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We analyze squeezing of the nanoresonator state produced by periodic measurement of position by a
quantum point contact or a single-electron transistor. The mechanism of squeezing is the stroboscopic quantum
nondemolition measurement generalized to the case of continuous measurement by a weakly coupled detector.
The magnitude of squeezing is calculated for the harmonic and stroboscopic modulations of measurement,
taking into account detector efficiency and nanoresonator quality factor. We also analyze the operation of the
quantum feedback, which prevents fluctuations of the wave packet center due to measurement back-action.
Verification of the squeezed state can be performed in almost the same way as its preparation; a similar
procedure can also be used for the force detection with sensitivity beyond the standard quantum limit.
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I. INTRODUCTION

Recent advances in fabrication of high-frequency nano-
mechanical resonators1–5 ssee also Refs. 6 and 7d make the
direct observation of their quantum behavior possible in the
nearest future. Resonator frequencyv0/2p slightly over
1 GHz has been already demonstrated.3 For such a resonator
the conditionT,"v0 swe usekB=1d is satisfied at tempera-
tureT below,50 mK, which is within routine experimental
range. Actually, even in the caseT@"v0 the quantum be-
havior is in principle observable8 if Ttm/Q&", whereQ is
the resonator quality factor andtm is the typical measure-
ment time. This condition can be satisfied even for a MHz-
range resonator with largeQ-factor, if measured with a good
sensitivity which translates into smalltm. There is a rapid
experimental progress in monitoring the oscillating position
of a nanoresonator using radio-frequency single-electron
transistorsRF-SETd sRef. 4 and 5d or quantum point contact
sQPCd sRef. 9d sat present the RF-SET seems to be much
more efficient; both solid-state techniques have some advan-
tages compared to more traditional optical monitoring10sad,11

d. In particular, the position measurement accuracyDx within
the factor 5.8 from the standard quantum limitsSQLd Dx0
has been demonstrated5 using the RF-SET; hereDx0
=Î" /2mv0 is the width sstandard deviationd of the ground
state of the oscillator with massm. Anticipating future
progress in measurement precision, in this paper we discuss a
way of performing measurement with accuracy better than
Dx0.

Such measurement implies squeezing of the nanoresona-
tor state and requires using some tricks to avoid the effect of
quantum back-action from the detector which normally leads
to the SQL.8 Actually, an instantaneous position measure-
ment by a strongly coupled detector can in principle be made
with precisionDx better thanDx0 sorthodox projection, for
example, impliesDx=0d; however, the limitation by the SQL
arises for consecutive measurements and also for measure-
ment by a weakly coupled detector, which is necessarily con-
tinuous. The well-known way to overcome the SQL limita-
tion is to use quantum nondemolition sQNDd

measurements.8,12–14 The general idea of a QND measure-
ment is to avoid measuringsor obtaining any information ond
the magnitude conjugated to the magnitude of interest, and
therefore to avoid the corresponding back-action. An impor-
tant implementation of this idea is the “stroboscopic” mea-
surement of the oscillator position.12,13Suppose the position
x1 is measuredsinstantaneouslyd with a finite precisionDx,
which necessarily disturbs the momentum according to the
Heisenberg uncertainty principleDpù" /2Dx. Normally this
momentum change would affect the result of the next posi-
tion measurementx2 and would limit the accuracy for the
position differencex2−x1, leading to the SQL for this mag-
nitude. However, if the second measurement is performed
exactly one oscillation period after the first one, the oscillator
returns to its initial state, and therefore the momentum
change does not affect the accuracy of thex2−x1 measure-
ment. Such stroboscopic measurement gives no information
related to the momentum, and this is exactly the reason why
the effect of quantum back-action is avoided.8,12–14

The QND measurements have been mainly discussed in
relation to detection of very weak classical forces, in particu-
lar gravitational wavesssee, e.g., Refs. 15–17; see also Ref.
18d. Recently the idea of QND measurements has been also
applied to solid-state mesoscopic structuresssee, e.g., Refs.
19–21d. Among other recent developmentsstotal number of
papers on QND measurements is about half a thousandd let
us mention the experiment on atomic spin-squeezing using
the QND measurement and real-time quantum feedback.22

Squeezing of a nanomechanical resonator using the QND
measurement by QPC or SET and quantum feedback has
been proposed in our recent Proceedings paper;23 the present
paper is a more complete analysis of this proposal.

Measurement of the nanoresonator position by the SET or
QPC has already received a significant theoretical
attention.7,24–32In particular, it was shown that the process of
measurement transfers the energy from the detector to the
nanoresonator leading to its “heating.”24,25A possible way to
prevent such heating is using the quantum feedback control
of the nanoresonator30,33 sother ideas for cooling have been
proposed in Refs. 34 and 35d.
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The general idea of quantum feedback is very similar to
classical feedback and is based on the continuous monitoring
of the system state and its continuous control towards a de-
sired state. However, the nontrivial part is accurate monitor-
ing of evolution of the quantum stateswave function in the
ideal cased, which requires explicit account of the detector
back-action. The quantum feedback of mesoscopic solid-
state systems is a relatively new subject,36 though in quan-
tum optics the quantum feedback has been proposed more
than a decade ago37 and has been already realized
experimentally.22 The quantum feedback analyzed in Ref. 30
assumes continuous monitoring of the nanoresonator state
with constant “strength” of measurement and allows cooling
of the nanoresonator practically down to the ground state.
However, it does not allow squeezing of the nanoresonator
statesbelow Dx0d, except in the unrealistic case of a strong
coupling between the nanoresonator and detector.

Besides curiosity, the interest to nanoresonator squeezing
is justified by its importance for the ultrasensitive force de-
tection. Nanoresonator squeezing by periodic modulation of
the spring constant at twice the flexural frequency has been
proposed and analyzed in Refs. 38 and 7sthis proposal is to
some extent a scaled down version of the proposal39 for
gravitational-wave detection and experiment on classical
thermomechanical noise squeezing40d. Nanoresonator
squeezing by reservoir engineeringsby coupling to a qubit
and illumination with two microwavesd has been proposed in
Ref. 41. We would like to notice that to be useful for an
ultrasensitive force detection, the preparation of a squeezed
state should in any case be complemented by the measure-
ment stage after the force has acted on the nanoresonator; the
most natural way for this measurement is using the RF-SET
sor QPCd as a detector, and such measurement of a squeezed
state is not trivialsunless detector is strongly coupledd.

In this paper we analyze the nanoresonator squeezing pro-
duced by measuring the nanoresonator positionsFig. 1d with
the measurement strength modulated in time23 sfor example,
modulating the bias voltage of the QPC or RF-SETd, so the
stages of the squeezed state preparation and its measurement
are essentially similar. We show that even for a weak cou-
pling with detector, a significant squeezing of the nanoreso-
nator state can be achieved when the modulation frequency
v is close to 2v0/n, n=1,2, . . . .

