
Analysis of a tunable coupler for superconducting phase qubits

Ricardo A. Pinto and Alexander N. Korotkov*
Department of Electrical Engineering, University of California, Riverside, California 92521, USA

Michael R. Geller
Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA

Vitaly S. Shumeiko
Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, SE-41296 Gothenburg, Sweden

John M. Martinis
Department of Physics, University of California, Santa Barbara, California 93106, USA

�Received 8 July 2010; published 28 September 2010�

This paper presents a theoretical analysis of the recently realized tunable coupler for superconducting phase
qubits �R. C. Bialczak et al., arXiv:1007.2219 �unpublished��. The coupling can be turned off by compensating
a negative mutual inductance with a tunable Josephson inductance. The main coupling in this system is of the
XX type and can be zeroed exactly, while there is also a small undesired contribution of the ZZ type. We
calculate both couplings as functions of the tuning parameter �bias current� and focus on the residual coupling
in the OFF regime. In particular, we show that for typical experimental parameters the coupling OFF/ON ratio
is few times 10−3, and it may be zeroed by proper choice of parameters. The remaining errors due to physical
presence of the coupler are on the order of 10−6.
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I. INTRODUCTION

Superconducting qubits1 are potential building blocks of a
quantum computer. Among their advantages in comparison
with other qubit types are an efficient control with voltage/
current/microwave pulses and use of a well-developed tech-
nology suitable for large-scale integration. Recent demon-
strations of simple quantum algorithms2,3 and three-qubit
entanglement4,5 with superconducting qubits are important
steps toward a practical quantum computation.

In the standard idea of a gate-based quantum
computation6 it is important that the qubits are decoupled
from each other for most of the time, and the coupling of a
desired type between two �or three� qubits is switched on
only for a quantum gate operation, while it is switched off
again after that. Since the superconducting qubits cannot be
physically moved in space, such coupling/decoupling should
be realized by changing control parameters of a circuit. The
simplest idea is to tune the qubits in resonance with each
other for efficient coupling and move them out of resonance
for decoupling �see, e.g., Refs. 2–5�. However, this requires
avoiding unwanted resonances, and with increasing number
of qubits may lead to the problem of “spectral crowding.”
Even more important limitation of this approach is the fol-
lowing. Because the effective coupling strength when the
qubits are detuned by an energy �E is of order g2 /�E, where
g is the tuned value, the ratio of the “switched-off” and
“switched-on” coupling strengths is OFF /ON�g /�E. This
“OFF/ON ratio” characterizes a coupler’s ability to success-
fully turn on and off the coupling between qubits. �E /h is
limited to about a gigahertz in current superconducting qubit
devices. To make the ratio small then requires g to be small,
which makes gate operations slow. For example, to realize an
OFF/ON ratio of 10−3 when �E /h=1 GHz would require g
to be 1 MHz, which is unacceptably small.

A different idea is to introduce an extra element between
the qubits: an adjustable coupler, which can turn the coupling
on and off. It is a much better approach from the architecture
point of view since it allows easier design of complex quan-
tum circuits. This has motivated several experimental7–12 and
theoretical13–23 studies of adjustable couplers for supercon-
ducting qubits.

In this paper we theoretically analyze operation of a re-
cently realized12 tunable coupler for superconducting phase
qubits, which demonstrated current-controlled tuning of the
XX-type coupling from 0 to 100 MHz. In the next section we
discuss the Hamiltonian of the analyzed Josephson circuit
and our definition of the two-qubit coupling frequencies �XX
and �ZZ, corresponding to the XX and ZZ types of interaction
�for our system typically ��XX�� ��ZZ�, so the main coupling
is of the XX type�. In Sec. III we find �XX and �ZZ in a
simple semiclassical way while in Sec. IV similar results are
obtained in the lowest-order quantum analysis. We show that
both �XX and �ZZ can cross zero as functions of the control
parameter �bias current�, but typically not simultaneously,
thus leading to a nonvanishing residual coupling, which is
discussed in Sec. V. In particular, we show that typical
OFF/ON ratio for the coupler is few times 10−3; however, a
minor modification of the experimental circuit12 �addition of
a small coupling capacitance� can zero the residual coupling,
thus zeroing the OFF/ON ratio. Actually, this does not mean
complete decoupling, because we rely on the two-qubit de-
scription of a more complicated circuit. The remaining cou-
pling effects are also discussed in Sec. V and are shown to
lead to errors on the order of 10−6. Section VI presents nu-
merical results of the quantum analysis; for typical experi-
mental parameters they are close to the analytical results.
Section VII is the conclusion. In Appendix we discuss the
position and momentum matrix elements for an oscillator

PHYSICAL REVIEW B 82, 104522 �2010�

1098-0121/2010/82�10�/104522�11� ©2010 The American Physical Society104522-1

http://dx.doi.org/10.1103/PhysRevB.82.104522


with weak cubic nonlinearity and derive improved analytics
for �XX and �ZZ.

II. SYSTEM AND HAMILTONIAN

Let us consider the system12 shown in Fig. 1, which con-
sists of two flux-biased phase qubits24 characterized by ca-
pacitances C1 and C2, inductances L1 and L2, and Josephson
energies EJ1 and EJ2 of the junctions �in Fig. 1 the supercon-
ducting phases across these Josephson junctions are denoted
as �1 and �2�. The qubits are coupled via an additional Jo-
sephson junction �characterized by C3 and EJ3� with an ad-
justable bias current IB; the qubits are connected to this junc-
tion via inductances L4 and L5, which have a negative mutual
inductance −M �M �0�. We also introduce the qubit cou-
pling via a very small capacitance Ca, which was not imple-
mented in the experiment,12 but may be important in future
experiments for turning the coupling off more precisely.

The general idea of this scheme12 is that the Josephson
inductance L3 of the middle junction is essentially in series
with the mutual inductance −M, and therefore �in absence of
Ca� the coupling is expected to be �crudely� proportional to
L3−M. Then varying L3 by varying the bias current IB, it is
possible to adjust the qubit-qubit coupling strength, which is
expected to cross zero when L3�M.

