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We analyze the crosstalk error mechanism in measurement of two capacitively coupled superconducting
flux-biased phase qubits. The damped oscillations of the superconducting phase after the measurement of the
first qubit may significantly excite the second qubit, leading to its measurement error. The first qubit, which is
highly excited after the measurement, is described classically. The second qubit is treated both classically and
quantum mechanically. The results of the analysis are used to find the upper limit for the coupling capacitance
�thus limiting the frequency of two-qubit operations� for a given tolerable value of the measurement error
probability.
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I. INTRODUCTION

Superconducting Josephson-junction circuits, including
phase,1 flux,2 and charge3 qubits, have attracted a significant
interest as promising devices for quantum information
processing.4 In this paper we consider flux-biased phase
qubits,5–7 which have been introduced relatively recently and
have a clear advantage over the current-biased phase qubits.
While the schematic of a flux-biased phase qubit �Fig. 1�
may be very similar to a flux qubit �in the simplest case, a
superconducting loop interrupted by one Josephson junc-
tion�, an important difference is that in the phase qubit the
logic states �0� and �1� are represented by two lowest levels in
one well of the corresponding potential profile, while for the
flux qubit the levels in two neighboring wells are used. An
imaginary-swap quantum gate, which together with single-
qubit rotations forms a universal set of quantum gates,8 has
been realized with flux-biased phase qubits in Ref. 9. The
Bell-type correlations in measurement of two phase qubits10

and the quantum state tomography11 for phase qubits have
also been demonstrated recently.

The measurement of qubits is an important stage in quan-
tum information processing, representing one of numerous
challenges on the way to a scalable quantum computer. The
measurement techniques are constantly improving and new
ways of qubit measurement are being introduced; for ex-
ample, an idea of “dispersive” readout schemes has been
recently proposed and realized for superconducting charge

qubits.12 For flux-biased phase qubits a scheme allowing fast
measurement has been recently implemented.6,9–11 According
to this scheme, a measurement pulse lowers the barrier be-
tween the shallow �“left”� potential well used for qubit states
and a much deeper “right” well �Fig. 1�, so that during the
pulse a qubit in the upper state �1� switches by tunneling to
the right-hand well with probability close to one, while a
qubit in the lower state �0� remains intact. A little later a
nearby SQUID is switched on to detect in which well the
qubit is localized, that completes the measurement.

Simultaneous measurement of two capacitively coupled
phase qubits is complicated by crosstalk,9 which is caused by
the fact that in the simple design realized experimentally so
far �Fig. 2� the qubit coupling is fixed and therefore qubits
remain coupled in the process of measurement. The crosstalk
mechanism is the following. Suppose that one of the qubits is
measured in state �1�, which means tunneling to the right
well. The tunneling is then followed by the dissipative evo-
lution �damped oscillations�, eventually reaching the ground
state of the right well. These oscillations perturb the state of
the second, capacitively coupled qubit, especially because in
the experiment the oscillation frequencies in both wells are
somewhat close to each other, and both qubits are practically
identical. Therefore, if the measurement pulse is applied to
the second qubit after the dissipative evolution of the first
qubit, the measurement result is likely to be wrong: the sec-
ond qubit in state �0� will often be read out as in state �1�
because of the second qubit excitation.9 To avoid this prob-
lem, the measurement pulses should be applied to both qu-
bits almost simultaneously,9 within the time scale shorter
than development of the crosstalk mechanism.

However, this is not a complete solution of the problem
because the excitation of the second qubit due to crosstalk

FIG. 1. The circuit schematic of a flux-biased phase qubit and
the corresponding potential profile �as a function of the phase dif-
ference � across the Josephson junction�. During the measurement
the state �1� escapes from the “left” well through the barrier, which
is followed by oscillations in the “right” well. This dissipative evo-
lution leads to the two-qubit crosstalk.

FIG. 2. The circuit schematic for two capacitively coupled flux-
biased phase qubits.
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may be sufficient to switch the qubit from the left well to the
right well even a little after the second-qubit measurement
pulse; such switching will also lead to the measurement error
because the readout SQUID distinguishes the left/right states
significantly later �microsecond scale�. This type of error will
be of the main interest in our paper.

We emphasize that the crosstalk mechanism considered
here is due to a fixed coupling between the qubits. It seems
possible to realize schemes with adjustable coupling in the
future, which will eliminate much of the measurement
crosstalk discussed here. Still, it is of interest to analyze the
fixed-coupling case, since this is the simplest scheme and the
only one realized experimentally so far.

In this paper we analyze the measurement crosstalk
mechanism for two capacitively coupled flux-biased phase
qubits �Fig. 2�, and calculate the corresponding measurement
error. In Sec. II we discuss the system to be studied. The
measurement crosstalk is analyzed in Secs. III–V. For defi-
niteness, we assume that the first qubit is switched �from
state �1��, while the second qubit is initially in the state �0�.
The dynamics of the first qubit, which after the switching
performs damped oscillations in the deep well, is analyzed
classically in Sec. III. Such an approximation drastically
simplifies the problem and is also quite accurate, since for
the experimental parameters9 used here the first qubit is
highly excited after measurement, with typical quantum
number over 102. The second qubit in this paper is treated
both classically and quantum mechanically. The classical
treatment �Sec. IV� includes two approaches: the harmonic-
oscillator model,9 which allows for an analytical treatment,
and a numerical solution for the exact �anharmonic� potential
profile of the qubit. The results of the quantum approach are
presented in Sec. V; to a significant extent their understand-
ing can be based on the results of the classical analysis. In
the quantum approach we completely neglect dissipation in
the second qubit; however, insight is given by the classical
approach. The conclusions are summarized in Sec. VI. The
appendices mostly contain mathematical details. In particu-
lar, basic properties of the one-qubit potential are reviewed
in Appendix A, the Hamiltonian for two capacitively coupled
qubits is derived in Appendix B, the first-qubit dynamics
after switching is discussed in Appendix C, the details of the
classical approach for the second-qubit dynamics are pre-
sented in Appendix D, and details of the quantum approach
are discussed in Appendix E.

II. FLUX-BIASED PHASE QUBITS

A flux-biased phase qubit schematic5 coincides with that
of the basic rf SQUID �Ref. 13� �Fig. 1�. Neglecting dissipa-
tion, it can be described13 as a fictitious mechanical system
with the Hamiltonian

H =
p2

2m
+ U��� , �1�

where � is the superconducting phase difference across the

Josephson junction, p=m�̇ is the corresponding momentum,
m= ��0 /2��2C is the effective mass determined by the ca-

pacitance C, �0=h / �2e� is the flux quantum, e is the electron
charge, and U��� is the potential energy �shown schemati-
cally in Fig. 1�:

U��� = EJ� �� − ��2

2�
− cos �� . �2�

Here EJ=�0I0 /2� is the Josephson energy, �=2�I0L /�0 is
the dimensionless inductance, �=2�� /�0 is the dimension-
less external magnetic flux, I0 is the critical current, and L is
the inductance. In Appendix A we review the basic proper-
ties of the potential energy �2�.

For numerical calculations presented in this paper we will
use the following values of the parameters from the experi-
ment of Ref. 9:

C = 700 fF, L = 0.72 nH, I0 = 1.7 �A. �3�

For these parameters �=3.72, and the potential �2� has either
one or two wells �see Appendix A� depending on the value of
external flux �; the two-well case is realized at 2�−�c��
��c �the second well disappears at the critical flux �c
=� /2+arcsin�1/��; see Appendix A�. For definiteness we
assume �����c, so that the right well is deeper than the
left well.

The depth 	Ul of the left well �i.e., the difference be-
tween the potential maximum and minimum� can be charac-
terized by the crude estimate of the number of discrete levels
in the well

Nl =
	Ul


�l
, �4�

where �l is the “plasma” frequency �the classical oscillation
frequency near the well bottom� for the left well �see Appen-
dix A�. Notice that Nl is not necessarily integer and there is
no simple relation between Nl and exact number of discrete
levels in the well because of significant anharmonicity of the
potential. Figure 3 shows the qubit potential U��� for Nl

=10 �corresponding to �=4.842�, Nl=5 ��=5.089�, and Nl

=1.355 ��=5.308�; the last value corresponds to the bias
during the measurement pulse �see below�. The qubit levels
�0� and �1� are, respectively, the ground and the first excited
levels in the left well.

