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We introduce definitions of the quantum efficiency for binary-outcome qubit detectors with imperfect fidel-
ity, focusing on the subclass of quantum nondemolition detectors. Quantum efficiency is analyzed for several
models of detectors, including indirect projective measurement, linear detector in binary-outcome regime,
detector of the superconducting phase qubit, and detector based on tunneling into continuum.
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I. INTRODUCTION

Reliable measurement of qubits is an essential require-
ment for the operation of a quantum computer.1,2 A perfect
detector of the qubit state should perform projective
measurement,3 which means that it should have two possible
outcomes: 0 and 1 �corresponding to the qubit states �0� and
�1��, the probabilities of these outcomes should be equal to
the corresponding matrix elements of the qubit’s density ma-
trix �traced over other entangled qubits�, and after the mea-
surement the premeasured quantum state should get pro-
jected onto the subspace, corresponding to the measurement
result. Realistic detectors of course do not realize the perfect
projective measurement. In this paper we discuss efficiency
of a realistic detector, assuming for simplicity the measure-
ment of only one qubit; in other words, we neglect physical
coupling with other entangled qubits in the process of mea-
surement, so that the many-qubit measurement problem can
be reduced to the one-qubit measurement.

We will consider a detector with binary outcome: 0 or 1
�such detector can also be called a dichotomic or threshold
detector�. In a realistic case the outcome does not perfectly
correspond to the qubit state. For example, for a qubit in the
state �0� the probability F0 of result 0 is typically less than
100% �we will call F0 a “measurement fidelity” for the state
�0��. Similarly, for a qubit in the state �1� the probability F1 to
get result 1 is usually also less than unity. �The fidelities F0
and F1 fully determine the outcome probabilities for a gen-
eral qubit state because of the linearity of the quantum me-
chanics.� In such situation the measurement is surely non-
projective, and the postmeasurement state should be
analyzed using a more general formalism. In this paper we
discuss the quantum efficiency �ideality� of binary-outcome
detectors, which is defined via decoherence of the postmea-
surement state �similar to the definition for the linear
detectors4–16�. As for a linear detector, the quantum effi-
ciency of a binary-outcome detector is introduced to quantify
the relation between the acquisition and loss of quantum in-
formation in the process of measurement. We emphasize that
the quantum efficiency is not related to the measurement
fidelities F0 and F1 and is therefore not directly related to the
fidelity of a quantum computer readout. However, quantum
efficiency is an important characteristic of a detector with
imperfect fidelity because, for example, a nearly ideal quan-
tum efficiency is a crucial requirement for nonunitary quan-
tum gates based on partial collapse,17 for quantum

feedback,18–20 for quantum uncollapsing,21,22 etc.
Quantum efficiency �ideality� of solid-state qubit detec-

tors has been well studied for linear detectors.4–16 In this case
it has been defined5 as �=1 /2��m, where � is the qubit
ensemble decoherence rate due to measurement and �m is the
so-called “measurement time:”23 the time after which the
signal-to-noise ratio becomes equal to unity. Notice that the
inequality ��1 /2�m, which leads to the bound ��1, can be
easily derived4 from the classical Bayes formula and inequal-
ity ��01�2��00�11 for the matrix elements of the qubit density
matrix �; this derivation is within the framework of the quan-
tum Bayesian theory4,5,24 describing individual realizations
of measurement. The inequality ��1 /2�m has been also de-
rived using the framework of the ensemble-averaged theory
of linear quantum detectors.6–8,10,11 It is important to mention
that an equivalent definition of the quantum-limited linear
detector has been discussed more than two decades ago25–28

in terms of the ratio between the effective energy sensitivity
and � /2. In a simple model,13 the detector nonideality ��
�1� can be caused by an additional coupling of the qubit
with dephasing environment which increases the back-action
noise or by additional output noise �i.e., amplifier noise� or
by both contributions. Correspondingly, the detector effi-
ciency � can be interpreted as a ratio �=�min /�, where
�min=1 /2�m is the “informational” limit on decoherence, de-
termined by a given rate of information acquisition, or as a
ratio �=�m,min /�m, where 1 /�m,min=2� characterizes the
maximum possible rate of information acquisition for a
given value of back-action strength �. Particular interpreta-
tion, as well as the real physical reason of the nonideality, is
irrelevant from the point of view of qubit measurement.

An ideal linear quantum detector ��=1� causes no deco-
herence of the measured qubit in each realization of the mea-
surement �i.e., for each measurement outcome� in the sense
that initially pure qubit state remains pure in the process of
measurement; an example of such detector is the quantum
point contact �QPC�.4 Moreover, a detector with �=1 should
not introduce any change in the phase between amplitudes of
the states �0� and �1�, except due to possible constant shift of
energy difference between the states �0� and �1�. The proof of
the last statement is rather simple:4 if the phase change
would depend on the detector outcome, then averaging over
the outcomes would lead to strict inequality ���01��� ���01��
and therefore to �	1 /2�m. However, there is a class of lin-
ear detectors, for which the qubit state does not decohere for
any measurement outcome, but there is an outcome-
dependent phase shift between the states �0� and
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�1�.6,9–11,13,14,29,30 An example is an asymmetric QPC: in this
case each electron passing through the QPC shifts the phase
between the qubit states by a small constant.14 For such
detectors5–8,10,11,13 �=1 /2�m+K2S /4, where S is the output
noise and K is the properly normalized factor5,13 describing
the correlation between the output and back-action noises.
Such detectors are nonideal by the above definition ���1�;
however, they are ideal in another sense: for example, they
still can be used for perfect quantum feedback, quantum un-
collapsing, etc. Therefore, it is meaningful to introduce a
different definition of the quantum efficiency which takes
into account noise correlation K, for example, as5,13 �̃

= �1 /2�m� / ��−K2S /4� or as �̃̃= �1 /2�m+K2S /4� /� �here we
exchanged the definitions of �̃ and �̃̃ compared to Refs. 5,
13, and 24�.

While the quantum efficiency of linear detectors has been
well studied, the quantum efficiency of the binary-outcome
detectors of solid-state qubits, to the best of our knowledge,
has not yet been even defined �notice discussion of the
“demolition” parameter in Ref. 31; also notice the discussion
of the fidelity measures in Ref. 32�. There is a well-
established definition of the quantum efficiency for photode-
tectors; however, we cannot borrow this definition because
photodetectors destroy the measured photon, while we would
like to discuss measurements which do not destroy the mea-
sured object although change its quantum state.

