
sense that 〈g↑,k〉 6= 0, the extra phase factor (accumulat-
ing with k) helps to average the contributions to zero, so
that in this example |c2(m)|2 ∝ m (from two-dimensional
random walk), as would also be expected from a sim-
ple rate-equation model. Thus, we expect that the rate
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Figure S1. Phase space points corresponding to the qubit
being prepared in the |0〉 (blue), |1〉 (red), and |2〉 (green)
states. Out of a total of 50,000 preparations of each state,
5000 are shown here. The states are discriminated based on
their distance from the center of the cloud corresponding to
each state. Points of one color positioned in a cloud of a
different color indicate readout errors. The white circles in
each cloud have radii corresponding to one standard deviation
of the complex data in each cloud.

equation should work well for coherent contributions to
the leakage, and since it also works for incoherent pro-
cesses, we expect the rate equation to be well applicable
to our RB procedure. Experimental results presented in
the main text confirm this expectation.

MEASUREMENT SETUP

The measurement setup is largely as described in the
supplementary information for Ref. 4, with two primary
differences. First, the qubits are no longer statically bi-
ased with a programmable voltage source separate from
the Z-control DAC. Instead they are operated by inter-
nally adding a DC offset to the output of the control
DAC. As such, the bias tees and attenuators on the Z-
control lines at the 20mK stage were removed. Second,
the thermalization of all lines was improved by clamping
the lines to all stages from 4K to 20mK using copper
thermal anchors [5].

STATE DISCRIMINATION

Readout parameters for this device have previously
been detailed in Ref. 4. At the operating point used for
the experiment, we find the dispersive shift to be about
1MHz. We readout using a 1µs pulse. To character-
ize our readout fidelity, we prepare the qubit in each of

the three states 50,000 times and measure. The raw IQ
points of the demodulated signal [6] are shown in Fig. S1.
The probability of measuring the qubit in each state given
preparation in another is as follows: 0.993 0.0069 5× 10−5

0.055 0.945 5× 10−4

0.0246 0.083 0.892


where the row indicates the state prepared and the
columns indicate the state measured. The primary source
of error is T1 decay of the excited states. The readout fre-
quency was chosen to maximize the separation between
the |2〉 state and the |1〉 state, resulting in a separation
error between the two clouds of phase space points of
around 1 × 10−4. However, the actual probability of
preparing |1〉 and measuring |2〉 is greater, at around
5 × 10−4. This is consistent with the heating rate of
4×10−7 per nanosecond as measured in the main paper,
multiplied by the readout time of 1µs.

In Ref. 4, where fast and accurate state discrimination
was a requirement for the experiment, readout was noted
to be a possible source of leakage when the readout res-
onator is strongly driven. In this work, we avoid the
leakage problem and achieve high separation fidelity by
reading out with low drive power and a long pulse be-
cause we do not require the readout to be fast. However,
the length of the pulse leads to increased measurement
error due to T1 decay. For the purposes of this work, we
prefer to have minimize measurement leakage. Optimiz-
ing measurement fidelity and minimizing leakage from
measurement is an outstanding problem.

In general, we do not correct for measurement fidelity
except in the thermalization measurement shown in Fig. 4
of the main article. As noted above, the extraction of
leakage rates from RB data is affected by readout fidelity.
Thus, the leakage rates we quote are about 10% lower
than the actual leakage rates.

DEPENDENCE OF OPTIMAL PULSE
DETUNING ON DRAG WEIGHT AND PULSE

LENGTH

In Fig. S2(a) we show the dependence of the optimal
pulse detuning on the DRAG weight α for three different
π-pulse lengths. For each pulse length, the dependence is
linear, and the slope becomes more shallow with longer
pulse length. In Fig. S2(b), we plot the dependence of
this slope on pulse length. We find that the slope between
optimal detuning and DRAG is proportional to the in-
verse square of the pulse length. Equivalently stated, the
slope depends quadratically on the drive strength, which
we expect because the AC Stark shift scales quadratically
with the strength of the driving field.
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Figure S2. (a) Dependence of the optimal detuning on α.
Three different pulse lengths are shown. The dashed lines are
linear fits. (b) The slopes from the linear fits as shown in (a),
for a range of pulse lengths. The dashed line is a fit to the
inverse square of the pulse length, as expected from the AC
Stark shift.