The mechanism of this effect is exactly the physics of
stroboscopic QND measurements12,13 and can be easily un-

derstood for the case of short measurement pulses applied
periodically, for example, once per oscillation periodsn=2d.
Each measurement pulse gives us somesthough quite impre-
cised information on the nanoresonator positionx and corre-
spondingly reduces the width of the resonator density matrix
in x-domain. Between the pulses the resonator undergoes
free evolution, which returns the density matrix into exactly
the same state one period latersneglecting effects of finite
Q-factor and unharmonicityd. Therefore, the free evolution
produces no effect, and measurement pulses are “stacked one
upon another,” so that the measurement strength adds up, and
many imprecise measurements become equivalent to one
very precise measurement. When the precision of such mea-
surement becomes better thanDx0, thex-width suncertaintyd
of the resonator statesdensity matrixd necessarily becomes
smaller than the ground state width, so the squeezed state is
produced. Exactly the same mechanism of squeezing works
when the measurement pulses are separated by integer num-
ber of oscillation periodssevennd or by an odd number of
half-periodssodd nd since the free evolution during a half-
period results only in the sign change for position and mo-
mentum.

Notice that even though the measurement squeezes the
resonator positionx, free evolution between pulses makes it
a “breathing” mode, so thatx-width oscillates in timeswith
frequency 2v0d becoming periodically larger and smaller
thanDx0; correspondingly the momentum uncertainty of the
resonator also oscillates and becomes squeezed below
" /2Dx0 periodically. Because of these oscillations, squeezing
is usually considered in the rotating frame, so what is usually
discussed is squeezing of one of two quadrature amplitudes,
which can be translated via free evolution into the position
and momentum at timet=0. However, in this paper we pre-
fer to consider explicitly the oscillating time dependence of
the position and momentum uncertainty, and in this sense we
often use terminology of oscillating in time squeezing of
position sor momentumd.

Finite duration of each measurement pulse prevents com-
plete self-compensation of free evolution and consequently
prevents infinite accumulation of the squeezing degree; in-
stead, squeezing saturates after initial transient period. An
explicit account of finite pulse duration for continuous mea-
surement by a weakly coupled detector is one of the main
differences between our formalism and the standard analysis
of stroboscopic QND measurements.12,13

Finite duration of measurement pulses also leads to a ran-
dom motionsdiffusionliked of the wave packet center at the
moments of maximumx-squeezing. This can be explained as
a consequence of random momentum kicks during measure-
ment pulses, which are the quantum back-action price for
x-measurement. Since the free evolution between the pulses
is not cancelled exactly, momentum kicks lead to gradual
x-evolution as well. This effect causes gradual “heating” of
the nanoresonator. If not stopped by the damping due to fi-
nite Q-factor, the resonator energy will grow up to the effec-
tive detector temperature which is on the order of the detec-
tor voltage7,25 and is typically very large compared to"v0.
This heating can be prevented by using the quantum feed-
back which can keep the wave packet center near zero; such
feedback has been analyzed by Hopkinset al.,30 and we will

FIG. 1. Simplified schematic of the nanoresonator, which posi-
tion x is measured by a single electron transistor or a quantum point
contact. Stroboscopic modulation of the detector voltageVstd with
frequency 2v0/n leads to nanoresonator state squeezing. Detector
output Istd is used to monitor nanoresonator position. The quantum
feedback loop keeps the center of the nanoresonator wavepacket
close tox=0.

RUSKOV, SCHWAB, AND KOROTKOV PHYSICAL REVIEW B71, 235407s2005d

235407-2



basically follow their analysis in the present paper.
Finite Q-factor of the nanoresonator, finite temperature of

the environment, and resonator unharmonicity obviously de-
crease the maximum achievable squeezing. In this paper we
consider the effects of theQ-factor and temperaturesthough
for many results they are neglectedd, but we do not consider
unharmonicity. We also do not analyze explicitly the use of
the squeezed state for the ultrasensitive force detection; how-
ever, we discuss the procedure of squeezed state verification,
which is a closely related topic. In the next section we de-
velop Bayesian formalism for the analysis of our setup; it is
shown to coincide with the formalism of conditional evolu-
tion used in previous papers, in particular in Refs. 33 and 30.
Measurement modulation and simplified equations for
Gaussian states are discussed in Sec. III; Sec. IV is devoted
to the calculation of squeezing; quantum feedback is ana-
lyzed in Sec. V; verification of the squeezed state is dis-
cussed in Sec. VI; and Sec. VII is the conclusion.

II. MODEL AND BAYESIAN FORMALISM

For simplicity we consider the nanoresonatorsFig. 1d
measured by the low-transparency QPCsthough our results
are applicable to the RF-SET as welld, and the system Hamil-
tonian is

H = H0 + Hdet+ Hint + Henv+ Hfb, s1d

where the first term describes the oscillator:

H0 =
p̂2

2m
+

mv0
2x̂2

2
s2d

sp̂ and x̂ being the momentum and position operatorsd, the
last term

Hfb = − Fx̂ s3d

describes the feedback control of the nanoresonator by ap-
plying the forceFstd. Hdet andHint correspond to the detec-
tor and its interaction with the nanoresonator similar to Refs.
42 and 25:

Hdet= o
l

Elal
†al + o

r

Erar
†ar + o

l,r
sMar

†al + h.c.d, s4d

Hint = o
l,r

sDMx̂ar
†al + h.c.d. s5d

Finally, Henv describes nanoresonator interaction with pho-
non bath at temperatureT; this interaction is assumed to be
weak and leads to a large quality factorQ@1. In Eqs.s4d
ands5d al,r

† andal,r are the creation and annihilation operators
for two electrodes of the QPC, for simplicity we assume no
relative phase between the tunneling amplitudesM andDM
staking this phase into account is simple,43–45 but makes the
formalism significantly lengthier, see Appendixd. For a given
position x of the oscillator, the average detector current is
Ix=2puM +DMxu2rlrre

2V/", where V is the QPC voltage
which may vary in time with frequencyv comparable tov0,
e is the electron charge, andrl,r are the densities of states in
the electrodes.

We assume a weak response of the detector,uIx− Ix8u
! uIx+ Ix8u, and therefore the linear dependence of the detec-
tor current on the measured position

Ix = I0 + kx, s6d

neglecting effects of detector nonlinearity.46 Also, we neglect
the dependence onx of the detector current spectral density
SI which is assumed to be flat in the frequency range of
interest. Because the voltageV varies in time,I0, k, Ix, andSI
also depend on time, that will be taken into account explic-
itly in the next section. Notice that the white noiseSI is an
intrinsic detector noise, which is defined for a fixed voltage
on a time scale much shorter than the time scale of voltage
variations, while the long-time spectral density of the detec-
tor current is obviously affected by the voltage changes as
well as by the oscillating signal from the nanoresonator.

To describe the dynamics of the continuous quantum mea-
surement process, we apply the quantum Bayesian approach
practically following the derivation47 for the case of qubit
measurement. We will have to use similar assumptions; in
particular, for the validity of the Markovian approximation
we assume that the internal dynamics of the detector is much
faster than the oscillator dynamicssthis requireseV@"v0d,
we also assume that detector current is quasicontinuous
swhich requires I0/e@v0 and even stronger inequality
kDx0/e@v0d.