In the present paper we discuss the ways to introduce a
definition of quantum efficiency for binary-outcome detec-
tors, extending the reviewed above methodology developed
for the linear detectors and, in a broader sense, the method-
ology developed for the optical quantum trajectories.33,34 In
Sec. II we start with a discussion of an arbitrary binary-
outcome detector and show that in general its quantum effi-
ciency should be described by an impractically large number
of parameters. Then in Sec. III we focus on the subclass of
detectors, which do not affect qubit in the states �0� and �1�
�we call them quantum nondemolition �QND� �Ref. 28� de-
tectors�. The operation of a QND detector can be described
by only six parameters. We introduce several definitions of
quantum efficiency for a QND detector and then in Sec. IV
calculate the quantum efficiencies for four detector models:
indirect projective measurement, linear detector in binary-
outcome mode, phase-qubit detector, and detector based on
tunneling into continuum.

II. GENERAL BINARY-OUTCOME DETECTOR

Let us start with the general description of the binary-
outcome measurement of a qubit, using the POVM �“positive
operator-valued measure”� theory of measurement.2 An ideal
�in our terminology� detector transforms a pure qubit state
into a pure state, and in this case the measurement can be
described by two linear operators M�0� and M�1�, correspond-
ing to two measurement results 0 and 1. For the qubit with
initial density matrix � the probability of result 0 is P0
=Tr�M�0��M�0�†� and the normalized postmeasurement state
for this result is M�0��M�0�† / P0 �quite often the non-
normalized postmeasurement state M�0��M�0�† is used in or-
der to preserve the linearity of transformation�. Similarly, the

probability of result 1 is P1=Tr�M�1��M�1�†�, and then the
postmeasurement state is M�1��M�1�† / P1. The Hermitian op-
erators M�0�†M�0� and M�1�†M�1� are positive �i.e., having
only non-negative eigenvalues� and should satisfy the com-
pleteness relation M�0�†M�0�+M�1�†M�1�=1. �The projective
measurement is a special case in which M�0� and M�1� are
projectors onto mutually orthogonal axes.�

Let us count the number of degrees of freedom �real pa-
rameters� describing such an ideal binary-outcome detector.
A linear operator M�0� acting in complex two-dimensional
space can be described by four complex numbers, i.e., eight
real parameters; however, one parameter is the overall phase,
so that there are seven physical parameters. Similarly, opera-
tor M�1� can be described by seven parameters. The com-
pleteness relation gives four equations �two for diagonal el-
ements and two for the complex off-diagonal element�.
Therefore, the measurement by an ideal binary-outcome de-
tector can be described by ten real parameters �which in-
clude, in particular, fidelities F0 and F1�.

A general �nonideal� binary-outcome detector can be
thought of as an ideal detector with many possible outcome
values, which however are unknown to us, so that we know
only if the outcome value belongs to the group 0 or group 1
�this trick can obviously describe information loss in an en-
vironment�. Then the measurement can be described by two
groups of measurement operators Mk

�0� and Mk
�1� with an extra

index k numbering operators within each group. The prob-
ability of result 0 in this case is P0=�kTr�Mk

�0��Mk
�0�†� and

the corresponding postmeasurement density matrix is
�kMk

�0��Mk
�0�† / P0. Similar formulas can be written in the case

of result 1. The completeness relation in this case is
�kMk

�0�†Mk
�0�+�kMk

�1�†Mk
�1�=1. Since separation into mea-

surement operators within each group is not unique, it is
better to deal with superoperators S�0� and S�1� defined as
S�0����=�kMk

�0��Mk
�0�† and S�1����=�kMk

�1��Mk
�1�† �a superop-

erator transforms a density matrix into a non-normalized
density matrix�. In this language the probability of result 0 is
P0=Tr S�0���� and the postmeasurement state is S�0���� / P0;
the formulas are similar for result 1.

Now let us count the number of parameters describing a
general �nonideal� binary-outcome measurement of a qubit.
Following the methodology of the quantum process
tomography,2 we can characterize the superoperator S�0� by
result of its operation on the state �0� �four parameters, since
the resulting density matrix is non-normalized�, the state �1�
�four more parameters�, and operation on the nonphysical
density matrix, for which one off-diagonal element is unity,
while all other elements are zero �this gives eight more pa-
rameters, since resulting matrix is not Hermitian�. Overall
this gives 16 parameters for S�0� and similarly 16 parameters
for S�1�. The completeness relation gives four equations;
therefore, the total number of remaining parameters is 28.

Comparing this number with ten parameters for an ideal
detector, we see that the nonideality �or, in our terminology,
the quantum efficiency� of a general binary-outcome qubit
detector should be described by 18 parameters. This is surely
impractical, and below we limit our discussion by a narrower
subclass of detectors, which can be described by a more
reasonable number of parameters.
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III. QND BINARY-OUTCOME DETECTOR

A general description of a detector attempted above does
not make any assumption regarding the mechanism of mea-
surement and is based only on the linearity of the quantum
mechanics. In particular, this approach allows evolution of
the qubit by its own in the process of measurement �e.g.,
Hamiltonian evolution or energy relaxation�. Let us now
make a restrictive assumption that the qubit cannot not
evolve by itself in the process of measurement. In particular,
we assume absence of coupling �infinite barrier� between the
measured states �0� and �1�, so that coupling with the detector
can only affect the energy difference between states �0� and
�1� �in other words, we assume only 
z-type coupling�. In
this case the qubit initially in the state �0� necessarily re-
mains in the state �0� after the measurement. Similarly, the
qubit in the state �1� cannot evolve also. Such a detector is
often called a QND detector �the author does not quite like
this terminology because it somewhat differs from the origi-
nal meaning of the quantum nondemolition measurement,28

but it will still be used here because of absence of a better
well-accepted terminology�.

