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Large weak values have been used to amplify the sensitivity of a linear response signal for detecting
changes in a small parameter, which has also enabled a simple method for precise parameter estimation.
However, producing a large weak value requires a low postselection probability for an ancilla degree of
freedom, which limits the utility of the technique. We propose an improvement to this method that uses
entanglement to increase the efficiency. We show that by entangling and postselecting n ancillas, the
postselection probability can be increased by a factor of n while keeping the weak value fixed (compared to
n uncorrelated attempts with one ancilla), which is the optimal scaling with n that is expected from
quantum metrology. Furthermore, we show the surprising result that the quantum Fisher information about
the detected parameter can be almost entirely preserved in the postselected state, which allows the sensitive
estimation to approximately saturate the relevant quantum Cramér-Rao bound. To illustrate this protocol
we provide simple quantum circuits that can be implemented using current experimental realizations of
three entangled qubits.
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Weak value amplification (WVA) is an enhanced detec-
tion scheme that was first suggested by Aharonov, Albert,
and Vaidman [1]. (See [2] and [3] for recent reviews.) The
scheme exploits the fact that postselecting the weak
measurement of an ancilla can produce a linear detector
response with an anomalously high sensitivity to small
changes in an interaction parameter. The sensitivity arises
from coherent “superoscillatory” interference in the ancilla
[4], which is controlled by the choice of preparation and
postselection of the ancilla. The price that one pays for this
increase in sensitivity is a reduction in the potential signal
(and thus the potential precision of any estimation) due to
the postselection process [5–10]. Nevertheless, by using
this technique one can still consistently recover a large
fraction of the maximum obtainable signal in a relatively
simple way [11,12]. The relevant information is effectively
concentrated into the small set of rarely postselected
events [13].
A growing number of experiments have successfully

used WVA to precisely estimate a diverse set of small
physical parameters, including beam deflection (to picora-
dian resolution) [14–21], frequency shifts [22], phase shifts
[23,24], angular shifts [25], temporal shifts [26], velocity
shifts [27], and temperature shifts [28]. More experimental
schemes have also been proposed [29–36]. These exper-
imental results have shown remarkable resilience to the
addition of temporally correlated noise, such as beam jitter
[13]. Moreover, some of these experiments have reported
precision near the standard quantum limit, which is
surprising due to the intrinsic postselection loss. These
observations have prompted the question of whether
WVA can be improved further by combining it with other

metrology techniques. One such improvement that has been
proposed is to recycle the events that were discarded by the
postselection back into the measurement [37]. Another
investigation has shown that in certain cases it may be
possible to achieve precision near the optimal Heisenberg
limit with seemingly classical resources [38].
In this Letter, we supplement these efforts by asking

whether adding quantum resources can also improve the
efficiency of WVA. We find that using entangled ancilla
preparations and postselections does indeed provide such
an improvement. The postselection probability can be
increased while preserving the amplification factor, which
decreases the number of discarded events required to
achieve the same sensitivity. Alternatively, the amplifica-
tion can be enhanced directly while preserving the same
postselection probability. These improvements scale opti-
mally as the number of entangled ancillas increases;
however, using even a small number of entangled ancillas
provides a notable improvement. Moreover, we show the
nontrivial result that despite the introduction of entangle-
ment and a postselection that discards most of the collected
data from the increased number of possible outcomes,
nearly all the quantum Fisher information about the
estimated parameter can still be concentrated into the rarely
postselected state. As such, the simple linear estimator can
nearly saturate the optimal quantum Cramér-Rao bound
expected from the initial state.
As a concrete proposal that demonstrates this optimal

scaling, we consider using n entangled ancilla qubits [39]
to estimate a small controlled phase applied to a meter
qubit. Since recent experiments with optical [40], solid-
state [41,42] and NMR [43] systems have already verified
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the weak value (WV) effect using one or two qubits, we
provide a simple set of similar quantum circuits that can be
implemented experimentally using only three qubits.
Weak value amplification.—As a brief review, recall that