Now let us consider two capacitively coupled flux-biased
phase qubits9 �Fig. 2�. The current balance for this circuit
yields the equations

FIG. 3. The qubit potential U��� �Eq. �2�� for Nl=10 �dotted
line�, Nl=5 �solid line�, and Nl=1.355 �dashed line�.
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�̈i +
�̇i

Ci�Ri

+
2�I0i

�0Ci�
sin �i +

�i − �i

Ci�Li

=
Cx

Ci�
�̈ j , �5�

where qubits are numbered by i , j=1,2�i� j�; Ci�=Ci+Cx;
the quantities �i, I0i, Ci, and Li are, respectively, the
Josephson-junction phase difference, critical current, capaci-
tance, and inductance for the ith qubit, Cx is the coupling
capacitance, and �i=2��i /�0 is the dimensionless external
magnetic flux. Dissipation in Josephson junctions is de-
scribed using the resistively shunted junction �RSJ� model13

by introducing resistances R1 and R2 into the circuit �Fig. 2�.
For each junction the dissipation can be characterized by the
energy relaxation time

T1 = R1C1, T1� = R2C2. �6�

The derivation of the Lagrangian and Hamiltonian for the
two-qubit system is presented in Appendix B. For two iden-
tical qubits �when the subscript i=1,2 can be dropped in the
qubit parameter notation�,

Ci = C, Li = L, I0i = I0, �7�

the system Hamiltonian is �Appendix B�

H =
p1

2 + p2
2 + 2�p1p2

2�1 + ��m
+ U1��1� + U2��2� , �8�

where �=Cx / �C+Cx�, the potential energies Ui��i� of the two
qubits �Eq. �2�� are controlled by different fluxes �i, and the
generalized momenta pi are the total �node� charges on the
ith junction and the adjacent coupling capacitor multiplied
by 
 /2e.13,14 Experimental parameters of Ref. 9, Cx=6 fF
and T1=25 ns, correspond to �=8.510−3 and R=35.7 k�.

III. CROSSTALK MECHANISM AND FIRST-QUBIT
DYNAMICS

In the fast measurement scheme employed in Refs. 6 and
9, a short flux pulse applied to the measured qubit decreases
the barrier between the two wells �see Fig. 1�, so that the
upper qubit level becomes close to the barrier top. In the case
when level �1� is populated, there is a fast population transfer
�tunneling� from the left well to the right well. Due to dissi-
pation, the energy in the right well gradually decreases, until
it reaches the bottom of the right well. In contrast, if the
qubit is in state �0� the tunneling essentially does not occur.
The qubit state in one of the two potential minima �separated
by almost �0� is subsequently distinguished by a nearby
SQUID, which completes the measurement process.

In a system of two identical coupled qubits, crosstalk can
produce measurement error if the qubits are in different logi-
cal states.9 For definiteness, we assume that before the mea-
surement the qubit system is in the state �10�, i.e., the first
qubit is in the excited state and second qubit is in the ground
state. Then after the measurement the first qubit performs
damped oscillations in the right well, which in the classical
language13 produces an oscillating �microwave� voltage

��0 /2���̇1�t�. This voltage causes oscillating current
through the coupling capacitor Cx, which perturbs the second

qubit. The effect is so strong that measurement of the second
qubit after the dissipative evolution of the first qubit is prac-
tically useless: there is a little chance for the second qubit to
remain in the ground state.9 The effect of crosstalk can be
significantly suppressed if the two qubits are measured prac-
tically simultaneously �experimentally, not more than few
nanoseconds apart� because the crosstalk excitation of the
second qubit takes finite time.9 Nevertheless, crosstalk leads
to noticeable measurement errors even in the case of simul-
taneous qubit measurement. The reason is that strong excita-
tion of the second qubit may lead to its switching from the
left to the right well even in the absence of the measurement
pulse. �Recall that the states are distinguished by the SQUID
a little later, so switching due to strong excitation is practi-
cally indistinguishable from switching during the measure-
ment pulse.�

This is exactly the effect which we analyze in this paper.
We assume that the first qubit is switched to the right well at
t=0, while the second qubit at this time is in the ground state
and no measurement pulse is applied to the second qubit
�physically, this means that the pulse is short and does not
change the qubit state�. Our main goal will be analysis of the
measurement error, which in this case is switching of the
second qubit to the right well due to the crosstalk excitation.

A rigorous theoretical study of the measurement crosstalk
should involve a numerical solution of quantum evolution of
two coupled qubits accounting for dissipation, which would
require extensive computer resources. In the present paper
we employ several simplified approaches, which have the
advantage of being relatively fast numerically, thus facilitat-
ing a study of the crosstalk dependence on the parameters.
The first qubit is always treated classically, while the second
qubit is studied both classically and quantum mechanically.
�Classical treatment of the first qubit is justified by its very
strong excitation: for our parameters its energy after switch-
ing corresponds to the quantum number n1=191, and the
interesting part of the dissipative dynamics happens when
the corresponding level number in the right well is still very
large, n1�30.�

We will mainly consider two experimentally relevant
cases of the second qubit biasing, characterized by the di-
mensionless barrier heights Nl2=5 and 10 ��2=5.09 and
4.84, respectively�. The corresponding left-well plasma fre-
quencies �see Eq. �A8�� are �l2 /2�=8.91 GHz and
10.2 GHz. The crosstalk mechanism is obviously very effi-
cient when the first qubit oscillation is in resonance with �l2.

For the first qubit we choose the biasing parameter Nl1
=1.355 ��1=5.31� which is close to the experimental
value9,15 at which the state �1� efficiently tunnels out. �Recall
that parameters of both qubits are given by Eq. �3�.� The
corresponding WKB tunneling rate16,17 for the state �1� is 3
109 s−1, which ensures tunneling during few-nanosecond-
long measurement pulse as in experiments of Refs. 6 and 9.
Notice that the barrier height Nl1 is smaller than the naive
estimate 1.5 for the dimensionless energy of the state �1�.
Actually, because of significant anharmonicity, the energies
of states �0� and �1� in this case are 0.475 and 1.26 from the
well bottom in units of 
�l1, where �l1 /2�=6.87 GHz. We
neglect the fact that in the experiment the biasing of the first
qubit returns back to Nl1	5 after the measurement pulse; as
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we checked, this does not lead to a significant change of the
evolution dynamics in the right well.

At the initial moment t=0 the first qubit is assumed to be
in the right well close to the barrier top position, with the

velocity �̇1=0. However, instead of assuming its initial en-
ergy to be the same as the energy of state �1�, we choose a
slightly lower energy, which is below the top of the barrier
by 20% of the well depth 	Ul1. This �somewhat arbitrary�
choice prevents unphysically slow dynamics of a classical
particle in the case when it is very close to the barrier top
�quantum dynamics due to dissipation does not significantly
slow down at the energy close to the barrier top�. We have
also checked that the qubit dynamics is not too sensitive to
the choice of initial energy �when it is above the left well
bottom and not too close to the barrier top�.

Since the initial energy of the first qubit �with respect to
the bottom of the right well� is much higher than the maxi-
mal energy of the second qubit in the left well, one can
neglect the back action from the second qubit while it re-
mains in the left well. Then a one-qubit approach can be used
for the dynamics of the first qubit �see details in Appendix
C�:

�̈1 +
�̇1

�1 + ��CR
+

2�I0

�0C�1 + ��
sin �1 +

�1 − �1

�1 + ��CL
= 0,

�9�

that shows damped oscillations in the right well. It is very
important to notice that due to anharmonicity of the poten-
tial, the gradual decrease of the qubit energy leads to the
gradual increase in time of the first-qubit oscillation fre-
quency fd �which drives the second qubit�.9

The time dependence fd�t� of the oscillation frequency is
shown in Fig. 4 for Cx=0 �solid line� and 6 fF �dashed line�
assuming T1=25 ns. The curves are very close to each other
showing very small effect of the effective mass �capacitance�
renormalization �m→m�; see Appendix B�. We have also
checked numerically that variation of T1 from

25 ns to 500 ns does not change noticeably the dependence
fd�t� if the time is normalized by T1, which is rather obvious
since fd�T1

−1.
Figure 4 shows that the oscillation frequency sharply in-

creases initially and then slowly tends to the right-well
plasma frequency �r1 /2�=15.3 GHz �the dash-dotted hori-
zontal line in Fig. 4�. This is explained by the fact that the
initial system energy is close to the barrier top, where the
oscillation frequency is significantly lower �it tends to zero
when the energy approaches the barrier top�, while anharmo-
nicity becomes relatively weak after the energy is no longer
close to the barrier top.

Notice that it takes a finite time tc for the first qubit dy-
namics to get into resonance with the second qubit ��l2 /2�
is around 9–10 GHz, as mentioned above�; we find from
Fig. 4 that tc=0.085T1 for Nl2=5 and tc=0.192T1 for Nl2
=10. As a simple estimate, this is the time after which the
second qubit becomes significantly excited.9 �Delay time tc
increases with Nl2 because of �l2 increase: �l2�Nl2

1/5, as fol-
lows from Eqs. �A13� and �A15�.�

IV. SECOND QUBIT: CLASSICAL APPROACH

Before considering quantum dynamics of the second qubit
�see next section�, let us first discuss its classical dynamics;
this will give an insight useful for understanding the quan-
tum results. The classical dynamics can be described by the
equation �see discussion in Appendix D�

�̈2 +
�̇2

�1 + ��T1�
+

2�I0

�0C�1 + ��
sin �2 +

�2 − �2

�1 + ��CL
= ��̈1�t� ,

�10�

in which the oscillating driving force ��̈1�t� has a slowly
varying period and amplitude. Notice that we will often ne-
glect the energy relaxation in the second qubit �T1�=��. Be-
sides being a simplifying assumption, this may be really rel-
evant to the experimental situation because recent
experimental data18 indicate that in long-T1 qubits effective
relaxation time in the deep right well may be significantly
shorter than T1 in the shallow left well.