First, let us consider an ideal QND detector, which trans-
forms a pure qubit state into a pure state. In the framework of
the methodology discussed in Sec. II, we can characterize
such detector in the following way. In the case of result 0 the
initial qubit state ��0�+��1� �here ���2+ ���2=1� is trans-
formed into the non-normalized state �c0

�0��0�+�c1
�0��1� �nor-

malization is trivial�, while in the case of result 1 it is trans-
formed into �c0

�1��0�+�c1
�1��1�. The probabilities of these

results are, correspondingly, P0= ��c0
�0��2+ ��c1

�0��2 and P1
= ��c0

�1��2+ ��c1
�1��2, so that the measurement fidelities are F0

= �c0
�0��2 and F1= �c1

�1��2. The completeness relation requires
total probability of unity for any initial state: �c0

�0��2+ �c0
�1��2

=1 and �c1
�0��2+ �c1

�1��2=1. Since the overall phases are not
important, we can assume, for example, that c1

�0� and c1
�1� are

real numbers. Overall, we have four parameters to character-
ize an ideal QND detector: two fidelities �F0 and F1� and two
phases �0 and 1�, so that in the case of result 0 the wave
function is transformed as

��0� + ��1� →
	F0ei0��0� + 	1 − F1��1�

	P0

, �1�

while in the case of result 1 the transformation is

��0� + ��1� →
	1 − F0ei1��0� + 	F1��1�

	P1

, �2�

where

P0 = F0���2 + �1 − F1����2, P1 = �1 − F0����2 + F1���2.

�3�

A nonideal QND detector in general transforms a pure
state into a mixed state. Because of the linearity of superop-
erators S�0� and S�1� in the formalism discussed above, the
only possible modification of Eqs. �1� and �2� is an extra
decoherence between the states �0� and �1�. Therefore, a non-

ideal binary-outcome QND detector can be characterized by
six parameters �F0, F1, 0, 1, D0, and D1�, so that in the
case of result 0 the state transformation is

��0� + ��1� →
1

P0

F0���2 	F0�1 − F1�e−D0ei0���

c.c. �1 − F1����2
� ,

�4�

and for measurement result 1 the transformation is

��0� + ��1� →
1

P1

�1 − F0����2 	�1 − F0�F1e−D1ei1���

c.c. F1���2
� ,

�5�

where c.c. in the density matrix means complex conjugation
of the opposite off-diagonal element, and the probabilities P0
and P1 of the measurement results are still given by Eq. �3�.

Using the quantum mechanics linearity, these equations
can be easily generalized to an arbitrary �mixed� initial state
�. For result 0 the qubit density-matrix transformation is


�00 �01

�10 �11
� →

1

P0

F0�00 	F0�1 − F1�e−D0ei0�01

c.c. �1 − F1��11
� , �6�

and for result 1 the transformation is


�00 �01

�10 �11
� →

1

P1

�1 − F0��00 	�1 − F0�F1e−D1ei1�01

c.c. F1�11
� ,

�7�

while the probabilities of results 0 and 1 are

P0 = F0�00 + �1 − F1��11, P1 = �1 − F0��00 + F1�11. �8�

Equations �6�–�8� give the complete description of the
qubit measurement by a binary-outcome QND detector. No-
tice that the fidelities Fi and decoherences Di satisfy obvious
inequalities 0�Fi�1 and Di�0, while phases i are de-
fined modulo 2�.

If the qubit evolution is averaged over the result, then the
transformation becomes


�00 �01

�10 �11
� → 
 �00 e−Daveiav�01

c.c. �11
� , �9�

e−Daveiav = 	F0�1 − F1�e−D0ei0 + 	�1 − F0�F1e−D1ei1,

�10�

where Dav describes decoherence of the ensemble of qubits.
Since D0,1�0, we immediately obtain the following lower
bound for the ensemble decoherence:

Dav � Dmin = − ln�	F0�1 − F1� + 	�1 − F0�F1� . �11�

This inequality is a counterpart14 of the inequality �
�1 /2�m for a linear detector.

Notice that the decoherence bound �11� is purely informa-
tional and it can also be easily derived in the framework of
the quantum Bayesian formalism.4,5,24 Following the deriva-
tion of Ref. 4, we can obtain the diagonal elements of the
postmeasurement density matrix for the measurement out-
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comes 0 or 1 via the classical Bayes theorem; the results
coincide with the diagonal matrix elements in Eqs. �6� and
�7�. Then using the inequality ��01�2��00�11 for each mea-
surement outcome and averaging over the measurement out-
comes, we immediately obtain inequality �11�. Inequality
�11� can also be obtained following the derivation of Ref. 14.

It is easy to show that Dmin�0 since the fidelities F0 and
F1 are between 0 and 1. The value Dmin=0 is realized when
F0+F1=1. In this case the measurement does not give any
information about the qubit state, and therefore the quantum
mechanics allows complete absence of the qubit ensemble
decoherence.

While Eqs. �6�–�8� give a complete six-parameter descrip-
tion of a QND binary-outcome detector, we would like to
introduce a single parameter, quantum efficiency, which
would quantify relation between the gain and loss of the
quantum information in the measurement. However, such
definition is not unique, so below we discuss several defini-
tions, which serve this purpose in different contexts �some
figures of merit for the QND detectors of qubits have been
discussed in Ref. 32�.

Similarly to the definition of efficiency �=�min /� for a
linear detector, we can define the quantum efficiency in our
case as

� = Dmin/Dav, �12�

where Dav and Dmin are given by Eqs. �10� and �11�. The
quantum efficiency can also be introduced in the spirit of
definitions �̃ and �̃̃ for linear detectors �so that a detector is
ideal if D0=D1=0� as

�̃ =
Dmin

− ln�	F0�1 − F1�e−D0 + 	�1 − F0�F1e−D1�
, �13�

�̃̃ =
− ln�	F0�1 − F1� + 	�1 − F0�F1ei�1−0��

Dav
. �14�

Notice that in an experiment the phase difference 0−1 can
be relatively easily zeroed by adding the compensating con-
ditional phase rotation to the qubit after the measurement.
The efficiency �12� of such modified detector corresponds to
the definition �̃ of Eq. �13�.