for a typical WVA experiment one uses an interaction
Hamiltonian of the form

Ĥint ¼ ℏgÂ ⊗ F̂δðt − t0Þ; ð1Þ
where Â is an ancilla observable, F̂ is a meter observable,
and g is the small coupling parameter that one would like
to estimate. The time factor δðt − t0Þ indicates that the
interaction between the ancilla and the meter is impulsive,
i.e., happening on a much faster time scale than the natural
evolution of both the ancilla and the meter. We leave the
dimension of Â arbitrary for our discussion.
An experimenter prepares the meter in a pure state jϕi

and the ancilla in a pure initial state jΨii, then weakly
couples them using the interaction Hamiltonian of Eq. (1),
and then postselects the ancilla into a pure final state jΨfi,
discarding the events where the postselection fails. This
procedure effectively prepares an enhanced meter state that
includes the effect of the ancilla jϕ0i ¼ M̂jϕi=jjM̂jϕijj,
which we write here in terms of a Kraus operator
M̂ ¼ hΨfj expð−igÂ ⊗ F̂ÞjΨii. Averaging a meter observ-
able R̂ using this updated meter state yields hR̂ijϕ0i ¼
hϕjM̂†R̂ M̂ jϕi=hϕjM̂†M̂jϕi.
For small g, this observable average is well approximated

by the following second-order expansion [2,44]:

hR̂ijϕ0i ≈
2gImðαAwÞ þ g2βjAwj2

1þ g2σ2jAwj2
; ð2Þ

where α ¼ hR̂ F̂ijϕi, β ¼ hF̂ R̂ F̂ijϕi, and σ2 ¼ hF̂2ijϕi are
correlation parameters that are fixed by the choice of meter
observables and the initial meter state, while

Aw ¼ hΨfjÂjΨii
hΨfjΨii

ð3Þ

is a complex WV controlled by the ancilla [1]. Note that we
have assumed that the initial meter state is unbiased
hF̂ijϕi ¼ hR̂ijϕi ¼ 0 to obtain the best response.
Most WVA experiments operate in the linear response

regime where the second-order terms in Eq. (2) can be
neglected, which produces [45]

hR̂ijϕ0i ≈ 2g½ReAwImαþ ImAwReα�: ð4Þ

This linear relation shows how a large ancilla WV can
amplify the sensitivity of the meter for detecting small
changes in g.
For concreteness, we consider a reference case when the

meter is a qubit. State-of-the-art quantum computing
technologies can already realize single qubit unitary gates

and two-qubit CNOT and controlled rotation gates with
high fidelity (e.g., [40–43,46–49]), so this example can be
readily tested in the laboratory. The meter qubit is prepared
in the state jϕi ¼ jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

. The Pauli Z
operator σ̂z ¼ F̂ ¼ R̂ will serve as both meter observables.
These choices fix the constants α ¼ 1, β ¼ 0, and σ2 ¼ 1 in
Eq. (2), yielding the meter response

hσ̂zijþ0i ≈
2gImAw

1þ g2jAwj2
: ð5Þ

The nonlinearity in the denominator regularizes the detec-
tor response, placing a strict upper bound of gjAwj < 1
on the magnitudes that are useful for WVA. The meter
has a linear response in a more restricted range of
roughly gjAwj < 1=10. In practice, one typically assumes
that gjAwj ≪ 1.
As detailed in Fig. 1, we couple a single ancilla qubit to

the meter using a controlled-Z rotation by a small angle 2φ,
which sets g ¼ φ=2 and Â ¼ σ̂z. The ancilla is initialized in
the state jΨii ¼ jþi and postselected in the nearly orthogo-
nal state jΨfi ¼ Rzð2ϵÞj−i ¼ ðe−iϵj0i − eiϵj1iÞ= ffiffiffi

2
p

with a
probability Ps ¼ sin2ðϵÞ ≈ ϵ2, which produces the WV
Aw ¼ i cotðϵÞ ≈ i=ϵ. The offset angle ϵ of the postselection
must satisfy φ=2 < ϵ < π=4 for amplification, and 5φ <
ϵ < π=4 for linear response.
Postselection probability.—While a large WV can effec-

tively amplify the small parameter g in the linear response,
it also has a shortcoming of low efficiency. When Aw is
large, Eq. (3) indicates that hΨfjΨii must be small. This
implies that the ancilla postselection probability is also
small, since it approximates

Ps ≈ jhΨfjΨiij2 ð6Þ

FIG. 1. Quantum circuit that simulates the WVA of a small
parameter φ. A meter qubit is prepared in the state
jþi ¼ Ryðπ=2Þj0i ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