A. Harmonic-oscillator model

Though Eq. �10� is simpler than the exact equation �5�, its
solution is still complicated and generally chaotic.19 Further
simplification can be obtained by using the model of an un-
damped harmonic oscillator for the second qubit:9

ẍ + �l2
2 x = ��̈1�t� , �11�

where x=�2−�l2, �l2 is the left-well minimum position, and
�l2 is the unperturbed plasma frequency �see Appendix D�.
Correspondingly, the oscillator energy is E2=m�ẋ2

+�l2
2 x2� /2, which can be calculated as20

E2�t� =
�2m

2 
�
0

t

dt�e−i�l2t��̈1�t��
2

, �12�

assuming that the system is initially at rest at the potential
minimum, x�0�= ẋ�0�=0.

FIG. 4. The first-qubit oscillation frequency fd as a function of
time t �normalized by the energy relaxation time T1� for Cx=0
�solid line� and Cx=6 fF �dashed line�, assuming Nl1=1.355 and
parameters of Eq. �3�. Dash-dotted horizontal line, �r1 /2�
=15.3 GHz, shows the long-time limit of fd�t�. Two dotted horizon-
tal lines show the plasma frequency for the second qubit: �l2 /2�
=10.2 GHz for Nl2=10 and �l2 /2�=8.91 GHz for Nl2=5. The ar-
row shows the moment tc of exact resonance in the case Nl2=5.
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Figure 5 shows the time dependence of the energy E2�t� in
units of 
�l2 for �l2 /2�=8.91 GHz, which corresponds to
Nl2=5 �parameters of the first qubit evolution have been dis-
cussed in Sec. III and correspond to Fig. 4�. One can see that
the energy E2 remains very low until a sharp increase fol-
lowed by gradually decreasing oscillations. This behavior
can be easily explained by changing in time frequency �d
=2�fd of the driving force �Fig. 4� which passes through the
resonance9 with the second qubit frequency �l2 at t= tc.

An analytical analysis of the frequency crossing �see Ap-
pendix D� gives the approximate result �D3� for the depen-
dence E2�t�, shown by the dashed line in Fig. 5�a�. The cor-
responding maximum energy is

E2,max =
1.37��2mA2

�
, �13�

where �=d�d /dt is the frequency sweep rate at the crossing

point t= tc, and A is the half-amplitude of �̈1�t� oscillations at
t= tc. The result �13� can be understood in the following way.
In the case of exact resonance, the oscillation amplitude of
x�t� in Eq. �11� increases linearly in time with the rate20

�A /�l2. The effective time of resonance 	t corresponds to a
significant phase shift due to beating: ��	t�2	1. Therefore
the resulting amplitude after the resonance crossing is
	�A /�l2

�� and the corresponding energy is E2	�2mA2 /�,
which coincides with Eq. �13� up to a numerical factor. A
noticeable difference between numerical and analytical re-
sults in Fig. 5�a� is because the parameters A and � actually
change with time, in contrast to the assumption used for
analytics.

So far we have completely neglected the energy relax-
ation in the second qubit. Since the effective time of reso-

nance is 	t	3/�� �rise time of the function F�t̃� in Eq. �D3�
from the 10% level to the maximum�, the neglected effect
should not be important �less than 	10%� for T1�30/��.
Using the estimate �=110 ns−1 /T1 �see Fig. 4 and Appendix
D�, we find that taking into account the second qubit relax-
ation would not change significantly our results for E2,max if
T1�10 ns, which justifies our model.

Let us discuss the dependence of the maximum energy
E2,max of the second qubit on Cx and T1. Taking into account
that ��Cx �for Cx�C� and ��1/T1, we obtain from Eq.
�13� the scaling

E2,max � Cx
2T1. �14�

As seen from Fig. 5, numerical results confirm the obvious
scaling E2,max�Cx

2, while the scaling E2,max�T1 is not very
accurate, but is still good as a first approximation.

In this subsection we have treated the second qubit as a
harmonic oscillator. However, to analyze the measurement
error due to the crosstalk, we have to assume switching from
the left well to the right well when E2,max�Nl2
�l2 �which is
surely not fully consistent with the oscillator model�. All
curves in Fig. 5 �Nl2=5� correspond to such switching, lead-
ing to the measurement error. The measurement error can be
improved by decreasing the coupling capacitance Cx, which
should be chosen to be smaller for larger T1. Equation �14�
implies that to avoid the errors due to crosstalk, one needs to
choose

Cx � Cx,T = B/�T1, �15�

where Cx,T is the threshold coupling capacitance. From the
numerical simulations �see Fig. 5� we obtain B15 fF�ns in
the case Nl2=5. For Nl2=10 we get B14 fF�ns. Notice that
for experimental parameters of Ref. 9 �Cx=6 fF,T1=25 fF�
this bound is exceeded approximately twice, which is an in-
dication that our simple model is not sufficiently accurate. As
we will see in the next subsection, the theoretical bound is
softer �higher� when we use actual potential profile for the
second qubit instead of using the harmonic oscillator model.

B. Actual qubit potential

Let us analyze the second qubit evolution still using the
classical model, but taking into account the actual potential
profile U2��2�, i.e., solving Eq. �10� instead of the simplified
equation �11�. Figures 6 and 7 show the time dependence of
the second-qubit energy,

E2 = �1 + ��m�̇2
2/2 + U2��2� , �16�

in the absence of dissipation in the second qubit �T1�=�� for
Nl2=5 and 10, while T1=25 ns. �In this subsection we take
into account the mass renormalization m→m�= �1+��m ex-
plicitly �see Appendix B�, even though this does not lead to a
noticeable change of results.� A comparison of Figs. 5�a� and
6 shows that in both models the qubit energy remains small
before a sharp increase in energy. However, there are signifi-
cant differences due to account of anharmonicity: �a� The
sharp energy increase occurs earlier than in the oscillator
model �the position of short-time energy maximum is shifted

FIG. 5. The second qubit energy E2 �in units of 
�l2� in the
oscillator model as a function of time t �in ns� for �a� Cx=5 fF and
T1=25 ns and �b� Cx=2.5 fF and 5 fF and T1=500 ns, while Nl2

=5. Dashed line in �a� shows analytical approximation using Eq.
�D3�. The arrows show the moment tc when the driving frequency
fd �see Fig. 4� is in resonance with �l2 /2�=8.91 GHz.
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approximately from 3 ns to 2 ns�; �b� The excitation of the
qubit may be to a much lower energy than for the oscillator;
�c� After the sharp increase, the energy occasionally under-
goes noticeable upward �as well as downward� jumps, which
may overshoot the initial energy maximum; �d� The model
now explicitly describes the qubit escape �switching� to the
right well �Figs. 6�b� and 6�c��; in contrast to the oscillator
model, the escape may happen much later than initial energy
increase; for example, in Fig. 6�b� the escape happens at t
44 ns� tc2.1 ns.

The properties �a� and �b� can be understood by taking
into account the fact that the oscillation frequency in the

second qubit decreases with the energy increase �it should
become formally zero at the top of the barrier�, while the
driving frequency increases with time �Fig. 4�. Therefore,
initially small out-of-resonance beatings when �d��l2 are
amplified because of the positive feedback: larger amplitude
makes it closer to the resonance, which increases the ampli-
tude even more. This makes the nonexcited state unstable,
which leads to a sharp increase of the qubit energy earlier
then the condition �d=�l2 is satisfied. The same mechanism
is also responsible for lower qubit excitation, when com-
pared to the harmonic oscillator model: the resonance cannot
be as efficient as in the harmonic oscillator model since the
qubit excitation quickly moves the qubit frequency out of the
resonance. The property �c� is related to crossing of higher-
order resonances, which occur when �d�t� is commensurate20

with the oscillation frequency of the system, which itself
depends on the energy E2�t� and hence on the time. Similar
mechanism is responsible for the qubit switching at t� tc; in
particular, in Fig. 6�b� the switching happens when the driv-
ing frequency �d becomes approximately twice larger than
the second qubit frequency.

In contrast to the oscillator model, Eq. �10� for the actual
qubit potential cannot be solved analytically,21 so we rely
only on the numerical simulations. We are interested in the
conditions, for which the system remains in the left well.
Generally, the qubit excitation increases with increase of the
coupling Cx; therefore one expects a certain threshold value
Cx,T �depending on T1 and other parameters�, which sepa-
rates the switching and no-switching scenarios. However, be-
cause of the complex dynamics of the system, the depen-
dence on Cx is nonmonotonous, so that increasing Cx may
sometimes change switching case into no-switching case. In
this situation, we define Cx,T as a minimum value at which
the switching happens �even though larger Cx may corre-
spond to no-switching�. Similar to the harmonic oscillator
model, we expect that Cx,T generally decreases with increase
of T1; however, because of the complex dynamics, the de-
pendence Cx,T�T1� should not necessarily be monotonous.

