PHYSICAL REVIEW B 72, 245322 (2005)

Continuous quantum feedback of coherent oscillations in a solid-state qubit
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We have analyzed theoretically the operation of the Bayesian quantum feedback of a solid-state qubit,
designed to maintain perfect coherent oscillations in the qubit for arbitrarily long time. In particular, we have
studied the feedback efficiency in presence of dephasing environment and detector nonideality. Also, we have
analyzed the effect of qubit parameter deviations and studied the quantum feedback control of an energy-

asymmetric qubit.
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I. INTRODUCTION

Continuous quantum feedback in optics and atomic phys-
ics has been studied theoretically!= for more than a decade
(see also Refs. 6-11) and has been recently demonstrated
experimentally.'> In contrast, continuous quantum feedback
in solid-state mesoscopics is a relatively new subject.!3"17
The use of quantum feedback to maintain coherent (Rabi)
oscillations in a qubit for arbitrarily long time has been pro-
posed and analyzed in Refs. 13 and 14; a simplified experi-
ment has been proposed in Ref. 15. Cooling of a nanoreso-
nator by quantum feedback has been proposed and analyzed
in Ref. 16. The use of quantum feedback for the nanoreso-
nator squeezing has been studied in Ref. 17.

While several meanings of the feedback control are pos-
sible, in this paper we assume traditional meaning of the
control theory,'® in which feedback is used to keep the evo-
lution of a system (“plant” in terminology of the control
theory) close to a desired (predetermined) trajectory by com-
paring its actual state with the desired state and using the
difference signal for the control of system parameters. Feed-
back control of a quantum system requires continuous moni-
toring of its evolution (in the ideal case the wave function
should be monitored), which is the main non-trivial feature
of quantum feedback. Obviously, the operation of quantum
feedback cannot be analyzed using the “orthodox” approach
of instantaneous collapse,19 which is not suitable for continu-
ous quantum measurement. Also, the ensemble-averaged
(“conventional”) approach® to continuous quantum mea-
surement is not suitable since it cannot describe random evo-
lution of a single quantum system. Therefore, analysis of
quantum feedback requires a special theory capable of de-
scribing continuous measurement of a single quantum sys-
tem.

The development of such theories has started long
ago®'?® and has attracted most of attention in quantum
optics'?*> (in spite of similar underlying principles, the
theories may differ significantly in formalism and area of
application). For solid-state qubits such theory (“Bayesian”
formalism) has been developed relatively recently?®2” (for
review see Ref. 28). The equivalence of the Bayesian formal-
ism to the quantum trajectory approach translated®*3! from
quantum optics has been shown in Ref. 29.

In simple words, the Bayesian formalism takes into ac-
count the information contained in the noisy output of the
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solid-state detector measuring the qubit, so that the corre-
sponding quantum back-action onto qubit evolution is de-
scribed explicitly. In classical probability theory the way to
deal with an incomplete information is via the Bayes
formula;3? it can be shown?*-?8 that a somewhat similar pro-
cedure should be used for evolution of the qubit density ma-
trix due to continuous measurement, that explains why the
formalism is called Bayesian. The Bayesian formalism
shows that an ideal (quantum-limited) detector can monitor
precisely the random evolution of the qubit wavefunction in
the course of measurement; and if the measurement starts
with a mixed state, the qubit density matrix is gradually pu-
rified, eventually approaching a pure state. (This does not
contradict the no-cloning theorem?? since if we start mea-
surement with an unknown quantum state, the state will be
significantly different by the time it becomes fully known;
similar situation occurs in orthodox collapse.) The quantum
point contact (QPC) is an example of (theoretically) ideal
detector. When the detector does not have 100% quantum
efficiency [as in the case of a single-electron transistor
(SET)], there is an extra dephasing term in the evolution
equation, so that the qubit purification due to gradually ac-
quired information competes with the decoherence due to
detector nonideality.

The possibility to monitor the random quantum evolution
of the qubit in the process of measurement naturally allows
us to arrange a feedback loop which keeps the qubit evolu-
tion close to a desired “trajectory.” Of course, the measure-
ment process disturbs the qubit evolution; however, the de-
tector output contains enough information to monitor and
undo the effect of this disturbance. It is important that the
deviations from the desired trajectory due to interaction with
decohering environment are efficiently suppressed by the
feedback loop, that can be useful, for example, in a quantum
computer. (One of the possible applications is the initializa-
tion of qubits in a solid-state quantum computer without un-
realistic requirement of strong coupling with detector and
without relying on eventual dissipation.) The feedback loop
considered in Refs. 27 and 13 has been designed to maintain
the coherent oscillations in the qubit for arbitrarily long time
by comparing the oscillation phase with the desired value
and keeping the phase difference close to zero (the amplitude
of oscillations is equal to unity in the case of ideal detector
and energy-symmetric qubit). It has been shown that the fi-
delity of such feedback loop can be arbitrarily close to 100%,
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FIG. 1. Schematic of the quantum feedback loop maintaining
the quantum oscillations in a qubit. The qubit oscillations affect the
current /() through a weakly coupled detector; this signal is trans-
lated by the “processor” into continuously monitored value p™(t) of
the qubit density matrix. Next, by comparing p”(r) with the desired
oscillating state p(r), a certain algorithm (“controller”) produces
the feedback signal applied to an “actuator” which changes the
qubit tunneling amplitude H+AHg,, in order to reduce the differ-
ence between p” and p.

while it decreases in the case of a nonideal detector and/or
significant interaction with environment as well as in the
case of finite bandwidth of the line carrying the signal from
detector.

The present paper is a more detailed analysis of the op-
eration of the feedback loop proposed in Refs. 27 and 13. In
particular, we study the feedback loop operation in presence
of extra dephasing due to environment and nonideal detector,
analyze the effect of qubit parameter deviation, and consider
the feedback of a qubit with energy asymmetry. In the next
section we describe the model, in Sec. III we consider the
feedback operation in the ideal case, Sec. IV is devoted to
the effects of nonideal detector and extra dephasing, in Sec.
V we analyze the worsening of feedback efficiency in the
case of qubit parameter deviations, in Sec. VI we study the
feedback of an energy-asymmetric qubit, and Sec. VII is a
conclusion.