. An ancilla qubit is pre-
pared in the same state jΨii ¼ jþi. The ancilla is used as a
control for a Z rotation Rzð2φÞ of the meter, which simulates the
unitary Û ¼ expð−iφÂ ⊗ σ̂z=2Þ with Â ¼ σ̂z. The ancilla is then
postselected in the nearly orthogonal state hΨfj ¼ h−jR†

zð2ϵÞ ¼
h0jR†

yð−π=2ÞR†
zð2ϵÞ ¼ ðh0jeiϵ − h1je−iϵÞ= ffiffiffi

2
p

with probability
Ps ≈ ϵ2 by performing two rotations, measuring in the Z basis,
and keeping only the h0j events. Finally, the meter qubit is
measured in the Z basis, which yields the linear response hσ̂ziþ0 ≈
φImAw amplified by the weak value Aw ≈ i=ϵ. The probability for

a single success after n attempts, PðnÞ
s ¼ 1 − ð1 − PsÞn ≈ nϵ2, is

approximately linear in n.
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for small g. Thus, the larger Aw is, the less likely it becomes
to prepare the enhanced meter state jϕ0i.
We now show that adding quantum resources to the

ancilla can improve this efficiency while keeping the
amplification factor of the weak value Aw the same.
Specifically, we consider coupling n entangled ancillas
to the meter simultaneously. To make a fair comparison
with the uncorrelated case, the probability of successfully
postselecting n entangled ancillas once should show an
improvement over the probability of successfully postse-
lecting a single ancilla once after n independent attempts.
The latter probability has linear scaling in n when Ps is
small

PðnÞ
s ¼ 1 − ð1 − PsÞn ≈ nPs: ð7Þ

We will see that entangled ancillas can achieve quadratic
scaling with n, improving the efficiency by a factor of n.
To show this improvement, we couple the meter to n

identical single-ancilla observables â using the interaction
in Eq. (1), which effectively couples the meter to a single
joint ancilla observable

Â ¼ Â1 þ � � � þ Ân; ð8Þ

where Âk ¼ 1̂ ⊗ � � � â � � � ⊗ 1̂ is shorthand for the
observable â of the kth ancilla. Notably the minimum
and maximum eigenvalues of this joint observable,
ΛminðmaxÞ ¼ nλminðmaxÞ, are determined by the eigenvalues
of â. Similarly, the corresponding eigenstates are product
states of the eigenstates of â: jΛminðmaxÞi ¼ jλminðmaxÞi⊗n.
The n ancillas will be collectively prepared in a joint state
jΨii and then postselected in a joint state jΨfi to produce a
joint WVA factor Aw, just as in Eq. (3). An example circuit
that implements this procedure with qubits is illustrated
in Fig. 2.
The ability to improve the postselection efficiency

hinges upon the fact that there can be different choices
of jΨii and jΨfi that will produce the same WV Aw.
However, these different choices will generally produce
different postselection probabilities. Therefore, among
these different choices of joint preparations and postse-
lections there exists an optimal choice that maximizes the
postselection probability.
We find this optimum in two steps. First, we maximize

the postselection probability over all possible postselec-
tions jΨfi while keeping the WV Aw and the preparation
jΨii fixed. Second, we maximize this result over all
preparations jΨii.
To perform the first maximization, note that Eq. (3)

implies hΨfjðÂ − AwÞjΨii ¼ 0, so jΨfimust be orthogonal
to ðÂ − AwÞjΨii. This gives a constraint on the possible
postselections jΨfi, so the maximization of PS in Eq. (6)
should be taken over the subspace V⊥ orthogonal to