The Hamiltonian of the system can be derived in the stan-
dard way25,26 and written in terms of the phases �i �i
=1,2 ,3� across the three Josephson junctions and the conju-
gated momenta pi ���i , pj�= ı��ij�, which are the correspond-

ing node charges, multiplied by �̃0��0 /2	=� /2e

H = 	
i=1

3 
 pi
2

2C̃i�̃0
2

− EJi cos �i� + 	
i=1

2
�̃0

2

2Li
��i − �e,i�2 − IB�̃0�3

+
C̃a

C1C2

p1p2

�̃0
2

+
M̃

L̃4L̃5

�̃0
2��1 − �3 − �e,4���2 − �3 − �e,5�

+
�̃0

2

2L̃4

��1 − �3 − �e,4�2 +
�̃0

2

2L̃5

��2 − �3 − �e,5�2, �1�

where C̃1=C1+C2Ca / �C2+Ca� and C̃2=C2+C1Ca / �C1+Ca�
are the effective qubit capacitances, C̃3=C3 �introduced for
notational convenience�, �e,1 and �e,2 are the external di-
mensionless qubit fluxes, �e,4 and �e,5 are the external di-
mensionless fluxes through the loops containing L4 and L5

�we will often assume �e,4=�e,5=0�, C̃a= �1 /Ca+1 /C1
+1 /C2�−1 is the effective coupling capacitance, and renor-
malized coupling inductances are

L̃4

L4
=

L̃5

L5
=

M̃

M
= 1 −

M2

L4L5
. �2�

All terms in Eq. �1� have clear physical meaning.27 Introduc-
ing the shifted variables ��i=�i−�i,st, where the set ��i,st
corresponds to the minimum of the potential energy, we re-
write Hamiltonian �1� as

H = H1 + H2 + H3 + Hint, �3�

Hi =
pi

2

2C̃i�̃0
2

+ Ui���i�, i = 1,2,3, �4�

Hint =
C̃a

C1C2

p1p2

�̃0
2

+ �̃0
2� M̃

L̃4L̃5

��1��2 −
1 + M̃/L̃5

L̃4

��1��3

−
1 + M̃/L̃4

L̃5

��2��3� , �5�

where the potentials Ui have minima at ��i=0 and the cor-

responding plasma frequencies 
i,pl= �L̃iC̃i�−1/2 are governed
by the effective inductances

L̃1 = �L1
−1 + L̃4

−1 + �̃0
−2EJ1 cos �1,st�−1, �6�

L̃2 = �L2
−1 + L̃5

−1 + �̃0
−2EJ2 cos �2,st�−1, �7�

L̃3 = 
 1

L̃4

+
1

L̃5

+
2M̃

L4L̃5

+
1

�̃0

�I3,cr
2 − I3,st

2 �−1

, �8�

where in the last equation we expressed EJ3 cos �3,st in terms
of the corresponding junction current I3,st� IB and the critical

current I3,cr=EJ3 /�̃0.
The Hamiltonians H1 and H2 correspond to the separated

qubits; in absence of coupling two lowest eigenstates in each
of them correspond to the logic states �0� and �1�. Notice that
because of an anharmonicity of the potentials, the qubit fre-
quencies 
1 and 
2 �defined via energy difference between
�1� and �0� for uncoupled qubits� are slightly smaller than the
plasma frequencies 
1,pl and 
2,pl. The coupler is character-
ized by the Hamiltonian H3; its similarly defined frequency

3 is slightly smaller than 
3,pl. In the experiment12 
3 was
almost an order of magnitude higher than 
1,2, and the cou-
pler had only virtual excitations. In our analysis we also
assume absence of real excitations in the coupler; however,
in general we do not assume 
3�
1,2 �except specially men-
tioned�, we only assume absence of resonance between the
coupler and the qubits.

IB

L1

L4
L2

L5
C1

C3

Ca

C2φ1 2φ

Φe,1 Φe,2
Φe,4 Φe,5

3φ
L3( )

−M

FIG. 1. The analyzed scheme of two-qubit coupling, which is
controlled by the bias current IB of the coupling Josephson junction.
Indices 1 and 2 refer to the two qubits and index 3 refers to the
coupling junction. Coupling inductors L4 and L5 have a negative
mutual inductance −M. The current IB controls the Josephson in-
ductance L3 of the coupling junction, which effectively adds to −M.
An additional small coupling is via capacitance Ca.
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Our goal is to calculate the coupling between the two
qubits due to Hint �we assume a weak coupling�. In general,
the coupling between two logic qubits can be characterized
by nine real parameters. However, since for phase qubits the
energies of the states �0� and �1� are significantly different,
we can use the rotating wave approximation �RWA�, i.e.,
neglect terms creating two excitations or annihilating two
excitations; then there are only three coupling parameters in
the rotating frame

Hc =
��XX

4
��X

�1��X
�2� + �Y

�1��Y
�2�� +

��XY

4
��X

�1��Y
�2� − �Y

�1��X
�2��

+
��ZZ

4
�Z

�1��Z
�2�, �9�

where superscripts of the Pauli matrices indicate qubit num-
bering. Moreover, from the symmetry of the interaction
Hamiltonian �5� it follows that �XY =0 �because matrix ele-
ments of ��i are real, and for pi they are imaginary�; there-
fore our goal is to calculate only two coupling frequencies:
�XX and �ZZ. Notice that since the XX and YY interactions
are indistinguishable in the RWA �both correspond to
�+

�1��−
�2�+�−

�1��+
�2��, we may rewrite the first term in Eq. �9� as

���XX /2��X
�1��X

�2�.
The considered system of Fig. 1 has a large Hilbert space,

which can, in principle, be reduced to a two-qubit space in a
variety of ways, giving, in general, different values of �XX
and �ZZ. To avoid ambiguity, we define the coupling fre-
quencies in terms of the exact eigenstates of the full physical
system. In particular, we associate the two-qubit logic states
�00� and �11� with the corresponding eigenstates of the full
Hamiltonian �3� and denote their energies as E00 and E11; for
this association we start with the product state using the
ground state for the coupler, and then find the nearest eigen-
state. Similarly, instead of trying to define the uncoupled
logic states �01� and �10� �that is ambiguous, though a natural
definition can be based on the dressed states discussed in
Sec. IV�, we deal with the eigenstates resulting from their
coupling, which are associated with two exact eigenstates of
the full system; their energies are denoted as E+ and E−
�E+�E−�.

Then the coupling �ZZ is defined as

��ZZ = E00 + E11 − �E+ + E−� , �10�

which is obviously consistent with Eq. �9� for logic qubits �a
similar definition has been used in Ref. 2�. The coupling �XX
can be defined as the minimal splitting in the avoided level
crossing between �01� and �10�, i.e., as

���XX� = min

1−
2

�E+ − E−� �11�

with the sign of �XX easily obtained by comparing with Eq.
�9�. Actually, the definition in Eq. �11� cannot be applied to
an arbitrary qubit detuning 
1−
2 �in a symmetric case it
works only for degenerate qubits�; such generalization of
�XX definition can be done by comparing exact eigenstates
with the standard avoided level-crossing behavior �discussed
in more detail in Secs. IV and V�. Notice that our definitions
of �XX and �ZZ do not need any assumption of a weak

coupling �this is their main advantage�; however, a weak
coupling will be assumed in derivation of analytical results.