COMPARISON BETWEEN RANDOMIZED
BENCHMARKING AND RAMSEY ERROR

FILTERING

State leakage in superconducting qubit gates has pre-
viously been measured using a technique known as the
Ramsey error filter [7, 8]. The pulse sequence for this
technique is shown in the inset of Fig. S3(a). The two
gates coherently populate the |2〉 state, and by varying
the delay, we observe an interference fringe in the |2〉 state
population because the phase of the |2〉 state evolves at
a frequency different from ω10 by the anharmonicity η.
We then estimate the leakage of the gate as a quarter of
the peak to peak amplitude of the fringe.

We perform the Ramsey error filter experiment for
both π and π/2 pulses, and take the weighted average
of the two leakage rates (1.5 × π/2 leakage + 0.375 ×
π leakage) to estimate the leakage per Clifford gate. We
then compare the leakage obtained using Ramsey error
filtering with randomized benchmarking over a number of
DRAG weights, with the results shown in Fig. S3(b). We
find that leakage rates measured using the two techniques

Figure S3. (a) Ramsey error filter experiment. The pulse se-
quence shows a typical Ramsey experiment, and the coherent
population of the |2〉 state due to the two gates causes an
interference fringe at the anharmonicity frequency. The leak-
age is estimated to be one quarter of the fringe amplitude.
The data is for a π/2 pulse, but the experiment can also be
done for a π pulse. (b) Comparison of leakage measured using
randomized benchmarking and Ramsey error filter.

are generally within 50%, and follow the same trend as a
function of DRAG weight. We note that the data shown
is from a different device than the one used for the main
paper, and the pulse lengths for a π and π/2 pulse were
15 ns and 10 ns respectively.

Given that the two techniques show similar results,
randomized benchmarking has two primary advantages
over Ramsey error filtering when characterizing the gen-
eral leakage performance of a gateset. First, Ramsey er-
ror filtering only amplifies leakage errors by a factor of
4, whereas randomized benchmarking can amplify leak-
age errors by orders of magnitude, as seen in Fig. 1(d)
of the main paper. More importantly, Ramsey error fil-
tering can only detect coherent leakage errors, while the
main paper established that incoherent leakage can be a
dominant source of leakage when control has been well
optimized. However, Ramsey error filtering is still use-
ful for measuring the coherent leakage errors of a single
gate. Comparing Ramsey error filtering to interleaved
randomized benchmarking to isolate single gates would
be a logical next step to understanding leakage metrol-
ogy.
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Figure S4. Parameters A and B from fitting randomized
benchmarking sequence fidelity decay curves. (a) and (b)
correspond to the data in Fig. 3(a) and Fig. 3(b) of the main
paper.

ADDITIONAL FIT PARAMETERS FROM
RANDOMIZED BENCHMARKING

To estimate gate fidelity, we fit sequence fidelity decay
from randomized benchmarking to the function Apm+B.
In Fig. S4, we show the parameters A and B correspond-
ing to the fidelities in Fig. 3 of the main paper. The
values of A and B are related to state preparation, mea-
surement, and recovery error (which may vary from ex-
periment to experiment due to interactions of the qubit
with background fluctuators), as well as the Markovian-
ity of the error [2]. Non-Markovian error can arise from
leakage, or from non-Markovian phase noise which can
be studied using other techniques [9].

LEAKAGE STATE DECAY

Equation 2 contains both a leakage rate and a decay
rate of the |2〉 state back into the computational sub-
space. We show in Fig. S5 the decay rates corresponding
to the data in Fig. 3(a) of the main paper. The dashed
line represents the decay expected due to T1 decay of the
|2〉 given an average Clifford time of tClifford = 18.75 ns.
The T1 for the |2〉 we use here is 13µs as measured con-
currently with the RB data. We note that this is a dif-

Figure S5. Decay probability of the |2〉 state per Clifford mea-
sured using RB, corresponding to Fig. 3(a) of the main paper.
The dashed line indicates the expected incoherent decay from
the measured T1.

ferent from the 18µs quoted in the context of Fig. 4 of
the main paper because these measurements were per-
formed many days apart. Over that time scale, the fine
features of the spectrum of two-level state (TLS) defects
tend to drift. In general, the decay rates are higher than
expected from T1 decay.

RAW DATA FOR SIMULTANEOUSLY
OPTIMIZED FIDELITY AND LEAKAGE

In Fig. S6, we show the raw randomized benchmarking
data for 10 ns pulses simultaneously optimized for fidelity
and leakage, as described in Fig. 3(b) of the main article.
Here, α =1.4, and δf = −30MHz.