II. MODEL

Let us consider the quantum feedback loop shown in Fig.
1, which controls the qubit characterized by the Hamiltonian

e . .
quz—f(cgcz—cicl)+Hfb(c1c2+c§cl), (1)

where cb and ¢, are creation and annihilation operators
corresponding to two “localized” states of the qubit, repre-
senting the “measurement basis.” The qubit energy asymme-
try g, and tunneling amplitude Hp, can both be controlled by
the feedback loop:

Hfb=H+AHfb’ 8fb=8+A8fb' (2)

However, in this paper we assume Agg,=0, so that only tun-
neling is controlled. Intrinsic frequency of coherent oscilla-
tions in the qubit (without interaction and feedback) is €}
=\4H?>+&>/h; we also call it Rabi frequency, not implying
presence of microwave radiation (despite this terminology
differs from the initial meaning of Rabi oscillations, it is
conventionally used nowadays).

For definiteness we consider a “charge” qubit continu-
ously measured by QPC or SET, so that the measurement
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setup is similar to what has been studied theoretically, e.g., in
Refs. 26-31 and 34-39. Taking into account the quantum
back-action due to measurement, the evolution of the qubit
density matrix p is described by the Bayesian equations?®—28
(in Stratonovich form)

. H 2A1
p11 == 2= 1m pyy + py1pon——LI(0) - L], (3)
i s,
. Epp Hp,
pP12= l‘LPn + l_L(Pn - p2)
f fi
Al
- (p11 - Pzz)?[l(f) —Iplpia— vp12s (4)
1

where () is the noisy detector current (output signal), S, is
the spectral density of current noise, AI=1I,—1, is the differ-
ence between two average currents /; and /, corresponding
to the two qubit states, and I,=(I,+1,)/2. The dephasing rate
Y="Ya+ Yenp, has the contribution vy, due to detector nonideal-
ity, y,=(7'=1)(AD)?/4S; (here 7n<1 is the quantum
efficiency?6-28-36-38%) and contribution 7,,, due to interaction
with extra environment. As always, p;;+pxn=1 and p,;
= pfz. Equations (3) and (4) imply weak detector response
|Al| <1, quasicontinuous current, and large detector voltage
compared to the qubit energy. The current

A
() =1+ ZI(PH - pp) + &) (5)

has the pure noise contribution &(r) with frequency-
independent spectral density S;. Notice that averaging of Eqgs.
(3) and (4) over &(z) leads to the standard ensemble-averaged
equations® with ensemble dephasing rate I'=(AI)?/4S,+ 7.
We characterize coupling between qubit and detector by the
dimensionless constant C=A(A)?/S;H (we assume*® H>0)
and concentrate on the case of weak coupling C=<1 (notice
that C=~1 can still be considered a weak coupling since the
quality factor of oscillations in presence of measurement*'+?
is 87/C for £=0).

In this paper we consider the “Bayesian” feedback,'?
which requires a “processor” solving Egs. (3) and (4) in real
time—see Fig. 1 (other possibilities are, for example, “di-
rect” feedback briefly mentioned in Ref. 13 and “simple”
feedback via quadrature components analyzed in Ref. 15). In
this paper we neglect the effect of finite bandwidth!'3!443 of
the line carrying the detector signal, and we also neglect the
signal delay in the feedback loop. As a result, in most of the
paper we assume that the monitored value p”(¢) of the qubit
density matrix coincides with the actual value p(z). Only in
Sec. V we consider p™ different from p because of the de-
viation of the qubit parameters H and & from the values
assumed in the “processor” (finite signal bandwidth would
also lead to difference between p and p™).

For the feedback control the monitored qubit evolution is
compared with the desired evolution (Fig. 1), and the differ-
ence signal is used to control the qubit parameters in order to
decrease the difference. Actually, various algorithms (“con-
trollers™) are possible for this purpose; in this paper we will
consider linear control (see below). We study the feedback
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loop, which goal is to maintain perfect coherent oscillations
in the qubit for arbitrarily long time, and (except for Sec. VI)
the desired evolution is

g l+cosQqe

sin Qqt
1= 2 > Pp=l

, 6
: (©)
with frequency y=2H/# corresponding to £=0. Except for
Sec. VI, we assume the following feedback control:

AHp=-FHA®,, ™)
Ay, = ¢, (1) = Qot (mod2m), (8)

é,(t) = arctan[2 Im p5/(pf} - p35)]

+ (m/2)[ 1 - sgn(p}} — pyy)]. 9)

where ¢,, is the monitored value of the phase, phase differ-
ence A, is defined as |A¢,,| <, and F is a dimensionless
feedback factor [the second term in Eq. (9) provides proper
phase continuity on 277 circle]. The controller (7) is supposed
to decrease the phase difference (negative feedback): if phase
¢,(t) is ahead of the desired value, then AHy, is negative,
that slows down the qubit oscillations and decreases the
phase shift; if ¢,,(r) is behind the desired value, the oscilla-
tion frequency increases to catch up.

We will characterize the feedback efficiency by the “syn-
chronization degree” D defined as averaged over time scalar
product of two Bloch vectors corresponding to the desired
and actual states of the qubit. An equivalent definition is

D =2Trpp?) -1, (10)

where () denotes averaging over time. Perfect feedback op-
eration corresponds to D=1 (notice that p? is a pure state).
Feedback efficiency D can be easily translated into average
fidelity as (D+1)/2 or \/(D+1)/2, depending on the defini-
tion of fidelity!®** (translation formula would be slightly
longer if neither p nor p? are pure states). We prefer to use D
instead of fidelity because D=0 in absence of feedback when
p and p? are completely uncorrelated, while fidelity is non-
Zero.

III. IDEAL CASE

Let us start the analysis with the basic ideal case of »
=1 (quantum-limited detector, e.g., QPC), absence of extra
environment (%,,,=0), and symmetric qubit (¢=0). The ana-
lytical results for this case have been presented in Ref. 13;
here we discuss the derivation in more detail.