III. SIMPLE SEMICLASSICAL ANALYSIS

Let us first calculate �XX and �ZZ in a simple, essentially
electrical engineering way �we will see later that the result is
close to the quantum result�. For simplicity in this section we

assume �L4 ,L5�� �L̃1 , L̃2 , L̃3 ,M�, Ca �C1 ,C2�, so that the
coupling is weak and the tilde signs in many cases can be
avoided. We also replace the middle junction with the effec-

tive inductance L3=�̃0 /�I3,cr
2 − I3,st

2 ��̃0 /�I3,cr
2 − IB

2 �in this

approximation L̃3�L3�.
The coupling �XX corresponds to the frequency splitting

between the symmetric and antisymmetric modes of the two-
qubit oscillations. So, let us assume degenerate qubits, 
1
=
2=
qb, and find the splitting in the classical linear system.
Notice that at frequency 
qb the capacitance C3 is equivalent
to the inductance −1 / �
qb

2 C3�, and therefore the parallel con-
nection of L3 and C3 is equivalent to the inductance

L3
eff =

L3

1 − 
qb
2 L3C3

=
L3

1 − �
qb/
3�2 , �12�

notice that here 
3=
3,pl for the coupler since we assume a
linear system.

Suppose 
�
qb is a classical eigenfrequency and the first
qubit voltage is V1ei
t. Then using the phasor representation,
we find the current through L4 as I4=V1 / �i
L4�; it induces
the voltage Vcp= i
�L3

eff−M�I4 in the coupling inductances,
which causes the current I5=Vcp / �i
L5�=V1�L3

eff

−M� / �i
L4L5� flowing through L5 into the second qubit.
Adding this current to the current Ia= i
CaV1 through Ca, we
get the total current I2= I5+ Ia, flowing into the second qubit.
The extra current I2 is equivalent to changing the qubit ca-
pacitance C2 by �C2=−I2 / �i
V2�, where V2= �V1

�C1 /C2 is
the second qubit voltage for the symmetric and antisymmet-
ric modes �the factor �C1 /C2 comes from the condition of
equal energies in the two qubits�. The effective change in the
capacitance slightly changes the oscillation frequency

�L̃2C2�−1/2 so the eigenfrequency can be found as 
=
qb�1
−�C2 /2C2�. Therefore, the frequency splitting due to cou-
pling is ��XX�=
qb��C2� /C2, and substituting �C2 we finally
find

�XX =
M − L3/�1 − �
qb/
3�2�

L4L5
qb
�C1C2

+
Ca
qb

�C1C2

, �13�

where the explicit expression in Eq. �12� for L3
eff has been

used and the sign of �XX is determined by noticing that a
positive �XX should make the frequency �energy� of the sym-
metric mode larger than for the antisymmetric mode �see Eq.
�9��.

The most important observation is that �XX depends on
the bias current IB, which changes L3, and for a proper bias-
ing the coupling �XX can be zeroed exactly. If the correction
due to the Ca term is small and also 
qb /
31 �as in the
experiment12�, then �XX is zeroed when L3�M.

The coupling ��ZZ�Z
�1��Z

�2� /4 in Eq. �9� originates from
anharmonicity of the qubit potentials and corresponding dif-

ANALYSIS OF A TUNABLE COUPLER FOR… PHYSICAL REVIEW B 82, 104522 �2010�

104522-3



ference between the average Josephson phases for states �1�
and �0�, which we denote as ��10

�i� for the ith qubit. This leads

to the extra dc current �̃0��10
�1� /L4 through the inductance

L4, when the first qubit changes state from �0� and �1� and

similar dc current change �̃0��10
�2� /L5 through L5 for the

second qubit. As a result, the state �11� acquires an additional
magnetic interaction energy, which is the product of these
two currents multiplied27 by M −L3. This corresponds to

�ZZ = ��10
�1���10

�2��̃0
2

�

M − L3

L4L5
. �14�

Comparing this result with Eq. �13� for �XX, we see absence
of the contribution due to Ca �which is small anyway� and a
similar proportionality to M −L3, though without the correc-
tion 1− �
qb /
3�2. This means that by changing the bias cur-
rent IB �which affects L3�, the coupling �ZZ can be zeroed,
and this happens close to the point where �XX is zeroed.
Except for the vicinity of the crossing point, ��ZZ /�XX�1
because ��10

�i� is small �compared to the ground-state width�
for a weak anharmonicity; therefore �XX is the main cou-
pling in our system.

IV. QUANTUM ANALYSIS (ANALYTICS)

For the quantum analysis let us rewrite the interaction
Hamiltonian �5� as

Hint = K13�a1 + a1
†��a3 + a3

†� + K23�a2 + a2
†��a3 + a3

†�

+ K12�a1 + a1
†��a2 + a2

†� + K12
a �a1 − a1

†��a2 − a2
†� ,

�15�

where ai+ai
†=��i

�2mi
i /�, ai−ai
†= ıpi

�2 /�mi
i, and

K13 = −
1 + M̃/L̃5

L̃4

k13, K23 = −
1 + M̃/L̃4

L̃5

k23, �16�

K12 =
M̃

L̃4L̃5

k12, K12
a = −

C̃a

C1C2

�2

4k12
, �17�

kij =
��̃0

2

2�mi
imj
 j

, mi = �̃0
2C̃i �18�

�we use the creation/annihilation operators ai
† and ai only for

brevity of notatons; in their normalization we use the fre-
quency 
i between two lowest eigenstates instead of the
plasma frequency�.

In order to find �XX, we have to solve the Schrödinger
equation H����=E����� for the two eigenstates ���� �E+
�E−�, corresponding to the coupled logic states �10� and
�01�. The wave function can be written in the product-state
basis as ����=���100�+�� , �001�+¯, where in this nota-
tion we show the energy levels �n1n3n2� of the first qubit, the
coupling oscillator �in the middle�, and the second qubit, and
the terms not shown explicitly should be relatively small in
the weak-coupling case. Comparing the amplitudes and en-
ergies with the standard avoided level crossing behavior, let

us define two coupling frequencies, �XX
+ and �XX

− , as

�XX
� =

E� − E�

�

2��/��

1 + ���/���2 . �19�

We have to define two frequencies because in general
�+ /�+�−�− /�−, in contrast to the ideal case of two logic
qubits; this is the price to pay when the two-qubit language is
applied to a more complicated physical system. However, the
difference ��XX

+ −�XX
− � is typically very small; moreover, for

degenerate qubits in a symmetric system �XX
+ =�XX

− �because
then ��� /���=1� so that we need only a single frequency
�XX, which in this case coincides with the definition in Eq.
�11�. We will neglect the difference between �XX

� and �XX
unless specially mentioned �the difference is important in the
case of strongly detuned qubits�.