To start the derivation, we first neglect the nanoresonator
evolution due toH0, Henv, and Hfb swhich will be added
laterd and assume constant detector voltageV svariations of
V, slow on the time scale of detector dynamics, will be taken
into account later just as a parameter variationd. Similar to
Ref. 47, the derivation of the Bayesian equations can be done
in two ways: “informational” and “microscopic.” Let us start
with informational derivation.

Since the operator of the QPC current commutes withx̂,
the detector current is insensitive to the off-diagonal matrix
elements of the resonator density matrixrsx,x8d in
x-representation. For a measurement durationt long enough
compared to the detector time scales" /eV and e/ I0 sand
short compared to the resonator evolution due toH0+Henv
+Hfb so that it can be neglectedd, the probability distribution

of the noisy detector current averaged overt, Ī
=s1/tde0

tIst8ddt8, is given by

PsĪ,td =E PxsĪ,tdrsx,x,0ddx, s7d

where the third argument ofr is time andPxsĪ ,td is the

probability distribution forĪ in the case of the resonator at
positionx. Sincet@e/ I0, this distribution is Gaussian,

PxsĪ,td = s2pDId−1/2 expf− sĪ − Ixd2/2DIg, s8d

whereDI =SI /2t is the variance. Notice thatĪ is treated as a
classical variable because detector decoherence timeswhich
is on the order of" /eVd is much shorter thant.

Since classical and quantum dynamics are indistinguish-
able when off-diagonal matrix elements ofr cannot affect
the evolution, the diagonal matrix elements ofr should sat-
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isfy the classical evolution of conditional probability given
by the Bayes formula:48

rsx,x,td =
rsx,x,0dPxsĪ,td

E rsx̃,x̃,0dPx̃sĪ,tddx̃

, s9d

whereĪ is now a particular result of actual measurementsso
the evolution ofr is conditioned on the measurement result

Īd.
Classical Bayes formula cannot tell us anything about the

evolution of the off-diagonal matrix elementsrsx,x8d. How-
ever, in the case of an ideal detector47 ssuch as QPCd the
evolution equation can be derived using the same trick as in
Ref. 47 by comparing the ensemble-averaged density matrix
elements25 ravsx,x8d with the upper bound foruravsx,x8du de-
rived from the Bayesian viewpoint. Let us start from the
obvious inequality

ursx,x8,tdu ø Îrsx,x,tdrsx8,x8,td s10d

and take into account that for different members of the en-
semblesdifferent realizations of the measurement processd
the value ofĪ is different, with distributionPsĪ ,td given by
Eq. s7d. Performing averaging over realizations and using
obvious inequalityuravuø uruav we transform inequalitys10d
into the following:

uravsx,x8,tdu øE Îrsx,x,tdrsx8,x8,tdPsĪ,tddĪ.

The integration overĪ can be performed explicitly using Eqs.
s9d and s8d, that finally leads to an upper bound for the off-
diagonal matrix elements

uravsx,x8,tdu ø Îrsx,x,0drsx8,x8,0de−sIx − Ix8d
2t/4SI . s11d

Now let us compare this inequality with the result of con-
ventional ensemble-averaged approach;49 as shown by
Mozyrsky and Martin, in the large-V limit the measurement
by a low-transparency QPC leads to decoherence of the nan-
oresonator state as ravsx,x8 ,td=rsx,x8 ,0dexpf−sIx

− Ix8d
2t /4SIg. Since the exponential factor is the same as in

s11d, then for a pure initial state, ursx,x8 ,0du
=Îrsx,x,0drsx8 ,x8 ,0d, inequality s11d actually reaches its
upper bound, which is possibleonly if inequality s10d
reaches its upper bound foreachmeasurement resultfif s10d
is a strict inequality for at least some realizations of measure-
ment, then averaging over realizations makess11d a strict
inequalityg. This means thata pure state of resonator re-
mains pure in the process of measurement, similar to the case
of qubit measurement.47 Notice that complete absence of de-
coherence in a particular realization of the measurement pro-
cess is because the QPC is an ideal detector, while for the
SET the remaining decoherence rate would not be zero.47

Combining the equality ins10d with Eq. s9d, we express it
as

rsx,x8,td =
rsx,x8,0dÎPxsĪ,tdPx8sĪ,td

E rsx̃,x̃,0dPx̃sĪ,tddx̃

. s12d

We have neglected the possible phase factor expsifmd be-
cause in our modelfm=0 since in the derivation presented

abovefm cannot depend onĪ sotherwise the upper bound
would not be reachedd and there is no phase in the ensemble-
averaged result.25 The absence of phasefm can also be
proven directly using the microscopic model discussed be-
low. Nevertheless, nonzerofm can be present in somewhat
different models which include “asymmetry” of the detector
coupling;43 an example of such case is when there is a rela-
tive phase44–46 betweenM and DM in the Hamiltonians4d
and s5d ssee Appendixd.

So far we have proven Eq.s12d only for a pure initial state
rsx,x8 ,0d. It is also easy to show its validity for a mixed
state. Representing initial state asrs0d=oiPis0dris0d, where
Pi are the probabilities of pure statesris0d, we apply a
“double-Bayesian” proceduresas in Ref. 45d in which Pistd
is found via classical Bayes theorem while eachristd satis-
fies the quantum Bayes equations12d. Simple algebra shows
that evolution of the mixed density matrixr is still described
by Eq. s12d.

Besides using the “informational” approach described
above, Eq.s12d can also be obtained in a “microscopic” way.
Similar to the derivation for the qubit measurement,47 the
evolution can be divided into the sequence of sufficiently
short segments consisting of “conventional” evolution of the
nanoresonator and detector, in which all the detector degrees
of freedom are traced over, except the numbern of electrons
passed through the detector, so that the magnitude of interest
is the combined density matrixrnsx,x8 ,td. At the boundaries
between the segments we collapse the numbern according to
the orthodox procedure:50 the probability of a particular “re-
alized” n=n0 is equal toern0

sx,x,tddx, and the correspond-
ing density matrix after collapse is

rnsx,x8,t + 0d =
rn0

sx,x8,t − 0ddn,n0

E rn0
sx̃,x̃,t − 0ddx̃

, s13d

wheredn,n0
is the Kronecker symbol. Applying this sequen-

tial collapse procedure to the conventional evolution of
rnsx,x8 ,td described by Eq.s6d of Ref. 25, we can obtain our
Eq. s12d if the resonator evolution due toH0+Henv+Hfb is
neglected and the limit of large detector voltage is assumed.

The differential equation describing evolution of the reso-
nator state due to measurement can be obtained by differen-
tiating Eq. s12d over timet at t=0 and using Eq.s8d sbe-
cause of the Markovian approximation, this can be done for
arbitrary starting timetd:

ṙsx,x8,td = rsx,x8,tdSI
−1hIstdfIx + Ix8 − 2kIstdlg

− fIx
2 + Ix8

2 − 2kI2stdlg/2j, s14d

where we have introduced notationskIstdl=eIxrsx,x,tddx
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and kI2stdl=eIx
2rsx,x,tddx, while Eq. s7d transforms into

Istd = kIstdl + jstd, s15d

wherejstd is a white noise with spectral densitySI sas men-
tioned before, we neglect dependence ofSI on xd. Notice that
Eq. s14d actually does not require the current linearitys6d
and formally coincides with the similar equation for the case
of entangled qubits measured by an ideal detector,45 if x is
replaced by the index corresponding to the state of qubits.
For the linear detector with responses6d, Eq. s14d becomes

ṙsx,x8d = rsx,x8dSI
−1hfIstd − I0gksx + x8 − 2kxld

− sk2/2dfx2 + sx8d2 − 2kx2lgj, s16d

where kxl=exrsx,xddx, kx2l=ex2rsx,xddx, and for brevity
we do not show explicitly the time dependence ofr.