Since »=1 and v,,,=0, so that there is no dephasing term
in Eq. (4), the qubit density matrix p becomes pure in the
process of measurement.?® Because of the energy symmetry,
ep,=e=0, the real part of p;, eventually becomes zero. This
happens because the product (p;;—py)(I-1,) affecting the
evolution of Rep,, in Eq. (4) is on average positive. There-
fore, after a transient period the evolution of the density ma-
trix p can be parametrized as
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p1=(1+cos $)/2, p,=i(sin ¢)/2 (11)

with only one parameter ¢(r). We have also checked this fact
numerically. Notice that since the qubit is monitored exactly,
p=p", the phase ¢ coincides (modulo 277) with the moni-
tored phase ¢,, defined by Eq. (9).

The evolution equation for phase ¢ can be easily derived
from Eq. (4) as

d=2Hp/h — (AI/S))(I - Ip)sin ¢, (12)

so the phase difference A¢p=d—Qt (which coincides with
A¢,,) evolves as

%Aq{):— sin qbi—f(%l cos ¢+ f) -FQuA¢p. (13)

(All equations are in the Stratonovich form, so we use usual
rules for derivatives.*’) Notice that because of our definition
|A@| <, the phase difference jumps by +2 at the borders
of +7 interval.

For weak coupling (C/8<<1) the qubit oscillations are
only slightly perturbed by measurement and corresponding
phase diffusion is relatively slow. Assuming that the feed-
back control is also slow on the time scale of oscillations
(|AHp| <H), we can average Eq. (13) over relatively fast
oscillations. Then the first term in parentheses is averaged to
zero and averaging of the term —(sin ¢)(AI/S;)&(¢) leads to

the effective noise &(7) with spectral density Sz= (AD)?/2S,,
so that the remaining slow evolution of phase difference is

d _
S AG=E-FOA. (14)

To find the feedback efficiency D=(cos A¢) analytically,
let us also assume that feedback performance is good enough
to keep the phase difference A¢ well inside the +7 interval,
so that the phase slips (jumps of A¢ by +27) occur suffi-
ciently rare. In this case we can consider Eq. (14) on the
infinite interval of A¢. The corresponding Fokker-Planck-
Kolmogorov equation for the probability density o(A )

do d 1 &Z(Sg(r)

— =—(aFQuA - 15

ot aAqs(U AP+ AAP)? (13)
has  the Gaussian  stationary  solution o (A¢)

=2mV) 2 exp[-(A¢)?/2V] with variance V=8/4FQ,
=C/16F. Therefore, (cos Agp)=exp(-)V/2), and so the feed-
back efficiency is'3

D =exp(— C/32F) (16)

in the case of weak coupling and sufficiently efficient feed-
back (C=<1,D=1/2).

Figure 2 shows comparison between the analytical result
(16) and numerical results for D as a function of feedback
factor F (scaled by coupling C). Numerical results have been
obtained by direct simulation of the Bayesian equations (3)
and (4) using the Monte Carlo method?®?’ for five values of
coupling: C=10, 3, 1, 0.3, and 0.1. One can see that for weak
coupling C=1 the analytics works very well when the feed-
back is sufficiently efficient, D=0.5. Another important ob-
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FIG. 2. Solid lines: quantum feedback efficiency D as a function
of the feedback strength F' for five different values of the coupling
C and ideal operation conditions (see text). The curves for C<3
practically coincide with each other. Dashed line shows the analyti-
cal result (16). Inset shows the same curves for larger range of F/C.

servation is that with the feedback factor F' normalized by
coupling C, the curves for C<1 are practically indistinguish-
able from each other, the curve for C=3 goes a little higher
but still within the line thickness, and only the curve for C
=10 is noticeably different. Therefore, as expected, the
weak-coupling limit is practically reached starting with C
=< 1. This makes unnecessary to analyze numerically the case
of very small coupling C<<1, which requires much longer
simulation time than the case of moderately small coupling.

Notice that |AHfb|/ H<wF, and F scales with coupling C.
Therefore, in the experimentally realistic case C<<1 a typical
amount of the parameter change due to feedback is small,
|AH ;| <H. [Hence, we should not worry about unnatural
assumption of using control equation (7) even when Hy, be-
comes negative. |

The feedback efficiency D is directly related! to the av-
erage in-phase quadrature component of the detector current,
(I(t)cos Quty=(AI/4)[D+{cos(2Qyt+A¢))], so that in the
case of practically harmonic oscillations D=(4/Al)
X (I(t)cos Qt). Positive in-phase quadrature is one of easy
ways to verify the quantum feedback operation experimen-
tally.

Besides analyzing feedback efficiency D, let us also cal-
culate the qubit correlation function K.(7)=(z(t+7)z(¢))
where z=p;;—pyp. In the case of practically harmonic
(weakly disturbed) oscillations, the correlation function
K. (7)=(cos[p(r+7)]cos[H(2)]) is equal to {cos[QyT
+6¢p(7)])/2 where Sd(7)=Ap(t+7)—Ad(r) is the phase de-
viation during time 7. Since in our case (sin ¢(7))=0 be-
cause of the symmetry of Eq. (14), the correlation function is
reduced to

COS

DT o 5. (17)

K,(7)= >

We can find {(cos 6¢(7)) using exact solution of the Fokker-
Planck-Kolmogorov equation (15) with initial condition

0(Ag,0)=5(Ad—Ady):
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exp[— (A — Agppe "7 42V(7)]

o(A Adgy) =
( ¢’ 7‘ ¢0) \/2 WV( T) 5
(18)
V(1) = (Sz/4FQ)(1 — e72%7), (19)
Calculating  (cos dp(7)) as  [“_[”, cos[Ap—Ad,]

X (A, 7| Adpy) o (Ady)d(Ad)d(Adhy), we finally find the
qubit correlation function
cos Qo7 C  ron
K.(7)= > exp{ﬁ(e FQor _ 1)}. (20)

The validity range of this result is the same as for Eq. (16)
(C=1, 16F/C=1); we have checked that in this range Eq.
(20) fits well the numerical Monte-Carlo results. Fourier
transform S,(w)=2J"_K.(7)e"“"dr of Eq. (20) in the case of
efficient feedback (C/16F =<1, so the exponent is expanded
up to the linear term) gives the oscillation spectrum (w>0)

- {22
2 16F 2

. c 1+ F?+ (0/Q)?
80 [1 + F? = (/)] + 4F*(w/Qy)*’

21

in which the first term (S-function) corresponds to synchro-
nized non-decaying oscillations, while the second term de-
scribes fluctuations and for F<<1 is peak-like near w= (),
with the peak height of C/16,F? and half-width at half-
height of F(Q. [It is easy to check that [;S.(w)dw/2m
=1/2.]