For the analysis it is convenient to express a solution of
the Schrödinger equation H���=E��� as ���=���100

dr �
+���001

dr �, where the dressed states ��100
dr � and ��001

dr � are de-
fined in the following way. The state ��100

dr � expanded in the
product-state basis has the contribution from the state �100�
with amplitude 1 and zero contribution from the state �001�,
i.e., ��100

dr �100�=1 and ��100
dr �001�=0. Also, ��100

dr � satisfies
equation �n�H��100

dr �=E�n ��100
dr � for all basis elements �n�

��n1n3n2� except �100� and �001�. The dressed state ��001
dr � is

defined similarly, except now ��001
dr �100�=0 and ��001

dr �001�
=1. Notice that a dressed state is not a solution of an eigen-
value problem; for a given energy E it is a solution of an
inhomogeneous systems of linear equations. Also notice that
we do not need to normalize the wave functions.

Constructing the dressed states in this way, we have to
satisfy �self-consistently for E� only two remaining equations
to solve the Schrödinger equation

��100�H��100
dr � + ��100�H��001

dr � = E� , �20�

��001�H��100
dr � + ��001�H��001

dr � = E� . �21�

Using linear algebra it is easy to prove the reciprocity rela-
tion �100�H��001

dr �= �001�H��100
dr �� �in our case the complex

conjugation is actually not needed since the matrix elements
are real�, and therefore Eqs. �20� and �21� are similar to the
standard equations for an avoided level crossing. Hence, the
matrix elements E100

dr = �100�H��100
dr � and E001

dr = �001�H��001
dr �

play the role of renormalized self-energies of the two-qubit
logic states �10� and �01� while the two-qubit coupling can be
calculated as

�XX =
2

�
�001�Hint��100

dr � =
2

�
�100�Hint��001

dr � �22�

so that the eigenenergies are given by the usual formula
E�= �E100

dr +E001
dr ���E100

dr −E001
dr �2+�2�XX

2 � /2 �in Eq. �22� we
wrote Hint instead of H because there is obviously no contri-
bution from the noninteracting part�. Notice that the dressed
states and therefore the matrix elements depend on energy E,
in contrast to the standard level crossing. This leads to a
slight difference of �XX for the eigenstates E+ and E− and
also makes calculations using Eq. �22� slightly different from
the definition in Eq. �19�.
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To find �XX analytically, let us assume that the three os-
cillators are linear, Hi=�
i�ai

†ai+1 /2�, and use the lowest-
order perturbation theory. In the first order

��100
dr � = �100� + K13� �010�

E − �010
+

�2�210�
E − �210

� + K23
�111�

E − �111

+ �K12 + K12
a �

�2�201�
E − �201

, �23�

where the energies � of the basis states are only due to non-
interacting part H1+H2+H3 of Hamiltonian �3�. Then from
Eq. �22� we obtain

�XX =
2

�
�K12 − K12

a � +
2

�
K13K23� 1

E − �010
+

1

E − �111
� .

�24�

For degenerate qubits and weak coupling we can use ap-
proximation E��100=�001 in this equation so that E−�010
�−��
3−
qb� and E−�111�−��
3+
qb�; then using ex-
plicit expressions in Eqs. �16�–�18� for the matrix elements
we finally obtain

�XX =
M̃ − L3

�/�1 − �
qb/
3�2�

L̃4L̃5
qb
�C̃1C̃2

+
Ca

�
qb

�C̃1C̃2

, �25�

where L3
�= L̃3�1+ M

L5
��1+ M

L4
�, Ca

�= C̃a�C̃1C̃2 /C1C2�, and we

used 
3= �L̃3C3�−1/2. Comparing this equation with the clas-
sical result Eq. �13�, we see that the results coincide under
assumptions used for the classical derivation.

Validity of the perturbation theory requires assumptions
�K13 /��
3�
qb��1, �K23 /��
3�
qb��1, �K12 /�
qb�1,
and �K12

a /�
qb�1, which basically mean that in Eq. �25� the

contributions to �XX due to M̃ and Ca
� should be much

smaller than 
qb, and the contribution L3
� / L̃4L̃5
qb

�C̃1C̃2
should be much smaller than �
3−
qb�2 /
3. Notice that we
do not need an assumption 
qb /
31, we only need ab-
sence of resonance between these frequencies; in fact, 
3 can
be even smaller than 
qb.

To find analytics for �ZZ, it is necessary to consider non-
linear oscillators, because this is what we expect from the
quasiclassical analysis and also because in the linear case for
degenerate qubits �101=�200=�002, and therefore there is an
ambiguity in defining the logic state �11�. In order to calcu-
late �ZZ via Eq. �10�, we need to find the eigenenergies E00
and E11 while calculation of E++E−�E100

dr +E001
dr has been

already discussed above. To find the ground-state energy E00
we introduce the dressed state ��000

dr � as a state satisfying the
Schrödinger equation �n�H���=E�n ��� �for a given E� for all
basis elements �n� except �000� and also satisfying condition
�000 ��000

dr �=1. In a similar way as above, we construct ��000
dr �

in the first-order perturbation theory and then find E00 as
E000

dr = �000�H��000
dr �, using approximation E��000 in the con-

struction of the dressed state. To find the eigenenergy E11, we
introduce the dressed state ��101

dr � in a similar way, then cal-
culate it in the first order, and then find E11 as E101

dr

= �101�H��101
dr � assuming E��101 for the dressed state.

Even though this is a straightforward procedure, now
there are infinitely many terms in the first-order dressed
states because of the nonlinearity, and there are still many
terms even if we keep only lowest orders in nonlinearity.
However, most of the contributions to the energies cancel
each other in the combination ��ZZ=E000

dr +E101
dr −E100

dr −E001
dr

and the largest noncanceling contributions yield

�ZZ =
b1b2

�

K12 +

2K13K23

�101 − �111
� , �26�

where bi is defined for ith oscillator as

bi =
�1���i�1� − �0���i�0�

��/2mi
i

. �27�

Notice that �ZZ depends on the nonlinearity of qubits �via b1
and b2� while nonlinearity of the coupling junction gives
only a small correction �see Appendix� to the second term in
Eq. �26�, which is neglected in the lowest order. Also notice
that in Eq. �26� we neglected terms proportional to K12

2 , be-
cause they are on the same order as the neglected terms
��K13K23�2. Using the definitions in Eqs. �16�–�18�, we re-
write Eq. �26� in the form

�ZZ =
b1b2

2

M̃ − L3
�

L̃4L̃5
�
1
2

�C̃1C̃2

, �28�

which coincides with the classical result in Eq. �14� under
assumptions used for the classical result, since ��10

�i�

=bi�̃0
−1�� /2C̃i
i.

