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Robust quantum state transfer using tunable couplers
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We analyze the transfer of a quantum state between two resonators connected by a superconducting transmission
line. Nearly perfect state-transfer efficiency can be achieved by using adjustable couplers and destructive
interference to cancel the back-reflection into the transmission line at the receiving coupler. We show that
the transfer protocol is robust to parameter variations affecting the transmission amplitudes of the couplers. We
also show that the effects of the Gaussian filtering, pulse-shape noise, and multiple reflections on the transfer
efficiency are insignificant. However, the transfer protocol is very sensitive to frequency mismatch between the
two resonators. Moreover, the tunable coupler we considered produces time-varying frequency detuning caused
by the changing coupling. This detuning requires an active frequency compensation with an accuracy better than
90% to yield the transfer efficiency above 99%.
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I. INTRODUCTION

The realization of quantum networks composed of many
nodes requires high-fidelity protocols that transfer quantum
states from site to site by using “flying qubits” [1,2]. The
standard idea of the state transfer between two nodes of
a quantum network [3] assumes that the state of a qubit
is first encoded onto a photonic state at the emitting end,
after which the photon leaks out and propagates through
a transmission line to the receiving end, where its state is
transferred onto the second qubit. The importance of quantum
state transfer has stimulated significant research activity in
optical realizations of such protocols, e.g., [4–6], including
trapping of photon states in atomic ensembles [7–10]. Recent
experimental demonstrations include the transfer of an atomic
state between two distant nodes [11] and the transfer between
an ion and a photon [12].

An important idea for state transfer in the microwave
domain is to use tunable couplers between the quantum
oscillators and the transmission line [13,14] (the idea is in
general similar to the idea proposed in Ref. [3] for an optical
system). In particular, this strategy is natural for supercon-
ducting qubits, for which a variety of tunable couplers have
been demonstrated experimentally [15–25] (these couplers
are important for many applications, e.g., Refs. [26–29]).
Although there has been rapid progress in superconducting
qubit technology, e.g., Refs. [30–38], most of the experiments
so far are limited to a single chip or a single resonator in a
dilution refrigerator (an exception is Ref. [39]). Implementing
the quantum state transfer between remote superconducting
qubits, resonators, or even different refrigerators using “flying”
microwave qubits propagating through lossless superconduct-
ing waveguides would significantly extend the capability of
the technology (eventually permitting distributed quantum
computing and quantum communications over extended dis-
tances using quantum repeaters). The essential ingredients
of the transfer protocol proposed in Ref. [14] have already
been demonstrated experimentally. The emission of a proper
(exponentially increasing) wave form of a quantum signal has
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been demonstrated in Ref. [21], while the capture of such
a wave form with 99.4% efficiency has been demonstrated
in Ref. [22]. The combination of these two procedures in
one experiment would demonstrate a complete quantum state
transfer (more precisely, the complete first half of the proce-
dure of Ref. [14]). Note that Refs. [21] and [22] used different
tunable couplers: a “tunable mirror” [20] between the resonator
and the transmission line in Ref. [22] and a tunable coupling
between the qubit and the resonator [19] (which then rapidly
decays into the transmission line) in Ref. [21]. However, this
difference is insignificant for the transfer protocol of Ref. [14].
Another promising way to produce shaped photons is to use
a modulated microwave drive to couple the superconducting
qubit with the resonator [40,41] (see also Refs. [42,43] for
implementation of optical techniques for shaped photons).

In this work, we extend the theoretical analysis of the
state transfer protocol proposed in Ref. [14], focusing on its
robustness against various imperfections. In our protocol, a
quantum state is transferred from the emitting resonator to
the receiving resonator through a transmission line (the state
transfer using tunable coupling directly between the qubit and
the transmission line has also been considered in Ref. [14],
but we do not discuss it here). The procedure essentially relies
on the cancellation of back-reflection into the transmission
line via destructive interference at the receiving end, which is
achieved by modulation of the tunable couplers between the
resonators and the transmission line. (Note that the protocol
is often discussed in terms of a “time reversal,” following the
terminology of Ref. [3]; however, we think that discussion
in terms of a destructive interference is more appropriate.)
In Ref. [14], it was shown that nearly perfect transfer
efficiency can be achieved if identical resonators and proper
time-varying transmission amplitudes of the two couplers are
used. However, in obtaining this high-efficiency state transfer,
only ideal design parameters were assumed. Also, various
experimentally relevant effects, including multiple reflections
and frequency mismatch between the two resonators, were not
analyzed quantitatively.

In this paper, we study in detail (mostly numerically) the
effect of various imperfections that affect the transmission
amplitudes of the couplers. In the simulations we focus on two
values for the design efficiency: 0.99 and 0.999. The value
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of 0.99 crudely corresponds to the current state of the art for
the two-qubit quantum gate fidelities [30] and threshold of
some quantum codes [44]; we believe that the state transfer
with 0.99 efficiency may already be interesting for practical
purposes, while the value of 0.999 would be the next natural
milestone for the experimental quantum state transfer. We find
that the transfer protocol is surprisingly robust to parameter
variations, with a typical decrease in the efficiency of less than
1% for a 5% variation of the design parameters (the scaling is
typically quadratic, so half of the variation produces a quarter
of the effect). We also study the effect of the Gaussian filtering
of the signals and find that it is practically negligible. The
addition of noise to the ideal wave forms produces only a
minor decrease in the transfer efficiency. Numerical analysis
of multiple reflections also shows that the corresponding effect
is not significant and can increase the inefficiency by at most a
factor of two. The analysis of the effect of dissipative losses is
quite simple and, as expected, shows that a high-efficiency state
transfer requires a low-loss transmission line and resonators
with energy relaxation times much longer than duration of the
procedure.

A major concern, however, is the effect of frequency
mismatch between the two resonators, since the destructive
interference is very sensitive to the frequency detuning. We
consider two models: a constant-in-time detuning and a
time-dependent detuning due to changing coupling. For the
latter model, we use the theory of the coupler realized in
Refs. [20,22]; the frequency variation due to the coupling
modulation has been observed experimentally [20]. Our results
show that a high-efficiency state transfer is impossible without
an active compensation of the frequency change; the accuracy
of this compensation should be at least within the 90%–95%
range.

Although we assume that the state transfer is performed
between two superconducting resonators, using the tunable
couplers of Refs. [20,22], our analysis can also be applied
to other setups, for example, schemes based on tunable
couplers between the qubits and the transmission line or
based on the tunable couplers between the qubits and the
resonators [19,21,40,41], which are then strongly coupled
with the transmission line. Note that the frequency change
compensation is done routinely in the coupler of Refs. [19,21],
thus giving a natural way to solve the problem of frequency
mismatch. Similarly, the phase is naturally tunable in the
coupler of Refs. [40,41].

The paper is organized in the following way. In Sec. II,
we discuss the ideal state transfer protocol, its mathematical
model, and the relation between classical transfer efficiency
(which is mostly used in this paper) and quantum state/process
fidelity. In Sec. III, we analyze the decrease of the transfer
efficiency due to deviations from the design values of various
parameters that define the transmission amplitudes of the
couplers. We also study the effects of pulse-shape warping,
Gaussian filtering, noise, and dissipative losses. In Sec. IV,
we analyze the effect of multiple reflections of the back-
reflected field on the transfer efficiency. The effect of frequency
mismatch between the two resonators is discussed in Sec. V.
Finally, we summarize the main results of the paper in Sec. VI.
Appendix A is devoted to the quantum theory of a beam splitter,
which is used to relate the efficiency of a classical state transfer

to the fidelity of a quantum state transfer. In Appendix B, we
discuss the theory of the tunable coupler of Refs. [20,22] and
find the frequency detuning caused by the coupling variation.

II. MODEL AND TRANSFER PROTOCOL

A. Model

We consider the system illustrated in Fig. 1(a). A quantum
state is being transferred from the emitting (left) resonator
into the initially empty receiving (right) resonator via the
transmission line. This is done by using time-varying couplings
(“tunable mirrors”) between the resonators and the transmis-
sion line. The (effective) transmission amplitudes te and tr for
the emitting and receiving resonator couplers, respectively, as
a function of time t are illustrated in Fig. 2. As discussed
later, the main idea is to almost cancel the back-reflection
into the transmission line from the receiving resonator by
using destructive interference. Then the field leaking from the
emitting resonator is almost fully absorbed into the receiving
resonator. Ideally, we want the two resonators to have equal
frequencies, ωe = ωr; however, in the formalism, we will
also consider slightly unequal resonator frequencies ωe(t) and
ωr(t). We assume large quality factors Q for both resonators by
assuming |te(t)| � 1 and |tr(t)| � 1 (the maximum value is
crudely |te(r),max| ∼ 0.05, leading to Qmin ∼ 103 – see later), so
that we can use the single-mode approximation. For simplicity,
we assume a dispersionless transmission line.

Emitting 
resonator Superconducting

Receiving 
resonator 

Barriers with variable  

(a) 

(b)

Vacuum 
noise 

FIG. 1. (Color online) (a) The state transfer setup. An initial
microwave field amplitude G(0) is transferred from the emitting
resonator to the receiving resonator via a transmission line. This
is done using variable couplers for both resonators, characterized by
(effective) transmission amplitudes te(t) and tr(t), and corresponding
leakage rates κe(t) and κr(t). Almost perfect transfer can be achieved
when the back-reflection of the propagating field A(t) is canceled
by arranging its destructive interference with the leaking part of the
field B(t) in the receiving resonator. (b) A variant of the setup that
includes a circulator, which prevents multiple reflections of the small
back-reflected field F (t).
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FIG. 2. (Color online) Time dependence (“pulse shapes”) of the
absolute values of transmission amplitudes te(t) for the emitting
coupler (red dashed curve) and tr(t) for the receiving coupler
(blue solid curve). The amplitude te(t) is kept constant at the
maximum level te,max after the midtime tm, while tr(t) is kept at
the maximum tr,max during the first part of the procedure, t � tm. The
propagating field A(t) first increases exponentially and then decreases
exponentially (black solid curve). In simulations we typically use
|te,max| = |tr,max| = 0.05 for quarter-wavelength 6-GHz resonators
(τe = τr = 33 ns); then the transfer efficiency η = 0.999 requires
the procedure duration of tf = 460 ns.

We will mostly analyze a classical field transfer between the
two resonators, with a straightforward relation to the quantum
case, discussed later. The notations G(t) and B(t) correspond
to the field amplitudes in the emitting and receiving resonators
[see Fig. 1(a)], while A(t) describes the propagating field in
the transmission line. However, in contrast to the notations of
Ref. [14], here we use dimensionless G and B, normalizing
the field amplitudes [45,46] in such a way that for classical
(coherent) fields, |G|2 and |B|2 are equal to the average number
of photons in the resonators. Similarly, the normalization
of A is chosen so that |A|2 is the number of propagating
photons per second. Such normalizations for resonators are
more appropriate for the analysis of quantum information.
Also, with this normalization, the amplitudes will not change
with adiabatically changing resonator frequency, in contrast to
the usual field amplitudes.

In most of the analysis, we assume (unless mentioned
otherwise) that the transmission line is either long or contains
a circulator [Fig. 1(b)], so that we can neglect the multiple
reflections of the small back-propagating field F (t) (the effect
of multiple reflections will be considered in Sec. IV). We also
assume that there is no classical noise entering the emitting
resonator from the circulator (only vacuum noise).

With these assumptions and normalizations, the time
dynamics of the classical field amplitudes is described in the
rotating frame by the equations

Ġ = −i�ωeG − 1
2

(
κe + T −1

1,e

)
G, (1)

Ḃ = −i�ωrB − 1
2

(
κr + T −1

1,r

)
B + tr

|tr|
√

κr A, (2)

A = √
ηtl

te

|te|
√

κe G, (3)

where �ωe = ωe − ω0 and �ωr = ωr − ω0 are small detun-
ings (possibly changing slowly with time) from the (arbitrary)

rotating frame frequency ω0(t), the decay rates κe and κr are
due to leakage into the transmission line, while additional
losses are described by the energy relaxation times T1,e and
T1,r in the resonators and imperfect transfer efficiency ηtl of
the transmission line. Note that A has the dimension of 1/

√
s

in contrast to the dimensionless G and B, so that the factors√
κe(r) restore the proper dimension. The leakage rates are

κe(t) = |t̃in
e |2

τrt,e

Re

Rtl
= |te|2

τrt,e
, κr(t) = |t̃in

r |2
τrt,r

Rr

Rtl
= |tr|2

τrt,r
, (4)

where t̃in
e and t̃in

r are the transmission amplitudes of the couplers
(for a wave incident from inside of the resonators), τrt,e and τrt,r

are the round-trip times in the resonators, Re, Rr, and Rtl are the
wave impedances of the resonators and the transmission line,
while te = t̃in

e

√
Re/Rtl and tr = t̃in

r

√
Rr/Rtl are the effective

transmission amplitudes. Note that the transmission ampli-
tudes t̃ depend on the wave direction (from inside or outside
of a resonator), while the effective transmission amplitudes
t do not. For convenience, we will be working with the
effective transmission amplitudes te and tr, so that we do
not need to worry about possibly unequal wave impedances.
For quarter-wavelength resonators, τrt,e ≈ π/ωe ≈ π/ω0 and
τrt,r ≈ π/ωr ≈ π/ω0, so the quality factors are

Qe(r) = ωe(r)

κe(r)
≈ π

|te(r)|2 . (5)

Note that the phase factors tr/|tr| and te/|te| in Eqs. (2) and (3)
may change in time because of changing coupling [14,20]
(as discussed later in Sec. V B and Appendix B); this is why
these somewhat unusual factors cannot be neglected. Strictly
speaking, the last term in Eq. (2) should also be multiplied by√

ωe/ωr; this is because of different normalizations, related
to different photon energies �ωe and �ωr in the resonators.
However, we neglect this correction, assuming a relatively
small detuning. Note that the effective propagation time
along the transmission line is zero in Eqs. (1)–(3) since we
use appropriately shifted clocks (here the assumption of a
dispersionless transmission line is necessary); however, the
physical propagation time will be important in the analysis
of multiple reflections in Sec. IV. Also note that to keep
Eqs. (1)–(3) reasonably simple, we defined the phases of B

and G to be somewhat different from the actual phases of the
standing waves in the resonators (see discussion in Sec. II C).

Even though in Eqs. (1)–(3) we use normalized fields G,
B, and A, which imply discussion in terms of the photon
number, below we will often use the energy terminology and
invoke the arguments of the energy conservation instead of
the photon-number conservation. At least in the case without
detuning the two pictures are fully equivalent, but the energy
language is more intuitive, and thus preferable. This is why
in the following we will use the energy and photon number
terminology interchangeably.