Let us also calculate the correlation function of the de-
tector current K,(7)=([I(t+7)-1I,][1(z)-1,]). Following Ref.
42, we use Eq. (5) to get K/(7)=(AI/2)*K(7)+K7)
+(AI/2)K (1), where K=(S,/2)8(7) is due to pure noise
while the cross-correlation term Kzg(T) is due to quantum
back-action, which shifts the phase ¢ by —sin ¢(AI/S,)&(r)dt
as a result of noise & acting during infinitesimal time dr [see
Eq. (13)]. Because of the feedback, the effect of this extra
phase shift decreases (on average) with time as o¢(7)
=—exp(—FQq7)[sin ¢(1)](A1/S,;)&(r)dr [see Eq. (18)] and the
cross-correlation at 7>0 can be calculated as K, (7)=(z(t
+7)&(1))=(cos[ (1) + Q7+ (1) + 6(7) J&(1))-
cosine up to the linear term in 5¢(7) [the linear expansion is
the reason why it is sufficient to keep only averaged value
5¢(7) instead of the full distribution], we obtain

Expanding

K () = (E()di)(AlIS exp(- FQy)
X(sin[ (1) + Qo7+ 6¢(7)Jsin[H(1)]),

where (£(1)dt)=S,/2. Using symmetry of fluctuations lead-
ing to (sin 8¢p(7))=0 (as above) and averaging over fast os-
cillations (sin[ ¢(r) +Qq7]sin[ ¢(z)])=(cos Qy7)/2, we finally
obtain
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K1) = AZl(cos Qe cos ¢(7)). (22)

Since expression for K.(7) has a similar structure [see Eq.
(17)], the corresponding terms of K,(7) are combined to yield

(AI)2 _

K(7) = —5( N+ ——(L+e™MNK (), (23)
where K_(7) is given by Eq. (20).

To calculate the spectral density S;(w) of the detector cur-

rent, we again expand the outer exponent of Eq. (20) up to

the linear term [validity of Eq. (23) requires 16F/C=1]; then

the Fourier transform gives

2 £
8 ' 16F 2

s,C FH1+ F? + (0/Q)*]
+
4 F[1+ F? = (0/Qg)* + 4F*(w/Qy)?

Sw)=8,+

+ T4,

(24)

where the last (fourth) term T4 is the same as the previous
(third) term but with F replaced by 2F and with extra factor
C/16F [actually, higher-order terms of the exponent expan-
sion will lead to extra terms with F replaced by 3F, 4F, etc.,
and will slightly change the coefficients of the existing
terms]. Notice that the S-function in the second term of Eq.
(24) is due to synchronized nondecaying oscillations, while
the third term at F<<1 describes a peak with height (S,/8)
X(C/F) and half-width F( near w= (.

It is easy to check that the integral over all terms in Eq.
(24) except pure noise S;, gives the total variance of the
detector current equal to (AI)?/4 [this also follows directly
from Eq. (23)], the same value as without the feedback.*!+?
Similarly to the non-feedback case, this variance would na-
ively correspond to the qubit jumping between the two local-
ized states, instead of oscillating continuously [which would
give twice smaller variance (A7)?/8]; in the Bayesian formal-
ism this fact is understood as a consequence of non-classical
cross-correlation between output noise and qubit evolution.

Concluding this section, let us emphasize again that in the
ideal case the sufficiently strong feedback (16F/C> 1) forces
the qubit evolution to be arbitrarily close to the perfect co-
herent oscillations running for arbitrarily long time. In this
case the feedback efficiency D approaches 100%, qubit cor-
relation function becomes K.(7)=(cos {}y7)/2, in-phase
quadrature component of the detector current becomes equal
(AI)/4, and the current spectral density contains (besides the
pure noise) the S-function peak at desired frequency (), with
variance (AI)?/8, and also the narrow peak around €, (if
C/16<F<1) corresponding to same variance (A7)?/8.

IV. EFFECT OF IMPERFECT DETECTOR AND EXTRA
DEPHASING

Various nonidealities reduce the fidelity of the quantum
feedback preventing D from approaching 100%. In this Sec-
tion we consider the effects of imperfect quantum efficiency

PHYSICAL REVIEW B 72, 245322 (2005)

of the detector (<<1) and extra qubit dephasing with rate
Yemr due to coupling to environment (see Fig. 1). Both effects
contribute to the total qubit dephasing rate y=1,,,+ (7!
—1)(AI)?/4S, in Eq. (4) and can be characterized by effective
quantum efficiency of the qubit detection 7,=[1
+498,1(AD*1 ' =[ 77 +4%,,,S,/ (AD?]™! or by effective rela-
tive dephasing d,=7y/[(AD*/4S,]=7"'=1+47,,,S,/(A])?
:17;1—1; the physical meaning of d, is the ratio of qubit
coupling to sources of pure (unrecoverable) dephasing and
qubit coupling to the detector governed by the quantum (in-
formational) back-action.