Notice that Eq.s14d has been obtained by differentiating
Eq. s12d over t using the standard rules for derivativessi.e.,
using only the first order indtd. Therefore Eqs.s14d ands16d
are the stochastic equations in the so-called Stratonovich
form which assumes “centered” definition of the derivative,
ṙstd; limt→0frst+t /2d−rst−t /2dg /t, and allows us to use
standard calculus rules.51 For a nonlinear stochastic equation
the calculus rules are quite different for another widely used
definition of the “forward” derivative,ṙstd; limt→0frst+td
−rstdg /t, which would lead to an equation in the so-called
Itô form.51 Advantage of the Itô form is the simple averaging
over the noiseswhile averaging in Stratonovich form is not
triviald; this is the reason why Itô form is usually preferred
by mathematicians, even though physical intuition works
better in the Stratonovich form. Translation back and forth
between two forms is often useful to solve a particular prob-
lem.

The rule of translation between the two forms is the
following:51 for a system of equationsẏistd=Gisy ,td
+Fisy ,tdjstd in the Stratonovich form, the corresponding Itô
equation is ẏistd=Gisy ,td+Fisy ,tdjstd+sSj /4do jfdFisy ,td /
dyjgFjsy ,td, whereyi are the components of the vectory, Gi

andFi are arbitrary functions, andSj is the spectral density
of white noisejstd. To apply this rule to our case, we replace
index i by continuous setsx,x8d and replace summation by
integration;Fi andGi are now functionals ofy=rsx,x8d, and
the derivatives are replaced by functional derivatives. Using
this rule, Eq.s16d is translated into the Itô form as

ṙsx,x8d = sk/SIdsx + x8 − 2kxldrsx,x8djstd

− sk2/4SIdsx − x8d2rsx,x8d. s17d

This equation is similar to equations derived in many publi-
cationsse.g., in Refs. 30, 33, 52, and 53d for measurement of
a mechanical oscillator. Notice that the last term in Eq.s17d
does not describe decoherence in a particular realization of
the measurementsrecall that a pure state remains pured; how-
ever, it describes ensemble decoherence, since averaging
over the measurement resultsover noisejd is done in Itô
form simply by settingj=0. This term can also be rewritten
in a standard double-commutator formssee, e.g., Refs. 25,
30, 33, 49, and 53–56d sincesx−x8d2rsx,x8d=fx̂,fx̂,rggx,x8.

Equations17d describes the evolution of the nanoresona-
tor state due to measurement by the ideal detectorslow-
transparency QPCd described by the Hamiltonians4d ands5d.
To extend the formalism to a nonideal detectorsfor example,
RF-SETd we introduce its quantum efficiencysidealityd h
ø1 similar to Ref. 47 and replace the decoherence factor
k2/4SI by k2/4SIh. Simply speaking, 1/h is the ratio be-
tween the product of output and back-action noises of the
detector and its quantum-limited value.32,47,57 For example,
k2/4SI in Eq. s17d can be replaced byk2/4SIh when an extra
term −gclsx−x8d2rsx,x8d is due to additional classical back-
action noise from the detector or when the output noise of
the detector contains an additional noisessee Ref. 45 and
Appendixd. Notice that finite temperatureT of the low-
transparency QPC detector also reduces the detector effi-
ciency down to47 h=tanh2seV/2Td.

As the final step of our derivation, we add into Eq.s17d
smodified by efficiencyhd the evolution due to termsH0
+Hevn+Hfb of the Hamiltonians1d. Interaction with the ther-
mal bath denoted byHenv can be described by the standard
Brownian motion master equation.58 Assuming weak cou-
pling slarge Q-factord and arbitrary temperatureT, we add
damping and diffusion terms30,59 −siv0/2"Qdfx̂,hp̂,rj+g
−smv0

2/2"Qdcoths"v0/2Tdfx̂,fx̂,rgg into the equation forṙ.
Therefore, our final equation for the nanoresonator evolution
is sin Itô formd

ṙsx,x8d =
− i

"
fH0 + Hfb,rgx,x8 −

iv0

2"Q
fx̂,hp̂,rj+gx,x8

− S k2

4SIh
+

mv0
2

2"Q
coth

"v0

2T
+ gaddDsx − x8d2rsx,x8d

+
k

SI
sx + x8 − 2kxldrsx,x8djstd, s18d

in which the white noisejstd is related to the detector current
Istd via Eq. s15d as jstd= Istd− I0−kkxstdl and gadd is intro-
duced phenomenologically to take into account sources of
additional dephasing, for example due to high-temperature
electromagnetic fields penetrating into cryostatswe will
mostly assumegadd=0d. The damping term can be written in
the explicit form using substitutionfx̂,hp̂,rj+gx,x8=−i"sx
−x8ds] /]x−] /]x8drsx,x8d. Notice that there is no damping
term due to measurementsin contrast to the term due to
Q-factord because we treat the detector as a device with com-
pletely classical output and therefore detector voltage is very
large while its unnormalized coupling is very weak; in other
words, we assume that the nanoresonator energy is limited
well below the effective temperature of detectorswhich is on
the order ofeVd by other effectssfeedback andQ-factord.

III. MEASUREMENT MODULATION AND EQUATIONS
FOR GAUSSIAN STATES

Periodic modulation of the QPC voltageV= fstdV0 swith
frequency comparable tov0 and much smaller thaneV/"
and I0/ed leads to the corresponding modulation of the
measurement parameters:k= fstdk0, Ix= fstdsI00+k0xd, SI
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= ufstduS0, so that the “measurement strength”k2/SI is modu-
lated asufstduk0

2/S0 fin generalfstd may be negativeg. In the
case of RF-SET the voltage dependence of parameters is not
trivial salso the modulation can be arranged using the gate
voltage instead of the biasd, but we still can definefstd as the
modulation of the measurement strength from equation

k2/SI = ufstduk0
2/S0. s19d

Quantum efficiencyh in general can also be affected by the
modulation, but for simplicity we assume it to be constant.
sIn reality, we expect decrease ofh at smaller voltages be-
cause of contribution from voltage-independent noise
sources. However, these contributions can crudely be taken
into account via reduction of theQ-factor and, moreover,
they are assumed to be sufficiently small; therefore the effect
of imperfect efficiencyh is mainly taken into account during
the large-V fraction of the modulation period.d

Notice that the noisejstd in Eq. s18d has implicit time
dependence because of modulated in time spectral densitySI.
To remove this dependence we define the white noise

j0std = jstdÎS0/SI sgnffstdg s20d

with time-independent spectral densityS0. Then the last term
in Eq. s18d can be written as Îufstdusk0/S0dsx+x8
−2kxldrsx,x8dj0std.