ðÂ − AwÞjΨii. As shown in the Supplemental Material
[50], the result of this maximization is

max
jΨfi∈V⊥

Ps ≈
VarðÂÞjΨii

jAwj2
; ð9Þ

where VarðÂÞjΨii ¼ hΨijÂ2jΨii − ½hΨijÂjΨii�2 is the vari-

ance of Â in the initial state. This approximation applies
when the WV is larger than any eigenvalue of Â:
jΛj ≪ jAwj < 1=g. However, since ΛminðmaxÞ ¼ nλminðmaxÞ,
we must be careful to fix jAwj to be at least n times larger
than the eigenvalues of â.
Now we consider maximizing the variance over an

arbitrary initial state jΨii, which produces [51]

max
jΨii

VarðÂÞjΨii ¼
n2

4
ðλmax − λminÞ2; ð10Þ

showing quadratic scaling with n. Therefore, according to
Eq. (9) the maximum postselection probability also scales
quadratically with n, showing a factor of n improvement
over the linear scaling of the uncorrelated ancilla attempts
in Eq. (7).
The preparation states that show this quadratic scaling of

the variance have the maximally entangled form [51]

jΨii ¼
1ffiffiffi
2

p ðjλmaxi⊗n þ eiθjλmini⊗nÞ; ð11Þ

where eiθ is an arbitrary relative phase. We provide a simple
circuit to prepare such a state for n qubits in Fig. 3,
choosing θ ¼ 0.
According to the derivation in the Supplemental Material

[50], the corresponding postselection states that maximize
the postselection probability are

FIG. 2. Quantum circuit that simulates the entanglement-
assisted WVA of a small parameter φ. As in Fig. 1, a meter
qubit is prepared in the state jþi, while n ancilla qubits are
prepared in a entangled state jΨii. Each ancilla is then used as a
control for a Z rotation Rzð2φÞ of the meter, simulating the
unitary Û ¼ expð−iφÂ ⊗ σ̂z=2Þ with Â being the sum of ancilla
observables σ̂z. The ancillas are then postselected in an entangled
state jΨfi, and the meter qubit is measured in the Z basis,
yielding the linear response hσ̂ziþ0 ≈ φImAw amplified by a
joint WV Aw.
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jΨfi ∝ −ðnλmin − A�
wÞjλmaxi⊗n

þ eiθðnλmax − A�
wÞjλmini⊗n; ð12Þ

which explicitly depend on the chosen value of Aw. We also
provide a simple circuit to implement this postselection
with n qubits in Fig. 4(a).
Weak value scaling.—So far we have shown that we

can increase the postselection probability by a factor of n
when the WV is kept fixed. Alternatively, we can hold the
postselection probability fixed to increase the maximum
WV by a factor of

ffiffiffi
n

p
.

Given a specific postselection probability Ps, the post-
selected state jΨfi must have the form

jΨfi ¼
ffiffiffiffiffi
Ps

p
jΨii þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ps

p
eiθjΨ⊥

i i; ð13Þ

where jΨ⊥
i i is an arbitrary state orthogonal to jΨii. This

implies that we can write the WV in Eq. (3) as

Aw ¼ hΨijÂjΨii þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ps

Ps

s
e−iθhΨ⊥

i jÂjΨii: ð14Þ

For large Aw and small Ps, then we can approximately
neglect the first term. Since eiθ is arbitrary, we can also
assume that hΨ⊥

i jÂjΨii is positive. The maximum
hΨ⊥

i jÂjΨii can be achieved when jΨ⊥
i i is parallel to the

component of ÂjΨii in the complementary subspace
orthogonal to jΨii. This choice produces hΨ⊥

i jÂjΨii ¼
∥ÂjΨii − jΨiihΨijÂjΨii∥ ¼ ½VarðÂÞjΨii�1=2. Therefore, the
largest WV that can be obtained from the initial state jΨii
with a small Ps will approximate

max jAwj ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðÂÞjΨii

Ps

s
: ð15Þ

That is, the variance controls the scaling for the maxima
of both Ps and Aw. Comparing Eqs. (9) and (15), it follows
that if Ps can be improved by a factor of n, then it is also

possible to improve Aw by a factor of
ffiffiffi
n

p
. Furthermore,

maximizing the variance produces the same initial state as
Eq. (11), so the only difference between maximizing Ps and
Aw is the choice of postselection state. We provide a simple
circuit to implement this alternative postselection with n
qubits in Fig. 4(b).
Fisher information.—An improvement factor of

ffiffiffi
n

p
in

the estimation precision is the best that we can expect from
using entangled ancillas, according to well-known results
from quantum metrology [51–55]. We are thus faced with
the conundrum of how such a rare postselection can
possibly show such optimal scaling with n. After all, most
of the (potentially informative) data are being discarded by
the postselection.
To understand this behavior, we compare the quantum

