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We discuss quantum evolution of a decaying state in relation to a recent experiment of Katz et al. Based on
exact analytical and numerical solutions of a simple model, we identify a regime where the qubit retains
coherence over a finite time interval independently of the rates of the three competing decoherence processes.
In this regime, the quantum decay process can be continuously monitored via a “weak” measurement without
affecting the qubit coherence.
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An impressive recent progress in implementing simple
quantum systems related to quantum computing1 permits one
to address experimentally the long-standing controversies on
quantum measurement.2,3 In particular, it is becoming pos-
sible to study directly what happens “inside” the quantum-
state collapse during a continuous �weak, partial, incomplete,
etc.� measurement. While continuous measurement �CM� of
an ensemble of quantum systems can be described just as an
ensemble decoherence,3,4 a much more subtle and interesting
topic is CM of a single quantum system.

This topic is well developed in quantum optics,5 with the
most advanced experiments, including a demonstration of a
continuous quantum feedback.6 While the formalisms and
terminology used by different groups in relation to the con-
tinuous �partial, etc.� collapse are quite diverse, the most
widely known theoretical approaches are the so-called
positive-operator-valued measure1 �POVM� and “quantum
trajectory.”5 In condensed matter physics a similar approach
has been introduced as the “quantum Bayesian” formalism.7

The first direct condensed matter experiment on partial
collapse has been realized recently.8 �A somewhat similar
experiment was proposed in optics9 but never realized.� The
experimental setup of Ref. 8 was based on the Josephson
phase qubit10 �Fig. 1�a��, described by an asymmetric
double-well potential profile. The two lowest levels �with
energies E0 and E1� in the shallow “left” well were used as
qubit states �0� and �1� �Fig. 1�b��. The levels in the deep
“right” well were significantly broadened, essentially creat-
ing a continuum of states. With some �over�simplification,
the experiment can be presented in the following way.
The qubit was prepared in a superposition state ��0�
=�0�0��0�+�1�0��1�, and then the barrier was lowered for a
time t to allow a partial tunneling from the state �1� into the
right well ��t�1, where � is the tunneling rate�. Selecting
only the cases when the tunneling had not happened �“null
result”�, the qubit state was subsequently examined by
quantum-state tomography. Experimental results8 were
consistent11 with the simple formula

��t� =
�0�0�e−iE0t�0� + �1�0�e−iE1te−�t/2�1�

���0�0��2 + ��1�0��2e−�t
, �1�

which follows from the quantum Bayes rule7,12 for partial
measurement of the qubit. Notice that for �t�1 this formula

describes the “orthodox” projective collapse onto state �0�
�this regime is usually used for phase qubit measurement10

by sensing the tunneling into the right well with a nearby
superconducting quantum interference device �SQUID��,
while for �t�1 the collapse is only partial. Therefore, the
experiment8 has shown that after the partial collapse the qu-
bit remains almost perfectly pure, while its evolution is in-
formation related; in particular, the amplitude of state �0�
gradually grows without “physical” interaction.

The purpose of this work is to understand why and how
well a metastable qubit may retain coherence despite deco-
hering processes in its environment. This is important for
understanding of the partial-collapse measurement in Ref. 8,
but even more so for future experiments on continuous moni-
toring for qubit decay where measurement-induced decoher-
ence would be inherent. We focus on a simplified model with
the level structure as in Fig. 1�c�, where the �qubit� states in
the left well experience no direct decoherence, whereas those
in the right well and the tunneling Hamiltonian are subject to
decoherence. As we discuss, in this case the qubit remains
pure as long as the tunneling out of the left well is an irre-
versible process. We use analytical and numerical techniques
to illustrate situations where such an irreversibility is due to
the choice of system parameters �e.g., for a nearly continuous
spectrum in the right well� or where it happens dynamically
due to the evolution properties in the right well.

We write the system Hamiltonian in the block form,

H = 	HL T

T† HR

 . �2�

Here HL is the two-level Hamiltonian in the left well, HL
=diag�E0 ,E1�, HR is the Hamiltonian in the right well, HR

nf
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FIG. 1. �a� Schematic of the phase qubit: superconducting loop
interrupted by a Josephson junction. �b� Potential profile and level
structure of the phase qubit. Upper level �1� decays with the rate �.
�c� Idealized level structure used here. Left-well levels with ener-
gies E0 and E1 form a qubit. The state �1� can decay into the right
well where the average level spacing is � and the bandwidth is �.
The tunneling amplitude to the state �n� is fn.
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=nEn�n��n�, and T is the corresponding tunneling Hamil-
tonian �here and below n denotes summation over the right-
well states only�. Unless mentioned otherwise, we assume
that only the transitions from the upper qubit state are al-
lowed, T1n� fn�0, while the state �0� is fully disconnected,
T0n=0.