B. Efficiency and fidelity

We will characterize performance of the protocol via the
transfer efficiency η, which is defined as the ratio between
the energy of the field (converted into the photon number)
in the receiving resonator at the end of the procedure, t = tf ,
and the energy (photon number) at the initial time, t = 0, in
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the emitting resonator:

η = |B(tf)|2
|G(0)|2 . (6)

We emphasize that in this definition, we assume that only the
emitting resonator has initially a nonzero field.

As we discuss in this section, the classical efficiency η

is sufficient to characterize the quantum transfer as well, so
that the quantum state and process fidelities derived below
are directly related to η (this requires assumption of vacuum
everywhere except the initial state of the emitting resonator).
The idea of the conversion between the classical and quantum
transfers is based on the linearity of the process, and thus can
be analyzed in essentially the same way as the quantum optical
theory of beam splitters, discussed in Appendix A.

Let us focus on the case with the circulator [Fig. 1(b)] in
the absence of dissipative losses (T −1

1,e = T −1
1,r = 0, ηtl = 1).

In general, there is a linear input-output relation between
the fields at t = 0 and the fields at t = tf . This relation
is the same for the classical fields and the corresponding
quantum operators in the Heisenberg picture ([13,47]), so for
simplicity we discuss the classical fields. The relevant fields
at t = 0 are G(0), B(0), and the (infinite number of) temporal
modes propagating towards the emitting resonator through the
circulator; these modes can be described as time-dependent
field V (t), where t corresponds to the time, at which the field
arrives to the emitting resonator. Note that B(0) and V (t)
are assumed to be zero in our protocol; however, we need
to take them into account explicitly, because in the quantum
language they would correspond to operators, representing
vacuum noise (with the standard commutation relations). The
fields at the final time t = tf are B(tf), G(tf), and the collection
of the outgoing back-reflected fields F (t) for 0 � t � tf [see
Fig. 1(b)]. Note that normalization of the propagating fields
V (t) and F (t) is similar to the normalization of A(t).

The input-output relation {G(0),B(0),V (t)|0�t�tf} �→ {G(tf),
B(tf),F (t)|0�t�tf } is linear and unitary, physically because
of the conservation of the number of photons (energy). In
particular,

B(tf) = √
η eiϕf G(0) + wBB(0) +

∫ tf

0
wV (t)V (t) dt, (7)

where η is obviously given by Eq. (6), ϕf is the phase shift
between B(tf) and G(0), while wB and wV (t) are some weight
factors in this general linear relation. These weight factors
can be calculated by augmenting Eqs. (1)–(3) to include V (t)
and F (t), but we do not really need them to find the quantum
transfer fidelity if B(0) and V (t) correspond to vacuum. Note
that the unitarity of the input-output transformation requires
the relation

η + |wB |2 +
∫ tf

0
|wV (t)|2 dt = 1 (8)

(sum of squared absolute values of elements in a row of a
unitary matrix equals one), where we neglected the slight
change in the normalization (discussed above) in the case of
time-varying detuning.

This picture of the input-output relations can in principle
be extended to include nonzero T −1

1,e(r) and/or ηtl �= 1; for that
we would need to introduce additional noise sources, which

create additional terms in Eqs. (7) and (8) similar to the terms
from the noise V . Also, if we consider the case without the
circulator, the structure of these equations remains similar,
but the role of V (t) is played by the temporal modes of
the initial field propagating in the transmission line from the
receiving to the emitting resonator (since clocks are shifted
along the transmission line, there is formally no field “stored”
in the transmission line, which propagates from the emitting to
the receiving resonator).

Using the framework of the linear input-output relation,
Eq. (7) derived for classical fields can also be used to describe
the quantum case. This can be done using the standard quantum
theory of beam splitters [46] (see Appendix A), by viewing
Eq. (7) as the result of mixing the fields G(0), B(0), and
an infinite number of fields (temporal modes) V (t) with beam
splitters to produce the proper linear combination. Importantly,
if B(0) corresponds to vacuum and V (t) also corresponds to
vacuum, then we can assume only one beam splitter with
the proper transfer amplitude

√
η eiϕf for G(0) → B(tf); this

is because a linear combination of several vacua is still
the vacuum. Equivalently, the resulting quantum state in the
receiving resonator is equal to the initial quantum state of
the emitting resonator, subjected to the phase shift ϕf and
leakage (into vacuum) described by the (classical) efficiency η.
The same remains correct in the presence of nonzero relaxation
rates T −1

1,e and T −1
1,r and imperfect ηtl if these processes occur

at zero effective temperature (involving only vacuum noise).
As shown in Appendix A, if the initial state in the

emitting resonator is |ψin〉 = ∑
n αn|n〉 in the Fock space

(
∑

n |αn|2 = 1), then the final state of the receiving resonator is
represented by the density matrix, which can be obtained from
the state |ψfin〉 = ∑

n,k αn+k

√
(n + k)!/n!k! ηn/2(1 − η)k/2

ei(n+k)ϕf |n〉|k〉a by tracing over the ancillary state |k〉a

(this ancilla corresponds to the second outgoing arm of
the beam splitter). This gives the density matrix ρfin =∑

j,n,mαn+jα
∗
m+j

√
(n+j )!(m+j )!(j !

√
n!m!)−1η(n+m)/2(1−η)j

ei(n−m)ϕf )|n〉〈m|. The state fidelity (overlap with the initial
state) is then

Fst =
∑
j,n,m

√
(n + j )!(m + j )!

j !
√

n!m!
α∗

nαmαn+jα
∗
m+j

× η(n+m)/2(1 − η)j ei(n−m)ϕf . (9)

Note that the phase shift ϕf can easily be corrected in an
experiment (this correction is needed anyway for resonators,
which are significantly separated in space), and then the factor
ei(n−m)ϕf in Eq. (9) can be removed.

The discussed quantum theory (at zero temperature, i.e.,
with only vacuum noise) becomes very simple if we transfer a
qubit state |ψin〉 = α|0〉 + β|1〉. Then the resulting state is

|ψfin〉 = α|0〉|0〉a + βeiϕf (
√

η |1〉|0〉a +
√

1 − η |0〉|1〉a),
(10)

where the ancillary states |1〉a and |0〉a indicate whether a
photon was lost to the environment or not. After tracing
|ψfin〉〈ψfin| over the ancilla, we obtain density matrix

ρfin =
(

η|β|2 √
η eiϕf α∗β

√
η e−iϕf αβ∗ |α|2 + |β|2(1 − η)

)
. (11)
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Note that since a qubit state contains at most one excitation,
the essential dynamics occurs only in the single-photon
subspace. Therefore it is fully equivalent to the dynamics of
classical fields (with field amplitudes replaced by probability
amplitudes). Thus Eq. (10) can be written directly, without
using the quantum beam splitter approach, which is necessary
only for multiphoton states.

In quantum computing the qubit state transfer (quantum
channel) is usually characterized by the quantum process
fidelity Fχ or by the average state fidelity F st, which are related
as [48,49] 1 − Fχ = (1 − F st) × 3/2. In order to calculate Fχ ,
we calculate state fidelity Fst (overlap with initial state) and
then average it over the Bloch sphere. Neglecting the phase ϕf ,
which can be easily corrected in an experiment, from Eq. (11),
we find Fst = |α|4 + η|β|4 + |αβ|2(1 − η + 2

√
η), which also

follows from Eq. (9). To average this fidelity over the Bloch
sphere of initial states, it is sufficient [48] (see also [50]) to
average it over only six states: |0〉, |1〉, (|0〉 ± |1〉)/√2, and
(|0〉 ± i|1〉)/√2. This gives F st = (3 + η + 2

√
η)/6, which

can be converted into the process fidelity

Fχ = 1
4 (1 + √

η)2. (12)

This equation gives the relation between the classical energy
transfer efficiency η, which we use in this paper and the process
fidelity Fχ used in quantum computing. Note the relation
1 − Fχ ≈ (1 − η)/2 when η ≈ 1. Also note that a nonvacuum
noise contribution (due to finite temperature) always decreases
Fχ (see Appendix A). If the phase shift ϕf is included in the
definition of fidelity (assuming that ϕf is not corrected), then
Eq. (12) becomes Fχ = (1 + η + 2

√
η cos ϕf)/4.

Thus, in this section, we have shown that the state and the
process fidelities of the quantum state transfer are determined
by the classical efficiency η and experimentally correctable
phase shift ϕf . This is why in the rest of the paper we analyze
the efficiency η of essentially a classical state transfer.

C. Transfer procedure

Now let us describe the transfer protocol, following
Ref. [14] (this will be the second protocol out of two slightly
different procedures considered in Ref. [14]). Recall that we
consider normalized classical field amplitudes. The main idea
of achieving nearly perfect transfer is to use time-dependent
transmission amplitudes te and tr to arrange destructive
interference between the field A reflected from the receiving
resonator and the part of field B leaking through the coupler
(see Fig. 1). Thus we want the total back-reflected field F (t)
to nearly vanish: F (t) ≈ 0, where

F = rout
r

|rr| A + tr

|tr|
√

κr
|rr|
rin

r

B, (13)

rout
r and rin

r are the coupler reflection amplitudes from the
outside and inside of the receiving resonator, and |rr| =
|rin

r | = |rout
r |. Note that the (effective) scattering matrix of

the receiving resonator coupler is (rout
r tr

tr rin
r
), when looking from

the transmission line. The formula (13) looks somewhat
unusual for two reasons. First, in the single-mode formalism
of Eqs. (1)–(3), the reflection amplitude in Eq. (13) must be
treated as having the absolute value of 1; this is why we have the

pure phase factor rout
r /|rr|. This is rather counterintuitive and

physically stems from the single-mode approximation, which
neglects the time delay due to the round-trip propagation in
a resonator. It is easy to show that if the actual amplitude
rout

r were used for the reflection A → F , then solution of
Eqs. (2) and (13) would lead to the energy nonconservation
on the order of |t|2. Second, in our definition, the phase of the
field B corresponds to the standing wave component (near the
coupler) propagating away from the coupler [see Eq. (2)], so
the wave incident to the coupler is B |rr|/rin

r , thus explaining
the phase factor in the last term of Eq. (13). Actually, a better
way would be to define B using the phase of the standing
wave in the resonator; this would replace the last term in
Eq. (2) with (tr/|tr|)√κr A

√|rr|/rin
r and replace the last term

in Eq. (13) with (tr/|tr|)√κr
√|rr|/rin

r B. However, we do not
use this better definition to keep a simpler form of Eq. (2).

Using the fact that t2
r /rin

r rout
r is necessarily real and negative

[since rout
r = −(rin

r )∗tr/t∗r from unitarity], we can rewrite
Eq. (13) as

F = rout
r

|rr|
(

A − t∗r
|tr|

√
κr B

)
. (14)

This form shows that if the phases of tr and A do not change
in time and there is no detuning, then the two terms in Eq. (14)
have the same phase [because arg(B) = arg(trA) from Eq. (2)].
Therefore, for the desired cancellation of the terms we need
only the cancellation of absolute values, i.e., a one-parameter
condition.

For a nonzero field B, the exact back-reflection cancellation
can be achieved by varying in time the emitting coupling
te [13], which determines A in Eq. (13) or by varying the
receiving coupling tr or by varying both of them with an
appropriate ratio [14]. At the very beginning of the procedure,
the exact cancellation is impossible because B(0) = 0, so
there are two ways to arrange an almost perfect state transfer.
First, we can allow for some loss during a start-up time ts
intended to create a sufficient field B, and then maintain the
exact cancellation of the back-reflection at t > ts. Second, we
can have a slightly imperfect cancellation during the whole
procedure. Both methods were considered in Ref. [14]; in this
paper we discuss only the second method, which can be easily
understood via an elegant “pretend” construction explained
later.

Motivated by a simpler experimental realization, we divide
our protocol into two parts [14] (see Fig. 2). During the first
part of the procedure, we keep the receiving coupler fixed at
its maximum value tr,max, while varying the emitting coupler
to produce a specific form of A(t) for an almost perfect
cancellation. During the second part, we do the opposite:
we fix the emitting coupler at its maximum value te,max and
vary the receiving coupler. The durations of the two parts are
approximately equal.

The maximum available couplings between the resonators
and transmission line determine the timescales τe and τr of
the transfer procedure, which we define as the inverse of the
maximum leakage rates,

τe(r) = 1

κe(r),max
, κe(r),max = |te(r),max|2

τrt,e(r)
. (15)
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The time τr affects the buildup of the field in the receiving
resonator, while τe determines the fastest depopulation of
the emitting resonator; we will call both τe and τr the
buildup/leakage times.

Now, let us discuss a particular construction [14] of the
procedure for nearly-perfect state transfer, assuming that the
complex phases of te and tr are constant in time, there is
no detuning, ωe = ωr = ω0, and there is no dissipative
loss, T −1

1,e = T −1
1,r = 0, ηtl = 1. (For the experimental coupler

discussed in Appendix B, te and tr are mostly imaginary,
but also have a significant real component.) As mentioned
above, during the first part of the procedure, the receiv-
ing resonator is maximally coupled, tr(t) = tr,max, with this
value being determined by experimental limitations. Then a
complete cancellation of the back-reflection, F = 0, would
be possible if A(t) = A0 exp(t/2τr) and B(t) = B0 exp(t/2τr)
with B0 = √

τr A0tr,max/|tr,max|. This is simple to see from
Eqs. (2) and (14), and even simpler to see using the time
reversal symmetry: the absence of the back-reflection will then
correspond to a leaking resonator without an incident field.
This is why in the reversed-time picture B ∝ exp(−t/2τr),
and therefore in the forward-time picture B ∝ exp(t/2τr); the
same argument applies to A.

Thus we wish to generate an exponentially increasing
transmitted field

A(t) = A0 exp(t/2τr), 0 � t � tm, (16)

during the first half of the procedure (until the midtime tm)
by increasing the emitting coupling te(t). This would provide
the perfect cancellation of reflection if B(0) = B0 (as in the
above example), while in the actual case when B(0) = 0
we can still use the wave form (16), just “pretending” that
B(0) = B0. It is easy to see that this provides an almost perfect
cancellation. Let us view the initially empty resonator as a
linear combination: B(0) = B0 − B0. Then due to linearity of
the evolution, the part B0 will lead to perfect cancellation
as in the above example, while the part −B0 will leak
through the coupler and will be lost. If −B0 is fully lost
during a sufficiently long procedure, then the corresponding
contribution to the inefficiency (mostly from the initial part
of the procedure) is 1 − ηr = |B0/G(0)|2. In particular, for a
symmetric procedure (τe = τr = τ , tm = tf/2) approximately
one half of the energy will be transmitted during the first
half of the procedure, |B(tm)|2 ≈ |G(0)|2/2; then |B0|2 ≈
exp(−tm/τ ) |G(0)|2/2, and therefore the inefficiency contri-
bution is 1 − ηr ≈ exp(−tm/τ )/2. As we see, the inefficiency
decreases exponentially with the procedure duration.