Extra dephasing d, makes the qubit state non-pure; how-
ever, it is still perfectly monitored in a sense that p™(¢)
=p(t) (we assume that the magnitude of dephasing is known
in the experiment and is used in the processor solving the
quantum Bayesian equations; we also still assume &£=0.)
Therefore, controller (7) with sufficiently large feedback fac-
tor F can reduce the phase difference compared to the de-
sired oscillations practically to zero. As a result, we would
expect that the feedback efficiency D(F) should reach maxi-
mum (saturate) at infinitely large F similarly to the ideal case
shown in Fig. 2; however, this maximum will be less than
unity. The saturating behavior of D(F) dependence is con-
firmed by numerical (Monte Carlo) calculations—see Fig.
3(a). Below we discuss the calculation of the saturated value
D,,.. at F=o [Fig. 3(b)].

The evolution of a non-pure qubit state with Rep;,=0
(since £=0) can be parameterized as p;;—p=P cos ¢, p,
=iP(sin ¢)/2, where purity factor P is between O and 1.
Using Bayesian equations (3) and (4), we derive evolution
equations for P and ¢ (in Stratonovich form):

. 1
P——(l—P2)< —P cos ¢>+§>cos¢ ¥P sin® ¢,
(25)

sin 2¢
2

(;B—ZI;Iﬁ sin ¢ Al

P s . (26)

( —Pcos ¢+ §)

Sufficiently strong feedback (7) makes the phase ¢ arbi-
trarily close to the desired phase ¢p=¢ (mod 27), so the
feedback efficiency is practically equal to the averaged purity
factor: D,,,,=(P). To find (P) in the case of weak coupling
C/m,<1, let us perform first the averaging over oscillations
and later the averaging over remaining slow fluctuations. It is
easier to work with P2 than with P, so we start with evolu-
tion equation for P? which is obtained from Eq. (25) as

dP?/di=2PP. 1t is easier to average P? over oscillation pe-
riod using the Itd form* because the noise & causes corre-
lated noise of ¢, and only in the Itd6 form the average effect
of the noise is zero. Using the standard rule?’* we translate
the evolution equation for P? into Itd form:

dP* (AI)2
dt 2S;
+ (2A1/8)P(1 - P*)(cos ¢)é&; (27)

——(1-P*(1 - P?cos® ¢) — 2yP? sin® ¢

then averaging over ¢ is trivial:
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FIG. 3. (a) Quantum feedback efficiency D as a function of
feedback strength F for several values of quantum efficiency 7, of
the detection. (b) Maximum feedback efficiency D, (at large F) as
a function of 7,. Dots show the Monte Carlo results for coupling
C=0.1, solid line corresponds to Egs. (31) and (32), and dashed line
shows the approximate formula (29).

dP?  (AI? P? BIN;
—=(—)(1—P2)<1——>—yP2+ 2 p(1 - P,
dr 28, 2 S,

(28)

where &(7) is now a different white noise but with the same
spectral density Sz=S,, so we do not change notation.

A simple estimate of D,,,. can be obtained from Eq. (28)
by neglecting the noise term and finding stationary value for
P, which gives'

.
Dy = [1+ 1127, - (1 + 1/27,)* - 2] (29)

If we do not neglect the noise term in Eq. (28), then P?
fluctuates in time, and the stationary probability distribution
o,(P?) can be found from the Fokker-Planck-Kolmogorov
equation similar to Eq. (15) (notice that varying diffusion
coefficient comes inside the second derivative term) that
leads to equation

[yP? - (1= P)(1 - P*12)(AD)*/2S,]o,

d
d(P?)

+[(AD?2S]] [P*(1-P?)%0,]=0, (30)

which has analytic solution o,(P?)=NG(P?), where
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1
e =1 } 31)

G(P?) = (1~ P}~ exp{— 20 __p2)

and N is the normalization factor. Stationary probability dis-
tribution for P can be found as &, (P)=2Pao,(P?), and cal-
culating the average P gives us finally the feedback effi-
ciency

1
f P>G(P*)dP
0
max 1 . (32)
f PG(P?)dP
0

Figure 3(b) shows the dependence of the feedback effi-
ciency D,,,, on the effective quantum efficiency of the detec-
tor 7,=(1+d,)”". Solid line shows the analytical result (32),
dashed line shows approximate formula (29), and the sym-
bols show the numerical (Monte Carlo) results for D,,,. (at
sufficiently large F) for coupling C=0.1. Notice that the lines
for exact and approximate formulas are quite close to each
other.

Since at finite detection efficiency 7, the ensemble qubit
dephasing is I'=7,'(Al)?/4S,, the weak coupling condition
requires C/7,=<1. As a result, the numerical results for C
=0.1 in Fig. 3 start to deviate (upwards) from the analytical
result at 7,=<0.03. For larger C the deviation starts even at
larger 7,. Numerical calculations also show that at C/7,
=3 the average purity factor (P) has a noticeable depen-
dence on the feedback factor F ((P) decreases with increase
of F), while at C/ 7,=<1 this dependence is negligible.

It is easy to see that in vicinity of the ideal case (7,~1)
Eq. (29) gives linear approximation D,,,.~(l+7,)/2~=1
—d,/2 [exact solution (32) shows the same linear approxima-
tion]. This explains the corresponding numerical result of
Ref. 13. In the opposite limiting case 7,<1, Eq. (29) is
reduced to D,,,,=~\27,; the exact solution (32) has a similar
dependence but with slightly different prefactor: D,
~1.25V7,. Because of the square root dependence, feedback
efficiency is still significant even for large magnitude of qu-
bit dephasing due to coupling with environment. For ex-
ample, if coupling with dephasing environment is 10 times
stronger than coupling with quantum-limited detector (d,
=10, 5,=1/11), then D,,,,=0.36, which is still a quite sig-
nificant value for an experiment.