It is also meaningful to define separate quantum efficien-
cies for each measurement outcome since realistic detectors
can behave very differently for different outcomes. For ex-
ample, the detection of superconducting phase qubits17,35,36

completely destroys the qubit in the case of measurement
result 1. The binary-outcome detectors of the charge and flux
qubits based on switching or bifurcation37–40 are also very
asymmetric in a sense that the detector either switches to a
significantly “excited” mode or remains relatively “quiet.”

There are several possible ways to introduce outcome-
dependent efficiencies �0 and �1 �to some extent this is a
matter of taste�. In this paper we will mostly use the follow-
ing definition:

�0 =
Dmin

D0 + Dmin
, �1 =

Dmin

D1 + Dmin
. �15�

The advantage of this definition is that �̃ is always in be-
tween �0 and �1 and therefore coincides with them if �0
=�1. However, in some cases a more meaningful definition is

�̃0 =
− ln	F0�1 − F1�

D0 − ln	F0�1 − F1�
, �̃1 =

− ln	�1 − F0�F1

D0 − ln	�1 − F0�F1

,

�16�

which naturally stems from the form of the off-diagonal ma-
trix elements in Eqs. �6� and �7� �the tilde sign here has no
relation to the tilde signs in Eqs. �13� and �14��. It is easy to
see that �̃i��i. Notice that we do not characterize the
outcome-dependent efficiencies by e−D0 and e−D1 because
this would characterize only the loss of the quantum infor-
mation, not the relation between the informational gain and
loss. Also notice that all introduced definitions of quantum
efficiency are functions of the six parameters characterizing
the detector, and therefore there are simple interrelations be-
tween the introduced definitions.

IV. SEVERAL MODELS OF DETECTORS

In this section we discuss several models of QND binary-
outcome detectors �not necessarily realistic� and analyze
their quantum efficiency.

A. Indirect projective measurement

Let us start with an unrealistic but conceptually simple
model of indirect projective measurement. In this model the
measured qubit interacts with another �ancillary� qubit,
which is later measured in the “orthodox” projective way.
Assume that the ancillary qubit is initially in the state �0a�
and the interaction leads to the following entanglement:

���0� + ��1���0a� → ��0��c00�0a� + c10�1a��

+ ��1��c01�0a� + c11�1a�� , �17�

where �c00�2+ �c10�2= �c01�2+ �c11�2=1. If the ancillary qubit is
then measured and found in the state �0a�, the qubit state
becomes ��c00�0�+�c01�1�� /Norm, while for measurement
result 1 the qubit state becomes ��c10�0�+�c11�1�� /Norm
�here Norm is the normalization which is easy to find in each
case�.

We see that this model exactly corresponds to the ideal
model considered at the beginning of Sec. III. For such de-
tector F0= �c00�2, F1= �c11

2 �, 0=arg�c00c01
� �, 1=arg�c10c11

� �,
and there are no extra decoherences: D0=D1=0. Therefore, it
is an ideal detector in the sense that

�0 = �1 = 1, �̃ = �̃̃ = 1. �18�

However, the efficiency � is less than 100% if 0�1:

� =
− ln�	F0�1 − F1� + 	�1 − F0�F1�

− ln�	F0�1 − F1� + 	�1 − F0�F1ei�1−0��
. �19�
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B. Linear detector in binary-outcome mode

Now let us consider a binary-outcome detector realized by
a linear detector, whose output is compared with a certain
threshold to determine if the output falls into the “result 0” or
“result 1” category. We will characterize the linear detector
by two levels of the average output signal I0 and I1 corre-
sponding to the two qubit states �without loss of generality
we assume that the detector output is the current I�t�� and by
the spectral density S of the output white noise. Then the
time needed for signal-to-noise ratio reaching 1 is �m
=2S / ��I�2 where �I= I1− I0. Since the qubit evolves only
due to measurement, the qubit evolution is described by the
quantum Bayesian equations4,5

�00�t�
�11�t�

=
�00�0�exp�− �Ī − I0�2t/S�

�11�0�exp�− �Ī − I1�2t/S�
, �20�

�01�t� = �01�0�	 �00�t��11�t�
�00�0��11�0�

eiK�Ī−�I0+I1�/2�te−�t, �21�

where the average current Ī�t�= t−1�0
t I�t��dt� carries all infor-

mation about the measurement result, K is the correlation
between the output and back-action noise, and decoherence
rate � is related to the ensemble decoherence rate � as �
=�− ��I�2 /4S−K2S /4 �for simplicity we neglect possible
extra factor ei�t in Eq. �21� due to constant energy shift; the
effect of this factor is trivial�. The probability distribution of

result Ī is

P�Ī� = �
i=1,2

�ii�0�	t/�S exp�− �Ī − Ii�2t/S� . �22�

Introducing dimensionless measurement result as r= �Ī
−

I0+I1

2 �	t /S and assuming I1	 I0, Eq. �20� can be rewritten as

�00�t�
�11�t�

=
�00�0�
�11�0�

e−r	8t/�m, �23�

while the probability distribution becomes

P�r� =
1

	�
�

i=1,2
�ii�0�e−�r + �− 1�i	t/2�m�2

. �24�

Fixing the time of measurement t, the binary-outcome detec-
tor can be realized by comparing the result r with a certain
threshold rth, so that if r�rth the outcome is considered to be
1, otherwise it is considered to be 0. The fidelities of such
detector can be easily calculated as follows:

F0 =
1 + erf�rth + s�

2
, F1 =

1 + erf�− rth + s�
2

, �25�

where s=	t /2�m and erf�x�= �2 /	���0
xe−z2

dz is the error
function.