At time tm, the increasing emitting coupling te reaches
its maximum value te,max (determined by experimental lim-
itations), and after that we can continue cancellation of the
back-reflection (14) by decreasing the receiving coupling tr(t),
while keeping emitting coupling at te,max. Then the transmitted
field A(t) will become exponentially decreasing,

A(t) = A0 exp(tm/2τr) exp[−(t − tm)/2τe], tm � t � tf,

(17)

and tr should be varied correspondingly, so that κr(t) =
|A(t)|2/|B(t)|2. As mentioned above, the phase conditions for
the destructive interference are satisfied automatically in the

absence of detuning and for fixed complex phases of te(t) and
tr(t). The procedure is stopped at time tf , after which tr(t) = 0,
so that the receiving resonator field B(tf) no longer changes.
When the procedure is stopped at time tf , there is still some field
G(tf) remaining in the emitting resonator. This leads to the inef-
ficiency contribution 1 − ηe = |G(tf)/G(0)|2. Again assuming
a symmetric procedure (τe = τr = τ , tf = 2tm), we can use
|B(tm)|2 ≈ |B(0)|2/2; then |B(tf)|2 ≈ exp(−tm/τ )|B(0)|2/2
and therefore 1 − ηe = exp(−tm/τ )/2. Combining the two
(equal) contributions to the inefficiency, we obtain [14]

1 − η ≈ exp(−tf/2τ ). (18)

The numerical accuracy of this formula is very high when
tf � 10τ .

Now let us derive the time dependence of the couplings
te(t) and tr(t) needed for this almost perfect state transfer (we
assume that τe and τr can in general be different). Again, the
idea of the construction is to arrange exact cancellation of the
back-reflection if there were an initial field B0 in the receiving
resonator (with proper phase). In this hypothetical “pretend”
scenario, the evolution of the receiving resonator field B̃(t)
is slightly different from B(t) in the actual case [B(0) =
0, B̃(0) = B0], while the fields G(t) and A(t) do not change.
Thus we consider the easy-to-analyze ideal “pretend” scenario
B̃(t) and then relate it to the actual evolution B(t). Note that
the transmitted field A(t) is given by Eqs. (16) and (17): it is
exponentially increasing until tm and exponentially decreasing
after tm. Also note that our procedure does not involve
optimization: the only parameter, which can be varied, is the
duration of the procedure, which is determined by the desired
efficiency (the only formal optimization will be a symmetric
choice of tm).

In the first part of the procedure, t � tm, the receiving
coupling is at its maximum, tr(t) = tr,max, and the emitting
coupling can be found as te(t) = te,max

√
τe |A/G| (recall that

phase conditions are fixed). Here A(t) is given by Eq. (16) and
|G(t)| can be found from energy conservation in the “pretend”
scenario: |G(t)|2 + |B0 exp(t/2τr)|2 = |G(0)|2 + |B0|2. Using
the relation |B0/A0| = √

τr, we find

te(t) = te,max

√
τe

τr

exp(t/2τr)√
|G(0)/B0|2 + 1 − exp(t/τr)

. (19)

Here, |B0| is an arbitrary parameter (related to an arbitrary
|A0|), which affects the efficiency and duration of the proce-
dure. The corresponding G(t) and B(t) evolutions are

G(t) = G(0)
√

1 − |B0/G(0)|2[exp(t/τr) − 1], (20)

B(t) = B0[exp(t/2τr) − exp(−t/2τr)]. (21)

Note that in the “pretend” scenario, B̃(t) = B0 exp(t/2τr),
while actually B(t) = B̃(t) − B0 exp(−t/2τr), where the sec-
ond term describes the decay of the compensating initial field
−B0. The phase of B0 is determined by the phases of the
transmission amplitudes, arg(B0) = arg[te,maxtr,maxG(0)].

Since |B0| is related to the midtime tm via the condition
te(tm) = te,max, it is convenient to rewrite Eq. (19) in terms of
tm. Thus the resonator couplings during the first part of the
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procedure should be [14]

te(t) = te,max
√

τe/τr√
(1 + τe/τr) exp[(tm − t)/τr] − 1

, (22)

tr(t) = tr,max, 0 � t � tm. (23)

Note that the increase of te(t) is slightly faster than exponential.
To derive the required tr(t) during the second part of the

procedure, t � tm, we can use the time reversal of the “pretend”
scenario. It will then describe a perfect field absorption by the
emitting resonator; therefore tr(t) in the reversed (and shifted)
time should obey the same Eq. (19), but with exchanged indices
(e ↔ r) and |G(0)/B0| replaced with |B̃(tf)/G(tf)|. Then by
using the condition tr(tm) = tr,max we immediately derive the
formula similar to Eq. (22),

tr(t) = tr,max
√

τr/τe√
(1 + τr/τe) exp[(t − tm)/τe] − 1

, (24)

te(t) = te,max, tm � t � tf . (25)

It is also easy to derive Eq. (24) as tr(t) = tr,max
√

τr |A/B̃|,
with A(t) given by Eq. (17) and |B̃(t)|2 = |G(0)|2 + |B0|2 −
|G(t)|2 given by the energy conservation, where |G(t)| =√

τe |A(t)|.
The contribution to the inefficiency due to imperfect

reflection (mostly during the initial part of the proce-
dure) is 1 − ηr ≈ |B0/G(0)|2 since the reflected field is
the leaking initial field −B0 and it is almost fully leaked
during the procedure. Comparing Eqs. (19) and (22),
we find |B0/G(0)|2 ≈ exp(−tm/τr) τr/(τe + τr) assuming
exp(−tm/τr) � 1. The contribution to the inefficiency due to
the untransmitted field left in the emitting resonator at the end
of procedure is 1 − ηe = |G(tf)/G(0)|2 = (τe/τr) |B0/G(0)|2
exp(tm/τr) exp[−(tf − tm)/τe], where we used relation
|G(tf)|2 = τe|A(tf)|2. Using the above formula for |B0/G(0)|2,
we obtain 1 − ηe ≈ exp[−(tf − tm)/τe] τe/(τe + τr). Combin-
ing both contributions to the inefficiency, we find [14]

1 − η ≈ τr exp(−tm/τr) + τe exp[−(tf − tm)/τr]

τe + τr
. (26)

Minimization of this inefficiency over tm for a fixed total
duration tf gives the condition

tm/τr = (tf − tm)/τe (27)

and the final result for the inefficiency [14],

1 − η ≈ exp

(
− tf

τe + τr

)
, (28)

which generalizes Eq. (18).
The required ON/OFF ratios for the couplers can be found

from Eqs. (22) and (24),

te,max

te(0)
≈

√
τe + τr

τe
exp

(
tm

τr

)
, (29)

tr,max

tr(tf)
≈

√
τe + τr

τr
exp

(
tf − tm

τr

)
, (30)

which in the optimized case corresponding to Eq. (28) become

te,max

te(0)
≈

√
1 + τr/τe

1 − η
,

tr,max

tr(tf)
≈

√
1 + τe/τr

1 − η
. (31)

Note that using two tunable couplers is crucial for our
protocol. If only one tunable coupler is used as in Ref. [13],
then the procedure becomes much longer and requires a much
larger ON/OFF ratio. Assuming a fixed receiving coupling,
we can still use Eqs. (19)–(21) for the analysis and obtain
the following result. If the coupling of the emitting resonator
is limited by a maximum value κmax of the leakage rate,
then the shortest duration of the procedure with efficiency
η is tf = LN/[κmax(1 − η)], where LN ≈ ln e ln[(e/(1−η)]

1−η
.

For typical values of η we get LN ≈ 3 + ln[1/(1 − η)],
and therefore the shortest duration for a procedure with one
tunable coupler is tf ≈ (1 − η)−1κ−1

max {3 + ln[1/(1 − η)]}.
This is more than a factor (1 − η)−1/2 longer than
the duration tf = 2 κ−1

max ln[1/(1 − η)] of our procedure
with two tunable couplers [see Eq. (18)]. The optimum
(fixed) receiving coupling is κr = (1 − η)κmax/(1 + 1/LN),
which makes clear why the procedure is so long. The
corresponding ON/OFF ratio for the emitting coupler is
te,max/te(0) = √

κmax/κmin = (1 − η)−1√LN/(1 − 2/LN) ≈
(1 − η)−1√3 + ln[1/(1 − η)]. This is more than a factor
(1 − η)−1/2 larger than what is needed for our procedure [see
Eq. (31)].

Note that we use the exponentially increasing and then
exponentially decreasing transmitted field A(t) [Eqs. (16)
and (17)] because we wish to vary only one coupling in each
half of the procedure and to minimize the duration of the
procedure. In general, any “reasonable” shape A(t) can be
used in our procedure. Assuming for simplicity a real positive
A(t), we see that a “reasonable” A(t) should satisfy the in-
equality A2(t) � κe,max[|G(0)|2 − ∫ t

0 A2(t ′) dt ′], so that it can
be produced by using κe(t) = A2(t)/[|G(0)|2 − ∫ t

0 A2(t ′) dt ′]
without exceeding the maximum emitting coupling κe,max. We
also assume that a “reasonable” A(t) does not increase too
fast, dA(t)/dt � (κr,max/2)A(t), or at least satisfies a weaker

inequality A(t) � √
κr,max

√
κ−1

r,maxA
2(0) + ∫ t

0 A2(t ′) dt ′. In this
case, we can apply the “pretend” method, which gives
κr(t) = A2(t)/[κ−1

r,maxA
2(0) + ∫ t

0 A2(t ′) dt ′], not exceeding the
maximum receiving coupling κr,max. This leads to the ineffi-
ciency contribution 1 − ηe = 1 − ∫ tf

0 A2(t ′) dt ′/|G(0)|2 due to
the untransmitted field and inefficiency contribution 1 − ηr =
κ−1

r,maxA
2(0)/|G(0)|2 due to the back-reflection. We see that for

high efficiency we need a small A(t) at the beginning and
at the end of the procedure. Even though we do not have
a rigorous proof, it is intuitively obvious that our procedure
considered in this section is optimal (or nearly optimal) for
minimizing the duration of the protocol for a fixed efficiency
and fixed maximum couplings (see also the proof of optimality
for a similar, but single-sided procedure in Ref. [13]). We
think that it is most natural to design an experiment exactly as
described in this section [using Eqs. (16) and (17) and varying
only one coupling at a time]; however, a minor or moderate
time-dependent tuning of the other coupling (which is assumed
to be fixed in our protocol) can be useful in experimental
optimization of the procedure.
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In this section, we considered the ideal transfer protocol,
assuming that the transmission amplitudes are given exactly by
Eqs. (22)–(25), and also assuming equal resonator frequencies,
fixed phases of the transmission amplitudes, and absence of
extra loss (T −1

1,e = T −1
1,r = 0, ηtl = 1). In the following sections,

we will discuss the effect of various imperfections on the
efficiency of the transfer protocol.

III. IMPERFECT PULSE SHAPES

The high efficiency of the state transfer analyzed in the
previous section relies on precise calibration and control of
experimental parameters, so that the needed pulse shapes (22)–
(25) for the transmission amplitudes te(t) and tr(t) are
accurately implemented. However, in a real experiment, there
will always be some imperfections in the pulse shapes. In this
section, we analyze the robustness of the transfer efficiency to
the pulse shape imperfections, still assuming fixed phases and
the absence of detuning and dissipative loss. In particular, we
will vary several parameters used in the pulse shapes (22)–
(25): the maximum transmission amplitudes |te(r),max|, the
buildup/leakage times τe(r), and the midtime tm. By varying
these parameters, we imitate imperfect experimental calibra-
tions, so that the actual parameters of the pulse shapes are
different from the designed ones. We also consider distortion
(“warping”) of the pulse shapes imitating a nonlinear transfer
function between the control pulses and amplitudes te(r).
Imperfections due to the Gaussian filtering of the pulse shapes,
additional noise, and dissipative losses will also be discussed.

We analyze the effect of imperfections using numerical
integration of the evolution equations (1)–(3). As the ide-
ally designed procedure, we choose Eqs. (22)–(25) with
|te,max| = |tr,max| = 0.05, assuming the quarter-wavelength
resonators with frequency ωe/2π = ωr/2π = 6 GHz, so that
the round-trip time is τrt,e = τrt,r = π/ωe(r) = 1/12 ns and the
buildup/leakage time is τe = τr = τ = 33.3 ns. The duration
of the procedure tf is chosen from Eq. (28), using two
design values of the efficiency: ηd = 0.99 and ηd = 0.999;
the corresponding durations are tf = 307.0 ns and 460.5 ns.
The time tm is in the middle of the procedure: tm = tf/2. In
the simulations, we use G(0) = 1, B(0) = 0, and calculate
the efficiency as η = |B(tf)/G(0)|2. Note that the values of
|te(r),max| and ωe(r) affect the duration of the procedure, but do
not affect the results for the efficiency presented in this section
(except for the filtering effect).

A. Variation of maximum transmission amplitudes
te,max and tr,max

Let us assume that the transmission amplitudes are still
described by the pulse shapes (22)–(25), but with slightly
different parameters,

ta
e(t) = ta

e,max

√
τ a

e /τ a
r√(

1 + τ a
e

/
τ a

r

)
exp

[(
t

a,e
m − t

)/
τ a

r

] − 1
, t � ta,e

m ,

(32)

ta
r (t) = ta

r,max

√
τ a

r /τ a
e√(

1 + τ a
r

/
τ a

e

)
exp

[(
t − t

a,r
m

)/
τ a

e

] − 1
, t � ta,r

m ,

(33)
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FIG. 3. (Color online) Inefficiency 1 − η of the state transfer
procedure as a function of relative variation of the maximum
transmission amplitudes δtmax/tmax = (ta

e(r),max − te(r),max)/te(r),max for
design efficiencies ηd = 0.99 (blue curves) and 0.999 (red curves).
The maximum transmission amplitudes te,max and tr,max are either
varied simultaneously (dashed curves) or one of them is kept at the
design value (solid curves). The superscript “a” indicates an “actual”
value, different from the design value.

so that the “actual” parameters ta
e,max, ta

r,max, τ a
e , τ a

r , ta,e
m , and ta,r

m
are somewhat different from their design values te,max, tr,max,
τe, τr, and tm. The transmission amplitudes are kept at their
maxima ta

e,max and ta
r,max after/before the possibly different

midtimes ta,e
m and ta,r

m . We will analyze the effect of inaccurate
parameters one by one.