The dots connected by two solid lines in Fig. 8 show the
numerically calculated Cx,T for Nl2=5 and 10, for 5 values of
T1 ranging from 25 ns to 500 ns �so far we still assume T1�
=��. For these calculations we have used the increment of

FIG. 6. The second-qubit energy E2 �in units of 
�l2� as a func-
tion of time t �in ns� for Nl2=5, T1=25 ns, and �a� Cx=5 fF, �b�
Cx=6 fF, and �c� Cx=9 fF. The classical model with actual qubit
potential is used; energy relaxation in the second qubit is neglected,
T1�=�. In �b� and �c� the qubit switches �goes over the barrier� at
44 ns and 2.1 ns, respectively.

FIG. 7. Same as in Fig. 6 for Nl2=10, T1=25 ns, and
Cx=6 fF.

FIG. 8. The log-log plot of the threshold coupling capacitance
Cx,T vs T1 in the classical model assuming T1�=� �solid lines� or
T1�=T1 �dashed line� for Nl2=5 �dashed and lower solid line� and 10
�upper solid line�. The crosstalk excitation does not switch the sec-
ond qubit if Cx�Cx,T. The numerical data are shown by the dots;
the lines are just guides for the eye.
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0.1 fF for Cx and simulated the qubit dynamics in the time
interval 0� t�6T1. Notice that the lines are not smooth �the
lower line even has a bump�, which is the result of irregular
nonlinear dynamics of the system. Nevertheless, the numeri-
cal results confirm the generally decreasing dependence
Cx,T�T1�, and fitting solid lines by the formula

Cx,T�T1�  BT1
−� �17�

�where Cx,T is measured in fF while T1 is measured in ns� we
obtain B8 and 12 for Nl2=5 and 10, respectively, while
�0.12 for the both lines.

Since the gate speed is proportional to Cx, it is advanta-
geous to have higher Cx. The above results show that raising
the barrier after the measurement pulse to Nl2=10 would
allow us to increase Cx in comparison with the case Nl2=5.
The reason for this can be understood by comparing Figs.
6�b� and 7, which show that in the case Nl2=10 the sharp
energy increase is lower relative to the barrier top than for
Nl2=5. Note that the dependence �17� is much weaker than
the relation Cx,T�T1

−1/2 obtained in the oscillator model,
which is advantageous for design of qubits with weak deco-
herence �large T1�.

Now let us consider the effect of dissipation in the second
qubit. The dashed line in Fig. 8 shows Cx,T�T1� dependence
in the presence of dissipation �with T1�=T1� for the same
other parameters as for the lower solid line �for which T1�
=��. As we see, account of dissipation increases Cx,T quite
noticeably, which contradicts the conclusion from the har-
monic oscillator model �predicting no significant depen-
dence�. The reason is that for Cx slightly above Cx,T the
switching in the model without dissipation usually occurs
significantly later than the initial sharp increase of the energy
�see Fig. 6�b�� and is caused by “secondary” jumps of the
energy due to strongly nonlinear dynamics, as discussed
above. Dissipation in the second qubit �Fig. 9� shortens sig-
nificantly the time interval during which the switching due to
secondary jumps is possible, thus increasing Cx,T. �We would
also like to mention a possibility of a system return into the
left well after the escape into the right well, which may take
place with or without dissipation.� Fitting the dashed line in
Fig. 8 by the power-law dependence �17�, we find B12 and
�0.13, so that the scaling power � is practically the same
as in the no-dissipation case, while B becomes considerably
larger.

V. SECOND QUBIT: QUANTUM APPROACH

In the quantum approach we describe the second qubit by
the wave function ��� , t� �in this section we often omit the
subscript 2 to shorten notations�, which obeys the
Schrödinger equation

i

��

�t
= Hr�t�� �18�

with the reduced one-qubit Hamiltonian �see derivation in
Appendix E�

Hr�t� = H0 + V�t�, H0 =
p̂2

2m�1 + ��
+ U��� �19�

V�t� = − ��1 + ��m�̈1�t�� . �20�

This Hamiltonian exactly corresponds to the classical model
used in the previous section. Similarly to the classical case
�Appendix D�, the difference between ��1+��m and mx

= ��0 /2��2Cx in the formula for V�t� should not be taken
seriously, as being within the accuracy of treating two qubits
separately �same applies in general to the difference between
the renormalization factor 1+� and 1+Cx /C�.

The second-qubit wave function � is expanded over the
�time-independent� eigenfunctions �n of H0,

���,t� = �
n

an�t��n��� , �21�

and the evolution of the occupation amplitudes an is calcu-
lated using the method described in Appendix E.

We define the probability Pl�t� to find the second qubit in
the left well as

Pl�t� = �
nk

Pnk
�t�, Pn�t� = �an�t��2, �22�

where Pn�t� is the probability of state n occupation, and the
summation is only over the states localized in the left well.
We will also denote Pnk

�t� as Qk�t�, where k enumerates the
states in the left well, starting from k=0 �the left-well ground
state�. We define the switching probability as Ps�t�=1
− Pl�t�. Notice that we consider transition to delocalized
states �above the barrier� as escape from the left well �even
though in this case there is a possibility of “repopulation” of
the left well if dissipation is taken into account�.

Figure 10 shows �for the case Nl2=10� the eigenfunctions
��n����2 and the corresponding energies En for 145�n
�171, where the level numbering starts with n=0 for the
ground state �in the right well�. One can distinguish 3 types
of states: �a� 12 states localized in the left well �n
=146,148, . . . ,166,169 or, respectively, k=0, . . . ,11�, �b�
delocalized states �n�170�, and �c� states localized in the
right well �the remaining states�. Depending on the barrier
height Nl2 �controlled by the external flux �2�, the resonant
states may also be present: when the energies of states local-
ized in the left and right wells approach each other suffi-
ciently close, the states mix and become delocalized. Actu-
ally, in Fig. 10 the left-well states k=10 and 11 are partially
delocalized due to interaction �tunneling� with neighboring

FIG. 9. The second-qubit energy E2�t� in the classical model
taking into account energy dissipation in the second qubit, for Nl2

=5, Cx=6 fF, and T1�=T1=25 ns. �Compare with Fig. 6�b�.�
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right-well states. Notice that even though the left-well ener-
gies are practically insensitive to the coupling capacitance Cx
�Cx=6 fF for Fig. 10�, their relative energy shift with the
right-well level comb depends on Cx significantly because
the right well is very deep, n�102.

Figure 11 shows the left-well population Pl�t� for Nl2

=10 and T1=25 ns �energy dissipation in the second qubit is
neglected, T1�=��. Figure 12 shows the populations of the
first 10 levels in the left well; the populations of levels k
=10 and 11 are not shown since they are very close to zero.

Figure 13 shows the time dependence of the qubit mean
energy

�E�t�� = �
n

EnPn�t� �23�

for the same parameters as in Figs. 11 and 12. Comparing the
mean energy with the classical qubit energy for the same
parameters �Fig. 7�, we see that the two curves are similar,
though classical energy shows larger fluctuations. Note that
the mean energy starts at t=0 from a nonzero value equal to
the qubit energy in the ground state �
�l2 /2. Even though
the mean energy is significantly lower than the barrier height
�similar to the classical energy�, the escape probability
Ps�t�=1− Pl�t� is nonzero in the quantum case �see Fig. 11�.

The time dependence of the switching probability �Fig.
11� looks quite irregular. This shows that the quantum behav-

ior is rather complicated, similar to the classical behavior
discussed in Sec. IV B. As seen in Figs. 12 and 13, at t
�3 ns, when the driving force is far from the resonance with
the qubit, the population mainly remains in the ground state.
At this stage, there is no switching �see Fig. 11�. Similar to
the classical case, there is a fast qubit excitation �though still
almost without switching� between 3 ns and 4 ns �a little
earlier than the moment tc=4.8 ns of classical resonance�,
while the main switching happens much later, mostly at t
16 ns.

To understand the excitation mechanism, we show in Fig.
14 the Rabi frequencies Rk,k−1=2�m�A��k,k−1� /
 for the adja-
cent left-well transitions; Rk,k−1 is equal to the amplitude of

Vk,k−1�t� /
 oscillations �actually, since V�t���̈1�t� given by
Eq. �20� is significantly nonharmonic in time, we need to use
the amplitude of the resonant component�. Since the ampli-

tude 2A�t� of �̈1 oscillations �fundamental frequency compo-

FIG. 10. �Color online� The second qubit potential U��� �thick
line� and eigenfunctions ��n����2�145�n�171�, shifted vertically
by the energy eigenvalues En �in units of 
�l2� for Nl2=10 and
Cx=6 fF ��l2 /2�=10.2 GHz�. The energy origin is chosen at the
minimum of the left well. An arbitrary scale for ��n�2 is chosen to be
1/8 of the En /
�l2 scale. The arrow illustrates the dominating tran-
sition responsible for the escape from the level k=9 at t16 ns.