In the case of result 0, the resulting density matrix given
by Eqs. �21� and �23� should be averaged over r within the
range �−� ,rth� with the weight given by Eq. �24�. It is easy
to check that the obtained diagonal matrix elements �ii

�0� co-
incide with the diagonal elements in Eq. �6�; this is a trivial
fact since the diagonal matrix elements should obey the clas-

sical Bayes formula. For averaging of the off-diagonal ma-
trix element �Eq. �21�� let us assume for simplicity K=0,
then we obtain

�01
�0� =

e−�te−s2
�1 + erf�rth��/2

�00F0 + �11�1 − F1�
�01 �26�

�in this notation � denotes the premeasured state, while ��0�

denotes the postmeasurement state corresponding to result
0�. Then

D0 = �t + s2 − ln
1 + erf�rth�

2	F0�1 − F1�
, �27�

and using definition �15� of quantum efficiency �0, we find it
as

�0 = 1 +
D0

− ln�	F0�1 − F1� + 	�1 − F0�F1��−1

. �28�

Notice that even for an ideal linear detector ��=0,K=0� the
quantum efficiency �0 is not 100%. Thick lines in Fig. 1
show the dependence of �0 in this case on the chosen thresh-
old rth for several values of the parameter s=	t /2�m, which
characterizes the measurement strength. One can see that the
curves are not symmetric, and the asymmetry grows with
increase in s. The line corresponding to s=0.1 �thick solid
line� practically coincides with the result in the limit s→0 �it
is easy to derive a formula for this limit; however, it is long
and we do not show it here�. As follows from the numerical
results, �0�0.692 always, and the maximum �0 is achieved
at s�0 and rth�−0.563.

Analysis of the resulting density matrix in the case of
measurement result 1 is similar to the above analysis. As
obvious from the symmetry, the matrix element �01

�1� is given
by Eq. �26� with erf�rth� replaced by erf�−rth� and exchanged
fidelities F0↔F1 �notice that the transformation rth→−rth
exchanges the fidelities in Eq. �25��. Correspondingly, D1 is
given by Eq. �27� modified in the same way, and there is a
simple symmetry,
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FIG. 1. Result-0 quantum efficiency �0 �thick lines� and aver-
aged efficiency � �thin lines� for a linear detector in a binary-
outcome mode, as functions of the threshold rth separating results 0
and 1. The solid, dotted, and dashed lines are for different strengths
of measurement: s=0.1, 1, and 2, correspondingly. We assume an
ideal linear detector: �=0 and K=0.

QUANTUM EFFICIENCY OF BINARY-OUTCOME… PHYSICAL REVIEW B 78, 174512 �2008�

174512-5



�1�rth� = �0�− rth� , �29�

for the quantum efficiencies �with the same s�. Therefore, in
Fig. 1 the dependences �1�rth� can be obtained by reflection
of the thick lines about the vertical axis rth=0.

Now let us consider the result-independent quantum effi-
ciency. To calculate the efficiency � defined by Eq. �12� we
notice that Dav=�t+s2+s2��mK�I /2�2, which is obviously
the same as for the linear detector with linear output, and
therefore

� =
− ln�	F0�1 − F1� + 	�1 − F0�F1�

�t + s2�1 + ��mK�I/2�2�
. �30�

In the case K�0 the efficiency �̃ �defined by Eq. �13�� is
given by Eq. �30� without the term proportional to K in the
denominator, while the formula for the efficiency �̃̃ �defined
by Eq. �14�� is quite long. In the case K=0 the three efficien-
cies obviously coincide: �= �̃= �̃̃.

Thin lines in Fig. 1 show the dependence ��rth� for an
ideal linear detector ��=0,K=0� for several values of the
measurement strength s. �If �=0, but K�0, then these
curves show the efficiency �̃.� We see that the curves are
symmetric, and � reaches maximum at rth=0. The efficiency
at this point increases with decrease in the measurement
strength s; however, even for s→0 we have an upper bound
��2 /�. Notice that �=�0=�1 at rth=0 because of the sym-
metry and chosen definition �15� for outcome-dependent ef-
ficiencies.

The main finding of this subsection is that a linear detec-
tor in a binary-outcome regime is never ideal ���2 /� ,�i
�0.7�, even if the linear detector itself is ideal ��=0,K
=0�. This is obviously a consequence of the information loss,
which happens when the actual measurement result r is re-
duced to only one of two outcomes: 0 �r�rth� or 1 �r	rth�.
�Notice that the quantum efficiency of a linear detector in the
standard linear-output regime24 is given by Eq. �30� with the
numerator replaced by s2.�

C. Detector of the superconducting phase qubit

So far there is only one experimental realization directly
showing a high quantum efficiency of a binary-outcome de-
tector of a solid-state qubit. This is the experiment on partial
collapse of the superconducting phase qubit17 �its extension22

demonstrated quantum uncollapsing�. In this experiment the
qubit is made of a superconducting loop interrupted by a
Josephson junction �see Fig. 2�a��; the corresponding poten-

tial profile is shown in Fig. 2�b�. Two lowest energy levels in
the quantum well represent the logic states �0� and �1�. The
qubit is measured35 by reducing the barrier of the quantum
well �by changing the magnetic flux through the loop�, so
that the state �1� can tunnel out of the well, while the state �0�
does not tunnel out. The tunneling event or its absence is
checked at a later time by using an extra superconducting
quantum interference device �SQUID� �Fig. 2�a��, which is
off when the qubit barrier is lowered, and therefore does not
affect the tunneling process.

By varying the amplitude and duration of the measure-
ment pulse which lowers the barrier, it is possible to control
the probability p of tunneling from the level �1�, which char-
acterizes the measurement strength. �For a rectangular pulse
p=1−e−�t, where � is the tunneling rate and t is the pulse
duration.� Neglecting all imperfections �including finite tun-
neling from the state �0��, the fidelities of such measurement
are

F0 = 1, F1 = p . �31�

In the case of measurement result 1 �registered tunneling
event� the qubit state is completely destroyed �no longer in
the quantum well�. However, for measurement result 0 �null
result, no tunneling� the system remains in the quantum well,
and therefore it is meaningful to discuss the qubit state evo-
lution due to measurement. Ideally, this evolution should be
given by Eq. �1�, and this is exactly what has been confirmed
in the experiment17 with good accuracy.

Since the qubit state is destroyed for measurement result
1, the quantum efficiency � cannot be defined, as well as the
efficiencies �̃, �̃̃, �1, and �̃1. However, the null-result effi-
ciency �0 is a well-defined quantity �notice that �̃0=�0 be-
cause F0=1�. In the ideal case described by Eq. �1� the mea-
surement does not dephase the qubit state, and therefore

�0 = 1. �32�

In a realistic case there are always some mechanisms, which
lead to the qubit decoherence via processes of virtual tunnel-
ing, and correspondingly decrease �0. Some of these pro-
cesses have been considered theoretically in Ref. 41, and the
results of that paper for the null-result qubit decoherence can
be converted into the results for the efficiency �0.