In deriving Eq. �26� we have used the lowest order of the
perturbation theory. However, there are higher-order terms,
which are significantly enhanced because the basis state
�101� is close to resonance with the states �200� and �002�
even for degenerate qubits. Let us account for this effect by
analyzing the repulsion between these levels and computing
the corresponding shift of the eigenenergy E11. Following the
above formalism for �XX, we find the level splitting due to
interaction between �101� and �200� to be S�11�,�20�
=2�101�Hint��200

dr �. Then writing ��200
dr � in the same way as in

Eq. �23�, we find S�11�,�20���2��XX, which is essentially the
same result as for a qubit interacting with a resonator.28 Be-
cause of the level repulsion, the eigenenergy E11 has a shift
by ��200−�101����200−�101�2+2�2�XX

2 � /2, which in the dis-
persive case �101−�200� ��XX� becomes �2�XX

2 /2��101−�200�
�we assume �101��200 so the shift is up in energy�. In an-
other notation �101−�200=��
2−
1+�
1�, where by ��
i
we denote the correction for the second excited level energy,
2�1−�0−�2, for ith qubit. A similar shift up in energy for E11
comes from the interaction with the level �002�. Adding these
two contributions, we modify Eq. �28� to become

�ZZ =
b1b2

2

M̃ − L3
�

L̃4L̃5
�
1
2

�C̃1C̃2

+
�XX

2

2

�� 1


2 − 
1 + �
1
+

1


1 − 
2 + �
2
� . �29�

Notice that for �ZZ we, in general, consider different qubit

ANALYSIS OF A TUNABLE COUPLER FOR… PHYSICAL REVIEW B 82, 104522 �2010�

104522-5



frequencies 
1 and 
2 while in Eq. �25� for �XX we assumed
nearly degenerate qubits; however, unless qubit detuning sig-
nificantly affects �XX �that will be discussed later�, we can
use definition 
qb= �
1+
2� /2 in Eq. �25�.

Since �ZZ has a major dependence on the qubit nonlin-
earity, let us discuss it in more detail �see also Appendix�.
For ith oscillator potential with an additional cubic term, it is
convenient to characterize nonlinearity by the ratio Ni
=Ubar,i /�
i,pl, where Ubar,i is the barrier height �assumed to
be at �� j �0� so that Ni is crudely the number of levels in
the quantum well �N1,2�5 in typical experiments with phase
qubits24�. For a weak cubic nonlinearity �Ni�1� one can
derive29 the following approximations:

bi � 1/�3Ni, �
i � �5/36Ni�
i. �30�

Therefore, away from the point where �XX�0, and neglect-
ing corrections due to nonzero Ca, 
qb /
3, and 
2−
1, the
ratio of couplings is

�ZZ

�XX
�

1

6�N1N2

+
18�N1 + N2�

5

�XX


qb
, �31�

which is quite small for typical experimental parameters. No-
tice that for Ni=5 �which is typically used for qubits� the
numerical values bi=0.289 and �
i /
i=0.0378 are signifi-
cantly different from what is expected from the large-N ana-
lytics Eq. �30� �in the cubic approximation for the qubit po-
tential bi and �
i /
i depend only on Ni�.

V. RESIDUAL COUPLING

Both �XX and �ZZ may cross zero when L3
� is varied by

adjusting the bias current IB. However, they are typically
zeroed at different values of L3

� that prevents turning the
two-qubit coupling completely off. Since ��ZZ /�XX�1
away from the zero-crossing points, let us characterize the
residual coupling by the ZZ-coupling value �ZZ

res at the point
where �XX=0. Using Eqs. �25� and �29�, we find for degen-
erate qubits

�ZZ
res �

b1b2

2 
 M̃�
qb/
3�2

L̃4L̃5
�C̃1C̃2
qb

−
Ca

�
qb

�C̃1C̃2

� , �32�

where we assumed 
qb /
31, as in the experiment.
It is natural to characterize the OFF/ON ratio for the ad-

justable coupling by the ratio �ZZ
res /�XX

ON, where �XX
ON is the

“fully on” XX coupling. Let us assume the operating regime
in which the ON coupling corresponds to zero-bias current,30

and at this point M̃ /L3
��2 �see Eq. �25��. Then �XX

ON

�M̃ /2L̃4L̃5
qb
�C̃1C̃2, and we find an estimate

�ZZ
res/�XX

ON � b1b2��
qb/
3�2 − Ca
�
qb

2 L̃4L̃5/M̃� . �33�

In particular, for Ca=0, N1=N2=5, and 
qb /
3�1 /5 �typi-
cal experimental parameters�, this gives OFF /ON�3
�10−3. The capacitance Ca�M /L4L5
3

2 needed to zero the
OFF/ON ratio is then around 0.6 fF for typical experimental
parameters L4,5�3 nH, M �200 pH, and 
3 /2	
�30 GHz.

Actually, since our analytics is only the leading-order cal-
culation while in �ZZ

res we have an almost exact cancellation

of contributions due to M̃ and L3
�, we cannot expect that Eqs.

�32� and �33� are accurate even in the leading order. Never-
theless, we can trust the result that the OFF/ON ratio is typi-
cally quite small, because both b1b2��3�N1N2�−1 and the
terms in the brackets in Eq. �33� are small. Moreover, the
OFF/ON ratio can be made exactly zero by choosing proper
values for 
qb /
3 and Ca. Even if our analytics missed a
small term in Eq. �33�, the OFF/ON ratio can be zeroed
either by increasing Ca or decreasing 
3, since this moves
�ZZ

res in the opposite directions.
Since �ZZ

res /�XX
ON is very small or even zero, we have to

carefully consider other effects, which do not vanish when
both �XX and �ZZ discussed above are zero. One of such
effects becomes clear when we consider the case of a strong
qubit detuning, �
1−
2�� ��XX�. In this case one would ex-
pect that the eigenstate close to the state �100� should have a
negligible contribution of the state �001� and vise versa �so
that the logic states �10� and �01� are decoupled�; however,
actually these contributions cannot be decreased to zero. As
seen from Eq. �24�, �XX depends on energy E, and therefore
it is slightly different for the two eigenstates with energies E+
and E−. The difference ��XX=�XX

+ −�XX
− is approximately

−4K13K23�E+−E−� /�3
3
2, which can be rewritten as

��XX �
− L3

��
1 − 
2�

L̃4L̃5
qb
�C̃1C̃2
3

� − 2�XX
ON �
1 − 
2�


3
, �34�

where we assumed 
3�
1,2 and used L3
��M̃ for nearly

OFF coupling �while M̃ /L3
��2 in the ON regime at IB=0�.

This means that if we zero the amplitude of the state �100� in
one of the eigenstates, there will still be a nonzero amplitude
of the state �001� in the other eigenstate �in contrast to an
ideal two-qubit situation�. Choosing the smallest �XX cou-
pling as ���XX /2, we obtain contributions −�XX

ON /2
3 of
the wrong states in both eigenstates. So, the error occupation
is ���XX

ON /2
3�2, which for typical parameters is around
10−6.