Somewhat similar to the case of qubit measurement,47 we
define the dimensionlessstime-dependentd coupling as

C =
"k2

SImv0
2 = ufstduC0, s21d

which can also be expressed asC=4/v0tm, where tm
=2SI / skDx0d2 is the “measurement” time which would be
necessary to distinguishswith signal-to-noise ratio of 1d two
position states separated by the ground state widthDx0. We
will mainly consider the case of weak coupling,C!1, which
corresponds to a realistic experimental situation. As an ex-
ample,C is on the order of 10−6 for the experimental param-
eters of Ref. 5.

In this paper we will consider two types of modulation
with frequencyv: harmonic modulation with the relative
modulation depthAmod=sfmax− fmind / fmax, 0øAmodø2:

fstd = 1 +
Amod

2
s− 1 + cosvtd s22d

and the square-wavesstroboscopicd modulation with pulse
width dt and relative depthAmod,

fstd = H1, ut − j 3 2p/vu ø dt/2, j = 1,2, . . .

1 − Amod, otherwise.
J s23d

Notice thatufstduø1, soC0 corresponds to the maximum cou-
pling. Sincefstd reaches zero in both types of modulation at
Amodù1 swe will mostly consider 100% modulation,Amod
=1d, the conditionseV@"v0 and kDx0/e@v0 required for
the Bayesian formalism are violated during a fraction of the
modulation period. Nevertheless, we will still use Eq.s18d
for the analysis, that can be justified in the following way.
Surely, even atV=0 the detector actually interacts and so

damps and dephases the nanoresonatorfsee, e.g., Eq.s7d in
Ref. 25 which has the voltage-independent damping termg,
that is neglected in the Bayesian formalism, while the Baye-
sian evolution rate is crudely proportional to the voltageV
sits strength relative to the neglected damping is crudely
eV/"v0 for the resonator energy on the order of"v0d. There-
fore, the Bayesian evolution during the whole modulation
period is much more significant than the neglected damping
in the case of sufficiently large maximum voltageV0 and not
too large oscillation amplitudesthe “heating” is prevented by
feedback; otherwise the model would be inconsistent atQ
=`d. The neglected contribution is expected to lead to a
weak damping of the nanoresonator state and can crudely be
taken into account as some reduction of theQ-factor.fEquat-
ing the voltage-independent term in Eq.s7d of Ref. 25 with
the second term of our Eq.s18d, we obtain an estimateQ
=2eV0/"v0C0 which is on the order of 1010 for the experi-
mental parameters of Ref. 5.g Obviously, significant QND
effect for stroboscopic measurement requires very weak cou-
pling of the nanoresonator to outside world during the “off”
fraction of the modulation period.

Following Refs. 30, 33, 60, and 61, we assume that the
oscillator state can be described as a Gaussian state. This
assumption can be justified by the fact that a Gaussian state
remains Gaussian in the process of continuous
measurement61 swe have checked this statement for nonideal
detectors including “asymmetric” detectors and for varying
in time strength of measurementd and by the fact that the
thermal statesnatural initial conditiond is Gaussian.58 It is
also known60 that any initial pure state approaches a Gauss-
ian state in a course of continuous measurement by an ideal
detector. We have also checked that a mixture of Gaussian
states evolves into a single Gaussian state due to measure-
ment.

A Gaussian state is defined58 as a state for
which the Wigner function Wsx,pd;sp"d−1ersx+x8 ,x
−x8dexps−2ix8p/"ddx8 has a Gaussian form,

Wsx,pd = Norm3 exps− BTD−1B/2d,

B = Sx − kxl
p − kpl

D, D = S Dx Dxp

Dxp Dp
D ,

with normalization factor Norm=f2psDxDp−Dxp
2 d1/2g−1. In

x-representation the density matrix of this state is

rsx,x8d =
1

Î2pDx

exp3−
Sx + x8

2
− kxlD2

2Dx
4

3expF−
sx − x8d2

8Dx

sDxDp − Dxp
2 d

"2/4
G

3expFisx − x8dS kpl
"

+ Sx + x8

2
− kxlD Dxp

"Dx
DG .

s24d

The Gaussian state is characterized by only five real pa-
rameters: average positionkxl=kx̂l and momentumkpl=kp̂l,
their variancesDx=kx̂2l−kx̂l2 and Dp=kp̂2l−kp̂l2, and the
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correlation Dxp=kx̂p̂+ p̂x̂l /2−kx̂lkp̂l. These parameters sat-
isfy the generalized Heisenberg inequality62

DxDp − Dxp
2 ù "2/4, s25d

which reaches the lower bound for the pure states. In particu-
lar, “coherent” states are the Gaussian states withDx
=sDx0d2, Dp=s" /2Dx0d2, andDxp=0.

For Gaussian states Eq.s18d significantly simplifies and
transforms into the following set of equations:

kẋl =
kpl
m

+
2k0

S0
ufstdu1/2Dxj0std, s26d

kṗl = − mv0
2kxl +

2k0

S0
ufstdu1/2Dxpj0std −

v0

Q
kpl + F,

s27d

Ḋx =
2

m
Dxp −

2k0
2

S0
ufstduDx

2, s28d

Ḋp = − 2mv0
2Dxp +

k0
2"2

2S0h
ufstdu −

2k0
2

S0
ufstduDxp

2 −
2v0

Q
Dp

+
"mv0

2

Q
coth

"v0

2T
+ 2"2gadd, s29d

Ḋxp =
Dp

m
− mv0

2Dx −
2k0

2

S0
ufstduDxDxp −

v0

Q
Dxp, s30d

which practically coincide with the equations derived in
Refs. 33 and 30ssee also Ref. 60d, except for the time de-
pendentfstd. It is interesting to notice that while Eq.s18d is
a nonlinear stochastic equation, for which the Stratonovich
and Ito forms are significantly different, there is no such
difference for Eqs.s26d–s30d, so they can be treated as
simple ordinary differential equations.

Notice that the equations forDx, Dp, andDxp do not de-
pend on noisej0std and feedback forceF, and are decoupled
from the remaining equations. Therefore the evolution of the
“wave packet shape” is deterministicsfull “shape” is charac-
terized byDx, Dp, and Dxp; however, forx-domain we are
interested inDx onlyd. In contrast, the evolution of the packet
centerskxl andkpl sin x- andp-domainsd is random and thus
is different for different realizations. To characterize the en-
semble distribution ofkxl andkpl, in Sec. V we will analyze
the corresponding variancessover realizationsd Dkxl, Dkpl,
and Dkxlkpl. Since the total sunconditional, ensemble-
averagedd x-width of the nanoresonator state isÎDx+Dkxl,
both x-variances should be made smaller than the ground
state varianceDx0

2 in order to produce thex-squeezed state.
In the next section we will show thatDx may be made sig-
nificantly smaller thanDx0

2 using measurement modulation
fstd, while in Sec. V we will show thatDkxl can be made even
smaller using feedback.