V. EFFECT OF £ AND H DEVIATION

In the ideal case we have assumed symmetric qubit (e
=0) and assumed that the exact value of tunneling parameter
H is used in the processor. In this section we analyze what
happens if the qubit parameters ¢ and H deviate from the
“nominal” values e=0 and H=H,, assumed by an experimen-
talist and used in the processor. In this case the monitored
value p™ of the qubit density matrix differs from the actual
value p; and because of the mistake in qubit monitoring, the
feedback performance should obviously worsen. [Both p(z)
and p"(r) satisfy Egs. (3) and (4) with the same detector
output I(£); however, “incorrect” parameters e=0 and H, are
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FIG. 4. (a) Dependence D(F) for several values of the qubit
energy asymmetry €/H in the case when the processor and control-
ler still assume £=0. (b) Solid lines: maximized over F feedback
efficiency D,,,, as a function of the asymmetry /H for three values
of coupling C=1, 0.3, and 0.1. Dashed linf§: the same curves for
C=0.3 and 0.1 drawn as functions of €/H+C. Dotted lines: depen-
dence D,,,.(e/H) for the three values of C in the case when actual
value of ¢ is used in the processor, while the controller (7) is still
designed for £=0.

used to calculate p™(r), while actual evolution p(r) is gov-
erned by actual parameter values & and H.] The desired evo-
lution is still p¢ =(1+cos Q1) /2, pf,=i(sin Qyr)/2 with
Qy=2H,/h, which is used in calculation of feedback effi-
ciency D [notice that in the definition of efficiency (10) p®(7)
is multiplied by the actual density matrix p(z), not the moni-
tored value p™(z)]. The controller is still given by Eq. (7) (we
do not replace here H by H,, because this is more natural, for
example, for control of the Cooper-pair-box qubit). Since the
analytical analysis of the problem is quite complicated, in
this section we present only the numerical results of Monte
Carlo simulations.

Let us start with deviation of & (while H=H,). Figure 4(a)
shows dependence D(F) for C=0.3 and several values of &.
One can see that for sufficiently large energy asymmetry
e/ H the feedback efficiency D is negative at small F, while
it is always positive at large F. For relatively small values of
asymmetry (|e/H|=<1) the dependence D(F) apparently
saturates at large F, while at larger asymmetry [|e/H|=1.5;
not shown in Fig. 4(a)] D(F) has maximum at finite F. [We
cannot exclude the possibility that even for small e/H, D(F)
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also has maximum, but it occurs at too large F' which cannot
be analyzed by our code due to numerical problems.] Notice
that the feedback efficiency is obviously insensitive to the
sign of energy asymmetry: D(-¢,H,C,F)=D(e,H,C,F).

Solid lines in Fig. 4(b) show dependence of D maximized
over F, on energy asymmetry &/H for several values of the
coupling C=0.1, 0.3, and 1. One can see that at small e/H
the dependence D, (e/H) is parabolic (zero derivative at
£=0), which means that a small energy asymmetry of the
qubit decreases the feedback efficiency very little. Zero de-
rivative at £=0 is a natural consequence of the symmetry
D,,..(—e/H)=D,,,(¢/H) (because of this symmetry, we
show only positive €/H). As seen in Fig. 4(b), significant
decrease of D,,,,, starts at smaller e/ H for smaller coupling C.
Rescaling of the horizontal axis by \s'E makes the curves
quite close to each other (see dashed lines in the figure);
however, we are not sure if the scaling D,,,.(e/H \J’E) is really
exact at C—0.

The dotted lines in Fig. 4(b) show dependence D,,,,(e/H)
for a different situation, when the exact value of & is used in
the processor, but the controller is still given by Eq. (7) de-
signed for =0 [desired evolution is still given by Eq. (6)
with Qy=2H/%]. One can see that exact monitoring of the
qubit significantly improves the feedback efficiency com-
pared with the case considered above; however, the feedback
efficiency still decreases with energy asymmetry because the
desired evolution (6) cannot be achieved at nonzero &/H and
also because of nonoptimal controller still designed for &
=0. (Some apparent dependence of the dotted lines on C even
at C<<1 is possibly due to numerical problems of the code
which does not work really well at C<0.1.)

To analyze the effect of the deviation of the parameter H
from the value H, used in the processor, we assume perfect
energy symmetry, e=0. Figure 5(a) shows the dependence
D(F) for C=0.3 and several values of the relative deviation
(H-H,)/H (we show only the curves for positive deviation;
the curves for negative deviation are similar). We see that the
effect of H deviation is qualitatively similar to the effect of
energy asymmetry [compare Figs. 4(a) and 5(a)]. At large F
the dependence D(F) saturates. Figure 5(b) shows the value
D,,.. maximized over F as a function of the relative devia-
tion (H—-H,)/H for several values of the coupling C. One can
see that the dependence is almost symmetric for positive and
negative deviation, and is parabolic at small deviation similar
to the case of nonzero & discussed above. Also similar is the
fact that weaker coupling C requires smaller deviation of H
for the same value of feedback efficiency. However, the scal-
ing with C is now different: the curves become close to each
other if D,,, is plotted as a function of (H—H,)/HC [see
dashed lines in Fig. 5(b)]. The different scaling is a natural
consequence of the fact that small change of ()
=\4H?+&?/# is linear in H deviation but quadratic in €. The
results presented in Figs. 4(b) and 5(b) can be crudely inter-
preted in the following way: D,, decreases significantly
when the Rabi frequency change due to parameter deviations
(AQ=2AH/#% or AQ=~&?/4H#%) becomes comparable to the
“measurement rate” (AI)?/4S,. [Notice that if the horizontal
axis in Fig. 5(b) was chosen as (H-H,)/H,, the curves
would be somewhat more asymmetric, the asymmetry being
more significant at larger C.]
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FIG. 5. Effect of the deviation of the qubit parameter H from the
value H( assumed in the processor. (a) Dependence D(F) for sev-
eral values of the relative deviation (H—Hy)/H. (b) Solid lines:
optimized over F feedback efficiency D,,,, as function of the de-
viation (H—H,)/H for coupling C=1, 0.3, and 0.1. Dashed lines:
the same curves for C=0.3 and 0.1 drawn as functions of (H
—Hy)/HC.

Concluding the discussion of & and H deviations, let us
mention that the main practical conclusion of the analysis is
that the feedback operation is robust against small unknown
deviations of the qubit parameters.