Another effect, which is related to inaccuracy of the RWA
approximation, can be characterized by the contribution of
the state �101� in the ground state. Using the second-order
perturbation theory for the dressed state ��000

dr � we find

�101��000
dr � =

K12 + K12
a +

K13K23

�000 − �110
+

K13K23

�000 − �011

�000 − �101
, �35�

which is approximately −�XX /4
qb when �XX is not close to
zero, exactly as expected for the non-RWA contribution
���XX /2��+

�1��+
�2� from the term ���XX /2��X

�1��X
�2� in the two-

qubit Hamiltonian. However, we are mostly interested in the
case �XX=0; then Eq. �35� becomes approximately
−�XX

ON /2
3, and the corresponding error occupation is
���XX

ON /2
3�2�10−6, same as for the strong-detuning effect.

VI. NUMERICAL RESULTS

To calculate �XX and �ZZ numerically, we first find the
phases ��1,st ,�2,st ,�3,st, which correspond to the minimum
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potential energy in Eq. �1�, and then find the eigenfunctions
and eigenenergies of Hamiltonian �3�–�5� using the product-
state basis of energy levels in the three anharmonic oscilla-
tors �in this calculation we use the cubic approximation for
the oscillator potentials�. After that the coupling �ZZ is cal-
culated from the eigenenergies using Eq. �10� while for �XX
we calculate two values, �XX

+ and �XX
− , using the definition in

Eq. �19�. However, for the case of degenerate qubits, which
we mostly consider below, there is no difference between
�XX

+ and �XX
− .

Figure 2�a� shows �XX and �ZZ as functions of the bias
current IB for the system with the following parameters:30

I1,cr= I2,cr=1.5 �A, I3,cr=3 �A, C1=C2=1 pF, C3=0.1 pF,
Ca=0, L1=L2=0.7 nH, L4=L5=3 nH, and M =0.2 nH. We
assume �e,4=�e,5=0 for the coupler loops while the qubit
external fluxes �e,1=�e,2 are chosen so that for the qubits
N1=N2=5; this corresponds to the qubit frequencies 
1 /2	
=
2 /2	=6.59 GHz, which are kept constant with changing
IB by the compensating change in external fluxes �e,1 and
�e,2. The results for �ZZ are multiplied by 5 for clarity �to
become visually comparable to �XX�. The solid lines in Fig.
2�a� show numerical results while dashed lines show the ana-
lytics using Eqs. �25� and �29�. One can see that overall the
analytics gives a pretty good approximation. Smaller numeri-

cal value for �XX than in analytics can be partially explained
by the corrections shown in Eqs. �A7� and �A8� in Appendix.
We have checked numerically that the beating frequency of
the classical small-amplitude oscillations is close to the ana-
lytical quantum result for �XX shown in Fig. 2�a� with a
typical difference on the order of 1 MHz.

The lines in Fig. 2�a� are not symmetric about IB=0 be-
cause of the current through the coupling junction coming
from the qubits, which adds to IB �the curves are symmetric
about IB=−0.122I3,cr; this asymmetry could be removed if
the qubits are biased with opposite fluxes, �e,2�−�e,1, so
that the currents from the qubits compensate each other�. At
zero bias �ON coupling� the coupling �XX /2	 is 34.3 MHz,
which �analytically� comes from 85.8 MHz coupling due to
the mutual inductance −M and compensating −51.1 MHz

from the inductance L̃3 of the coupling junction �analytical
total slightly differs from the numerical result�.

At both positive and negative IB the coupling �XX crosses

zero because of increase in L̃3, while �ZZ barely crosses zero

because of the similar increase in L̃3 and always positive
contribution from the level repulsion effect �see Eq. �29��.
Figure 2�b� is a blow-up of Fig. 2�a� near the crossing points
at positive IB. One can see that numerically calculated re-
sidual coupling �at �XX=0� is �ZZ

res /2	=−172 kHz so that
the OFF/ON ratio is 5�10−3. While this value of �ZZ

res is on
the same order as expected from the analytics �see dashed
lines�, it has the opposite �negative� sign. This apparently
happens because corrections to analytics in this case have a
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FIG. 2. �Color online� The coupling �XX /2	 and �ZZ /2	 �mul-
tiplied by 5 for clarity� as functions of the bias current IB. Solid
lines show numerical results while dashed lines show analytics us-
ing Eqs. �25� and �29�. The circuit parameters are: I1,cr= I2,cr

=1.5 �A, I3,cr=3 �A, C1=C2=1 pF, C3=0.1 pF, Ca=0, L1=L2

=0.7 nH, L4=L5=3 nH, M =0.2 nH; �e,4=�e,5=0, N1=N2=5
�
1 /2	=
2 /2	=6.59 GHz�. The panel �b� is a blow-up of the
panel �a� near the crossing points at positive IB. We see that �XX

=0 at IB / I3,cr=0.759 and the residual coupling �square symbol� is
�ZZ

res /2	=−172 kHz.
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FIG. 3. �Color online� �a� Same as in Fig. 2�b�, but for a circuit
with C3=0.3 pF. This makes positive �ZZ

res /2	=49 kHz �square
symbol�. �b� Same as in �a�, but with added coupling capacitance
Ca=0.155 pF, that produces �ZZ

res=0, i.e., the couplings �XX and
�ZZ are zeroed simultaneously.
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stronger effect than the effect of the term �
qb /
3�2 in Eq.
�25�; at the point where �XX=0 we have 
3 /2	
=38.6 GHz so �
qb /
3�2=0.029 is really quite small
�
3 /2	=49.6 GHz at IB=0�. Notice that a negative value of
�ZZ

res makes impossible to zero �ZZ
res by adding the capacitive

coupling via Ca.
In order to make �ZZ

res positive, we can decrease 
3 by
increasing the coupling junction capacitance C3. Figure 3�a�
shows results for the same circuit with C3=0.3 pF, which is
three times larger than in Fig. 2. We show only vicinity of the
crossing points while the overall shape of the curves is quite
close to what is shown in Fig. 2�a�; in particular, �XX /2	
=32.5 MHz at IB=0. As we see from Fig. 3�a�, now �ZZ

res

becomes positive, �ZZ
res /2	=49 kHz �at this crossing point


3 /2	=22.9 GHz, and it is 28.7 GHz at IB=0�. The corre-
sponding OFF/ON ratio is now 1.5�10−3.