To estimate experimental quantum efficiency �0, we use
Fig. 3�c� of Ref. 17. Choosing the data for the initial state
��0�+ �1�� /	2 and moderate measurement strength �p�0.5�,
we see that the process of measurement reduces the visibility
of the tomography oscillations by less than 7% �we exclude
the effects of energy relaxation and dephasing, which occur
even in the absence of measurement�. Since the theoretical
visibility is �1−4�00

�0��11
�0��1−e−2D0��1/2, and since �00

�0��11
�0�

=2 /9 for our initial state and p=0.5, we estimate dephasing
as D0�0.08. Using Dmin=−�1 /2�ln�1− p�=ln 2 /2, we fi-
nally convert D0 into the quantum efficiency �0�0.8. Notice
that this result possibly underestimates �0; if we use the de-
coherence value of 4% obtained in Ref. 17 in a different way,
then the quantum efficiency �0 is over 90%.

Notice that in the experiment of Ref. 17 the detection of
the tunneling event by SQUID was done after the tomogra-
phy pulse sequence, and therefore did not affect the quantum

p
|0�
|1�

qubit SQUID

(a) (b)

FIG. 2. �a� Schematic of a superconducting phase qubit coupled
to a SQUID. �b� Energy profile of the qubit with two lowest energy
levels in the well representing logic states �0� and �1�. Measurement
is performed by lowering the energy barrier, so that the state �1� can
tunnel out of the well with probability p; the tunneling event is then
sensed by the SQUID.
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efficiency of the partial measurement. If the detection by
SQUID should be included into the partial measurement pro-
tocol, then it is important to avoid the qubit decoherence by
the SQUID operation. This decoherence can be significantly
decreased by using the SQUID in the null-result mode also.
If the SQUID exceeds its critical current at a smaller current
value for the tunneled qubit than for the nontunneled qubit,
and if the SQUID is biased in between these two critical
currents, then detection of the tunneling event is still accu-
rate; however, in absence of the qubit tunneling the SQUID
remains in the “quiet” S-state.

Now let us briefly discuss the natural generalization41 of
the null-result measurement of the phase qubit to the case
when there is a nonzero probability p0 of the qubit tunneling
from the state �0�. In this case the measurement fidelities are

F0 = 1 − p0, F1 = p . �33�

Assuming that the coupling between the two qubit states due
to tunneling is negligible, we can still use Eq. �1� to describe
the null-result evolution.41 In this case the detector is still
ideal in the sense that �0=1 �while �1, �, �̃, and �̃̃ are still
not defined�. Notice that for nonzero dephasing D0, definition
�15� for �0 differs from definition �16� for �̃0, in contrast to
the above case of p0=0, when the two definitions coincide.

D. Tunneling-into-continuum detector

An obvious drawback of the detector considered in Sec.
IV C is the fact that the qubit state is completely destroyed
when the measurement result is 1. In this subsection we con-
sider a detector, which is still based on tunneling into con-
tinuum; however, it does not destroy the qubit state for both
measurement results. The schematic of the detector is shown
in Fig. 3. The initial state of the detector is in the quantum
well, and it can tunnel through a barrier into continuum �the
phase space is arbitrary�. The barrier height is modulated by
the qubit state, so that the states �0� and �1� correspond to
different rates of tunneling: �0 and �1 �we assume �1	�0�.
The measurement is performed during a finite time t, after
which it is checked if the tunneling has occurred �result 1� or
not �result 0�. The measurement fidelities are obviously

F0 = exp�− �0t�, F1 = 1 − exp�− �1t� , �34�

and the goal of this subsection is to analyze the quantum
efficiencies of such a detector.

The main difference of this detector compared to the de-
tector discussed in Sec. IV C is that the tunneling happens in
a physical system different from the qubit, and therefore the
qubit state is not destroyed by the measurement. As a price
for this improvement, the detector now requires two stages: a
“sensor” which can tunnel, and then detection of the tunnel-
ing event, while for the previous detector the tunneling sen-
sor was physically combined with the qubit. Notice that the
model we consider has some similarity with the bifurcation
detectors,39,40,42 which are used for the measurement of qu-
bits �though there are significant differences as well43�.

We describe the qubit-detector system using the following
Hamiltonian:

H = �
k

�k�k��k� + �0��0��
k

�T0,k�k��w� + T0,k
� �w��k��

+ �1��1��
k

�T1,k�k��w� + T1,k
� �w��k�� , �35�

where the detector Hilbert space consists of the state �w� in
the well �its energy is taken to be zero� and many energy
levels �k� �with energies �k� representing the continuum.
Since we assume the QND measurement, the qubit Hamil-
tonian is zero �if energies of states �0� and �1� are actually
different, the qubit Hamiltonian is still zero in the rotating
frame�. The coupling with the qubit changes the detector
tunneling matrix elements from T0,k for the qubit state �0� to
T1,k for the qubit state �1�.

Assuming that the qubit is in one of the logic states �j�
�j=0,1�, the evolution of the detector wave function
aj�t��w�+�kbj,k�t��k� is given by equations

ȧj = −
i

�
�

k

Tj,k
� bj,k, ḃj,k = −

i

�
�k −

i

�
Tj,kaj �36�

with the initial condition aj�0�=1, bj,k�0�=0. Assuming the
simplest case when Tj,k=const=Tj and the energy levels are
very dense with constant density of states D and infinite
energy bandwidth, we obtain the standard solution �see Ref.
41 for better approximations�

aj�t� = e−�jt/2, bj,k�t� =
− i

�
Tj

e−�jt/2 − e−i�kt/�

− � j/2 + i�k/�
, �37�

where � j = �2� /���Tj�2D.
If the initial state of the qubit is ��0�+��1� �where ���2

+ ���2=1�, the evolution is given by superposition of the two
evolutions:

���0�a0 + ��1�a1��w� + �k
���0�b0,k + ��1�b1,k��k� .

�38�

When after time t it is checked if the tunneling event has
occurred or not, the corresponding probabilities of the mea-
surement outcomes can be obtained by squaring the coeffi-
cients in Eq. �38�:

P0 = ���2e−�0t + ���2e−�1t, P1 = 1 − P0. �39�

These formulas are obviously consistent with the general de-
scription �3� and fidelities �34�.