FIG. 11. The probability Pl=1− Ps for the second qubit to re-
main in the left well as a function of time t for Nl2=10, Cx=6 fF,
and T1=25 ns.

FIG. 12. The occupation probabilities Qk�t� for the left-well
levels k as functions of time t �in ns� for Nl2=10, Cx=6 fF, and
T1=25 ns.

FIG. 13. Time dependence of the mean energy �E� of the second
qubit �Eq. �23�� in units of 
�l2 for Nl2=10, Cx=6 fF, and T1

=25 ns.
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nent� changes with time �see Appendix D�, the Rabi frequen-
cies also change with time. In Fig. 14 we show the values
corresponding to the exact classical resonance, fd�tc�
=�l2 /2�, which happens at tc=4.8 ns �then A=5.2
103 ns−2�; for comparison, at t3 ns the value of A and,
correspondingly, the Rabi frequencies are approximately
10% smaller. �Notice that the moment tc scales with T1, but
the values of Rabi frequencies at tc do not change with T1.�
For the levels not too close to the barrier top, one can use the
harmonic-oscillator relation23 ��k,k−1���k
 /2m��l2
0.10�k �for Nl2=10 and parameters of Eq. �3��, yielding
Rk,k−1 /2��A�Cx /C��2km� /
�l2 /2�1.1�k GHz. This
formula fits well the numerical results in Fig. 14 up to k=9;
for higher levels anharmonicity becomes really strong.

Figure 15 shows the time dependence of the correspond-
ing detunings �k,k−1 /2�− fd�t�. Though the exact resonance
with the transition 0↔1 ��10/2�=10.0 GHz� happens at t
=4.3 ns, a significant excitation starts earlier, at t�3 ns,
when the detuning �10/2�− fd�t� becomes less than the Rabi
frequency R101 GHz. Since the Rabi frequency increases
with k, while the detuning first decreases and then increases
with k �after detuning changes sign�, the ground level popu-
lation rapidly propagates to higher levels, until the detuning
becomes so large that the further excitation stops. As a result,
at t�4 ns the levels 0–2 become practically empty, while
almost all the population is transferred to levels 4–7. Similar
to the classical case, the excitation efficiency is significantly
suppressed by the fact that driving frequency fd�t� increases
with time, while the level spacing decreases with the level

number k. Therefore, by the time at which levels k�5 be-
come populated, the further up-transitions are already out of
resonance �which happened for them earlier�, becoming even
farther off resonance with increasing time.

The escape �switching� in the quantum case can occur in
several ways. The population which goes to the highest states
k=10 and 11 is lost rather fast �within a fraction of nanosec-
ond�, since those states interact significantly with the right-
well and delocalized states. However, in our simulation tran-
sitions to these states are quite weak because of significant
detuning �even though the Rabi frequency is not much
smaller than detuning, the level occupations above k=7 de-
crease 4–10 times per level, so the occupation of the level
k=10 is already very small�.

Another switching mechanism is the following. With the
increase of the driving frequency fd�t�, it can become reso-
nant with transitions between nonadjacent states, thus popu-
lating the states close or above the barrier, which cannot be
populated otherwise. In particular, more than half of the
switching probability in Fig. 11 is due to the sharp decrease
of Pl�t� between 16 ns and 18 ns, which happens because of
the transition between the state k=9 �n=164� and the right-
well state n=168 with the difference frequency of 13.2 GHz
�see the arrow in Fig. 10�. At t=16 ns the detuning for this
transition is 0.7 GHz �fd=12.5 GHz�, which is much smaller
than other detunings between the levels of interest and is
comparable to the corresponding Rabi frequency 0.5 GHz.
This value of the Rabi frequency is obtained as above, taking
into account the matrix element ��164,168�=0.048 and the
value A=5.8103 ns−2 at t=16 ns.

Notice that in our numerical method the wave function is
represented in the basis of nonperturbed �time-independent�
eigenstates. An alternative way would be to diagonalize the
Hamiltonian at each moment of time and use the time-
dependent eigenstates. Even though both methods are for-
mally equivalent, the second method would be more natural
to use if the dissipation is taken into account. In the time-
dependent language an important mechanism of escape is
Landau-Zener tunneling through the barrier. The perturbation
V�t� in the Hamiltonian �20� is equivalent to changing in
time magnetic flux,

�2 → �2 + ��1 + ��LC�̈1�t� , �24�

which changes Nl2 and leads to oscillations of the energy
shift between the comb of levels in the left well and the
right-well comb. Because of rather strong amplitude of these
oscillations �in the example of Figs. 11–15, Nl2 oscillates
between 9.15 to 11.2�, each left-well level crosses with sev-
eral right-well levels during one oscillation cycle. These
�avoided� crossings lead to transitions between the states in
different wells �tunneling�, the rate of which, according to
the Landau-Zener formula,23 is �W2, where W is the minimal
level splitting at the crossing. The values of W increase ex-
ponentially with increase of k. Therefore, the Landau-Zener
tunneling is a relatively slow �ineffective� switching mecha-
nism for all levels, except for the highest ones �such as k
=10 and 11�. Besides the Landau-Zener mechanism, the es-
cape from the left well may also happen because the upper

FIG. 14. Dots: Rabi frequencies Rk,k−1 /2� for the left-well tran-
sitions at t= tc, for Nl2=10, Cx=6 fF, and T1=25 ns. Dashed line
shows analytical dependence 1.1�k GHz.

FIG. 15. Time dependence of the frequency detunings ��k,k−1

−�d�t�� /2� of left-well transitions �k−1�↔k for Nl2=10, Cx

=6 fF, and T1=25 ns. Curves from top to bottom correspond to k
=1,2¯11.
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left-well states may become delocalized �above the barrier�
when the barrier Nl2 decreases in the process of oscillations.
We would also like to mention that the oscillations of �̈1 �and
therefore of Nl2� are strongly nonharmonic. In particular, the
mentioned above range 9.15�Nl2�11.2 remains constant
during long time interval 0� t�0.4T1, because these ex-
trema actually do not correspond to the turning points of
�1�t� oscillations; instead, they correspond to the points of
inflection �c� and �c+2� of U�x� �see Eq. �A5��, as long as
these points are within the oscillation swing of �1�t�.

We have performed extensive calculations of the switch-
ing probability Ps�t�, varying the parameters Cx, T1, and Nl2.
We run simulations within the time interval �0,6T1�; after
6T1 the first-qubit oscillations decay to a very low level, so
the perturbation of the second qubit is weak, and the further
change of Ps�t� is practically negligible. Correspondingly, we
define the total switching probability Ps �which is the
crosstalk error probability� as Ps�6T1�.

The results of numerical calculation of Ps�Cx� dependence
for several values of T1 and two values of Nl2 �5 and 10� are
shown in Fig. 16. Notice that the lines connecting the data
points are not smooth and sometimes are even nonmonoto-
nous. This may be explained by complicated dynamics, simi-
lar to the irregular behavior in the classical case. Despite the
Ps�Cx� dependence in Fig. 16 is not smooth, we still see that
the switching probability Ps decreases approximately expo-
nentially with decrease of Cx.

Using the linear �on the semilog scale� least-square fit for
the results shown in Fig. 16 �see dashed lines�, we obtain the
contour plots for Ps on the plane of Cx and T1 �see solid lines
in Fig. 17�. The data in Fig. 17 can be fitted by straight lines,

yielding approximate power-law dependence �similar to Eq.
�17�� for the threshold coupling capacitance Cx,T:

Cx,T�T1� � B�Ps�T1
−��Ps�, �25�

which now depends on the tolerable level Ps of the measure-
ment error probability. The obtained numerical values of the
parameters B and � in this formula are shown in Table I.
Notice that � depends on Ps quite weakly, but decreases
appreciably when Nl changes from 5 to 10. The values of �
in Table I are greater than the value �=0.12 obtained in the
classical model with actual qubit potential �Sec. IV B�, but
less than the value �=0.5 in the oscillator model �Eq. �15��.
This means that dependence on T1 in Eq. �25� in the quantum
model is in-between those found in the oscillator and actual-
potential classical approaches. Figure 17 also shows a com-
parison between the results of classical and quantum ap-

FIG. 16. The qubit switching �error� probability Ps as a function
of coupling capacitance Cx �in fF� for T1=25, 50, 100, 200, and
500 ns for �a� Nl2=5 and �b� Nl2=10. The numerical data are rep-
resented by points, connected by solid lines as guides for the eye.
The dashed straight lines are results of the least-squares fit �notice
the logarithmic scale�.