Obviously, �ZZ
res=0 for some intermediate value of C3. We

have calculated that it happens for C3=0.253 pF �keeping
other parameters unchanged�. If C3 is larger than this value
so that �ZZ

res is positive, we can zero the residual coupling by
adding small coupling capacitance Ca. Figure 3�b� shows the
results for C3=0.3 pF and Ca=0.155 fF �other parameters
unchanged�, in which case �ZZ

res=0.
At the point where �XX=�ZZ=0, we have to pay a special

attention to other effects which couple the two qubits. In
particular, we should consider what happens when the qubits
are detuned in frequency. Figure 4 shows �XX

+ , �XX
− , and �ZZ

�multiplied by 10� as functions of the detuning 
1−
2 for
the circuit with C3=0.3 pF and Ca=0.155 fF �other param-
eters as above� at the bias current IB=0.742I3,cr; these param-
eters correspond to the point �XX=�ZZ=0 in Fig. 3�b�. For
the detuning we change the external fluxes �e,1 and �e,2 �and
correspondingly change N1 and N2� while keeping the fre-
quency 
qb= �
1+
2� /2 unchanged �and we still assume
�e,4=�e,5=0�. As seen in Fig. 4, the couplings �XX

+ and �XX
−

coincide when 
1=
2; however, their difference grows with
the qubit detuning. The dashed lines show the analytics for
���XX /2 using the first expression in Eq. �34�. There is a
significant difference between the analytical and numerical
results because the ratio 
qb /
3=6.59 GHz /23.0 GHz is
not very small; the next order correction to the analytics by

the factor �1+3�
qb /
3�2�, which comes from Eq. �24�, ac-
counts for most of the difference. Even though ��XX

� � grows
with the detuning, the corresponding error state occupation
�� /���2 is constant and is only 1.5�10−6. The detuning also
changes �ZZ; however, the effect is minor, and �ZZ /2	=
−42.6 kHz at the detuning of 1 GHz. An almost vertical
feature on the �ZZ line at the detuning of 0.23 GHz is due to
the level crossing between states �101� and �002�. It is rela-
tively small because we have chosen the operating point with
�XX=0 in absence of detuning; otherwise at the level cross-
ing point the coupling �ZZ changes by approximately
��XX /�2 �see discussion above Eq. �29��.

For the numerical results in this section we have used the
cubic approximation for the qubit and coupling oscillator
potentials in calculation of the matrix elements of the Hamil-
tonian. We have also done calculations using the exact po-
tential and checked that the values of �XX and �ZZ change
only slightly, though the residual coupling changes more sig-
nificantly as expected for an almost exact cancellation of
contributions with opposite signs.

VII. CONCLUSION

The main goal of this paper has been calculation of the
two-qubit coupling frequencies �XX and �ZZ for the circuit
of Fig. 1, and analysis of their dependence on the bias cur-
rent IB, which can be used to turn the coupling on and off.12

We have shown that a simple “electrical engineering” analy-
sis for �XX as the beating frequency of two classical oscilla-
tors gives a result, Eq. �13�, which is close to the analytical
�lowest-order� quantum result, Eq. �25� �the formulas coin-
cide, except minor renormalization of parameters�. In turn,
the quantum analytics for �XX is close to the results of the
quantum numerical analysis �Fig. 2�; a minor difference is
due to higher orders in perturbation. The electrical engineer-
ing analysis for �ZZ, Eq. �14�, is not fully classical; it needs
the language of quantum energy levels and shows that �ZZ
originates due to anharmonicity of the qubit oscillators,
which shifts the average flux. However, this analysis corre-
sponds to only one term in the quantum analytics, Eq. �29�,
while the other significant contribution is due to the level
repulsion between the states with the single excitation in
each qubit and with the double excitation in one of them. The
results of the numerical quantum analysis for �ZZ are similar
to the quantum analytics �Fig. 2�.

As expected, our analysis shows that �XX is the main
two-qubit coupling in the considered circuit and �ZZ is typi-
cally much smaller. Nevertheless, in the analyzed numerical
example using realistic experimental parameters, the ratio
�XX /�ZZ is only around 5 for the coupling turned on �small
IB�, which means that corrections for nonzero �ZZ in experi-
mental algorithms are necessary.

The most practically important case is when the coupling
is almost off. The fact that �XX can be zeroed exactly is
rather trivial: a real number changing sign should necessarily
cross zero, and �XX obviously changes sign when the effect
of the coupling junction inductance L3 overcompensated the
effect of the magnetic coupling −M. The coupling �ZZ does
not necessarily change sign because of always positive con-
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FIG. 4. �Color online� Solid lines: numerical results for �XX
+ ,

�XX
− , and �ZZ �multiplied by 10� as functions of the qubit detuning


1−
2 for the parameters of Fig. 3�b� at the point where �XX

=�ZZ=0. Dashed lines show the analytics for �XX
� � ���XX /2

from Eq. �34�. Error state occupation due to nonzero �XX
� is 1.5

�10−6.

PINTO et al. PHYSICAL REVIEW B 82, 104522 �2010�

104522-8



tribution from the level repulsion, but �ZZ should be small
when �XX=0, as follows from the analytical result in Eq.
�29�. This fact is quite beneficial for the ability to turn the
coupling almost off, and we have defined the residual cou-
pling �ZZ

res as the value of �ZZ when �XX=0. A natural mea-
sure of the coupling OFF/ON ratio is �ZZ

res /�XX
ON, where �XX

ON

corresponds to the case of small �zero� IB. Notice that this
ratio depends on the definition in Eq. �9� since we compare
different couplings �for example, if the ZZ term was defined
in Eq. �9� without the factor 4, then the OFF/ON ratio would
decrease four times�. As we found from the analytical and
numerical calculations, the OFF/ON ratio is few times 10−3

for typical experimental parameters. Most importantly, the
OFF/ON ratio can be zeroed exactly by properly choosing
capacitances C3 and/or Ca.

Even when the above-defined OFF/ON ratio is exactly
zero, this does not mean that the qubits can be made com-
pletely decoupled. The reason is that the qubits are still
physically coupled to the coupling circuit, and the discussion
of such effects should go beyond the language of the cou-
pling of logical qubits, which is characterized by only �XX
and �ZZ. In particular, detuning of the formally decoupled
qubits leads to an erroneous state occupation of around
��XX

ON /2
3�2, which is on the order of 10−6 for typical experi-
mental parameters. Non-RWA corrections bring errors of the
same order.

In this paper we sometimes assumed a high frequency of
the coupling oscillator, 
3�
qb, as in the experiment.12

However, the analytical results in Eqs. �25� and �29�, which
do not rely on this assumption, show that it is not really
needed for the operation of the scheme. Moreover, the ad-
justable coupling can be even realized for 
3�
qb; however,
in that case we have to use positive mutual inductance and
we should not expect typically small �ZZ when �XX=0.