First, we assume that only the maximum amplitudes are in-
accurate, ta

e,max = te,max + δte,max and ta
r,max = tr,max + δtr,max,

while other parameters are equal to their design values. (We
change only the absolute values of te,max and tr,max, because
their phases affect only the correctable final phase ϕf but do
not affect the efficiency η.) In Fig. 3, we show the numeri-
cally calculated inefficiency 1 − η of the state transfer as a
function of the variation in maximum transmission amplitude
δtmax/tmax, with the solid lines corresponding to variation of
only one maximum amplitude, δte,max/te,max or δtr,max/tr,max

(the results are the same), and the dashed lines corresponding
to variation of both of them, δte,max/te,max = δtr,max/tr,max.
The blue (upper) lines are for the case of design efficiency
ηd = 0.99 and the red (lower) lines are for ηd = 0.999.

We see that deviations of the actual maximum amplitudes
ta
e,max and ta

r,max from their design values te,max and tr,max

increase the inefficiency of the state transfer [essentially
because of the inconsistency between ta

e(r),max and τ a
e(r)].

However, the effect is not very significant, with the additional
inefficiency of less than 0.006 when one of the parameters
deviates by ±5% and less than 0.02 when both of them deviate
by ±5%. The curves in Fig. 3 are approximately parabolic,
with a growing asymmetry for larger 1 − ηd.

For the case ηd ≈ 1, the numerical results for the additional
inefficiency −δη = ηd − η can be approximately fitted by the
formula

−δη ≈
(

δte,max

te,max

)2

+
(

δtr,max

tr,max

)2

+ 1.25
δte,max

te,max

δtr,max

tr,max
,

(34)

which we obtained by changing the maximum amplitudes
symmetrically, antisymmetrically, and separately. Note that
in the ideal procedure we assumed |te,max| = |tr,max|.
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FIG. 4. (Color online) Dependence of the inefficiency 1 − η on
relative variation of the buildup/leakage time δτe(r)/τ = (τ a

e(r) − τ )/τ
for design efficiencies ηd = 0.99 (blue curves) and 0.999 (red curves),
assuming τe = τr = τ . The buildup/leakage times τ a

e and τ a
r are varied

either simultaneously (dashed curves) or one of them is kept at the
design value (solid curves).

The main result here is that the state transfer is quite robust
against the small variation of the transmission amplitudes. We
expect that experimentally these parameters can be calibrated
with accuracy of a few percent or better; the related inefficiency
of the transfer protocol is very small.

B. Variation of buildup/leakage times τe and τr

Now let us assume that in Eqs. (32) and (33) only
the buildup/leakage time parameters are slightly inaccurate,
τ a

e = τ + δτe and τ a
r = τ + δτr (we assume that in the ideal

procedure τe = τr = τ ), while other parameters are equal to
their design values. The transfer inefficiency as a function of
the relative deviations δτe(r)/τ is shown in Fig. 4 for the design
efficiencies ηd = 0.99 (blue lines) and 0.999 (red lines). For the
solid lines, only one of the buildup/leakage times is varied (the
results coincide), while for the dashed lines, both parameters
are varied together, δτe = δτr. As we see, ±5% variation of
one of the buildup/leakage times increases the inefficiency by
less than 0.001, and by less than 0.0025 if the both times are
varied by ±5%.

The approximately parabolic dependences shown in Fig. 4
can be numerically fitted by the formula for the additional
inefficiency −δη,

−δη ≈ 0.34

[(
δτe

τ

)2

+
(

δτr

τ

)2
]

+ 0.12
δτe

τ

δτr

τ
, (35)

which was again obtained by varying δτe and δτr symmet-
rically, antisymmetrically, and separately. Most importantly,
we see that the transfer procedure is robust against small
deviations of the buildup/leakage times. (In an experiment,
we expect not more than a few percent inaccuracy for these
parameters.)

C. Variation of midtimes ta,e
m and ta,r

m

Ideally, the pulse shapes te(t) and tr(t) should switch from
increasing/decreasing parts to constants at the same time tm,
exactly in the middle of the procedure. However, due to
imperfectly calibrated delays in the lines delivering the signals
to the couplers, this change may occur at slightly different
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FIG. 5. (Color online) Inefficiency 1 − η as a function of the
midtime shift δt r

m = t a,r
m − tm normalized by the buildup/leakage time

τ . The midtime t a,e
m is either varied equally (dashed curves) or kept

constant (solid curves). The results for varying only t a,e
m are the same

as the solid curves up to the sign change, δt r
m ↔ −δt e

m.

actual times ta,e
m and ta,r

m , which are also not necessarily exactly
in the middle of the procedure. Let us assume that te(t) and
tr(t) are given by Eqs. (32) and (33) with slightly inaccurate
times ta,e

m and ta,r
m , while other parameters are equal to their

design values.
Solid lines in Fig. 5 show the dependence of the transfer

inefficiency 1 − η on the shift of the midtime δt r
m = ta,r

m −
tm, which is normalized by the buildup/leakage time τ . Blue
and red lines are for the design efficiencies ηd = 0.99 and
0.999, respectively. The case when only ta,e

m is changed is
similar to what is shown by the solid lines up to the mirror
symmetry, δt r

m ↔ −δte
m. The dashed lines show the case when

both midtimes are shifted simultaneously, ta,e
m = ta,r

m .
We see that when ta,e

m and ta,r
m coincide, there is practically no

effect of the shift. This is because in this case the change is only
due to slightly unequal durations ta

m and tf − ta
m. A nonzero time

mismatch ta,e
m − ta,r

m has a much more serious effect because
the reflection cancellation (13) becomes significantly degraded
in the middle of the procedure, where the propagating field is
at its maximum.

The numerical fit to a quadratic dependence gives

−δη ≈ 0.25

(
δta,e

m − δta,r
m

τ

)2

. (36)

For τ = 33.3 ns, this means that ∼3 ns time mismatch leads
to only 2 × 10−3 increase in inefficiency. Such robustness to
the time mismatch is rather surprising. It can be qualitatively
explained in the following way. The relative imperfection of
the back-reflection cancellation (13) is approximately (δta,e

m −
δta,r

m )/τ in the middle of the procedure; however, the lost energy
of the back-reflected field scales quadratically. Therefore we
can explain Eq. (36) up to a numerical factor. In an experiment,
we expect that the time mismatch can be made smaller than 1
ns; the corresponding inefficiency is almost negligible.

D. Pulse-shape warping

As another possible imperfection of the ideal time depen-
dencies te(t) and tr(t), we consider a nonlinear deformation
(“warping”) with the form

ta
j (t) = tj (t)

[
1 + αj

tj (t) − tj,max

tj,max

]
, j = e, r, (37)
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FIG. 6. (Color online) Dependence of the inefficiency 1 − η on
the warping parameters αe and αr, introduced in Eq. (37) to describe
the pulse shape distortion, for design efficiencies ηd = 0.99 (blue
curves) and 0.999 (red curves). The solid curves show the case when
only one warping parameter is nonzero (the results coincide); the
dashed curves are for the case αe = αr.

where αe and αr are the warping parameters, which determine
the strength of the deformations. Note that this deformation
does not affect maximum values te(r),max and the values close
to zero; it affects only intermediate values. The deformation
imitates nonlinear (imperfectly compensated) conversion from
experimental control signals into transmission amplitudes.

The inefficiency increase due to the warping of the
transmission amplitude pulse shapes is illustrated in Fig. 6.
Solid lines show the case when only αe or αr is nonzero (the
results coincide), while the dashed lines show the case αe = αr.
We see that for αe = αr = 0.05 the inefficiency increases
by ∼10−3 for both design efficiencies ηd = 0.99 and 0.999.
Similar to the variation of other parameters, the inefficiency
due to the warping effect has a quadratic dependence on the
warping parameters αe and αr. The numerical fitting for small
|αe(r)| and η ≈ 1 gives

−δη ≈ 0.22
(
α2

e + α2
r

) + 0.12αeαr. (38)

Again, this result shows that the state transfer is robust
to distortion of the couplers’ transmission amplitude pulse
shapes. We do not expect that uncompensated experimental
nonlinearities will follow Eq. (37) exactly, since this equation
only imitates a nonlinear conversion. However, very crudely,
we would expect that |αe(r)| < 0.05 is a realistic experimental
estimate.

E. Smoothing by a Gaussian filter

In an actual experiment, the designed pulse shapes for
the transmission amplitudes of the tunable couplers given by
Eqs. (22)–(25) will pass through a filter. Here we convolve
the transmission amplitudes with a Gaussian function to
simulate the experimental filtering, so the actual transmission
amplitudes are

ta
j (t) = 1√

2π σ

∫ ∞

−∞
e−(t−t ′)2/2σ 2

tj (t ′) dt ′, j = e, r, (39)

where σ is the time width of the Gaussian filter. The filtering
smooths out the kinks at the middle of the procedure and
slightly lowers the initial and final values of te and tr. The
change in transmission amplitudes translates into a decrease

Ηd 0.999

Ηd 0.99

Ηd 0.9

0 5 10 15 20 25 30
10 3

10 2

10 1

0 0.15 0.30 0.45 0.60 0.75 0.90

Gaussian filter width Σ ns

1

Σ Τ

FIG. 7. (Color online) Inefficiency 1 − η as a function of the
width of a Gaussian filter σ (in ns) for design efficiencies ηd = 0.9
(green dashed curve), 0.99 (blue dot-dashed curve), and 0.999 (red
solid curve). We use τ = 33.3 ns, as in Fig. 2. The upper horizontal
axis shows the normalized value σ/τ .

in the state transfer efficiency. Note that the smoothing reduces
the energy loss at the beginning and end of the procedure, but
causes an increased energy loss at the middle of the procedure,
thus increasing the procedure inefficiency overall.

The procedure inefficiency with the effect of the Gaussian
filtering of transmission amplitudes is shown in Fig. 7 for
the design efficiencies ηd = 0.9, 0.99, and 0.999. Rather
surprisingly, the effect is very small, so that filtering with
σ = 10 ns does not produce a noticeable increase of the
inefficiency, and even with σ = 30 ns (which is close to the
buildup/leakage time) the effect is still small. Such robustness
to the filtering can be qualitatively understood in the same way
as the robustness to the mismatch between the midtimes te(t)
and tr(t) discussed above. Note that experimentally [51] σ is
on the order of 1 ns, so the effect of the filter on the efficiency
should be negligible.

F. Noisy transmission amplitudes

In experiment the pulse shapes te(t) and tr(t) may contain
noise. We model this noise by replacing the designed pulse
shapes te(t) and tr(t) with “actual” shapes as

ta
j (t) = tj (t)[1 + a ξj (t)], j = e, r, (40)

where a corresponds to the dimensionless noise amplitude and
ξe(t) and ξr(t) are mutually uncorrelated random processes.
We generate each ξ (t) numerically in the following way. First,
we choose a time step dt and generate ξ (t) at discrete time
moments t = n dt (with integer n) as Gaussian-distributed
random numbers with zero mean and unit standard deviation.
After that, we create a smooth function ξ (t) passing through
these points by polynomial interpolation. Since the noise
contribution in Eq. (40) scales with the transmission amplitude
tj , we call it a multiplicative noise. Besides that, we also use
a model of an additive noise defined as

ta
j (t) = tj (t) + a tj,max ξj (t), j = e, r, (41)

where the relative amplitude a is now compared with the
maximum value tj,max, while each ξ (t) is generated in the
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FIG. 8. (Color online) Solid lines: inefficiency 1 − η averaged
over 100 random noise realizations, as a function of the dimensionless
noise amplitude a, for the multiplicative noise (red lines, bottom),
Eq. (40), and the additive noise (blue lines, top), Eq. (41); both with
ξ 2 = 0.78. The error bars show the standard deviation for some values
of a. The results are shown for ηd = 0.99 and 0.999. In the simulation
we used the time step dt = 1 ns and parameters of the procedure in
Fig. 2 (τ = 33.3 ns). Black dotted lines (practically coinciding with
the solid lines) are calculated by replacing the noise with the effective
increase of the leakage rates κe(r) (see text).

same way. Note that for sufficiently small dt the noise ξ (t)
is practically white at low frequency; its variance ξ 2 does not
depend on dt , and therefore the low frequency spectral density
is proportional to dt (the effective cutoff frequency scales as
dt−1). Also note that the variance ξ 2 somewhat depends on
the method of interpolation used to generate ξ (t). For the
default interpolation method in MATHEMATICA, which we used
(polynomial interpolation of order three), ξ 2 ≈ 0.78.

The numerical results for the transfer inefficiency 1 − η

in the presence of noise are shown in Fig. 8 as a function
of the dimensionless amplitude a. We used the time step
dt = 1 ns and design efficiencies ηd = 0.99 and ηd = 0.999.
The results are averaged over 100 random realizations; we
show the average values by the solid lines and also show the
standard deviations at some values of a. Red lines correspond
to the multiplicative noise, while blue lines correspond to
the additive noise. As expected, the additive noise leads to
larger inefficiency than the multiplicative noise with the same
amplitude, because of larger noise at the nonconstant part of
the pulse shape.

It is somewhat surprising that, as we checked numerically,
the average results shown in Fig. 8 by the solid lines practically
do not depend on the choice of the time step dt , as long
as dt � τe(r) (even though in our simulations dt affects
the noise spectral density). The error bars, however, scale
with dt as

√
dt . This behavior can be understood in the

following way. In the evolution equations (1)–(3), the noise
in te(t) and tr(t) affects the leakage rates κe ∝ |te|2 and
κr ∝ |tr|2 of the two resonators, and also affects the transfer
term

√
κeκr A ∝ |tetr|. On average the transfer term does not

change (because the noises of te(t) and tr(t) are uncorrelated);
however, the average values of |te|2 and |tr|2 change as
〈|ta

e(r)|2〉 = |te(r)|2(1 + a2 ξ 2) for the model of Eq. (40) and as

〈|ta
e(r)|2〉 = |te(r)|2 + a2 |te(r),max|2 ξ 2 for the model of Eq. (41).