FIG. 17. Solid lines: log-log contour plots for the values of the
error �switching� probability Ps=0.01, 0.1, and 0.3 on the plane of
relaxation time T1 �in ns� and coupling capacitance Cx �in fF� in the
quantum model for �a� Nl2=5 and �b� Nl2=10. The corresponding
results for Cx,T�T1� in the classical models are shown by the dashed
lines �actual potential model� and the dotted lines �oscillator model,
Eq. �15��. The numerical data are represented by the points, con-
nected by lines as guides for the eye. The scale at the right corre-
sponds to the operation frequency of the two-qubit imaginary-swap9

quantum gate.

TABLE I. Parameters of Eq. �25� for the quantum model �Cx is
in fF and T1 is in ns�, limiting the coupling capacitance Cx for
several values of the error probability Ps and dimensionless barrier
height Nl2.

Nl2 5 10

Ps 0.01 0.1 0.3 0.01 0.1 0.3

B 5.4 8.3 9.7 8.1 11 13

� 0.32 0.29 0.28 0.18 0.19 0.20
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proaches. As one can see, both the oscillator �dotted line� and
actual-potential �dashed line� classical models give the limits
for Cx roughly similar to the quantum results �within a factor
of 	2�, with the exception of the case of the oscillator model
for Nl=10 and T1�100 ns. The value of the coupling capaci-
tance Cx determines the speed of two-qubit quantum gates.
The right scale of the vertical axis in Fig. 17 converts Cx into
the operation frequency f i−swap= �Cx /C��10/2� of the
imaginary-swap9 gate.

These results can be used for the design of phase-qubit-
based quantum gates. In particular, they give us the maxi-
mum allowed coupling capacitance Cx and hence the maxi-
mum gate operation speed, for a particular tolerable value Ps
of the error due to crosstalk. An important result of the quan-
tum treatment is the exponential dependence of the error
probability on Cx and a rather slow dependence on T1. This
shows that the measurement crosstalk is not a significant
roadblock for the fabrication of phase-qubit-based quantum
gates with low decoherence and a sufficiently high operation
speed.

The present quantum theory does not take into account
dissipation in the second qubit. The dissipation shortens the
effective crosstalk time and thus decreases the crosstalk error
�the switching probability�, similar to the classical case dis-
cussed in Sec. IV B. Thus, the present results give a lower
bound for the maximum allowed Cx. Taking into account the
results of the classical model, one may expect 	30% larger
limit for the coupling capacitance �and two-qubit gate fre-
quency� for a quantum model with the same energy dissipa-
tion in the second qubit as in the first qubit �T1�=T1�.

VI. CONCLUSIONS

The main goal of this paper has been to study the
crosstalk between two capacitively coupled flux-biased
phase qubits after the measurement pulse. The first qubit,
which escapes �switches� from the left to the right well dur-
ing the pulse, has been modeled classically. The first qubit
performs damped oscillations �with energy relaxation time
T1� with frequency fd�t� increasing in time, these oscillations
perturb the capacitively coupled second qubit. The dynamics
of the second qubit �which is initially in the ground state� has
been treated both classically and quantum mechanically.

In the classical treatment of the second qubit, we have
compared the previously suggested9 oscillator model, which
allows for both analytical and numerical analysis, with the
model based on the exact potential, which can be solved only
numerically. Both models show a sharp resonant excitation
of the second qubit. Though there is a certain similarity be-
tween the two models, they significantly differ both quanti-
tatively and qualitatively. In contrast to the oscillator model,
the exact-potential model shows nonlinear and irregular dy-
namics. The second qubit remains in the left well when the
coupling capacitance is sufficiently low, Cx�Cx,T, but may
escape �though not certainly because of complicated dynam-
ics� if Cx�Cx,T. We have obtained numerically the depen-
dence Cx,T�T1� both in the absence and presence of dissipa-
tion in the second qubit for experimentally relevant values of
the barrier height.

For the quantum treatment we have developed an efficient
numerical scheme, which uses a subset of eigenstates of the
unperturbed Hamiltonian. In this case, similarly to the clas-
sical case, a fast excitation of the second qubit occurs at a
moment when the driving frequency fd�t� is somewhat below
the transition frequency between the ground and first excited
states. However, in contrast to the classical case, the switch-
ing can now happen even when the qubit mean energy is
significantly lower than the barrier height, either due to tun-
neling or due to excitation above the barrier.

The results for the switching �error� probability Ps have
been presented as contour plots on the plane of coupling
capacitance Cx and relaxation time T1 �Fig. 17�. Such plots
may be important for the design of quantum gates based on
phase qubits. Comparison of the results obtained in the quan-
tum and classical models shows that the classical models can
be used for a crude estimate of the crosstalk error; however,
the difference becomes significant for T1�100 ns. In the
quantum approach the dissipation in the second qubit have
been neglected. However, by analogy with the classical case,
one can expect that the account of dissipation will not
change the results significantly, though it will somewhat in-
crease the upper bound for the coupling capacitance, above
which the crosstalk error becomes intolerable.

Recent experimental data18 give an indication that effec-
tive relaxation time T1 in the deep right well may be some-
what shorter than the relaxation time in the shallow left well.
Although not presently understood, in this case we should
use the shorter right-well value of T1 in our results. This is a
favorable situation for experiments with quantum gates,
since the measurement crosstalk is reduced by the shorter T1
after switching �see Fig. 17�, while the qubit coherence is
governed by the normal �longer� T1. Even without this effect,
our results show that the measurement crosstalk is not a sig-
nificant problem for phase-qubit-based quantum gates with
low decoherence and high operation speed, so the considered
measurement scheme is suitable for a scalable quantum com-
puter.

The model analyzed in this paper assumes fixed coupling
between the qubits. Future implementations of experimental
schemes with adjustable coupling �which can be practically
zeroed at the time of measurement� will significantly sup-
press the crosstalk error mechanism and correspondingly al-
low for a significant increase in the operation frequency of
the two-qubit quantum gates.

The present study can also be of relevance for problems in
other fields �e.g., laser chemistry�, which consider excitation
or escape from a potential well by an oscillating driving
force with parameters changing in time.
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APPENDIX A: ONE-QUBIT POTENTIAL

In this Appendix we review the basic properties13 �see
also Ref. 7� of the one-qubit potential energy U���=EJ���
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−��2 /2�−cos �� �see Eq. �2� and Figs. 1 and 3�.
Since this potential is invariant with respect to the simul-

taneous change of � and � by 2�n where n is integer, we
limit ourselves by the range 0���2� for the external flux.
Notice that the potential is symmetric for �=n� ��
=n�0 /2�.

The maxima and minima of the potential �2� satisfy the
equation

�� − ��/� = − sin � , �A1�

which can be solved graphically. Figure 18 shows the right-
hand side �r.h.s.� of Eq. �A1� �curve 1� and the l.h.s. �straight
lines 2–5� for several values of the parameters. This equation
can have only one solution when the straight-line slope is
greater than 1 �as for line 2 in Fig. 18�; therefore in the case
��1 the potential �2� has only one well for any external flux
�.

For ��1 the potential may have more than one well.
There will be at most two wells if the slope of the l.h.s. of
Eq. �A1� is greater than the slope 1/�1 of the line 3 in Fig.
18, which is tangent to −sin � at two points ±�� �the line
passes through the origin because of the symmetry�. This
condition yields the equation tan ��=�� with the least posi-
tive root �1�=4.493, which corresponds to �1=−1/cos �1�
=4.603. Thus, for � in the interval13

1 � � � 4.603 �A2�

the potential has one or two wells, depending on �. In par-
ticular, for the experimental parameters of Ref. 9 used in this
paper �see Eq. �3�� one obtains �=3.72 �as for lines 4 and 5
in Fig. 18�, which satisfies condition �A2�. Similarly, one can
show that the potential will have n or n+1 wells �depending
on �� if

�n−1 � � � �n �n � 1� , �A3�

where �0=1, �n=1/ �cos �n��, and �n� is the nth �in the increas-
ing order� positive root of the equation tan ��=��. In particu-
lar, �2=7.790, �3=10.95, �4=14.10, and �n��n+1/2�� for
n�1.