The calculation of the coupling �XX and �ZZ in this paper
is based on the analysis of the eigenfunctions and eigenen-
ergies of the whole system, thus avoiding ambiguity of re-
ducing the whole system to two logical qubits. However, we
have also done the analytical calculations by using such re-
duction. Assuming 
qb /
31, we have eliminated the cou-
pling junction degree of freedom by applying the Schrieffer-
Wolf transformation and then projecting the resulting
Hamiltonian on the coupling junction ground state; after that
the Hamiltonian has been truncated to the two-qubit sub-
space. The obtained results for �XX and �ZZ basically coin-
cide with Eqs. �25� and �28� under the assumptions used.

The analyzed tunable coupler �without Ca� has been real-
ized by Bialczak et al.,12 and the dependence of the coupling
frequency �XX on the bias current IB has been measured
experimentally �the coupling �ZZ has not been measured�.
Due to a relatively small critical current I3,cr of the coupling
junction in the experiment, the coupling �XX is crossing zero
at small IB �see Fig. 4d of Ref. 12�. Therefore, in contrast to
the case shown in our Figs. 2 and 3, the experimental coupler
is nearly OFF at IB=0. Notice that Fig. 4d of Ref. 12 shows
−�XX �in our notation�, so it increases with �IB�, and the
dependence on IB is symmetrized by a horizontal shift. Using
the experimental parameters, we have checked that the the-
oretical result for �XX is quite close to the experimental re-
sult �Fig. 4d of Ref. 12 shows a fitting by the simple theory,
which is close to the full theory result�.

For realization of multiqubit algorithms it is very impor-
tant that the residual coupling �ZZ

res can be zeroed by proper
design of C3 and Ca. If this is not done, the OFF/ON ratio is
small �few times 10−3�, but may still be significant for com-
plicated algorithms. There is a modification of the scheme of
Fig. 1, which may further reduce the OFF/ON ratio without
using Ca and without precise choice of C3. The idea is to add
blocking capacitors between the qubits and inductors L4,5.
Then there will be no dc current from the qubits going into
the coupling circuit, and this will eliminate the classical in-
teraction effect leading to �ZZ in Eq. �14�. Correspondingly,
this should eliminate the first term in the quantum result in
Eq. �29� for �ZZ so that �ZZ

res should be very small by itself.
In the quantum language, this happens because in the modi-
fied scheme the capacitive interaction between five oscilla-
tors is of the momentum-momentum type �besides one
phase-phase interaction due to M�, and the average momen-
tum for any eigenstate of an oscillator is exactly zero. From
experimental point of view, the scheme with blocking ca-
pacitors is more convenient because it eliminates the need to
adjust external fluxes in the qubits when the bias current IB is
changed. We have performed preliminary quantum calcula-
tions for �XX, which confirm that �XX crosses zero when the
effective inductance L3

eff compensates the magnetic coupling

−M̃, similar to the case without blocking capacitors. How-
ever, mathematically this involves compensation of three
dozen quantum terms of the same order, so we may expect
that the scheme with blocking capacitors is less robust
against decoherence than the scheme of Fig. 1. Such a com-
parative analysis of the schemes with and without blocking
capacitors is a subject of further study.
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APPENDIX: CORRECTIONS DUE TO NONLINEARITY

In this appendix we discuss an oscillator with a weak
cubic nonlinearity and show next-order corrections for �XX
and �ZZ due to nonlinearity.

Let us consider an oscillator with a cubic nonlinearity,
H= p2 /2m+ �m
pl

2 /2�����2−�����3, where 
pl is the plasma
frequency and ��0 so that there is a finite barrier height
Ubar=m3
pl

6 /54�2 at positive ��. It is convenient to charac-
terize nonlinearity by the ratio N=Ubar /�
pl so that N is
crudely the number of levels in the quantum well.

Nonlinearity changes the eigenstates �k�, eigenenergies
�k= �k�H�k�, and the normalized matrix elements of the coor-
dinate and momentum operators,

ckl = clk =
�k����l�

��/2m
pl

, dkl = − dlk =
�k�p�l�

− i��m
pl/2
.

�A1�

For a weak nonlinearity �N�1� one can derive �similar to
Ref. 29� the following approximations:
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�0

�
pl
=

1

2
−

11

432N
,

�k − �k−1

�
pl
= 1 −

5k

36N
, �A2�

ckk =
2k + 1

2�3N
, c01 � 1 +

0.0509

N
, c02 =

− 1
�54N

, �A3�

c03 =
0.0170

N
, c12 = �2 +

0.144

N
, �A4�

dkk = 0, d01 = 1 −
0.0880

N
, d02 = −

2
�54N

, �A5�

where we keep only the lowest-order nonvanishing correc-
tions and noninteger numbers are numerical results. In par-
ticular, these approximations lead to Eq. �30� for b= �c11
−c00��
 /
pl and �
= �2�1−�0−�2� /�, where 
= ��1−�0� /�.
With next-order corrections, Eq. �30� becomes

b �
1

�3N
+

0.28

N3/2 ,
�




�

5

36N
+

0.18

N2 . �A6�

Now let us discuss corrections for the analytics for �XX
and �ZZ, which are next order in nonlinearity while we still
use the lowest order in the perturbation theory. This modifies
Eq. �24� to become

�XX = −
2

�
K12

a d01,1d01,2 +
2

�
c01,1c01,2�K12 + K13K23

� 
 c01,3
2

E − �010
+

c01,3
2

E − �111
+

c02,3
2

E − �020
+

c02,3
2

E − �121
�� ,

�A7�

where the additional index i=1,2 ,3 in ckl,i and dkl,i is the
oscillator number. Now using Eqs. �A2�–�A5� we obtain

�XX =

1 +
0.05

N1
+

0.05

N2

L̃4L̃5
qb
�C̃1C̃2

�M̃ − L3
�
 1 + 0.1/N3

1 − �
qb/
3�2

+� 0.01/N3

1 − �
qb/2
3�2��
+
�1 −

0.09

N1
−

0.09

N2
�C̃a

�C̃1C̃2
qb

C1C2
. �A8�

Equation �26� with account of next-order corrections in non-
linearity becomes

�ZZ =
b1b2

�

K12 +

2K13K23c01,3
2

�101 − �111
+

2K13K23c02,3
2

�101 − �121
� �A9�

that modifies Eq. �28� �and the first term in Eq. �29�� to
become

�ZZ =

1 +
0.5

N1
+

0.5

N2

6�N1N2

M̃ − L3
��1 + 0.1/N3�

L̃4L̃5
�
1
2

�C1C2

. �A10�

A useful technical trick in deriving these results �as well as
Eq. �26�� is to slightly shift the coordinates ��i for the three
oscillators �by slightly changing ��1,st ,�2,st ,�3,st� to pro-
duce �0���i�0�=0 for each oscillator; this significantly re-
duces the number of terms due to nonlinearity in the deriva-
tion.
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