Therefore, on average, we expect dependence on a2 ξ 2 (a

second-order effect), but no dependence on dt , as long as it is
sufficiently small. In contrast, the error bars in Fig. 8 should
depend on dt because the transfer term

√
κeκr A fluctuates

linearly in ξ . Since the low-frequency spectral density of ξ (t)
scales as dt , the typical fluctuation should scale as

√
dt , thus

explaining such dependence for the error bars in Fig. 8. Simply
speaking, for a wide-bandwith noise the average value of
1 − η depends on the overall rms value of the noise, while the
fluctuations of 1 − η (from run to run) depend on the spectral
density of the noise at relatively low frequencies (� τ−1).
Note that the noise can increase or decrease the inefficiency
compared to its average value; however, it always increases the
inefficiency in comparison with the case without noise (as we
see from Fig. 8, even if we increase dt from 1 ns to about the
buildup/leakage time of 33.3 ns, the error bars, increased by
the factor

√
33.3, are still significantly less than the increase

of inefficiency compared with the design value).
We have checked this explanation of the noise effect on

the average inefficiency by replacing the fluctuating evolution
equations (1)–(3) with nonfluctuating equations, in which the
transfer term

√
κeκr A does not change, while the leakage rates

κe and κr are multiplied either by 1 + a2 ξ 2 (for multiplicative
noise) or by 1 + a2 ξ 2(te(r),max/te(r))2 for the additive noise.
The results are shown in Fig. 8 by the dotted lines; we see that
they almost coincide with the solid lines, thus confirming our
explanation. We have also used several interpolation methods,
which give somewhat different ξ 2, and checked that the direct
simulation with fluctuations and use of the nonfluctuating
equations still give the same results.

As can be seen from Fig. 8, the average inefficiency depends
approximately quadratically on the noise amplitude a for both
additive and multiplicative noise. The additional inefficiency
−δη can be fitted numerically as

−δη ≈ cna
2 ξ 2, (42)

where cn ≈ 2 for the multiplicative noise and cn ≈ 2 ln 1
1−ηd

for the additive noise. Note that for the additive noise cn in-
creases with decreasing design inefficiency 1 − ηd, so the blue
lines in Fig. 8 intersect. This is because a smaller 1 − ηd re-
quires a longer procedure duration tf , causing more loss due to
additional leakage of the resonators caused by fluctuating te(r).

The value of cn for the additive noise can be derived
analytically in the following way. As discussed above, the
noise essentially increases the resonator leakages, κa

e(r)(t) =
κe(r)(t) + a2 ξ 2/τ , without increasing the transferred field;
therefore, it is equivalent to the effect of energy relaxation
with T1 = τ/(a2 ξ 2). Consequently (see below), the efficiency
decreases as η = ηd exp(−tf/T1) = ηd exp(−2a2 ξ 2 ln 1

1−ηd
)

[see Eq. (18) for tf], and the linear expansion of the exponent
in this formula reproduces Eq. (42) with cn = 2 ln 1

1−ηd
.

The value of cn for the multiplicative noise can be derived
in a somewhat similar way. Now κa

e (t) = κe(t)(1 + a2 ξ 2), so
the additional leakage of the emitting resonator consumes
the fraction a2 ξ 2 of the transmitted energy. Using the time-
reversal picture, we see that an analogous increase of the
receiving resonator leakage, κa

r (t) = κr(t)(1 + a2 ξ 2), emits
(back-reflects) into the transmission line the fraction a2 ξ 2
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of the final energy |B(tf)|2. Combining these two losses,
we obtain η = ηd(1 − 2a2 ξ 2), which for ηd ≈ 1 reproduces
Eq. (42) with cn = 2.

Overall, the efficiency decrease due to the multiplicative
noise is not strong; for example, to keep −δη < 0.01 we need
the relative rms fluctuations of te(r) to be less than 7%. The
(additive) fixed-amplitude fluctuations of te(r) can be more
problematic, because the inability to keep te(r) near zero at the
initial or final stage of the procedure leads to loss during most
of the (relatively long) procedure. For example, for ηd = 0.99
and −δη < 0.01, we need the rms fluctuations of te(r) to be
less than 3% of te(r),max.

G. Effect of dissipation

For completeness let us discuss here the effect of dissipation
by assuming imperfect transfer through the transmission line,
ηtl �= 1, and finite energy relaxation times T1,e and T1,r in the
evolution equations (1)–(3), while the pulse shapes te(t) and
tr(t) are assumed to be ideal.

The effect of imperfect ηtl is easy to analyze, since the trans-
mitted (classical) field is simply multiplied by

√
ηtl. Therefore

the transfer procedure efficiency is simply multiplied by ηtl, so
that η = ηtlηd. (Recall that we neglect multiple reflections.)

The effect of energy relaxation in the resonators is also very
simple if T1,r = T1,e = T1. Then the (classical) field decays
equally everywhere, and therefore, after the procedure duration
tf , the energy acquires the factor exp(−tf/T1), so that η =
ηd exp(−tf/T1). The analysis of the case when T1,r �= T1,e is
not so obvious. We have analyzed this case numerically and
found that the two resonators bring the factors exp(−tf/2T1,e)
and exp(−tf/2T1,r), respectively.

Combining the effects of dissipation in the resonators and
transmission line, we obtain

η = ηdηtl exp(−tf/2T1,e) exp(−tf/2T1,r), (43)

assuming that everything else is ideal.

IV. MULTIPLE REFLECTIONS

So far, we have not considered multiple reflections of the
field that is back-reflected from the receiving end, by assuming
either a very long transmission line or the presence of a
circulator [see Fig. 1(b)]. If there is no circulator and the
transmission line is not very long (as for the state transfer
between two on-chip superconducting resonators), then the
back-reflected field bounces back and forth between the
couplers and thus affects the efficiency of the state transfer.
To describe these multiple reflections, we modify the field
equations (1)–(3) by including the back-propagating field F (t)
into the dynamics, for simplicity assuming in this section
�ωr = �ωe = 0, ηtl = 1, and T −1

1,e(r) = 0:

Ġ(t) = −κe

2
G(t) + te

|te|
|re|
rin

e

√
κe eiϕF (t − td), (44)

Ḃ(t) = −κr

2
B(t) + tr

|tr|
√

κrA(t), (45)

A(t) = te

|te|
√

κeG(t) + rout
e

|re|e
iϕF (t − td). (46)

Here, td is the round-trip delay time (td = 2ltl/v, where ltl is the
transmission line length and v is the effective speed of light),
ϕ = ωe(r)td is the corresponding phase acquired in the round
trip, F (t) is given by Eq. (14), rout

e is the reflection amplitude
of the emitting resonator coupler from the transmission line
side, and rin

e is the same from the resonator side. Note that we
use shifted clocks, so the propagation is formally infinitely
fast in the forward direction and has velocity v/2 in the
reverse direction; then the round-trip delay td and phase shift
ϕ are accumulated in the back-propagation only; the field
F (t) is defined at the receiving resonator, and it comes to
the emitting resonator as eiϕF (t − td). Also note that even
though ϕ is proportional to td, it is better to treat ϕ as an
independent parameter, because the time-delay effects are
determined by the ratio td/τ , which has a very different scale
from ϕ = (td/τ ) ωe(r)τ , since ωe(r)τ ∼ 103.

There is some asymmetry between Eqs. (44) and (45) and
also between Eqs. (46) and (13), which involves factors rin

e(r).
This is because in order to keep a simple form of the evolution
equations (1)–(3), we essentially defined G as the field
propagating towards the transmission line, while B propagates
away from the transmission line. In this section, we still assume
that the phases of the transmission and reflection amplitudes
(te(r) and rin(out)

e(r) ) do not change with time. For the tunable
couplers of Refs. [20,22] (see Appendix B), the transmission
amplitudes te(r) are mostly imaginary, the reflection amplitudes
rin

e(r) are close to −1, and rout
e(r) are somewhat close to −1 (recall

that t2
e/rin

e rout
e and t2

r /rin
r rout

r must be real and negative from
unitarity). In simulations, it is easier to redefine the phases of
the fields in the resonators and transmission line, so that te and
tr are treated as real and positive numbers, rin

e and rin
r are also

real and positive (close to 1), while rout
e and rout

r are real and
negative (close to −1). In this case, Eqs. (14) and (46) become
F = √

κr B − A and A(t) = √
κe G(t) − e−iϕF (t − td).

As an example of the dynamics with multiple reflections, in
Fig. 9, we show the absolute value of the reflected field F (t −
td) (at the emitting resonator) for the procedure shown in Fig. 2
(ηd = 0.999, tf = 460 ns) for the round-trip delays td = tf/2
(blue dashed curve) and td = tf/5 (red solid curve), assuming
ϕ = π/8. The kinks represent the successive reflections of the

Π 8

td
tf
5 td tf 2

0 100 200 300 400
0.0000
0.0002
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0.0010
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0.0014

t ns

F
t

t d

FIG. 9. (Color online) Illustration of the back-reflected field
|F (t − td)| reaching the emitting resonator at time t , for the round-trip
delay time td = tf/2 (blue dashed curve) and td = tf/5 (red solid
curve), assuming the round-trip phase shift ϕ = π/8. The kinks
represent multiple reflections of the field emitted at t = 0. We
assumed parameters of Fig. 2 (ηd = 0.999, τ = 33.3 ns, tf = 460 ns).
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FIG. 10. (Color online) (a) Dependence of the inefficiency 1 − η

on the normalized delay td/τ due to the round trip along the
transmission line, for the design efficiency ηd = 0.999 and several
values of the phase shift ϕ accumulated in this round trip. The kinks
at td/τ = 13.8/n correspond to the integer number n of the round trips
within the procedure time tf . (b) The same as in (a) for a smaller range
of td/τ (the results for td/τ < 0.1 were not calculated). Notice that
the inefficiency accounting for multiple reflections does not exceed
twice the design inefficiency, 1 − η � 2(1 − ηd).

field emitted at t = 0. Note that depending on the phase shift
ϕ, the resulting contribution of the reflected field into B(tf) can
either increase or decrease |B(tf)|2, thus either decreasing or
increasing the transfer efficiency η (recall that the efficiency η

is defined disregarding the resulting phase ϕf , because it can
be easily corrected in an experiment). The effect of multiple
reflections should vanish if td � tf , i.e., when the transmission
line is sufficiently long.

Figure 10 shows the numerically calculated inefficiency
1 − η of the state transfer as a function of the round-trip delay
time td, normalized by the buildup/leakage time τe = τr = τ .
Different curves represent different values of the phase ϕ. The
design efficiency is ηd = 0.999. (In the simulations we also
used ω0/2π = 6 GHz, and te,max = tr,max = 0.05; however,
the presented results do not depend on these parameters).
We see that the inefficiency shows an oscillatory behavior
as a function of the delay time, but it is always within the
range 0 � 1 − η � 2(1 − ηd). This important fact was proved
in Ref. [14] in the following way. In the case with the circulator,
the losses are 1 − ηd = lcirc

G + lcirc
F , where lcirc

G = |Gcirc(tf)|2 is
due to the untransmitted field [we assume here G(0) = 1] and
lcirc
F is the dimensionless energy carried away by the reflected

field F circ(t). In the case without circulator, we can simply add
the multiple reflections of the field F circ(t) to the evolution with
the circulator. At the final time tf , the field F circ(t) will linearly

contribute to B(tf), G(tf), and the field within the transmission
line [F (t) for tf − td � t � tf]. In the worst-case scenario,
the whole energy lcirc

F is added in-phase to the untransmitted
field Gcirc(tf), resulting in 1 − η = (

√
lcirc
G + √

lcirc
F )2. Since

(
√

lcirc
G + √

lcirc
F )2 � 2(lcirc

G + lcirc
F ) always, we obtain the upper

bound for the inefficiency, 1 − η � 2(1 − ηd). The lower
bound 1 − η � 0 is obvious. Figure 10 shows that both
bounds can be reached (at least approximately) with multiple
reflections at certain values of td/τ and ϕ (this fact is not
obvious and is even somewhat surprising).

The dependence η(td) shown in Fig. 10 is quite complicated
and depends on the phase ϕ. We show only phases 0 � ϕ � π ,
while for π � ϕ � 2π the results can be obtained from the
symmetry η(td,ϕ) = η(td,2π − ϕ). As we see from Fig. 10,
the oscillations of η(td) generally decrease in amplitude when
td/τ → 0, so that we expect a saturation of the dependence at
td/τ → 0. The exception is the case ϕ = 0, when the oscil-
lation amplitude does not significantly decrease at small td/τ

(numerical simulations become increasingly more difficult at
smaller td/τ ). This can be understood as due to the fact that for
ϕ = 0 the transmission line is a resonator, which is resonant
with the frequency ωe = ωr of the resonators.

Note that for an experiment with on-chip state transfer
between superconducting resonators, the round-trip delay time
td is comparable to ω−1

e(r) and therefore much smaller than τ ,
td/τ ∼ 10−2. This regime is outside of the range accessible
to our direct simulation method, which works well only when
td/τ � 10−1. Nevertheless, we expect that the results presented
in Fig. 10(b) can be approximately used in this case as well,
because of the apparent saturation of η(td) at td → 0, except
when the phase ϕ is close to zero.

The most important result of this section is that multiple
reflections cannot increase the inefficiency 1 − η by more
than twice compared with the design inefficiency 1 − ηd (as
obtained analytically and confirmed numerically).

V. MISMATCH OF THE RESONATOR FREQUENCIES

The main idea of the state transfer protocol analyzed in
this paper is to use destructive interference to suppress the
back-reflection into the transmission line, thus providing a
high-efficiency transfer. This is why it is crucial that the
emitting and receiving resonators have almost the same
frequency. Therefore a mismatch between the two resonator
frequencies should strongly decrease the transfer efficiency.
In this section, we analyze the effect of the frequency mis-
match using two models. First, we assume a constant-in-time
mismatch. Second, we consider the time-dependent detuning
of the resonator frequencies due to the changing transmission
amplitudes of the couplers, which lead to a changing complex
phase of the reflection amplitudes (see Appendix B) and thus
to the resonator frequency change.

A. Constant in time frequency mismatch

We first consider the case when the two resonator frequen-
cies are slightly different, �ω ≡ ωe − ωr �= 0, and they do not
change in time. Everything else is assumed to be ideal. It is
easy to understand the effect of detuning by using the evolution
equations (1)–(3) and choosing ω0 = ωr , so that �ωe = �ω
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FIG. 11. (Color online) Inefficiency 1 − η as a function of nor-
malized detuning �ω τ (lower horizontal axis) for three design
efficiencies, ηd = 0.9, 0.99, and 0.999. The upper horizontal axis
shows the unnormalized detuning �ω/2π in MHz, using the values
ω/2π = 6 GHz and |te,max| = |tr,max| = 0.05, so that τ = 33.3 ns.

and �ωr = 0. Then, compared with the case �ω = 0, the
emitting resonator field G(t) acquires the phase factor e−i�ωt ;
the same phase factor is acquired by the transmitted field A(t)
in Eq. (2), and this changing phase destroys the perfect phase
synchronization between A(t) and B(t) that is needed to cancel
the back-reflection.