VI. FEEDBACK CONTROL OF A QUBIT WITH ENERGY
ASYMMETRY &

In this section we analyze the case of a qubit with finite
energy asymmetry & (“asymmetric qubit”). In contrast to the
problem considered in the previous section, in which non-
zero € was treated as an unwanted deviation from the perfect
zero value (therefore, finite & was just worsening the feed-
back designed for £=0), now we try to design and analyze a
different feedback (different controller) which goal is to
maintain the free oscillations of a qubit with £ # 0 (so, now
effect of nonzero e is what we also want to protect from
decoherence). Hence, the desired evolution p?(¢) is no longer
given by Eq. (6).

Before choosing the desired evolution, let us mention that
the qubit asymmetry leads to one more degree of freedom on
the Bloch sphere. In case of €=0, a pure qubit state was
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FIG. 6. Illustration of the qubit evolution on the Bloch sphere.
For an asymmetric qubit (¢ #0) the free evolution is a rotation
about a slanted (by angle «) axis. The difference between actual and
desired qubit states (both are pure states) is characterized by the
distance Ar,, between the corresponding slanted planes and the
angle A¢,, within the slanted plane (after projection).

characterized only by the phase ¢ [see Eq. (11)] because the
real part of p;, was vanishing in the course of measurement,
so the evolution was within the plane of “zero longitude
meridian.” For an asymmetric qubit, a naturally preferable
plane of oscillations on the Bloch sphere no longer exists; in
particular a weak measurement leads to a slow fluctuation of
the “slanted” plane of free qubit oscillations (Fig. 6). The
simulations show that without feedback the pure-state qubit
evolution is to some extent confined between the two slanted
planes passing through the “north pole” (p;;=1) and “south
pole” (pyp=1), with the probability about 0.6 of being be-
tween the two planes for small C and |e/H|=1.

Let us choose the desired qubit evolution as a free evolu-
tion starting from the north pole:

2H? + €% + 2H? cos Ot 1
p‘fl(t) = T =1+ > cos® a(cos Qr— 1),
(33)
d eH(cos Qr-1) iH sin Q1
pio(t) = 2. 2 2, .22
4H + & (4H* + £°)
cos «

== [sin a(cos Qr—1)+isin Qr],  (34)

where Q=\4H?>+¢?/# and a=atan(e/2H). An interesting
question is whether the quantum feedback can keep the qubit
evolution close to the desired path (33) and (34) or not.
The old controller (7) is obviously not good for this pur-
pose, so we need to design a new one. [Notice that the qubit
density matrix is monitored exactly, p”(z)=p(z), because all
the parameters are assumed to be known exactly and because
as discussed in Sec. IT we assume infinite signal bandwidth. ]
As the first step, we characterize the deviation of the moni-
tored qubit state p”(f) from the desired state p?(f) by two
magnitudes (see Fig. 6): by the distance Ar,, between two
parallel slanted planes containing the monitored and desired
states (the planes are slanted by angle —«) and by the angular
difference A¢,, between points p” and p? projected onto the
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slanted plane. The corresponding formulas are a little lengthy
but straightforward. For the distance deviation Ar,,=r,—r,
we calculate the distances r,, and r; of the planes from the
origin as the scalar products of the vector (cos a,0,-sin @)
orthogonal to the planes and the Bloch vectors
(2Rep;2,2Im pyy, py1—poy) for the states p™ and p?, corre-
spondingly:

rn=2Repfycosa—(pfi-plsina  (35)
and similar for r,; it easy to see from Egs. (33) and (34) that
r,=-sin a. For the phase difference Ad,,=¢,,— ¢, (mod 2,
|Ad,| <) we use equation

2 Im pffy

tan ¢, = - (36)

2 Re pf; sin a + (p]] — phy)cos a

[extra 7r-shift of ¢,, should be added when the denominator
is negative, as in Eq. (9)]; a similar equation for p? defined
by Egs. (33) and (34) obviously gives ¢,=Q¢ (mod 2m7).
Notice that in the case £=0 (so that «=0) we recover the
previous definition (9) of A, while Ar,,=0.

Limiting ourselves by the feedback control of the qubit
parameter H only, we designed and analyzed the following
controller:

AHfb=_FHA¢m_FrH sin d)mArm (37)

The first term in this expression is the same as in the previ-
ous controller (7) and is supposed to reduce the in-plane
phase difference A¢,, by changing the oscillation frequency,
while the second term is supposed to reduce the inter-plane
distance Ar,,. The idea is that the change of Hp;,=H+AHy,
affects the angle of the slanted plane of oscillations, and
when it is done periodically in phase with the oscillations
(due to the factor sin ¢b,,) the inter-plane distance can be
gradually reduced.

Numerical calculations show that this idea works really
well. Figure 7(a) shows the dependence D(F) for several
values of the ratio F,/F using as an example parameters
e/H=1, C=0.3, and 7,=1. One can see that nonzero F, can
significantly improve the feedback efficiency D. While at
F,=0 the dependence D(F) saturates at large F, at nonzero
F, the efficiency D has maximum at finite F.

Figure 7(b) shows the optimized over F efficiency D,,,, as
function of the ratio F,/F for couplings C=0.3 and 0.1, and
three values of energy asymmetry &/H. One can see that
each curve has maximum at some value of F,/F. Notice also
that at zero F,, the curves for different coupling C practically
coincide, while at finite F,/F their behavior significantly de-
pends on C, with larger D,,,, at smaller coupling.