IV. WAVE PACKET WIDTH SQUEEZING

In this section we analyze Eqs.s28d–s30d and show that
the x-width ÎDx of the nanoresonator wave packet can be
made much smaller thanDx0=Î" /2mv0. Let us use the natu-
ral normalization ofDx and Dp by the ground state param-
eters,dx;Dx/ s" /2mv0d, dp;Dp/ s"mv0/2d, and similarly
dxp;Dxp/ s" /2d. Then Eqs.s28d–s30d can be rewritten as

ḋx/v0 = 2dxp − C0ufstdudx
2, s31d

ḋp/v0 = − 2dxp + sC0/hdufstdu − C0ufstdudxp
2 −

2

Q
dp

+
2

Q
coth

"v0

2T
+

4"gadd

mv0
2 , s32d

ḋxp/v0 = dp − dx − C0ufstdudxdxp −
1

Q
dxp. s33d

It is easy to see that the effect of additional dephasinggadd
is equivalentsin case of finiteQ-factord to increase of envi-
ronment temperatureT; so we will not consider this effect
separatelysgadd=0 is assumed for the rest of the paperd.
Also, let us postpone the analysis of effects due to finiteQ
and temperature until Sec. IV D, and start with the case of
infinite Q-factor.

A. Numerical results for squeezing degreeS
We have analyzed Eqs.s31d–s33d numerically for the har-

monic s22d and stroboscopics23d modulationfstd for several
values of the maximum couplingC0, concentrating on the
rangeC0&1. Notice that for the stroboscopic modulation the
evolution during each period of modulation can be calculated
analytically using Riccati equations33 that significantly sim-
plifies the numerical calculations. As anticipated, we have
found that irrespectively of the initial conditions, Eqs.
s31d–s33d approach the asymptotic solutions which oscillate
with the modulation frequencyv sFig. 2d. Even for small
coupling,C0!1, the asymptotic oscillations can be signifi-
cant in the case of resonance:v.2v0/n snotice that atC0
=0 the variances oscillate with frequency 2v0d. During the
oscillation period the asymptotic solution fordxstd reaches
the values both above and below the stationary solution for
fstd=1 which is30,33

dx = sÎ2/C0dfs1 +C0
2/hd1/2 − 1g1/2 s34d

and becomesdx=1/Îh for C0!1. Most importantly, the
squeezed state,dx,1, can be achieved for both harmonic
and stroboscopic modulation.

Figure 3 shows thex-squeezing maximized over the os-
cillation period for the asymptotic solution, S
;maxtf1/dxstdg=maxtfDx0

2/Dxstdg, as a function of the
modulation frequencyv for the harmonic modulations22d
and several values of couplingC0, efficiencyh and modula-
tion amplitudeAmod. sNotice that in the rotating frame the
squeezingS does not depend on time for weak coupling.d
One can see that maximum squeezing is achieved for modu-
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lation with twice the resonator frequency,v=2v0, 100% am-
plitude, Amod=1, and for ideal detector,h=1. The value of
maximum squeezing does not depend much on couplingC0
fFig. 3sadg and is equal toS<1.73 for weak coupling, while
the width of resonance scales proportionally toC0 sanalytical
results discussed later and shown by dashed lines confirm
this behaviord. For nonideal detectors,h,1 fFig. 3sbdg, the
height of the peak decreases,Ss2v0d<1.73Îh, and its width
increases. Away from the resonanceS approaches the value
for non-modulated measurement given by Eq.s34d fdotted
lines in Fig. 3sbdg. Besides the main resonance, there are
resonances atv=2v0/n, nù2, which are barely visible in
Figs. 3sad and 3sbd and lead to small shoulders rather than to
peaks. However, these resonances become much better vis-
ible for modulation amplitudesAmod greater than 100% as
shown in Fig. 3scd. In particular, forAmod=2 there is no peak
at v=2v0, and the main peak is atv=v0; this is obviously
because in this caseufstdu oscillates with frequency 2v in-
stead ofv.

Much stronger squeezing can be achieved for the strobo-
scopic modulations23d of the measurement. Figure 4 shows
Ssvd for the ideal detector withC0=0.5 and pulse duration
dt=0.05T0, where T0=2p /v0 is the nanoresonator period.
One can see that as expected from the standard theory of
stroboscopic QND measurements,12,13 there are sharp reso-
nances atv=2v0/n. In the case of full modulation,Amod
=1, shown in Fig. 4sad, the resonances have equal height;
however, their width decreases withn. According to the
QND idea, the squeezing should significantly decrease if
measurement is not switched completely off between the
measurement pulses. Comparing Figs. 4sad and 4sbd we see

that the on/off ratio even as large as 103 leads to a consider-
able decrease ofS fobviously, the effect of finite on/off ratio
becomes more important with decrease ofdt /T0g. Another
consequence of finite on/off ratio is the decrease of the reso-
nant peak height atv=2v0/n with n.

The results presented in Fig. 5sad show that for smaller
couplingC0 the peak height remains practically the same, but
the peak width decreasessthis is the reason why we chose
relatively large coupling in Fig. 4 in order to have a notice-
able peak widthd. For smaller pulse durationdt, the squeez-
ing peak becomes higher and narrowerfFig. 5sbdg, while the
detector nonideality makes the peak lower and widerfFig.
5scdg. All these dependencies will be confirmed by the ana-
lytical results discussed below and shown in Fig. 5 by dashed

FIG. 2. An example of time dependence of dimensionless wave
packet variancesdx, dp, anddxp supper paneld for harmonic modu-
lation fstd of measurement strength shown in the lower panel. After
a transient period the evolution reaches stationary oscillating re-
gime. The state purity Trsr2d slower paneld gradually approaches
unity smixed initial state withdx=dp=10 is chosend. The long-
dashed line in the upper panel shows evolution ofdx in the non-
modulated casefstd=1.

FIG. 3. Dependence of the packet width squeezingS smaxi-
mized over the modulation periodd on the frequencyv of the har-
monic modulations22d of the measurement strength, for several
values ofsad the couplingC0, sbd detector quantum efficiencyh, and
scd modulation amplitudeAmod. Solid lines in sad and sbd are the
numerical results while dashed lines are the analytical results cor-
responding to Eqs.s41d and s43d; the dotted lines insbd are the
asymptotesS=Îh.
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and dotted linessdashed lines show more accurate results
while dotted lines correspond to a simpler formulad.

B. Analytical results for squeezingS
1. Evolution of the state purity

Before discussing the analytical results for squeezing, let
us briefly discuss the evolution of the state purity, Trsr2d
=s" /2d /ÎDxDp−Dxp

2 =1/Îu, whereu;dxdp−dxp
2 . From Eqs.

s31d–s33d swith Q=` and gadd=0d it is easy to derive the
equation

u̇ = v0C0ufstdudxsh−1 − ud. s35d

SinceC0 anddx are both positive, the asymptotic solution of
this equation is obviouslyu=1/h and therefore the state pu-
rity reaches the asymptote Trsr2d=Îh. In particular, in the
case of ideal detector,h=1, the state eventually becomes
pure ssimilar to the case of a qubit measurement47d. As will
be discussed later, the typical purification time is comparable
to the time of reaching the asymptotic regime for variances
dx anddp.