T j

for |0�
for |1�

qubit

tunneling rate
�0 or �1

FIG. 3. Schematic of a detector based on tunneling into con-
tinuum. The qubit state controls the tunneling matrix element �T0 or
T1� and therefore the tunneling rate ��0 or �1�.
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In the case of measurement result 0 �no tunneling�, state
�38� gets projected onto the subspace, which contains only
the vector �w� from the detector degrees of freedom; there-
fore the overall evolution due to measurement is

���0� + ��1���w� →
��0�e−�0t/2 + ��1�e−�1t/2

	���2e−�0t + ���2e−�1t
�w� , �40�

where the denominator is due to normalization and is obvi-
ously equal to 	P0, as in the general description �1�. Notice
that in Eq. �40� the qubit state is not entangled with the
detector �even though it was entangled in the process—see
Eq. �38��, and therefore we can say that the qubit state re-
mained pure and underwent a coherent nonunitary evolution
described by Eq. �40� without �w�. Then considering an arbi-
trary initial state � of the qubit as a mixture of pure states, it
is easy to find that the after-measurement state is

��0� =
1

P0

 e−�0t�00 e−��0+�1�t/2�01

e−��0+�1�t/2�10 e−�1t�11
� , �41�

where P0=�00e
−�0t+�11e

−�1t. The corresponding quantum ef-
ficiency is obviously ideal:

�0 = 1, �42�

since D0=0.
In the case of measurement result 1 �tunneling event� the

wave function �38� is projected onto the subspace orthogonal
to �w� and becomes

1
	P1

�
k

��0�

− i

�
T0

e−�0t/2 − e−i�kt/�

− �0/2 + i�k/�

+ ��1�
− i

�
T1

e−�1t/2 − e−i�kt/�

− �1/2 + i�k/�
��k� , �43�

where the factor 1 /	P1 is again due to normalization. If we
want to discuss only the qubit evolution, we have to convert
this state into a density matrix and then trace over the detec-
tor states �k�. It is easy to find that the diagonal matrix ele-
ments of thus obtained qubit density matrix ��1� are �00

�1�

= ���2�k�b0,k�2 / P1= ���2�1−e−�0t� / P1 and �11
�1�= ���2�k�b1,k�2 /

P1= ���2�1−e−�1t� / P1. They are obviously the same as in the
general Eq. �5� since they should obey the classical Bayes
formula. To find the off-diagonal matrix element �01

�1�

=����kb0,kb1,k
� / P1, we perform integration over the energy �

using the residue theorem and obtain

�01
�1� =

���

P1

4�T0T1
�D

���0 + �1�
�1 − e−��0+�1�t/2� . �44�

Finally, expressing �T0� and �T1� via �0 and �1, and consid-
ering arbitrary initial qubit state �, we find the postmeasure-
ment qubit state as

��1� =
1

P1��1 − e−�0t��00
2	�0�1

�0 + �1
ei1�1 − e−�0+�1/2t��01

c.c. �1 − e−�1t��11
� ,

�45�

where P1=�00�1−e−�0t�+�11�1−e−�1t� and 1=arg�T0 /T1�.
Comparing this result with Eq. �7�, we find nonzero decoher-
ence

D1 = − ln2	�0�1

�0 + �1

1 − e−��0+�1�t/2

	�1 − e−�0t��1 − e−�1t�
� . �46�

Since the averaged informational decoherence bound �11� is

Dmin = − ln�	e−�0te−�1t + 	�1 − e−�0t��1 − e−�1t�� , �47�

the quantum efficiency �1 defined by Eq. �15� is

�1 = �1 +

ln2	�0�1

�0 + �1

1 − e−��0+�1�t/2

	�1 − e−�0t��1 − e−�1t�
�

ln�	e−��0+�1�t + 	�1 − e−�0t��1 − e−�1t��
�

−1

.

�48�

Thick lines in Fig. 4�a� show the dependence of the decoher-
ence D1 on the fidelity F1 for several ratios of the tunneling
rates �1 /�0. �The corresponding values of 1−F0 are shown
by gray lines in Fig. 4�b�.� The quantum efficiencies �1 are
shown by thick lines in Fig. 4�b� for the same parameters,
and Dmin are shown by thin lines in Fig. 4�a�. One can see
that D1 approaches zero and �1 approaches 100% when F1
→0 �correspondingly F0→1�. This behavior can be under-
stood from the result for bj,k�t� given by Eq. �37�. It is easy to
check that in the case �1t�1 �then �0t�1 also� this result
reduces to bj,k= �−Tj /�k��1−e−i�kt/��. Since in this case the
shape of bj,k dependence on �k does not depend on Tj, the
qubit state in Eq. �43� becomes disentangled from the detec-
tor state, and as a result, the qubit state remains pure. In
contrast, when �1t�1, the difference between the shapes of
b0,k and b1,k contains information about the qubit state, which
is lost since we do not measure bk; as a result, there is a
nonzero decoherence of the qubit state. Increase in this lost
information with �1t explains increase in D1 and decrease in
�1 with F1 in Figs. 4�a� and 4�b�. In the limiting case F1
→1 when �1t	�0t�1, the decoherence saturates: D1→
−ln�2	�0�1 / ��0+�1��, while Dmin �which describes the in-
formation� continues to decrease: Dmin�e−�0t /2. Since our
definition of �1 is based on comparing D1 with Dmin, this
leads to �1→0, as seen in Fig. 4�b�. It is interesting to notice
that while the decoherence D1 increases with the increase of
the ratio �1 /�0 for a fixed F1, the efficiency �1 also increases
�instead of decreasing�; this is because Dmin increases with
�1 /�0 faster than D1.

For the alternative definition �16� the outcome-dependent
quantum efficiencies are
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�̃0 = 1, �̃1 =
ln	�1 − e−�0t��1 − e−�1t�

ln2	�0�1

�0 + �1
�1 − e−��0+�1�t/2�� . �49�

If the resulting qubit state is averaged over measurement
results 0 and 1, then the averaged density matrix ��av�

= P0��0�+ P1��1� is

��av� = 
 �00 e−Daveiav�01

c.c. �11
� , �50�

e−Daveiav = e−���0+�1�/2�t +
2	�0�1

�0 + �1
ei1�1 − e−���0+�1�/2�t� .