In Fig. 7(c) we show the feedback efficiency D,,,, opti-
mized over both F' and F, as function of energy asymmetry
e/H for two values of the coupling C. As we see, finite
asymmetry e/H prevents efficiency D, from reaching
100%. However, the difference 1-D,,,, decreases with de-
crease of coupling C, crudely proportional to C (except the
region of small e/H, where the accuracy of our calculations
is possibly insufficient to distinguish the curves; unfortu-
nately, there is no simple way to estimate the calculation
accuracy). Therefore, we guess that for any asymmetry &/H,
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FIG. 7. Feedback efficiency for an energy-asymmetric qubit (e
#0). (a) Dependence D(F) for several values of the ratio F,/F.
Inset shows the same curves at small F. (b) Optimized over F
feedback efficiency D,,,, as a function of F,/F for several values of
qubit asymmetry £/H=(0.25,0.5,1) and two values of coupling C
=(0.1,0.3). (c) Feedback efficiency D,,,, optimized over both F and
F,, as a function of asymmetry ¢/H for two values of C. Dots show
numerical results while the lines just connect the dots.

the feedback efficiency D,,,, reaches 100% in the limit of
small coupling C— 0. (We cannot check this conjecture nu-
merically because our code does not work well at C<0.1.)
It is not quite natural for the asymmetric qubit to limit the
feedback by the control of the parameter H only (though it is
simpler from the experimental point of view). We have also
performed a preliminary analysis of a simultaneous control
of both H and . We have considered the case when Eq. (37)
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is used for H-feedback while a similar equation (with H re-
placed by &) is used for simultaneous control of &. Even
though we have not performed detailed optimization, we
have obtained larger values of D,,,, than those presented in
Figs. 7(b) and 7(c). This shows that additional feedback con-
trol of the qubit parameter ¢ really improves the feedback
efficiency.

Concluding this section let us mention that its main result
is the possibility of a very efficient feedback control of an
asymmetric qubit. This can be done even using the control of
the parameter H only, while simultaneous control of & further
improves the operation of the feedback.

VII. CONCLUSION

In this paper we have analyzed the quantum feedback
control of a single solid-state qubit, designed to maintain
perfect (or close to perfect) Rabi oscillations for an arbi-
trarily long time. We have considered “Bayesian” feedback'?
which requires a “processor” (see Fig. 1) solving quantum
Bayesian equations to monitor the qubit state evolution via
continuous output signal from the detector (QPC or SET)
weakly coupled to the qubit. After comparing the randomly
evolving (due to quantum back-action) monitored qubit state
p™ with the desired state p? the qubit tunneling parameter H
is being slightly changed in order to reduce the difference
between the states. For simplicity we have assumed infinite
bandwidth of the (noisy) detector signal and neglected the
time delay in the feedback loop.

The analysis in Sec. III shows that in the ideal case the
efficiency D of the quantum feedback can be made arbitrarily
close to 100% by increasing the strength of the feedback
control [characterized by parameter F in Eq. (7)]. It is im-
portant to mention that F scales with the coupling C between
qubit and detector; therefore in the realistic case of weak
coupling C<<1, the parameter F and consequently the rela-
tive change of the qubit parameter H remain small. The ef-
ficient operation of the feedback loop is achieved at F/C
>1 [see Eq. (16)]; in this case the qubit evolution becomes
almost perfectly sinusoidal [Egs. (20) and (21)], while the
spectral density of the detector current [Eq. (24)] contains the
S-function peak at Rabi frequency (), with the integral
(AI)?/8 (as would be expected for the synchronized classical
sinusoidal oscillations in the qubit) and also a narrow peak
around (), with the same integral. The total integral under
the peaks is thus (A7)?/4, which exceeds the limit for a clas-
sically interpretable process.*

The feedback performance worsens in the case of a non-
ideal detector and/or presence of dephasing environment.
This case is considered in Sec. IV. We have obtained an
analytical formula [Egs. (31) and (32)] for the maximum
feedback efficiency D,,,, confirmed by Monte Carlo simula-
tions. It gives D,,,,~ (1+17,)/2 in almost perfect case when
the effective detection efficiency 7, is close to unity, and
D= 1.25\, when 7,<1.

In Sec. V we have analyzed numerically the decrease of
the feedback efficiency in the case when actual qubit param-
eters & and H differ from the assumed (in the processor and
controller) parameters e=0 and H=H, (otherwise the case is
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ideal). We have found that for small deviations the efficiency
D,,.. decreases relatively slowly (with zero derivative at van-
ishing deviation), so that, for example, D,,,,=0.95 is pos-
sible for |e/Hy|<0.5\C and |H/H,—1|<0.03C. This shows
that the quantum feedback is robust against small deviations
of the qubit parameters.

In Sec. VI we have analyzed the feedback control of a
qubit with finite energy asymmetry &, so that the desired
evolution trajectory is along a slanted circle on the Bloch
sphere. Despite the control problem becomes two-
dimensional in this case even for a pure state, we have shown
that efficient feedback is still possible using only one con-
trolled parameter H and properly designed algorithm (con-
troller).

In this paper we have not considered two more effects
quite important for the operation of the Bayesian quantum
feedback: finite signal bandwidth and time delay in the loop.
These effects will be a subject of a separate publication.
Another interesting direction for further study is analysis of
“scalability” of quantum feedback applied to several-qubit
systems. For example, it has been shown that discrete-type
feedback can maintain entanglement of two qubits measured
continuously by an equally coupled detector;*’ however, it is
not clear if this can be done in a continuous-feedback way or
not. Similar questions for more than two solid-state qubits
have not yet been posed.

In principle, since the area of classical feedback control is
very well developed with variety of powerful methods for
analysis,'® one can hope to use this mathematical arsenal for
problems of quantum feedback. Unfortunately, borrowing
methods from classical control is not too simple. One (mi-
nor) problem is non-classical phase space and evolution
equations; there is already a number of groups (see, e.g., Ref.
48), which apply the control theory background to study
non-feedback control of quantum systems. Another (more
important) problem is the process of gradual collapse due to
continuous quantum measurement, which does not have a
classical counterpart and therefore is not included into the
classical control theory. Moreover, this problem is still under
development in physics community, and in the solid-state
area continuous quantum measurement attracted interest only
recently (see, e.g., Refs. 26-31 and 34-38). Incorporation of
quantum measurement into the standard control theory is
definitely an important goal, and at present it is an actively
studied area (see, e.g., Refs. 10 and 49).

The Bayesian quantum feedback of a solid-state qubit
analyzed in this paper is not yet realizable experimentally at
the present-day level of technology. Even much simpler
quadrature-based quantum feedback' is still a big experi-
mental challenge. However, a rapid progress in experiments
with solid-state qubit and also recent realization of quantum
feedback in optics'? allow us to believe that the analysis
performed in this paper will eventually be experimentally
relevant.
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