Let us start with the simplest case of no decoherence dur-
ing the tunneling time interval t, followed by an ideal ortho-
dox quantum measurement which distinguishes left and right
wells �the technical realization of such a measurement is dis-
cussed below�. Then the state of the system can be described
by a wave function �= ��L ,�R�t, which starts as �L�0�
=�0�0��0�+�1�0��1� and �R�0�=0, evolves according to the

Schrödinger equation �̇=−iH� before the measurement, and
finally undergoes orthodox projective collapse at time t. In
particular, the left-well component �L is either zeroed if the
escape is detected, or is rescaled to become the new wave
function of the system2,13 if the measurement finds no es-
cape: ��L ,�R�→ ��L / ��L� ,0�. In this case it is trivial to see
that the qubit remains fully coherent in the null-result sce-
nario of no escape that is interesting for us.

Before the measurement, the left-well components evolve
as �0�t�=e−iE0t�0�0� and

�1�t� =
i�1�0�

2�
�

−	

	 d
 e−i
t


 − E1 − 
n

�fn�2/�
 − En + i0�
, �3�

so after the null-result measurement the qubit state, up to a
phase, becomes �=A�e−iE0t�0�0��0�+�1�t��1��, where the
normalization A= ���0�0��2+ ��1�t��2�−1/2. Generically, A�1.
This corresponds to an increase of the component �0, even
though the state �0� is fully disconnected. Notice that this
result coincides with Eq. �1�, up to a trivial substitution.

The integration in Eq. �3� can be formally done as a sum
over residues 
n, the exact eigenvalues of the Hamiltonian
�2�. Qualitatively, we can characterize the spectrum of the
right well by the average energy spacing �, average tunnel-
ing amplitude f �the rms of �fn� at energies near E1�, and the
total energy bandwidth ��� , f �see Fig. 1�c��. Then at time
t��−1 the contributions of different residues add nearly in
phase, and ��1�2 changes quadratically in t. At t�−1 the
resonant processes of return from the right well become im-
portant; the form of �1�t� differs qualitatively depending on
the number of strongly coupled levels ��f /�� and their ex-
act position. In the intermediate range, �−1� t��−1, the
level discreteness is unimportant and the residue summation
can be approximated by an integration. We obtain

�1�t� = Z�1�0�e−i�E1+�E1�te−�t/2, �4�

where the decay rate is �=2�D̃�
�, while the energy shift
�E1 and the prefactor Z are given by the integrals

�E1 = P� dE D̃�E�

 − E

,
1

Z
� 1 +� dE D̃�E�

�
 − E + i0�2 ,

all evaluated at 
=E1+�E1− i� /2. Here we introduced the

smoothed tunneling density of states �TDOS� D̃�E� instead

of D�E�=n�fn�2��E−En�; unlike in Ref. 14 we assume D̃�E�
to have no discontinuities or singularities.

Replacing D̃ by f2 /�, the decay rate can be written as
�=2�f2 /�, and the evolution is well exponential if
�� f ����. In this case �which is essentially tunneling into
continuum� we obtain the simple formula �1� with small cor-
rections �E1 and Z.

Now let us add decoherence processes into the picture.
We will consider only decoherence in the right well and be-
tween the wells, excluding explicit left-well decoherence,
which has a trivial effect.

A simple model describing decoherence of right-well lev-
els can be introduced by adding imaginary parts to their en-
ergies, En→En− i�̃n /2. Physically, this corresponds to pro-
cesses of energy relaxation to levels that do not interact with
�1�. Then the wave function formalism �Eq. �3�� is still valid,
so the qubit remains pure after the null-result measurement,
while the conditions for the exponential decay are now more
relaxed since the TDOS is naturally smoothed. Despite sim-
plicity, this model is well applicable to experiment.8

In a more complete model, we consider the dissipative
dynamics of the system �2� within the master equation in the
Lindblad form,15

�̇ = − i�H,�� + 
i

��i/2����i�,�i
†� + ��i,��i

†�� , �5�

where � is the density matrix �DM�, �i are the decoherence
operators, and �i are the corresponding decoherence rates.
We will specifically consider the cases of phase noise be-
tween the wells, �0=n�n��n� �cf. Ref. 16�, as well as the
incoherent transitions up and down the ladder of levels in the
right well, �1=�2

†=n�n��n+1� �cf. Ref. 17�.
We have found an exact real-time analytical solution of