2. Analytics for harmonic modulation

For simplicity in this subsection we consider the harmonic
modulation s22d of the measurement strength only with
100% modulation, Amod=1 swhich leads to maximum
squeezingd, and we still assumeQ=`. Without measure-
ment,C0=0, Eqs.s31d–s33d have the solution

dxstd = Îh−1 + A2 − A coss2v0t + wd, s36d

dpstd = Îh−1 + A2 + A coss2v0t + wd, s37d

dxpstd = A sins2v0t + wd, s38d

with arbitrary amplitudeA and phasew. sNotice that these
equations satisfy the asymptotic condition Trr2=Îh.d For
weak coupling,C0/h!1, and harmonic modulations22d in
the vicinity of the resonance,v.2v0, it is natural to look for
the asymptotic solution of Eqs.s31d–s33d in the form
s36d–s38d with 2v0 replaced byv sactually,A andw vary in

FIG. 4. Numerical results for the packet width squeezingS as a
function of modulation frequencyv for the stroboscopic measure-
ment modulations23d with finite pulse durationdt. Efficient squeez-
ing occurs atv<2v0/n. Infinitely largeQ-factor of the nanoreso-
nator is assumed.

FIG. 5. The shape of the squeezing peakSsvd at v.2v0 for
stroboscopic modulation, for several values ofsad coupling with
detectorC0, sbd pulse durationdt sT0=2p /v0 is the resonator pe-
riodd, and scd quantum efficiency of measurementh. Solid lines
show numerical results, dashed linesspractically indistinguishable
from the solid linesd are the analytical results given by Eqs.s49d
and s41d, and the dotted lines are calculated using the simplified
equations51d. The height of the squeezing peak is proportional to
Îh /dt fEq. s52dg while its width is proportional toC0sdtd3/n2Îh
fEq. s53dg.
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time with frequencyv, but variations are negligible at
C0/h!1d.

To find A and w, we substitute these equations into the
equation e−p/v

p/v fstdsh−1−dx
2−dxp

2 ddt=0 which follows from

the stationarity condition,e−p/v
p/v sḋx+ ḋpddt=0, and Eqs.s31d

and s32d. This gives us the relation

A = 1
2
Îh−1 + A2 cosw. s39d

We find numerically and analyticallyssee belowd thatw=0 at
the resonance,v=2v0. sThis is quite natural: smallerdx cor-
respond to larger measurement strength.d Then from Eq.s39d
we find A=1/Î3h and therefore

Ss2v0d = Î3h s40d

since the maximum squeezingS and the amplitudeA are
related as

S = hsA + ÎA2 + h−1d. s41d

This result confirms the numerical result for the peak height
in Fig. 1.

To find the shape of the resonant peak, we need one more
equation relatingA and w. It can be obtained by deriving

equation for d̈xpstd from Eqs. s31d–s33d, and equating the
sinsvt+wd component for the two sides of the equationsas-
sumingC0/h!1 andv<2v0d. In this way we obtain

s4v0
2 − v2dA = h−1C0v0

2 sinw. s42d

In particular, this proves thatw=0 at v=2v0. Combining
Eqs.s39d and s42d we find the amplitudeA as

Asvd =Î 2/h

3 + gsvd + Îg2svd + 10gsvd + 9
, s43d

wheregsvd=16hs2−v /v0d2/C0
2. The corresponding analyti-

cal result for squeezingS is obtained via Eq.s41d. This result
is shown by the dashes lines in Figs. 3sad and 3sbd, which
practically coincide with the solid lines representing the nu-
merical results. Notice that the linewidth of the peak is pro-
portional toC0/Îh; away from the resonanceA decreases to
zero, andS approachesS=Îh, which is the same as for the
case without modulation.33 The analytical result forSsvd
works well for couplingC0 up to approximately 0.3; for
largerC0 there is a noticeable difference from the numerical
result as seen in Fig. 3sad. It is curious that rather complex
shape of the resonance peak given by Eqs.s41d and s43d is
quite close to the square root of the Lorentzian shape

Ssvd < ÎhS1 +
Î3 − 1

Î1 + 3fsv − 2v0d/Dvg2D s44d

with half-width at half-heightDv.0.63v0C0/Îh.

3. Analytics for stroboscopic modulation

In the case of stroboscopic modulations23d of the mea-
surement strengthsin this subsection we assume full modu-
lation, Amod=1, and still neglectQ-factord, the variancesdx,
dp, and dxp should follow Eqs.s36d–s38d during the “off”

phase of the modulation, while during the measurement
pulse of durationdt the parametersA and w slowly change
swe again assume the weak coupling limitd in accordance
with Eqs. s31d–s33d. In particular, close to thenth resonant
peak of Fig. 4sad, v<2v0/n, the phasew should change
during the pulse by the small amount

dw = − 2v0s2p/vd + 2pn < pn2sv/v0 − 2/nd s45d

in order to match 2p /v periodicity of the asymptotic solu-
tion with the periodicity of free oscillationss36d–s38d. On
the other hand,dw can be found from the equation

ẇ = − 4v0C0h−1ufstdudxp/fsdp − dxd2 + 4dxp
2 g s46d

which follows from from Eqs.s31d–s33d. Integrating Eq.s46d
within the pulse intervalutuødt /2 using Eqs.s36d–s38d in
which A and w are assumed constant, we obtaindw=
−C0 sinsv0dtd /hA. Combining this result with Eq.s45d we
obtain an equation relatingA andw,

pn2Asv/v0 − 2/nd = h−1C0 sinsv0dtdsinw. s47d

To obtain one more equation forA and w, we use the

condition e−dt/2
dt/2 sḋx+ ḋpddt=0. Expressing the derivativeḋx

+ ḋp from Eqs.s31d and s32d and using Eqs.s36d–s38d, we
get the equation

Av0dt = Îh−1 + A2 sinsv0dtdcosw. s48d

Equationss47d and s48d are sufficient to findA for the nth
resonance, though the expression is quite long,

A2svd =
2h−1 sin2sv0dtd

Bsvd + ÎB2svd + 4g̃svdsin2sv0dtd
, s49d

where Bsvd= g̃svd+sv0dtd2−sin2sv0dtd and g̃svd
=p2n2s2/n−v /v0d2h /C0

2. The squeezingS is obtained from
this result using Eq.s41d. The corresponding analytical
curves are plotted in Fig. 5 by the dashed lines which prac-
tically coincide with the numerical results shown by the solid
lines. One can see that the analytics works well even for
C0=1, even though we assumedC0!1 for the derivation.

The value of squeezing atv=2v0/n speak heightd can be
obtained from Eq.s49d, but it is easier to use Eq.s48d with
w=0 fwhich follows from Eq.s47dg, that leads to the result

Ss2v0/nd = ÎhÎv0dt + sinsv0dtd
v0dt − sinsv0dtd

. s50d

The analytical results simplify in the case of short pulses,
dt!T0=2p /v0, then

A2svd =
6/sv0dtd2h

1 +Î1 +F6pÎhn2sv − 2v0/nd
C0sdtd3v0

4 G2
, s51d

which corresponds to the peak squeezing

Ss2v0/nd = 2Î3h/v0dt s52d

ssinceS=2hA for S@1, andA=Î3/v0dtÎhd, while the half-
width at half-height ofSsvd is
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Dv = 2C0sdtd3v0
4/pn2Î3h. s53d

The curves calculated using Eq.s51d are shown in Fig. 5 by
the dotted lines. There is a noticeable difference from the
numerical results away from the resonance; however, the
main part of the peak is fitted quite well.