THERMALIZATION AT THE 1↔ 2 TRANSITION
FREQUENCY

To verify the heating rate measured in Fig. 4 of the
main article, we bias the qubit so that the 0↔1 transition
frequency is equal to the original 1↔2 frequency, which
was about 5.1GHz. We measure the T1 of the |1〉 state at
this frequency to be 39µs, roughly a factor of two greater
than the measured |2〉 state T1 of 18µs, as expected [10].
Next, we measure the heating rate of the 0↔1 transition
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Figure S6. Raw randomized benchmarking data for pulses
optimized for both gate fidelity and leakage. (a) Sequence
fidelity decay. The error per Clifford is 8.7± 0.4× 10−4. (b)
Leakage accumulation. The leakage per Clifford is 1.2±0.1×
10−5.

by performing two measurements separated by a variable
delay time, as shown in Fig. S7. The first measurement
heralds the |0〉 state to ensure the qubit is in |0〉 at t = 0,
and the second measurement probes the approach of the
qubit to the equilibrium population. We fit to a rate
equation with two rates, the heating rate and the T1 de-
cay rate; with the T1 fixed by the previous measurement,
we fit the heating rate to be 1/(4.7ms). Again, we find
the heating time constant to be roughly a factor of 2
larger than that of the |2〉 state, which we measured to
be 2.2ms.

DRAG WITH SECOND DERIVATIVE
CORRECTION

Reference 11 notes that for long pulses and large anhar-
monicity, leakage can be suppressed using a DRAG-like
technique with higher order derivatives. For example,
DRAG correction with the second derivative takes the
following form:

Ω′(t) = Ω(t) +
α2

∆2
Ω̈(t) (6)

where α2 is a weighting parameter. Note that unlike
DRAG with first derivatives, the second derivative cor-

Figure S7. Heating of the qubit, measured by heralding the |0〉
state, followed by a variable delay and a second measurement.
The dashed line is a fit to a rate equation, where the only free
parameter is the heating rate.

rection is applied to the in-phase component, which
means that it does not have any effect on phase errors.
We perform the same experiment as in Fig. 3(a) of the
main paper to compare first and second derivative DRAG
correction for 10 ns pulses without any detunings. As
seen in Fig. S8(a), the second derivative correction does
indeed suppress leakage, with a minimum leakage rate of
5 × 10−5 at α2 = 1.3. However, the first derivative cor-
rection is still more effective by about a factor of 3 when
optimized. Next, we implement both first and second
derivative corrections simultaneously.

Ω′′(t) = Ω(t)− iα1

∆
Ω̇(t) +

α2

∆2
Ω̈(t) (7)

Because we have increased the dimension of our param-
eter space, performing full RB characterization by mea-
suring leakage population versus sequence length for each
set of parameters would take a prohibitively long time.
Instead, we measure the leakage population for many
random sequences but only for a single, large sequence
length. We aim to measure the leakage state population
near saturation, which is correlated with the leakage rate
if the decay rate of the |2〉 state is mostly independent
of the parameters under consideration. In Fig. S8(b), we
show the |2〉 state population after 700 Clifford gates, av-
eraged over 45 different random sequences, while varying
both the first and second derivative DRAG weights. We
see that there is a substantial parameter space over which
leakage can be suppressed. We obtain a minimum leakage
population after 700 Cliffords of 3×10−3 for α1 = 2.8 and
α2 = −1.8, which is a factor of 2 improvement over using
only first derivative correction (e.g. as seen in Fig. 4).
However, using such a large α would also require a large
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Figure S8. Suppressing leakage using second derivative
DRAG. (a) Leakage rate extracted from full Clifford based RB
vs DRAG weighting (α1 and α2), using first derivative correc-
tion (red) and second derivative correction (black). Data is
for 10 ns pulses. (b) Leakage performance when using both
first and second derivative DRAG. The color corresponds to
the |2〉 state population after 700 Cliffords, and is the aver-
age of 45 different random sequences. The scale of the color
is logarithmic. The dashed, horizontal red line corresponds
to first derivative correction only while the vertical black line
corresponds to second derivative correction only. The open
circle highlights the minimum leakage population, which was
3× 10−3.

detuning to compensate for phase errors, which will in-
crease leakage. Thus, while our data suggests that there
are still gains to be made in leakage performance, simul-
taneously optimizing for fidelity and leakage while using
second derivative DRAG is non-trivial and an ongoing
topic of research.
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