Eq. �5� in the case of uniformly coupled equidistant states in
the right well with infinite bandwidth: fn= f , En=n�,
�→	. The solution is constructed using the momentum rep-
resentation in the right well, �����2��−1/2n�n�ein�. Then
the Hamiltonian HR becomes a differential operator,
HR����=−i�������, the tunneling operator picks �=0
since T��������d�= �1��2�f��0�, and the decoherence op-
erators are diagonal: �0=1R, �1=e−i�, �2=ei�. Then, e.g.,
the off-diagonal component �10 of the qubit DM can be
found from the equations

�̇10 = i�E0 − E1��10 − igb0�0� , �6�

ḃ0��� = �iE0 − �/2�b0��� − ���b0��� − i�10g���� , �7�

where ���0+�1+�2 is the net dephasing rate, g=�2�f , and
b0��� encodes the off-diagonal components of the DM be-
tween the level �0� and the right-well levels. Equation �7� is
the first-order quasilinear partial differential equation �PDE�;
it can be integrated in quadratures for any form of �10
��10�t�. The solution describes the chiral propagation of the
decaying amplitude b0 around the circle from �=0. As a
result, before a full turn is completed, for t�2� /�, the am-
plitude does not return back to the left well. For this time
interval, the only effect on the component �01 is a relaxation
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with the rate � /2, independent of the dephasing �:

�10�t� = �10�0�ei�E0−E1�te−�t/2, � = 2�f2/� . �8�

Similarly, the evolution of the qubit DM component �11 is
coupled with the right-well DM components �R�� ,��� and
components b1��� involving level �1� and right-well levels.
Solving in turn the PDEs for �R�� ,��� and b1���, we have
obtained the self-consistent equation for �11. Again, over the
same time interval, there is no return tunneling from the right
well, and the evolution of �11 is not affected by decoherence
described by operators �0,1,2, so that �11�t�=�11�0�e−�t, t
�2� /�. Evolution of �00 is trivial: �00�t�=�00�0�.

With probability �00�t�+�11�t�, an ideal projective mea-
surement at time t will show that the system has not decayed
to the right well. In this case the density matrix needs to be
changed �collapsed� as2,13

	 �L �b0,b1�†

�b0,b1� �R

 → 	�L/Tr��L� 0

0 0

 . �9�

It is easy to see that, if the system originated in a pure state,
�L�0�=�L�0��L

†�0�, the density matrix after such a measure-
ment at time t�2� /� also describes a pure state, which
exactly corresponds to the formula �1�. We emphasize that
the absence of return tunneling from the right well is both
necessary and sufficient for the qubit purity in our model.

The obtained analytical solution of the ideal case can be
now used as a starting point of the perturbation theory for
situations more realistic experimentally. In particular, a weak
nonlinearity in the right-well spectrum, e.g., En=��n+�n2�,
��1, in the phase representation corresponds to a dispersive
term �HR=−���2 /��2. The analog of Eq. �7� would then
include not only propagation but also dispersion of the wave
packet, and the qubit decoherence due to reverse tunneling
processes may start earlier. The effect is exponentially small
for 2�− t����, where ���2�t���1/2 is the rms width of
the packet. A similar dispersive effect results from random
level spacing in the right well, or due to phase noise in the
right well. With many levels in the right well effectively
coupled, we expect these effects to be weak at sufficiently
early times, as long as the corresponding phase broadening
�� is small, ���1.

A different sort of perturbation results if the tunneling
amplitudes fn are not equal to each other, or if the number of
states in the right well is finite. In this case the transformed
tunneling Hamiltonian would not correspond to a � function
in phase space but instead would couple to a finite range of
phases, �������� /�. As a result, some reverse tunneling
from the right well back to the qubit may start early. How-
ever, the associated decoherence is not expected to be sig-
nificant as long as ���2�− t�. Additionally, the decay in
the model �5� would be exponential only at t��−1, which
leads to an additional prefactor as in Eq. �4�. We also note
that the inelastic escape to levels decoupled from �1� also
reduces the return tunneling probability and extends the time
interval of qubit coherence.

We illustrate these arguments by a numerical simulations
of Eq. �5� in Fig. 2: open symbols represent the purity P�t�
= ���11−�00�2+4��01�2�1/2 / ��00+�11�, while closed symbols

represent the diagonal component of qubit polarization,
−��z����00−�11� / ��00+�11�. Even with a not very large pa-
rameter � /�=40 �which corresponds to a total of N=42
energy levels�, the results of numerical simulation agree al-
most perfectly with the analytical result shown by dotted
lines. In agreement with our arguments, neither weak spec-
trum nonlinearity �circles� nor randomized level spacing �tri-
angles� reduces the qubit coherence for sufficiently early
evolution time.