The numerically calculated inefficiency 1 − η is shown in
Fig. 11 as a function of the detuning �ω, normalized by the
inverse buildup/leakage time τ−1 (we assumed τe = τr = τ ).
We show the lines for the design inefficiencies ηd = 0.9, 0.99,
and 0.999. The results do not depend on ωr and |te(r),max|.
However, to express �ω/2π in MHz on the upper horizontal
axis, we use a particular example of ωr/2π = 6 GHz and
|te(r),max| = 0.05, for which τ = 33.3 ns (as in Fig. 2).

For small |�ω τ | and ηd ≈ 1, the additional inefficiency
due to frequency mismatch can be fitted as

−δη ≈ cfm (�ω τ )2, cfm ≈ 2. (47)

For smaller ηd, the coefficient cfm decreases, so that cfm ≈ 1.94
for ηd = 0.999, cfm ≈ 1.68 for ηd = 0.99, and cfm ≈ 0.81 for
ηd = 0.9.

It is interesting that the value cfm = 2 for ηd ≈ 1 exactly
coincides with the estimate derived in Ref. [14], which we
rederive here. Comparing the case �ω �= 0 with the ideal case
�ω = 0, we can think that A(t) acquires the extra phase factor
e−i�ω(t−tm), where tm is the midtime of the procedure (see
Fig. 2); the overall factor ei�ωtm is not important, affecting
only the final phase ϕf . Then we can think that at t = tm we
still have an almost perfect cancellation of the back-reflection,
F (tm) ≈ 0; however, at t �= tm the extra phase causes the back-
reflected wave |F (t)| ≈ |A(t)(e−i�ω(t−tm) − 1)|. Now using
|A(t)| = |A(tm)|e−|t−tm|/2τ and assuming |�ω|τ � 1 (so that
we can expand the exponent in the relevant time range),
we find |F (t)| ≈ |A(tm)| e−|t−tm|/2τ |�ω(t − tm)|. Finally in-
tegrating the loss,

∫ |F (t)|2dt , and normalizing it by the
transferred “energy”

∫ |A(tm)|2e−|t−tm|/τ dt , we obtain the
added inefficiency −δη ≈ 2 (�ω τ )2.

Using this derivation, it is easy to understand why the coeffi-
cient cfm in Eq. (47) decreases with decreasing ηd. This occurs

because the integration of |F (t)|2 is limited by the range 0 <

t < tf = −2τ ln(1 − ηd), which becomes shorter for smaller
ηd. Thus we can estimate cfm as cfm ≈ ∫ − ln(1−ηd)

0 x2e−xdx =
2 − (1 − ηd)[2 − 2 ln(1 − ηd) + ln2(1 − ηd)], which fits the
numerical results very well.

As expected, even small detuning significantly decreases
the transfer efficiency. For example, to keep the added
inefficiency under 1%, −δη < 0.01, we need the detuning
to be less than 0.4 MHz in the above example (τ = 33.3 ns),
which is not very easy to achieve in an experiment.

B. Time-dependent detuning due to changing coupling

In an actual experimental coupler, the parameters are
interrelated, and a change of the coupling strength by varying
|t| may lead to a change of other parameters. In particular,
for the coupler realized experimentally in Refs. [20,22], the
change of |t| causes a small change of the complex phases of
the transmission and reflection amplitudes t and rin(out). The
phase change of rin (from the resonator side) causes a change
of the resonator frequency. Thus changing the coupling causes
the frequency detuning, as was observed experimentally [20].
Since the frequency mismatch between the two resonators
strongly decreases the efficiency of the state transfer, this is a
serious problem for the protocol discussed in our paper. Here
we analyze this effect quantitatively and discuss with which
accuracy the detuning should be compensated (e.g., by another
tunable element) to preserve the high-efficiency transfer.

Physically, the resonator frequency changes because the
varying coupling changes the boundary condition at the
end of the coplanar waveguide resonator (see Fig. 16 in
Appendix B). Note that a somewhat similar frequency change
due to changing coupling with a transmission line was studied
in Ref. [52].

As discussed in Appendix B, if we use the tunable couplers
of Ref. [20,22], then the transmission and refection amplitudes
tj and rin(out)

j for the two resonators (j = e, r) are given by the
formulas

tj = −i
2ωjMj

1 + bj

√
Rj

Rtl

(
1

Rj

+ −ibj

ωjLe,j

)
1

1 − iωjL2,j /Rtl
,

(48)

rin
j = −1 − bj

1 + bj

, rout
j = −(

rin
j

)∗ tj
t∗j

, (49)

where

bj = iωL1,j /Rj

L1,j

Le,j

+
[

1 − iωjM
2
j

RtlL1,j (1 + iωjL2,j /Rtl)

]−1 . (50)

Mj is the effective mutual inductance in j th coupler (the main
tunable parameter controlled by magnetic flux in the SQUID
loop), Rj and Rtl are the wave impedances of the resonators
and the transmission line, ωj are the resonator frequencies,
and L1,j , L2,j , and Le,j are the effective inductances used to
describe the coupler (see details in Appendix B). Note that
Eqs. (48) and (50) are slightly different from the equations in
the Supplementary Information of Ref. [20] and the derivation
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in Appendix B: the difference is that the imaginary unit i is
replaced with −i to conform with the chosen rotating frame
definition e−iωt in Eqs. (1) and (2).

For the typical experimental parameters, |bj | � 1, so that
rin
j ≈ −1, while tj is mostly imaginary. Note that ωe ≈ ωr ≈

ω0, so in Eqs. (48) and (50) we can replace ωj with ω0. Also
note that there is no coupling, tj = 0, when Mj = 0, and the
coupling changes sign when Mj crosses zero.

Tuning Mj , we control |tj |. However, the complex phase of
tj slightly changes with changing Mj because bj in Eq. (48)
depends on Mj and also L1,j and L2,j depend on Mj – see
Appendix B. Changing the phase of tj leads to the phase
mismatch in the state transfer protocol, degrading its efficiency.
However, this is a relatively minor effect, while a much more
serious effect is the dependence of the complex phase of rin

j

on Mj via its dependence on bj in Eq. (49), leading to the
resonator frequency change.

For the rotating frame e−iωt and quarter-wavelength res-
onator (which we assume here), the change δ(arg rin

j ) of the
phase of rin

j changes the resonator frequency by

δωj ≈ −(ω0/π ) δ
(

arg rin
j

)
, (51)

where we used ωj ≈ ω0. Assuming for simplicity that the
resonators are exactly on resonance (ωe = ωr = ω0) when
there is no coupling (Me = Mr = 0), we can write the variable
detunings to be used in the evolution equations (1) and (2) as

�ωj = ωj − ω0 = −ω0

π

[
arg rin

j (Mj ) − arg rin
j (0)

]
, (52)

where rin
j (Mj ) describes dependence on Mj . Since |tj | also

depends on Mj (linearly to first approximation), we have an
implicit dependence �ωj (|tj |), which is linear for small |tj |
[see Eq. (B17) in Appendix B] and becomes nonlinear for
larger |tj |.

This dependence �ωe(r)(|te(r)|) is shown in Fig. 12 by
the solid line for the parameters of the coupler similar
(though not equal) to the parameters of the experimen-
tal coupler [20]: Re(r) = 80 �, Rtl = 50 �, ω0/2π = 6 GHz,
L1,j − Mj = L2,j − Mj = 620 pH, and Le,j = 180 pH (see
Appendix B). In particular, Fig. 12 shows that |te(r)| = 0.05
corresponds to the frequency change by −18.6 MHz, which
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FIG. 12. (Color online) Red solid line: the resonator frequency
detuning −�ωe(r)/2π caused by changing |te(r)| for a particular
set of parameters of the coupler (see text). Blue dashed line: the
corresponding value of the coupler mutual inductance Me(r). The
arrows indicate the corresponding vertical axes.
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FIG. 13. (Color online) Solid line: the phase of the transmission
amplitude, arg(te(r)), as a function of its absolute value |te(r)| for
a particular set of coupler parameters (see text). Dashed line: the
normalized detuning −�ωe(r)/κe(r) = −π�ωe(r)/ωe(r)|te(r)|2.

is a very big change compared to what is tolerable for a
high-efficiency state transfer (see Fig. 11). The same detuning
normalized by κe(r) = |te(r)|2ωe(r)/π is shown in Fig. 13 by the
dashed line.

The value of Me(r) needed to produce a given |te(r)| is
shown in Fig. 12 by the dashed line. It is interesting that
the dependence M(|t|) is significantly more nonlinear than
the dependence �ω(|t|), indicating that the nonlinearities of
|t(M)| and �ω(M) in Eqs. (48) and (52) partially cancel each
other (see Appendix B).

The solid line in Fig. 13 shows dependence of the phase
arg[te(r)] on the absolute value |te(r)|. Even though the phase
change looks significant, it produces a relatively minor
decrease in the protocol inefficiency (as we will see later)
because the loss is quadratic in the phase mismatch.

We numerically simulate the state transfer protocol, ac-
counting for the frequency change of the resonators and
phase change of te(r) in the following way. First, we use
the ideal pulse shapes |te(t)| and |tr(t)| from Eqs. (22)–(25),
assuming a symmetric setup (τe = τr). Then we calculate the
corresponding dependences Me(t) and Mr(t) using Eq. (48)
and find te(t) and tr(t) (now with time-dependent phases)
using the same Eq. (48), and also find the detunings �ωe(t)
and �ωr(t) using Eq. (52). After that we solve the evolution
equations (1)–(3), neglecting multiple reflections. Note that
we convert |tj (t)| into Mj (t) by first numerically calculating
|tj (Mj )| from Eq. (48), then fitting the inverse dependence
Mj (|tj |) with a polynomial of 40th order, and then using this
polynomial for the conversion.

Figure 14 shows the numerically calculated inefficiency
1 − η of the transfer protocol as a function of the maxi-
mum transmission amplitude |te,max| = |tr,max| for the above
example of the coupler parameters and design efficiencies
ηd = 0.99 and 0.999. Besides showing the results for the
usual protocol (red lines), we also show the results for the
cases when the frequency detuning [Eq. (52)] is reduced
by a factor of 10 (90% compensation, blue lines), 20 (95%
compensation, green lines), 100 (99% compensation, magenta
lines) and fully eliminated (100% compensation, black lines).
Such compensation can be done experimentally by using
another circuit element, affecting the resonator frequency, e.g.,
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FIG. 14. (Color online) Inefficiency 1 − η as a function of
|te,max| = |tr,max| for the couplers with parameters described in the
text. The solid lines are for the design efficiency ηd = 0.999, while
the dashed lines are for ηd = 0.99. The red lines show the results
without compensation of the frequency detuning �ωe(r)(t) caused by
changing |te(r)(t)| and correspondingly changing arg(rin

e(t)). The blue
lines assume 90% compensation of this detuning, 95% compensation
for the green lines, 99% compensation for the magenta lines, and full
100% compensation for the black lines. For the black lines, the extra
inefficiency is caused only by changing phases of te(r). The upper
horizontal axis shows the product �ωmax τ , corresponding to |tmax|.

tuning the phase of the reflection amplitude at the other end of
the resonator by a SQUID-controlled inductance.

We see that without compensation of the frequency detun-
ing the state transfer protocol cannot provide a high efficiency:
η = 0.33 for |tmax| = 0.05 and η = 0.58 for |tmax| = 0.1.
However, with the detuning compensation the high efficiency
may be restored. As we see from Fig. 14, the state transfer
efficiency above 99% requires the detuning compensation at
least within 90%–95% range (depending on |tmax|). Note that
even with 100% compensation, the efficiency is less than in
the ideal case. This is because of the changing phases of te(t)
and tr(t). However, this effect is minor in comparison with the
effect of detuning.

It is interesting that the curves in Fig. 14 decrease with
increasing |tmax| when |tmax| is not too large. This may seem
counterintuitive, since larger |t| leads to larger detuning, and
so we would naively expect larger inefficiency at larger |tmax|.
The numerical result is opposite because the duration of the
procedure decreases, scaling as τ ∝ |tmax|−2. Therefore, if
the largest detuning scales linearly, |�ωmax| ∝ |tmax|, then the
figure of merit |�ωmaxτ | scales as |tmax|−1, thus explaining the
decreasing part of the curves in Fig. 14. The upper horizontal
axis in Fig. 14 shows |�ωmaxτ |, which indeed decreases with
increasing |tmax| (see also the dashed line in Fig. 13).

More quantitatively, let us assume a linear detuning,
�ωe(r) = k |te(r)|, where the coefficient k is given by Eq. (B17)
multiplied by the uncompensated fraction of the detuning.
Assuming a small deviation from the ideal protocol, the
transmitted wave is |A(t)| = |A(tm)| e−|�t |/2τ , where �t =
t − tm. At the midtime tm, the resonator frequencies co-
incide, but at t > tm the receiving resonator frequency
changes so that �ω = ωe − ωr = k(|tr(tm)| − |tr(t)|). Using
Eq. (24), we find �ω = k |tmax| [1 − (2e�t/τ − 1)−1/2]. The

accumulated phase mismatch is then φ(t) = ∫ t

tm
�ω(t ′) dt ′,

which produces the reflected wave |F | ≈ |Aφ|, assuming
small φ. The inefficiency due to the reflected wave loss
is then 1 − η ≈ ∫ ∞

tm
|F (t)|2 dt/

∫ ∞
tm

|A(t)|2 dt (note that due
to symmetry the same relative loss is before and af-
ter tm). Therefore 1 − η ≈ τ−1k2|tmax|2

∫ ∞
0 {∫ x

0 [1 − (2e�t/τ −
1)−1/2] d�t}2e−x/τ dx, and calculating the integral numeri-
cally we obtain 1 − η = 0.63 k2τ 2|tmax|2 [the numerical value
of the integral is somewhat smaller than 0.63 if we limit
the outer integration by −τ ln(1 − ηd)]. Finally, using τ =
π/ω0|tmax|2, we obtain 1 − η ≈ 0.6 (kπ/ω0|tmax|)2.

Numerical results in Fig. 14 reproduce the scaling 1 − η ∝
(k/|tmax|)2 for the significant part of the curves for ηd = 0.999
(when plotted in log-log scale); however, the prefactor in the
numerical fitting is somewhat different from what we obtained
above: 1 − η ≈ 0.4 (kπ/ω0|tmax|)2. Note that at sufficiently
large |tmax|, the green and red curves in Fig. 14 reach a
minimum and then start to increase. This occurs because
the inefficiency due to changing phase of te(r) increases
with increasing |tmax|, in contrast to the effect of frequency
detuning.