The condition for a two-well potential in the case �A2�
can be found by considering the transition between the one-
well and two-well cases, which is illustrated by lines 4 and 5
in Fig. 18. These lines are tangent to −sin � at the points �c,
which correspond to the inflection points of the potential �2�
�when a well disappears, the corresponding maximum and

minimum of the potential merge, so that both the first and
second derivatives are zero at this point�. Solving the equa-
tion for the inflection points

cos �c = − 1/� �A4�

�which does not depend on the external flux�, we get two
solutions in the interval �0,2��:

�c = �/2 + arcsin�1/��, �c� = 2� − �c. �A5�

Inserting these results into Eq. �A1�, we finally obtain the
condition for a two-well potential:

�c� � � � �c, �A6�

where the critical fluxes are

�c = �/2 + ��2 − 1 + arcsin�1/��, �c� = 2� − �c �A7�

�it is easy to show that �c���c for ��1�.
The two wells have minima at �=�l,r, which can be found

from Eq. �A1�. The corresponding “plasma” frequencies �the
classical oscillation frequency near the well bottom� are

�l,r = �EJ�1/� + cos �l,r�/m . �A8�

Cubic potential approximation

When one of the wells is very shallow, it can be approxi-
mated by a cubic potential.13 Assuming 0��c−���c �shal-
low left well� we can approximate cos � in the vicinity of
inflection point �c �see Eq. �A4�� as

cos � = cos �c cos y − sin �c sin y � − �−1�1 − y2/2 + y4/24�

− �1 − �−2�y − y3/6� , �A9�

where y=�−�c �in the following the term y4 is neglected; it
is needed only for the estimate of the approximation accu-
racy�. Then the qubit potential U��� �Eq. �2�� can be approxi-

mated by the cubic polynomial Ũc���=�1−�−2EJ��2y /2
−y3 /6�, where a constant is neglected and

� = �2��c − ��/��2 − 1. �A10�

The minimum and maximum of this potential are at yl=−�
and ymax=�, respectively, i.e., at

�l = �c − �, �max = �c + � . �A11�

Shifting the axis again as x=y+�=�−�c+� and again ne-
glecting a constant, the qubit potential can be rewritten as

Uc��� = �1 − �−2EJ��x2/2 − x3/6� . �A12�

In this approximation13 the left well parameters are

�l = �1 − �−2�1/4��EJ/m , �A13�

	Ul =
2

3
�1 − �−2EJ�

3, �A14�

Nl =
2

3

�1 − �−2�1/4�mEJ�

5/2. �A15�

FIG. 18. The graphical solution of Eq. �A1�; see text.
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The validity condition for the cubic-potential description
�A12� can be found by estimating the neglected y4 term in
Eq. �A9�. Requiring that this term is much smaller than the
y3 term for �y��2� �the region of interest for the potential�,
we find the condition ����2−1, which for ��2 simplifies
to

� � � , �A16�

and can also be translated into �c−���3. This validity con-
dition for the cubic-potential approximation is well satisfied
for the qubit parameters considered in the present paper.

APPENDIX B: HAMILTONIAN FOR TWO CAPACITIVELY
COUPLED QUBITS

In the absence of dissipation �Ri=�� the equations of mo-
tion �5� for two capacitively coupled qubits �Fig. 2� can be
written in the form of Lagrange’s equations,20

d

dt

�L

��̇i

−
�L

��i
= 0, �B1�

with the Lagrangian

L = K − U1��1� − U2��2� . �B2�

Here the ith qubit potential energy is �cf. Eq. �2��

Ui��i� = EJi� ��i − �i�2

2�i
− cos �i� , �B3�

where EJi=�0I0i /2�, �i=2�I0iLi /�0, and the kinetic energy
K is

K =
m1��̇1

2

2
+

m2��̇2
2

2
− mx�̇1�̇2, �B4�

where mi�= ��0 /2��2Ci� and mx= ��0 /2��2Cx are the nor-
malized capacitances. Thus, the problem of two coupled qu-
bits is equivalent to the motion of a fictitious particle in the
two-dimensional space ��1 ,�2�. From Eqs. �B2� and �B4� one

can obtain the generalized momenta pi=�L /��̇i in the form

pi = mi��̇i − mx�̇ j . �B5�

It is easy to see that pi is the total �node� charge on the ith
junction and the adjacent coupling capacitor multiplied by

 /2e.13,14 Dissipation can be accounted for by the addition20

of the friction force Fi into r.h.s. of Eq. �B1�. This yields Eq.
�5� if

Fi = −
�0

2

4�2Ri
�̇i. �B6�

Equations �B5� can be inverted, yielding

�̇i = pi/mi� + pj/mx�, �B7�

where mi�=mi+ �mj
−1+mx

−1�−1 and mx�=m1+m2+m1m2 /mx. In-
serting Eq. �B7� into �B4�, one obtains the Hamiltonian20

H=K+U1+U2 in the form24

H =
p1

2

2m1�
+

p2
2

2m2�
+

p1p2

mx�
+ U1��1� + U2��2� . �B8�

Notice that the Hamiltonian �B8� can also be derived in a
direct way �without Lagrangian language� using the fact13

that the node charge �multiplied by 
 /2e� pi is the conju-
gated variable to the phase �i and expressing the combined
electrostatic energy of capacitors C1, C2 and Cx in the form
of three first terms of Eq. �B8�.

Instead of Lagrange’s equations �B1�, one can use Hamil-
ton’s equations20 with respect to �i and pi, viz., Eq. �B7� and
ṗi=−�H /��i or, in view of �B8�,

ṗi = −
�Ui

��i
. �B9�

This equation can be extended to take dissipation into ac-
count by adding the friction force �B6�:

ṗi = −
�Ui

��i
−

�0
2

4�2Ri
�̇i. �B10�

In the case of two identical qubits �Eq. �7�� Eqs. �B7� and
�B8� become

H =
p1

2 + p2
2 + 2�p1p2

2m�
+ U1��1� + U2��2� , �B11�

�̇i =
pi + �pj

m�
, �B12�

where m�= �1+��m and �=Cx / �C+Cx�.

APPENDIX C: FIRST-QUBIT DYNAMICS

Neglecting the back action from the second qubit, we can
drop the second term in the numerator in Eq. �B12� for the
first qubit �i=1�,

�̇1 = p1/m�, �C1�

then Eq. �B10� gives the following approximate equation of
motion for the first qubit:

�̈1 +
�̇1

C�R
+

2�I0

�0C�
sin �1 +

�1 − �1

C�L
= 0, �C2�

where C�= �1+��C. This is obviously the usual equation for
an isolated first qubit with capacitance C replaced by effec-
tive capacitance C�=C+CxC / �Cx+C� which takes into ac-
count the series connection of the coupling capacitance and
the second junction capacitance �this corresponds to the ap-
proximation of zero charge at the second qubit�.

Note that even though the set of equations of motion �5� is
equivalent to Eqs. �B7� and �B10�, the above approximation
makes them different. In particular, in the case of identical
qubits the equation for the first qubit obtained from Eq. �5�
by neglecting the r.h.s., differs from Eq. �C2� by the substi-
tution C�↔C�=C+Cx. However, for small dimensionless
coupling � �which is the experimentally relevant case as-
sumed here�, the two equations differ by very small terms on

THEORETICAL ANALYSIS OF MEASUREMENT… PHYSICAL REVIEW B 75, 014524 �2007�

014524-13



the order of �2. Physically, C� as the effective capacitance of
the first qubit corresponds to the model in which the voltage
across the second junction is neglected �in contrast to the
neglected charge in the previous model�.

Equation �C2� shows that the first qubit performs damped
nonharmonic oscillations. Because of anharmonicity, the

gradual decrease of the qubit energy E1=m��̇1
2 /2+U1��1�

due to dissipation leads to the gradual increase9 of the oscil-
lation frequency fd �driving the second qubit� which can be
obtained as20

fd
−1�E1� = �2m��

a�E1�

b�E1� d�1

�E1 − U1��1�
, �C3�

where a and b are the classical turning points.

APPENDIX D: DETAILS OF THE CLASSICAL APPROACH
FOR THE SECOND QUBIT

In the approximation �C1�, the second-qubit equation of
motion follows from Eqs. �B12� and �B10� with i=2:

�̈2 +
�̇2

�1 + ��T1�
+

2�I0

�0C�
sin �2 +

�2 − �2

C�L
= ��̈1�t� . �D1�

This equation �coinciding with Eq. �10�� has a simple physi-
cal meaning as an evolution of the second qubit with effec-
tive junction capacitance C�, externally driven by the oscil-

lating current ��0 /2���C��̈1. However, considering

oscillating voltage ��0 /2���̇1 across the first junction
coupled to the second qubit via capacitance Cx, one would

expect the driving current to be ��0 /2��Cx�̈1 �as in Eq. �5��.
The relative difference between �C� and Cx is on the order of
�2�1, which is the accuracy of treating two qubits sepa-
rately.

Using the model of a harmonic oscillator for the second
qubit and neglecting the damping �T1�=��, we substitute Eq.

�D1� by Eq. �11�: ẍ+�l2
2 x=��̈1�t�, where x=�2−�l2, �l2 is the

left-well minimum position, and �l2 is the unperturbed
plasma frequency. Actually, the small-vibration frequency in
Eq. �D1� is different from �l2 due to the mass �capacitance�
renormalization m→m�, so that �l2→�l2 /�1+�; however,
for small coupling considered here ���1% � we neglect the
difference. Correspondingly, the oscillator energy is E2
=m�ẋ2+�l2

2 x2� /2 �here we also neglect the difference be-
tween m and m�� and can be found via Eq. �12�.