Fisher information IðgÞ about g contained in the post-
interaction state jΦgi ¼ expð−igÂ ⊗ F̂ÞjΨiijϕi to the
Fisher information I0ðgÞ that remains in the postselected
state

ffiffiffiffiffi
Ps

p jϕ0i. As detailed in the Supplemental Material
[50], in the linear response regime gjAwjVarðF̂Þ1=2 ≪ 1
with an initially unbiased meter hF̂ijϕi ¼ 0, and assuming a
fixed Ps ≪ 1 with maximal jAwj, we obtain

I0ðgÞ ≈ ηIðgÞ½1 − jgAwj2VarðF̂Þ� ≤ IðgÞ; ð16Þ

where η ¼ VarðÂÞjΨii=hÂ2ijΨii is an efficiency factor.
Remarkably, η can reach 1 when hÂijΨii ¼ 0, implying

that nearly all the original Fisher information IðgÞ can be

FIG. 3. Quantum circuit to prepare the optimal entangled
preparation for n ancilla qubits. The state jΨii ¼ ðj0i⊗n þ
j1i⊗nÞ= ffiffiffi

2
p

is prepared from a single jþi state by a sequence
of CNOT gates. Because of this construction, we note that the
ordering of the two-qubit gates in Figs. 2, 3, and 4 can be further
optimized to pre- and postselect (n − 1) of the ancilla qubits
sequentially, which allows the n-qubit entangled ancilla to be
practically simulated using only three physical qubits.

Postselection maximizing Ps

Postselection maximizing A

FIG. 4. Quantum circuits for attaining optimal postselections,
using the preparation in Fig. 3. (a) Keeping Aw ≈ i=ϵ fixed and
maximizing Ps produces the entangled postselection hΨfj ¼
h0j⊗neinϵ − h1j⊗ne−inϵ with Ps ≈ n2ϵ2, which is a factor of n

larger than the single ancilla PðnÞ
s in Fig. 1. This postselection can

be implemented as a sequence of CNOT gates and a rotation of
the last qubit by R†

zðn2ϵÞ and R†
yð−π=2Þ before measuring all

qubits in the Z basis and keeping only h0j events. For small ϵ this

state is equivalent to Eq. (12). (b) Keeping Ps ¼ PðnÞ
s ≈ nϵ2 and

maximizing Aw produces a similar state hΨfj ¼ h0j⊗nei
ffiffi
n

p
ϵ −

h1j⊗ne−i
ffiffi
n

p
ϵ with Aw ≈ i

ffiffiffi
n

p
=ϵ, which is a factor of

ffiffiffi
n

p
larger than

Aw in Fig. 1.
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concentrated into one rarely obtained jϕ0i, up to a small
reduction by jgAwj2VarðF̂Þ≪1. The remaining information
is distributed among the discarded meter states, and could
be retrieved in principle [8–10]. For the example with
F̂ ¼ â ¼ σ̂z, the initial state in Eq. (11) yields η ¼ 1,
VarðF̂Þ ¼ 1, and a total Fisher information of IðgÞ ¼
4hÂ2ijΨii ¼ 4n2 (see the Supplemental Material [50]).
The Cramér-Rao bound is thus ½I0ðgÞ�−1=2 ¼ ð1=2nÞ½1 −
jgAwj2�−1=2 for the precision of any unbiased estimation of
g ¼ φ=2 using jϕ0i, confirming the optimal scaling with n.
Conclusion.—In summary, we have considered using

entanglement to enhance the WVA of a small parameter. If
the amplification factor is held fixed, then n entangled
ancillas can improve the postselection probability by a
factor of n compared to n attempts with uncorrelated
ancillas. This improvement in postselection efficiency
addresses a practical shortcoming of WVA, and achieves
the optimal scaling with n that can be expected from
quantum metrology. Indeed, we have shown that WVA can
nearly saturate the expected quantum Cramér-Rao bound,
despite the low efficiency of postselection. This result
demonstrates that the practical benefits of WVA (e.g.,
amplified sensitivity and technical noise suppression)
may be productively combined with existing quantum
metrological techniques, encouraging further research
and development. To this end, we have provided simple
quantum circuits for the protocol that are readily imple-
mentable by existing quantum computing architectures that
possess three or more qubits.
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