Actually, our analysis of the transfer process in the case
of complete compensation of detuning is not fully accurate.
The reason is that in the evolution equations (1)–(3) we took
into account the frequency change due to changing rin

e(r), but
we did not take into account another (very small) effect due
to changing rin

e(r). It is easy to understand the origin of this
effect in the following way. There is a phase difference arg(rin

r )
between the field B propagating away from the transmission
line and the similar field propagating towards the transmission
line [see Eq. (13) and discussion below it]. Changing arg(rin

r )
alters this phase difference, thus affecting both fields and
correspondingly leading to an extra term, neglected in Eq. (2).
Similarly, changing arg(rin

e ) leads to an extra term in Eq. (1)
for G. However, as can be seen from Fig. 12 and Eq. (51), the
change of arg(rin

e(r)) is less than 0.02 for |te(r)| varying between
0 and 0.1, which is much less than the change of arg(te(r))
in Fig. 13. Therefore the neglected effect is much less than
the effect due to changing arg(te(r)), which by itself is almost
negligible, as seen in Fig. 14. Note that the compensation
for changing phases can be done experimentally in the same
way as the compensation for the detuning, so that in principle
the efficiency decrease analyzed in this section can be fully
avoided.

Overall, we see that the detuning of the resonator frequen-
cies due to a changing coupling is a serious problem for the
state transfer protocol. A high-efficiency state transfer is possi-
ble only with additional experimental effort to compensate for
this detuning. The required compensation accuracy is crudely
within 90%–95% range. The use of a shorter protocol (by using
a stronger coupling) helps to increase the efficiency. Note that
the frequency compensation is done routinely for the tunable
coupler of Refs. [19,21]; similarly, the phase compensation can
be naturally realized in the tunable coupler of Refs. [40,41].

VI. CONCLUSION

In this paper, we have analyzed the robustness of the
quantum state transfer protocol of Ref. [14] for the transfer
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between two superconducting resonators via a transmission
line. The protocol is based on destructive interference, which
cancels the back-reflection of the field into the transmission
line at the receiving end (we believe this explanation is more
natural than the terminology of time reversal, introduced in
Ref. [3]). This is achieved by using tunable couplers for both
resonators and properly designed time dependencies (pulse
shapes) of the transmission amplitudes te(t) and tr(t) for these
couplers. Nearly-perfect transfer efficiency η can be achieved
in the ideal case. We have focused on analyzing additional
inefficiency due to deviations from the ideal case.

The ideal pulse shapes of the transmission amplitudes
[Eqs. (22)–(25)] depend on several parameters; we have
studied additional inefficiency due to deviations of these
parameters from their design values. Below, we summarize
our results by presenting the tolerable deviations for a fixed
additional inefficiency of −δη = 0.01 (because of quadratic
scaling, the tolerable inaccuracies for −δη = 0.001 are about
3.2 times smaller). For the relative deviations of the maximum
transmission amplitudes |te,max| and |tr,max|, the tolerable
ranges are ±10% if only one of them is changing and ±5%
if both of them are changing simultaneously [see Fig. 3 and
Eq. (34)]. For the relative deviations of the time scale param-
eters τe and τr describing the exponential increase/decrease of
the transmitted field, the tolerable ranges are ±17% if only one
of them is changing and ±11% if both of them are changing
simultaneously [see Fig. 4 and Eq. (35)]. For the mismatch
between the midtimes tm of the procedure in the two couplers,
the tolerable range is ±0.2τ � ±6 ns [see Fig. 5 and Eq. (36)].
For a nonlinear distortion described by warping parameters
αe and αr [see Eq. (37)], the tolerable parameter range is
±0.2 if the distortion affects only one coupler and ±0.13
if the distortion affects both couplers. Our results show that
smoothing of the pulse shapes by a Gaussian filter practically
does not affect the inefficiency; even filtering with the width
σ � τ � 30 ns is still tolerable. When the pulse shapes are
distorted by an additional (relatively high-frequency) noise,
the tolerable range for the standard deviation of |te(r)| is 7%
of the instantaneous value and 3% of the maximum value [see
Fig. 8 and Eq. (42)]. Overall, we see that the state transfer
procedure is surprisingly robust to various distortions of the
pulse shapes.

We have also analyzed the effect of multiple reflections
and found that it can both increase or decrease the transfer
efficiency. However, even in the worst case, this effect cannot
increase the inefficiency 1 − η by more than a factor of 2
(see Fig. 10). The energy dissipation in the transmission line
or in the resonators can be a serious problem for the state
transfer protocol. The description of the effect is simple [see
Eq. (43)]; for a high-efficiency transfer, we can tolerate only a
weak dissipation 1 − ηtl in the transmission line, and we also
need the procedure duration tf to be much shorter than the
energy relaxation time T1. In particular, for −δη = 0.01 we
need ηtl > 0.99 and T1 > 100 tf .

The major problem in realizing the state transfer protocol
is the frequency mismatch between the two resonators, since
the destructive interference is very sensitive to the frequency
mismatch. For a fixed detuning, the tolerable frequency
mismatch (ωe − ωr)/2π for −δη = 0.01 is only ±0.01/τ �
±0.4 MHz [see Fig. 11 and Eq. (47)]; the tolerable range is a

factor of
√

10 smaller for −δη = 0.001. An even more serious
problem is the change of the resonator frequencies caused
by changing couplings, which for the coupler of Ref. [20]
is on the order of 20 MHz [see Fig. 12 and Eq. (B17) in
Appendix B]. Without active compensation for this frequency
change, a high-efficiency state transfer is impossible. Our
numerical results show (see Fig. 14) that to realize efficiency
η = 0.99, the accuracy of the compensation should be at
least 90% (i.e., the frequency change should be decreased
by an order of magnitude). It is somewhat counterintuitive
that a better efficiency can be obtained by using a higher
maximum coupling, which increases the frequency mismatch
but decreases duration of the procedure (see Fig. 14). Another
effect that decreases the efficiency is the change of the
phase of the transmission amplitude with changing coupling.
However, this effect produces a relatively minor decrease of
the efficiency (see Fig. 14).

In most of the paper, we have considered a classical state
transfer, characterized by the (energy) efficiency η. However,
all the results have direct relation to the transfer of a quantum
state (see Appendix A). In particular, for a qubit state transfer,
the quantum process fidelity Fχ is Fχ ≈ 1 − (1 − η)/2 for
η ≈ 1 [see Eq. (12)].

The quantum state transfer protocol analyzed in this paper
has already been partially realized experimentally. In partic-
ular, the realization of the proper (exponentially increasing)
wave form for the quantum signal emitted from a qubit
has been demonstrated in Ref. [21] (a reliable frequency
compensation has also been demonstrated in that paper). The
capture of such a wave form with 99.4% efficiency has been
demonstrated in Ref. [22]. We hope that a full protocol that
combines these two parts will be realized in the near future.
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APPENDIX A: QUANTUM STATE TRANSFER USING THE
BEAM SPLITTER THEORY

In this Appendix, we discuss the quantum theory of state
transfer using the optical language of beam splitters. The
starting point is Eq. (7), in which the resulting classical field
B(tf) has the contribution

√
η eiϕf G(0) from the transferred

field G(0) and also contributions from other fields. This
equation describes a unitary transformation, which can be
modeled as a result of adding the (infinite number of) fields
[B(0) and time-binned V (t)] by using a system of (infinite
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FIG. 15. (Color online) A beam splitter with input classical fields
A and B transformed into the output fields Ã and B̃, with the
main transformation A → Ã characterized by the amplitude

√
η and

phase shift ϕf . In the quantum formulation, the input state |�in〉 is
transformed into the output state |�out〉. In particular, in Sec. A 1, we
consider the input state |�in〉 = |ψin〉|0〉, calculate |�out〉, and then
reduce it to the density matrix ρfin of the main output arm, by tracing
over the other output arm.

number of) beam splitters. Then using the linearity of the
evolution, we can simply replace the classical fields with the
corresponding annihilation operators for quantum fields, thus
developing the quantum theory of the state transfer.

In the case when all other fields in Eq. (7) except G(0)
correspond to vacuum, it is sufficient to consider one beam
splitter because a linear combination of vacua is still vacuum.
This is why in this appendix we mainly discuss one beam
splitter (characterized by the amplitude

√
η and phase ϕf in

the main path), with the initial state to be transferred at one
arm and vacuum state at the other arm. Note that notations in
this appendix are different from the notations in the main text.

Let us start with revisiting the quantum theory of a beam
splitter [46] (Fig. 15). The quantum theory follows the classical
description of the beam splitter, which is characterized by the
following relations between the input classical fields A and B,
and the output classical fields Ã and B̃:

Ã = √
η eiϕ1A +

√
1 − η eiϕ2B, (A1)

B̃ = √
η eiϕ3B −

√
1 − η ei(ϕ1−ϕ2+ϕ3)A, (A2)

where ϕ1 = ϕf and other phases are introduced to describe a
general unitary transformation (these phases can include phase
shifts in all four arms). Exactly the same relations also apply
in the quantum case for the annihilation operators ã and b̃ of
the fields at the output arms and the annihilation operators a

and b of the fields at the input arms.
In general, we want to find an output quantum state |�out〉

for a given input state |�in〉, which in principle can be an
entangled state of the two input modes. This can be done [46]
by applying the following steps. (1) Express the input state
|�in〉 in terms of the input creation operators a† and b†, and
vacuum. (2) Using Eqs. (A1) and (A2), express A and B via
Ã and B̃. These are the equations expressing a and b in terms
of ã and b̃. Conjugate these equations to express a† and b† in
terms of ã† and b̃†. (3) Substitute the operators a† and b† used
in the step 1 by their expressions in terms of ã† and b̃† obtained
in step 2. This substitution gives |�out〉. Now let us apply this
substitution method to find the resulting state in the receiving

resonator when an arbitrary quantum state is transferred from
the emitting resonator.

1. Transfer of an arbitrary quantum state

Let us assume that the initial state |ψin〉 in the emitting
resonator is

|ψin〉 =
∑

n

αn|n〉 =
∑

n

αn(a†)n√
n!

|0〉,
∑

n

|αn|2 = 1, (A3)

while all other fields involved in the transfer procedure are
vacua (in particular, this assumes zero temperature). Then the
two-arm input state |�in〉 for the beam splitter is the same,
except the vacuum |0〉 in Eq. (A3) is now understood as the
vacuum |0〉 for all possible modes.

The transfer procedure is characterized only by the effi-
ciency η and the phase ϕf = ϕ1, while other phases ϕ2 and ϕ3

in Eqs. (A1) and (A2) are undefined. However, even though the
resulting state |�out〉 will depend on ϕ2 and ϕ3, the resulting
density matrix ρfin, obtained from |�out〉 by tracing over the
other output arm, will not depend on ϕ2 and ϕ3. This is because
arbitrary ϕ2 and ϕ3 can be produced by placing phase shifters in
the ancillary input and output arms (B and B̃ arms in Fig. 15);
shifting the phase of vacuum in the B arm does not produce
any effect, while shifting the phase in the B̃ arm cannot affect
ρfin by causality. We have also checked independence of ρfin

on ϕ2 and ϕ3 by explicit calculations. Therefore we can choose
any values of ϕ2 and ϕ3. For convenience, let us choose ϕ2 = π

and ϕ3 = 0. Then using step 2 of the substitution method we
obtain

a† = √
η eiϕf ã† +

√
1 − η eiϕf b̃†, (A4)

b† = √
η b̃† −

√
1 − η ã†, (A5)

while step 1 was Eq. (A3). Now substituting a† in Eq. (A3)
with the expression in Eq. (A4) (step 3), we obtain

|�out〉 =
∑
n,k

αn+k

√
(n + k)!/(n!k!) ηn/2(1 − η)k/2

× ei(n+k)ϕf |n〉|k〉, (A6)

where in the notation |n〉|k〉 = [(ã†)n(b̃†)k/
√

n!k! ] |0〉 the
second state corresponds to the ancillary second arm (upper
arm in Fig. 15).

The final state at the receiving resonator can be calculated
by tracing |�out〉〈�out| over the ancillary state |k〉, thus
obtaining the density matrix

ρfin =
∑
j,n,m

αn+jα
∗
m+j

√
(n + j )!(m + j )!/(j !

√
n!m!)

× η(n+m)/2(1 − η)j ei(n−m)ϕf ) |n〉〈m|, (A7)

where the sums over j , n, and m are all from 0 to ∞. Note that
this result has been derived for a pure initial state (A3) in the
emitting resonator. However, it is easy to generalize Eq. (A7)
to an arbitrary initial state ρin by replacing αn+jα

∗
m+j with

(ρin)n+j,m+j .
To find the fidelity of the quantum state transfer for the

initial state (A3), we calculate the overlap 〈ψin|ρfin|ψin〉, thus
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obtaining

Fst =
∑
j,n,m

√
(n + j )!(m + j )!

j !
√

n!m!
α∗

nαmαn+jα
∗
m+j

× η(n+m)/2(1 − η)j ei(n−m)ϕf , (A8)

which is Eq. (9) in the main text. For a mixed input state
ρin, we can find the resulting state ρfin as discussed above
and then use the Uhlmann fidelity definition [53] Fst =
[Tr

√√
ρin ρfin

√
ρin]2.

If instead of an arbitrary state (A3), we transfer a qubit state
|ψin〉 = α0|0〉 + α1|1〉, then in Eq. (A6) there are only three
terms because αn+k = 0 if n + k > 1. This reduces Eq. (A6)
to Eq. (10) in the main text. Similarly, Eq. (A7) reduces to
Eq. (11) and Eq. (A8) reduces to

Fst = |α0|4 + η|α1|2 + |α0|2|α1|2(1 − η + 2
√

η cos ϕf).
(A9)

To average this fidelity over the Bloch sphere of the initial state,
we can either average it over six points at the ends of the three
axes (±X, ±Y, ±Z) or use the averaging formulas |α0|4 =
|α1|4 = 1/3, |α0|2|α1|2 = 1/6, thus obtaining an average state
fidelity

F st = 3 + η + 2
√

η cos ϕf

6
, (A10)

which can be converted into the process fidelity Fχ using the
standard rule, Fχ = 1 − (3/2)(1 − F st).

2. Decrease of the average state fidelity due to photons
in the environment

So far, we have assumed the initial state of the receiving
resonator and all environmental modes in Eq. (7) to be vacuum.
A natural question is what happens when there are some
photons in the environment (including the initial state of the
receiving resonator). In particular, it is interesting to determine
whether the average fidelity F st of the qubit state transfer
can increase, or always decreases. Below we show that the
average fidelity always decreases due to a nonvacuum state of
the environment.