The driving frequency fd=�d /2� �frequency of �̈1 oscil-
lations� increases in time and passes through exact resonance
at moment tc: �d�tc�=�l2. Let us consider the vicinity of tc

and approximate �̈1�t� as a harmonic signal �̈1�t�
=A�t�exp�i�t�ddt� with constant amplitude A=A�tc� and lin-
early varying frequency

�d�t� = �l2 + ��t − tc� , �D2�

with �= �̇d�tc��0 �we have neglected the complex-
conjugated term and higher-order harmonics as being out of
resonance�. Thus the problem is reduced to passage of a

harmonic oscillator through resonance with a constant
rate.22,28 Also assuming slow crossing, ���l2

2 , and shifting
the lower endpoint of integration in Eq. �12� to −� �which is
a good approximation for tc��2/��, we obtain

E2�t� = E0F�t̃�, E0 =
��2mA2

�
, t̃ =

t − tc

�2/�
,

F�t̃� =
1

�

�

−�

t̃

ei�2
d�
2

=
1

4

1 + erf� t̃

�i
�
2

. �D3�

Notice that the function F�t̃� with t̃ proportional to a spatial
coordinate describes the Fresnel diffraction29 and has the fol-
lowing asymptotic dependence:

F�t̃� � 1 +
sin�t̃2 − �/4�

��t̃
for t̃ � 1, �D4a�

F�t̃� � �4�t̃2�−1 for − t̃ � 1. �D4b�

The oscillating term in Eq. �D4a� describes the beating be-
tween the oscillator and driving force frequencies, with the
difference frequency increasing in time, d�t̃2� /dt=��t− tc�,
and the amplitude of beating decreasing as 1/ t̃ �see the
dashed line in Fig. 5�a��. Notice that F�0�=1/4, F���=1,
and the maximum value is F�1.53�=1.370, so that E0 is the
long-time limit of the oscillator energy E2, while the maxi-
mum energy E2,max is 1.37 times larger and therefore is given
by Eq. �13�.

For the parameters of Fig. 5 �Nl2=5� we find from Fig. 4
that exact resonance between fd�t� and �l2 /2�=8.91 GHz
occurs at tc=0.085 T1 �in particular, tc=2.13 ns for T1
=25 ns and tc=43 ns for T1=500 ns� and �=110 ns−1 /T1. To
compare Eq. �D3� with the numerical results, we also need

the value of A. It can be estimated as A=�l2
2 Ã /2, where Ã is

the amplitude of �1�t� oscillations at t= tc �the factor 1 /2

comes from our definition of A as half of the amplitude of �̈1

oscillations�. Using the numerical result Ã2.7 correspond-
ing to the resonance with the second qubit at Nl2=5, we find
A=4.3103 ns−2 �this resonance happens at 121 GHz below

the barrier top; Ã is defined as half of the full span of �1
oscillations—see Fig. 3�. The dashed line in Fig. 5�a� shows
the corresponding analytical result �D3�. One can see that the
analytics fits the oscillator energy at t= tc pretty well; how-
ever, the maximum energy E2,max given by Eq. �13� is some-
what different from the numerical result: E2,max/
�l2=11.8
versus 14.2 numerically. �The difference decreases with in-
crease of T1: for Cx=5 fF and T1=500 ns the corresponding
numbers are 235 and 242.� A noticeable discrepancy between
the analytical and numerical results in Fig. 5�a� can be attrib-
uted mainly to the fact that A and � change with time, in
contrast to the assumptions made in the derivation of Eq.
�D3�. It is interesting to notice that A�t� initially increases
because of the frequency fd increase, while it starts to de-
crease at t�0.52 T1 �after reaching the maximum of 5.8

103 ns−2� because of Ã decrease. Actually, a good fit of the
numerical results by the values of A obtained as A
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= �2�fd�2Ã /2 is quite surprising, because oscillations �̈1�t�
are strongly non-harmonic �even having three maxima and
three minima per period�. We have also calculated A using

some advanced analysis of �̈1�t� and found values very close
to the simple estimate. �This other method is based on cal-

culating Fourier transform of �̈1 within a time interval
around tc, cutting off the spectrum above the minimum be-
tween the first and second Fourier peaks, calculating inverse
Fourier transform, and finding the oscillation amplitude at t
= tc.�

An increase of Nl2 leads to more efficient excitation of the
second qubit. For example, for Nl2=10 and other parameters
as in Fig. 5�a�, the numerical maximum value of E2,max/
�l2
becomes 30.5 �more than twice larger compared to the case
Nl2=5�. This happens because of the decrease of ��t� and
increase of A�t� with time, and correspondingly with Nl2 �see
Fig. 4�. �For Nl2=10 �so that �l2 /2�=10.2 GHz�, we find
tc=0.192 T1 �i.e., tc=4.8 ns for T1=25 ns and tc=96 ns for
T1=500 ns�, �=57 ns−1 /T1, and A�tc�=5.2103 ns−2.�

DETAILS OF THE QUANTUM APPROACH

In the quantum approach the second qubit can be de-
scribed by the wave function ��� , t� �we omit the subscript 2
to shorten notations�, which obeys the Schrödinger equation

i

��

�t
= H�t�� . �E1�

Here the Hamiltonian

H�t� =
p̂2 + 2�p1�t�p̂

2�1 + ��m
+ U��� , �E2�

in which p̂=−i
�� /���, follows from Eq. �8� by considering
p2 as the operator p̂, while p1�t� and �1�t� are considered as
classical functions of time obtained from Eqs. �C2� and �C1�;
the first-qubit energy in this case does not contribute to the
Hamiltonian �E2�.

The term linear in p̂ in Eq. �E2� has the same form as for
the interaction of a charged particle with a time-dependent
electric field described by a vector potential.29 Using the
gauge transformation23

���,t� = ���,t�e−i�p1�t��/
, �E3�

we can replace the vector-potential by a scalar potential in
the Hamiltonian. Then evolution of the wave function � is
described by the Schrödinger equation �18� with the Hamil-
tonian Hr�t� given by Eqs. �19� and �20�, which consists30 of
the time-independent part H0= p̂2 /2m�+U��� and time-

dependent part V�t�=−�m��̈1�t��, where m�= �1+��m. Notice
that to obtain Hr in this form we have subtracted c-number
term �2p1

2�t� / �2m�� and used Eq. �C1�.
The partial differential equation �18� for ��� , t� can be

reduced to an infinite set of ordinary differential equations23

using the expansion �21� of the wave function � over the
eigenfunctions �n��� of H0: ��� , t�=�nan�t��n���. Then the
coefficients an�t� evolve as

ȧn = − i�En/
�an +
i�m��̈1�t�



�
n�

�nn�an�, �E4�

where En is an eigenvalue of H0 and �nn� is the “position”
matrix element:

�nn� = �
−�

�

�n
*�����n����d� �E5�

�notice that we will use a different notation for the Kronecker
symbol�.

We calculate the eigenstates and eigenvalues of H0 nu-
merically, using the Fourier grid Hamiltonian method32

�same as periodic pseudospectral method33�. After obtaining
eigenfunctions, we calculate the matrix �nn� �E5� and solve
numerically Eqs. �E4�, restricting the space to a finite subset
of the states. For a given Nl2, we take a reasonably small
number nr of consecutive states �n=ni ,ni+1, . . . ,ni+nr�,
which include all left-well states and provide a sufficiently
good approximation to the exact solution �the choice of the
subset of states is discussed below�. The column vector a
= �ani

, . . . ,ani+nr
�T satisfies the equation �cf. Eq. �E4��

i
ȧ = H̃�t�a , �E6�

in which the matrix

H̃nn��t� = En�nn�
K − �m��̈1�t��nn� �ni � n, n� � ni + nr� ,

�E7�

is the Hamiltonian of the system in the restricted Hilbert
space spanned by the subset of states �here �nn�

K is the Kro-
necker symbol�.

Let us briefly discuss our choice of the restricted subset of
nr states used for the numerical solution of Eq. �E6�. First,

we consider the eigenvalues of H̃nn� �E7� as functions of �̈1,
and require that this dependence is sufficiently close to the
dependence obtained using the full Hamiltonian �Eqs. �19�
and �20��. Besides comparing the energies, we also compare
the matrix elements �nn� obtained using either the full or
restricted space �now only for the maximum and minimum

values of �̈1�, and require that the difference is below 1%.
The calculations in Sec. V for the case Nl2=5 have been
performed for the subset of nr=30 states: 167�n�196 �in
this case there are 6 states localized in the left well: n
=169,171, . . . ,179�. For Nl2=10, we have used nr=45
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states: 141�n�185. We have also performed calculations
with enlarged subsets �up to nr=150� and found that the
switching probability varies irregularly with the number of

states in the subset; however, this variation is not significant,
at least in the case of low switching probability Ps�0.3,
which is the range of our interest.

*Permanent address: Department of Chemical Physics, The Weiz-
mann Institute of Science, Rehovot 76100, Israel.
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