�51�

The quantum efficiencies �, �̃, and �̃̃ can then be calculated
using Eqs. �12�–�14� �notice that in our model 0=0�. In
particular, when 1=0 �the qubit does not change the phase
of tunneling coefficients� these three efficiencies coincide
and are equal to

� =
ln�e−���0+�1�/2�t + 	�1 − e−�0t��1 − e−�1t��

lne−���0+�1�/2�t +
2	�0�1

�0 + �1
�1 − e−���0+�1�/2�t�� �52�

�the efficiency �̃ is given by this expression even if 1�0�.
Thin lines in Fig. 4�b� show the quantum efficiency � given
by Eq. �52� for the same parameters as for �1. One can see
that �	�1; this is because �0=1 and for our definitions �13�
and �15� the value of �̃ is always in between �0 and �1.

As follows from Eqs. �46�, �47�, and �52�, in the limiting
case when there is no tunneling if the qubit is in the state �0�
��0→0,�1 /�0→��, the results are

� = 1, Dmin =
�1t

2
, D1 = − ln 2

	�1t

1 − e−�1t/2

	1 − e−�1t� ,

�53�

so despite �1�1, the detector is ideal in the sense �=1. This
happens because in this case for measurement result 1 the
qubit is fully collapsed onto the state �1�, so the factor
	�1−F0�F1 in Eq. �7� is zero, and additional dephasing due
to D1 does not matter. Notice that in this case �̃1=1, which
illustrates the usefulness of definition �16�.

The main finding of this subsection is that the tunneling-
into-continuum detector is ideal for the result 0 �i.e., �0=1�;
but it is in general nonideal for measurement result 1 ��1
�1�, leading to nonideal averaged efficiency ���1�. How-
ever, the numerical results in Fig. 4�b� show that the quan-
tum efficiencies �1 and � are typically rather close to 100%.
�The efficiency �̃1 �not shown� is significantly closer to 1
than �1 and is even higher than � for not too large ratio
�1 /�0.�

V. CONCLUSION

In this paper we have discussed possible ways to intro-
duce the notion of quantum efficiency for binary-outcome
detectors of solid-state qubits. We follow the idea of the
quantum efficiency definition for linear detectors4–16 and try
to extend it to the binary-outcome detectors. So we consider
detectors with imperfect measurement fidelities �nonprojec-
tive measurement� and introduce the quantum efficiency via
the relation between the loss of quantum information �char-
acterized by the qubit decoherence� and informational gain
by the measurement �determined by the measurement fideli-
ties�.

Our attempt to introduce the quantum efficiency for an
arbitrary binary-outcome detector has failed, because the ef-
ficiency should in general be characterized by 18 parameters,
which is obviously impractical. �The number 18 is the dif-
ference between 28 parameters necessary to describe a gen-
eral binary-outcome detector and ten parameters necessary to
describe an ideal detector, which does not decohere the qubit
for each measurement result.�

However, the situation is much simpler for a QND detec-
tor. Its operation can be fully characterized by only six pa-
rameters �instead of 28�: fidelity Fi, phase shift i, and de-
coherence Di for each measurement result �i=0,1�—see Eqs.
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FIG. 4. �a� The decoherences D1 �thick lines� and Dmin �thin
lines� and �b� the quantum efficiencies �1 �thick lines� and � �thin
lines�, as functions of the fidelity F1 for a tunneling-into-continuum
detector with several values of the ratio of tunneling rates: �1 /�0

=100 �solid lines�, 3 �dashed lines�, and 1.5 �dotted lines�. The
values of 1−F0 are shown by gray lines in �b�. For the calculation
of � we have assumed 1=0. For null-result outcome the detector
is ideal: D0=0 and �0=1.
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�6�–�8�. Therefore it is not difficult to introduce a meaningful
definition for the quantum efficiency via a combination of
these six parameters. However, it can be done in a variety of
ways. By comparing the qubit ensemble decoherence with
the informational bound �11�, we have introduced three

slightly different definitions: �, �̃, and �̃̃ �see Eqs.
�12�–�14��, which are counterparts of the definitions5,24 of the
quantum efficiency for a linear detector. We have also intro-
duced outcome-dependent quantum efficiencies �i �see Eq.
�15�� by comparing the decoherences Di with the informa-
tional bound �11�. �Another meaningful way to introduce the
outcome-dependent efficiencies is via Eq. �16�.� Notice that
all these definitions are not applicable in the “orthodox” case
of perfect measurement fidelity: F0=F1=1.

After introducing the definitions for the quantum effi-
ciency, we have calculated the efficiencies for several simple
models of a binary-outcome detector. As follows from the
results, it is not easy to find a model for a practical binary-
outcome detector which would have theoretically perfect
quantum efficiency �in contrast to linear detectors, for which
QPC realizes the perfect case�. Out of the models we have
considered, the perfect efficiency is realized only in the in-
direct projective measurement, when the qubit interacts with
another fully coherent two-level system, which is actually
measured. While the quantum efficiency for such measure-
ment setup is ideal, it is not a quite practical setup.

Analyzing a linear detector in the binary-outcome regime
�when measurement result is compared with a threshold�, we
have found that such detector cannot have perfect quantum
efficiency: ��2 /� and �0,1�0.7. The tunneling-based par-
tial measurement of superconducting phase qubits is theoreti-
cally ideal for the null-result outcome: �0=1
�experimentally17 �0�0.8�; however, the qubit state is de-
stroyed in the case of measurement result 1, and therefore
quantum efficiencies �1 and � cannot be defined. We have
also considered a detector based on tunneling into con-
tinuum, with tunneling rate depending on the qubit state. For
such a detector the null-result efficiency is still perfect: �0
=1, while the efficiencies �1 and � are not perfect, though
their values can be rather close to 100%.

Our results hint that the practical binary-outcome detec-
tors of solid-state qubits available at present �e.g., bifurcation
detectors37–40 or the balanced comparator44� cannot have per-
fect quantum efficiency for both measurement results, even
theoretically. However, this is not a rigorous conclusion, and
a more detailed analysis of the quantum efficiencies of the
particular practical detectors is surely interesting and impor-
tant.
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