Let us briefly discuss what happens with Eq. �1� when the
state �0� can also tunnel into the right well with the rate �0.
The tunneling would then produce a matrix element h10 be-
tween the levels �1� and �0�. In the simplest case of no return
processes, such a matrix element would be purely imaginary
�anti-Hermitian�, with the magnitude18 �h10 � � ��0��1/2 /2,
where the equality is achieved when the tunneling matrix
elements from the two states are all proportional to each
other, T0n=�T1n. The corresponding dynamics is not trivial,
but the level mixing is small if �h10�� �E1−E0�. Even in this
case there may be a significant effect on level decay rate.
However, if �0+�1� �E1−E0�, then Eq. �1� can be simply
replaced by the result expected from the quantum Bayes
rule:7,12,19 the term �0�0� should be substituted with
�0�0�exp�−�0t /2�.

So far we have assumed an ideal orthodox measurement
at time t, which distinguishes between the left and right
wells, but does not affect the states in the left well. For a
superconducting phase qubit such a measurement can be
technically realized by biasing the measurement SQUID at
time t to the point at which the SQUID switches to the finite-
voltage state only for a right-well flux.10 Due to strong non-
linearity of such a detector, in the case of no switching the
back action onto the left-well qubit states can be made prac-
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FIG. 2. �Color online� Simulation results for the evolution pro-
jected onto the left well beginning with the state with ��x�=1; pa-
rameters as shown. Open symbols represent the purity P�t� which
starts at P�0�=1, closed symbols represent the longitudinal qubit
polarization −��z�; the two curves merge near t�=4. Blue squares:
equidistant spectrum in the right well, En=�E+n�; numerical re-
sults are almost on top of the analytical result with N→	 �dashes�.
The broad minima at t�2� /� and t�4� /� correspond to arrival
of incoherent echoes from the right well. Green circles: data with
added spectrum nonlinearity, �=0.02 �see text�. Red triangles: ran-
dom level spacing, En+1−En= �0.5+�n��, where �n are uniformly
distributed random numbers, 0��n�1.
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tically negligible. It is important to mention that a linear
detector would necessarily disturb the qubit states because
for a phase qubit the “distance” between the wells is compa-
rable to the “width” of the qubit well.

Strictly speaking, the results discussed in this work as-
sume measurement only once at time t. However, there is a
sense in which our results describe qubit evolution before the
decay. Our qubit “ages” in the process of no decay �as in Eq.
�1��, unlike the case of a radioactive atom which remains “as
new” before the decay actually happens. For such an inter-
pretation, we necessarily need to consider repeated �or con-
tinuous� measurements with time resolution better than �−1,
and it is important that presence or absence of extra measure-
ments within the time interval t should not affect the nonde-
cayed qubit state at time t. Clearly, this is not the case if
orthodox measurements are repeated too frequently with
time interval �t shorter than the scale of the quantum Zeno
effect, �t��−1. However, in the regime of an exponential
decay with �t��−1 �e.g., as in Eq. �4� with Z�1� an extra
measurement has no effect: a composition of two evolutions
�1� with durations t1 and t2 is the same as a similar evolution
with duration t1+ t2. In actual experiment the measurement
SQUID can monitor the decay continuously, and then �t
corresponds to the intrinsic time resolution of the detector. In
this case the frequent partial collapses can be replaced by
introduction of the interwell phase noise �Eq. �5�� with �0
=1/�t. Our results indicate that this does not lead to signifi-
cant qubit dephasing even in the case of good time resolution

�t��−1, as long as the conditions of exponential decay are
well satisfied. We conclude that in the regime of exponential
decay, Eq. �1� can really be interpreted as actual qubit evo-
lution in time before decay.

In conclusion, we have analyzed the quantum dynamics
of a model with two-well structure resembling the experi-
ment of Ref. 8 with the �qubit� states in the left well nearly
coherent, while those in the right well and the transition
Hamiltonian are subject to decoherence. The analytical solu-
tion of the master equation �5� obtained for an infinitely wide
right-well spectrum with equal level spacing � gives pure
qubit subspace for t�2� /�, independent of the decoherence
rates �0,1,2 �see Eq. �5��. This property of coherence preser-
vation over a finite time interval remains in effect in a per-
turbed system where the solvability conditions are only ap-
proximate. We have identified a regime where the quantum
evolution during tunneling can be experimentally accessed
via a repeated “stroboscopic” measurement or a continuous
“weak” measurement. In this regime the qubit state will re-
main pure in spite of the phase noise associated with the
measurement.
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