We consider a simplified model, in which the main input of
the beam splitter in Fig. 15 is in a qubit state |ψin〉 = α0|0〉 +
α1|1〉, while the second input (modeling the environment) is
in an arbitrary state, so that the total state is

|�in〉 = (α0|0〉 + α1|1〉)
∑

n

βn|n〉, (A11)

where |α0|2 + |α1|2 = 1 and
∑

n |βn|2 = 1. Neglecting for
simplicity the transfer phase, ϕf = 0, choosing the other phases
as ϕ2 = π and ϕ3 = 0, and using the substitution method
described above, we find the output state

|�out〉 =
∑
k,m

√
(k + m)!√

k!m!
βk+m(−

√
1 − η)m(

√
η)k

× [α0|m〉|k〉 + α1
√

η
√

m + 1 |m + 1〉|k〉
+ α1

√
1 − η

√
k + 1 |m〉|k + 1〉]. (A12)

We then trace over the ancillary arm state to find the
resulting density matrix ρfin, which can now contain nonzero
elements (ρfin)mn for arbitrary m and n. However, the state
fidelity for the qubit transfer depends only on the elements
within the qubit subspace, Fst = |α0|2(ρfin)00 + |α1|2(ρfin)11

+ 2 Re[α∗
0α1(ρfin)01]. Averaging Fst over the initial qubit

state [48–50], we obtain after some algebra

F st = 1

6
(3 + η + 2

√
η) −

∞∑
n=1

Cn(η) |βn|2, (A13)

Cn(η) = 1

6
{(3 + η + 2

√
η)(1 − ηn)

+n(1 − η)ηn−1[2η + 2
√

η − (1 − η)(2n + 1)]}. .(A14)

The first term in Eq. (A13) is the average fidelity when there are
no photons in the environment [see Eq. (A10) with ϕf = 0],
while the second term is due to the environmental photons
(|βn|2 is the probability of having n photons). We numerically
checked that the coefficients Cn(η) are always positive for
n � 1 and η ∈ [0,1]. Therefore the presence of photons in the
environment always decreases the average fidelity of a qubit
transfer. Note that Eq. (A13) does not depend on the choice
of ϕ2 and ϕ3, since these phases can be produced by phase
shifters in the ancillary B and B̃ arms in Fig. 15. The phase
shifter in the B̃-arm cannot affect ρfin, while the phase shifter
in the B arm changes only the phase of the ancillary input state
and therefore does not change |βn|2 in Eq. (A13).

In the case when η ≈ 1, we can approximate Eq. (A14) as
Cn(η) ≈ (5/3)(1 − η) n. The average fidelity is then

F st ≈ 1 − 1 − η

3
− 5

3
(1 − η) ne, (A15)

where ne = ∑
n n|βn|2 is the average number of photons in

the environmental mode. Note that the effect of nonzero ne

is suppressed at 1 − η � 1. Equation (A15) can be used for
an estimate of the effect of finite temperature. However, we
emphasize that modeling of the environmental noise with a
single beam splitter is an oversimplification, so Eq. (A15)
gives a qualitative description, but is not intended to accurately
describe the effect of environmental noise on the quantum state
transfer protocol.

APPENDIX B: TUNABLE COUPLER THEORY

In this Appendix, we consider the tunable coupler realized
experimentally in Refs. [20,22], and derive formulas for
the transmission and refection amplitudes t and rin used
in Sec. V B. We also discuss the change of the resonator
frequency due to the changing complex phase of rin. Since the
theory is the same for both resonators, we omit the resonator
index, assuming, e.g., the receiving resonator. The discussion
in this appendix follows the discussion in Sec. III of the
Supplementary Information of Ref. [20].

There will be a difference in the choice of rotating frame
between the main text and this Appendix. In the main text,
we use the rotating frame e−iωt , which is standard in optics.
However, in this appendix, we will need a language of
impedances, which traditionally assumes the rotating frame
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FIG. 16. (Color online) Schematic of the tunable coupler of
Refs. [20,22] between the λ/4 microwave resonator (at the left) and
the transmission line (at the right). A voltage taken at the distance
d from the resonator end is applied to a transformer with a negative
mutual inductance −Mg and a SQUID providing positive Josephson
inductance LJ . External flux �ext controls LJ , thus controlling the
effective mutual inductance M = −Mg + LJ . The wave impedances
of the lines are Rr and Rtl.

eiωt . Therefore we will have to derive formulas for t and r in
the rotating frame eiωt , and then we will need to conjugate the
final results to convert them into for t and r for the rotating
frame e−iωt .

The schematic of the tunable coupler is shown in Fig. 16.
A quarter-wavelength (λ/4) microwave resonator is divided
into two unequal parts, and the voltage signal for the
coupler is taken at the distance d (d � λ/4) from the
end, which is shorted to the ground, while the other end
is terminated with a break so that the total length is
l + d ≈ λ/4. The coupler consists of a transformer with
geometrical inductances L1g and L2g and negative mutual
inductance −Mg , which is in series with a dc SQUID,
providing a positive Josephson inductance LJ . This induc-
tance is controlled by an external magnetic flux �ext, LJ =
�0/[2π

√
I 2
c1 + I 2

c2 + 2Ic1Ic2 cos(2π�ext/�0)], where �0 =
h/2e is the magnetic flux quantum and Ic1, Ic2 are the critical
currents of two Josephson junctions, forming the SQUID.
Thus the external flux controls the total mutual inductance
M = −Mg + LJ , which determines the coupling between
the resonator and transmission line; in particular, there is no
coupling when M = 0. Note that the wave impedance Rr of
the resonator may be different from the impedance Rtl of the
transmission line.

For the analysis let us first reduce the schematic of Fig. 16
to the schematic of Fig. 17 by replacing the d-long part of the
resonator with an effective inductance Le and also replacing
the transformer and SQUID with an effective transformer with
inductances L1, L2, and mutual inductance M ,

L1 = L1g + LJ , L2 = L2g + LJ , M = −Mg + LJ .

(B1)

We emphasize that M can be both positive and negative, so
the coupling changes sign when M crosses zero (the coupler
is OFF when M = 0). Note that by varying M we also slightly
change L1 and L2,

L1 = L1g + Mg + M, L2 = L2g + Mg + M. (B2)

FIG. 17. (Color online) The simplified schematic of Fig. 16, with
the d-long piece of the resonator replaced by inductance Le, and the
transformer in series with SQUID replaced by an effective transformer
with mutual inductance M . An incident wave with voltage amplitude
B creates voltages V and x across the inductors L1 and L2. The
wave is reflected as rinB and transmitted as t̃inB (the superscript “in”
indicates the wave coming from inside the resonator and the tilde
sign indicates the actual transmission amplitude, as opposed to the
effective amplitude t). In our case, rin ≈ −1 and |t̃in| � 1.

It is easy to calculate the effective inductance Le. If there
is no coupler (L1 = ∞) and a voltage wave Beiωt comes from
the resonator side (from the left in Fig. 16), then it is reflected
as −Beiωt , and the voltage at a distance d is then V =
Beiωt [exp(iωd/v) − exp(−iωd/v)] = 2iBeiωt sin(ωd/v),
where v is the speed of light in the resonator. The current
(to the right) at this point is I = (B/Rr)eiωt [exp(iωd/v) +
exp(−iωd/v)] = 2(B/Rr) cos(ωd/v). Therefore the wave
impedance is Z = V/I = iRr tan(ωd/v), which is the same,
Z = iωLe, as for an inductance

Le = Rr

ω
tan

ωd

v
= Rr

ω
tan

2πd

λ
. (B3)

Next, let us calculate the transmission and reflection
amplitudes t̃in and rin for the effective circuit shown in Fig. 17.
(Here the superscript “in” reminds us that the wave is incident
from inside of the resonator, and the tilde sign in t̃in means
that we consider the actual transmission amplitude, which
is different from the effective amplitude t.) Assume that a
voltage wave with amplitude B is incident onto the coupler
from the resonator (we omit the exponential factor eiωt ).
The wave is reflected as rinB and transmitted as t̃inB. For
a weak coupling, which we consider in this paper, rin ≈ −1
and |t̃in| � 1. The voltage across L1 is V = (1 + rin)B, while
the voltage across L2 is denoted by x. The current flowing
into L1 is I1 = (1 − rin)B/Rr − V/(iωLe), while the current
flowing (down) into L2 is I2 = −x/Rtl. Using the currents I1

and I2, we write transformer equations for voltages x and V

as

x = iωM

[
(1 − rin)B

Rr
− (1 + r)inB

iωLe

]
− iωL2

x

Rtl
, (B4)

(1 + rin)B = iωL1

[
(1 − rin)B

Rr
− (1 + rin)B

iωLe

]

−iωM
x

Rtl
. (B5)

From these two equations, we can find the reflection amplitude
rin and the transmission amplitude t̃in = x/B (note that
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|t̃in|2Rr/Rtl + |rin|2 = 1):

rin = −1 − b

1 + b
, (B6)

t̃in = i
2ωM

1 + b

(
1

Rr
+ ib

ωLe

)
1

1 + iωL2/Rtl
, (B7)

where

b =
iωL1

Rr
+ ω2M2

RrRtl(1 + iωL2/Rtl)

1 + L1

Le

− iωM2

RtlLe(1 + iωL2/Rtl)

(B8)

= iωL1/Rr

L1

Le

+
[

1 − iωM2

RtlL1(1 + iωL2/Rtl)

]−1 . (B9)

Note that the transmission and reflection amplitudes for the
wave incident from outside of the resonator are

t̃out = Rr

Rtl
t̃in, rout = − t̃in

(t̃in)∗
rin. (B10)

Since the transmission amplitude depends on the direction,
it is convenient to introduce the effective amplitude t, which
does not depend on the direction,

t =
√

Rr

Rtl
t̃in =

√
Rtl

Rr
t̃out, |t|2 + |rin(out)|2 = 1. (B11)

Equations (B6)–(B9) and (B11) give us t and r in the rotating
frame eiωt . For the rotating frame e−iωt we need to conjugate
t and r (and b), thus obtaining Eqs. (48)–(50) in the main text.

For an estimate let us use the following parameters (similar
to the parameters of Ref. [20]): Rr = 80 �, Rtl = 50 �, L1g =
L2g = 480 pH, Mg = 140 pH, ω/2π = 6 GHz, and Le = 180
pH (corresponding to d/λ = 0.013). Then Eqs. (B6)–(B9)
and (B11) for small M give b ≈ 0.066i, rin ≈ −e−0.13i , and
t ≈ 0.034ie−0.5iM/Mg . The resonator leakage time is then
τ ≈ (Mg/M)2 × 72 ns.

Note that in the case when ωM � Rtl, we can replace the
denominator of Eq. (B9) with L1/Le + 1. Then

b ≈ i
ωLe/Rr

1 + Le/L1
, (B12)

and if ωLe � Rr (which means d � λ/4), then |b| � 1.
In this case, the reflection and effective transmission ampli-
tudes (B6) and (B11) can be approximated (for the rotating
frame eiωt ) as

rin ≈ − exp

[
− 2ωLeL1

Rr(L1 + Le)
i

]
, (B13)

t ≈ i
2ωLeM√

RrRtl (L1 + Le)

1

1 + iωL2/Rtl
. (B14)

The latter equation shows that in the first approximation
the phase of t does not change with M , and for the case
ωL2 � Rtl the value of t is close to being purely imaginary.
Note that Eq. (B14) uses the approximation 1 + b ≈ 1 in
the denominator of the first factor in Eq. (B7). Without this
approximation (still using the above formula for b), the factor

L1 + Le in the denominator of Eq. (B14) should be replaced
with a more accurate term L1 + Le + iωL1Le/Rr. As we
checked numerically, this gives a much better approximation
for small M (mostly for the phase of t), but there is no
significant improvement of accuracy for intermediate values
of M , corresponding to |t| � 0.05.

The resonator frequency ωr slightly changes when the
mutual inductance M is varied, because this slightly changes
the phase of the reflection amplitude rin. The frequency change
can be calculated as

δωr ≈ 2 ω0
δ(arg rin)

2π
, (B15)

where the factor of 2 comes from the assumption of a λ/4
resonator, and as ω0 we choose the resonator frequency at
M = 0. [Note the sign difference compared with Eq. (51)
because of the different rotating frame.]

To estimate the frequency change �ωr = ωr(M) − ωr(0)
to first order, we can expand Eq. (B9) to linear order in M

[which comes from changing L1 in Eq. (B12), see Eq. (B2)]
and then use δ(arg rin) = −[2/(1 + |b|2)] δ|b|, which follows
from Eq. (B6) for a positive-imaginary b. Thus we obtain

�ωr ≈ −ω0

π

2

1 + |b|2
ω0L

2
e

Rr(L1 + Le)2
M, (B16)

where b is given by Eq. (B12), and L1 should be evaluated at
M = 0. Since t is also proportional to M in the first order [see
Eq. (B7)], the ratio �ωr/|t| is approximately constant,

�ωr

|t| ≈ −ω0

π

√
1 + (ω0L2/Rtl)2√

1 + |b|2

√
Rtl

Rr

Le

L1 + Le

, (B17)

where L1 and L2 should be evaluated at M = 0, and for typical
experimental parameters |b|2 can be neglected [we keep the
very small terms with |b|2 in Eqs. (B16) and (B17) to have exact
formulas at M → 0]. This formula describes the numerical
dependence �ωr(|t|) shown in Fig. 12 very well, giving an
exact result at |t| → 0 and a relative deviation of 3.2% at
|t| = 0.1. It is interesting that the dependencies of |t| and �ωr

on M are both significantly nonlinear (see, e.g., the dashed line
in Fig. 12); however, these nonlinearities partially compensate
each other to produce a smaller nonlinearity in �ωr(|t|).

While Eq. (B16) gives only the linear component of the
dependence �ωr(M), a better approximation can be based on
using Eq. (B12) to find b(M) − b(0) and then convert it into
�ωr via Eq. (B15). In this way, we obtain

�ωr ≈ − 2ω2
0L

2
e/(1 + |b|2)

πRr(L1g + Mg + Le)(L1g + Mg + Le + M)
M,

(B18)

in which the term |b|2 can be neglected. This formula gives
a nonlinear dependence �ωr(M) due to the presence of M

in the denominator. We checked that this formula correctly
describes about 80% of the numerical nonlinearity of the
�ωr(M) dependence for the parameters of Fig. 12. There is a
similar dependence on M in the denominator of Eq. (B14) for
t(M) dependence, thus explaining why the two nonlinearities
partially cancel each other to produce a much more linear
dependence �ωr(|t|) in Fig. 12.
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