Notice that in the case of exact resonance,v=2v0/n, the
smallestx-width of the wavepacket is achieved at the middle
of the measurement pulse, and at this pointdx=1/S. How-
ever, dx increases considerably even within the duration of
the pulse, so that the maximum valuedx,max

dt =4/S within the
pulse is at its onset and end, whiledx averaged over the pulse
duration isdx

dt=2/S.

C. Time scale of squeezing buildup

An important question is how fast the squeezing ap-
proaches its asymptotic value calculated in Secs. IV A and
IV B. In this subsection we analyze the duration of the tran-
sient period of squeezing buildupssee Fig. 2d for strobo-
scopic modulationfstd with Amod=1 anddt /T0!1 at reso-
nance,v=2v0/n, assumingQ=`.

Let us start with the standard QND case of instantaneous
imprecise measurements,12,13 which corresponds to the for-
mal limit dt→0, C0→`, while C0dt=const. Each measure-
ment changes the resonator density matrix by multiplying it
by a Gaussian functionfsee Eqs. s12d and s8dg with
x-varianceD=sDx0d2/C0v0dt. Since the free resonator evo-
lution in between the measurements can be neglected if the
measurements are separated by integer number of half-
periods, the total strength of repeated measurements adds up
sproduct of two Gaussians is a Gaussian with added inverse
variancesd. Therefore for a Gaussian initial states24d the
squeezing magnitudeSN after N measurements is

SN = NC0v0dt + S0. s54d

While for instantaneous measurements the magnitude of
squeezing accumulates indefinitely, for a continuous strobo-
scopic measurement with finitedt the quantum back-action
cannot be avoided completely, so the squeezing increases as
Eq. s54d only during the initial transient periodsFig. 6d and
then saturates at the asymptotic level analyzed in Secs. IV A

and IV B. Comparing the asymptotic valueS` given by Eq.
s52d with the linear increase from Eq.s54d and neglecting
initial value S0, we obtain the estimate

Nb =
2Î3h

C0sv0dtd2 s55d

for the number of measurement pulses necessary for almost
complete buildup of squeezingsof course the numerical fac-
tor 2Î3 is not really important hered.

Since the saturation ofSN is a gradual process, let us also
analyze analytically theN-dependence forN*Nb whenSN is
already close toS`. Let us start with Eqs.s36d–s38d assum-
ing that the asymptotic purity Trsr2d=Îh is already reached
but the parameterA still changes withN. Following the deri-
vation used in Sec. IV B 3, we combine Eqs.s36d and s37d
with s31d and s32d and obtain ḋx+ ḋp=2AȦ/Îh−1+A2

=v0C0ufstdush−1−dx
2−dxp

2 d. Integrating this equation over the
measurement pulse durationsassumingC0!1 andw=0d we
find the corresponding small change of the parameterA:

DA

DN
= C0

Îh−1 + A2fÎh−1 + A2 sinv0dt − Av0dtg.

Translating this equation into evolution of squeezing and as-
suminguSN−S`u!S`, v0dt!1, A2@h−1, we obtain

DSN

DN
= −

C0sv0dtd2

Î3h
sSN − S`d, s56d

which shows the exponential approach of the squeezingSN
towardsS` as exps−2N/Nbd, i.e. the typical number of mea-
surements necessary to reach the asymptotic value is similar
to what was found from initial part of the transient, Eq.s55d.

It is interesting to notice that the time scale of the purity
factor saturationssee Fig. 2d is similar to the time scale of
squeezing saturation. Using Eq.s35d for u;dxdp−dxp

2

=1/Tr2sr2d and approximating averagedx within the pulse
duration asdx

dt=f1/hA+Asv0dtd2/4g /2, which becomesdx
dt

.2/S` close to saturation, we obtain

Du

DN
= −

C0sv0dtd2

Î3h
su − 1/hd. s57d

Therefore, similar toSN behavior,u also approaches asymp-
tote as exps−2N/Nbd. Far from saturation we expectdx

dt

.2/S`, and therefore a larger initial rate of reaching the
asymptote.

Finite time scale of squeezing buildup is important if an
allowed experimental “waiting time”tw is limited. Figure 7
shows the squeezingS as a function of measurement pulse
durationdt for several values oftw sinitial state is chosen to
be the ground stated. While the upper linestw=`d corre-
sponds to Eq.s52d and increases indefinitely at smalldt, the
squeezing for finite waiting timetw reaches maximum at
an optimum pulse durationdt. For smallerdt the squeezing
buildup is too slowfsee Eq.s55dg and the squeezing is
limited by the accumulated measurement strength
C0s2tw/T0dsdt /T0d, while for largerdt the limiting factor is
too strong back-action.

FIG. 6. Gradual buildup of squeezingS with number of mea-
surement pulsesN starting from the ground state for several values
of couplingC0 and pulse durationdt. Solid lines are the numerical
results, dashed lines correspond to Eq.s54d.
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Numerical calculations show that this maximum squeez-
ing is fitted well by the formula

Smax< 2.0ÎC0tw/T0 sv = 2v0,h = 1d. s58d

fFor example, this fitting formula underestimates the numeri-
cal results forC0=0.1 sC0=0.5d by 9% s4.6%d for twait/T0

=30 and by 2.2%s1.2%d for twait/T0=1000.g
For an analytical estimate ofSmax let us assume that op-

timum dt corresponds to the condition of squeezing buildup
time being comparable to the waiting time, 2tw/T0.Nb fsee
Eq. s55dg. Then the optimum is achieved at

dtopt/T0 . 0.21h1/4/sC0tw/T0d1/2 s59d

swhich is well confirmed by results in Fig. 7d and the corre-
spondingSmax calculated from Eq.s52d is

Smax. 2s3hd1/4ÎC0tw/T0, s60d

which differs from the numerical results58d only by a factor
<1.3.

It is tempting to guess that the effect of finiteQ-factor sat
least for zero temperature of environmentd can be described
by a similar formula withtw replaced byQT0 sso thatSmax
.h1/4ÎC0Qd sincetw is naturally restricted by the resonator
damping time. However, as will be seen in the next section,
this gives only an upper bound and finiteQ-factor actually
leads to a significantly smaller value ofSmax.

D. Effects of finite Q-factor and environment temperature

In this section we analyze effects of finite quality factorQ
of the nanoresonator and environment temperatureT for stro-
boscopic measurement withv=2v0/n and Amod=1. sExtra
dephasinggadd is equivalent to increase ofT.d

Numerical solution of Eqs.s31d–s33d with a finite
Q-factor sQ@1d shows that as expected the squeezingS
decreases at sufficiently smallQ, and higher temperature also
decreasesS. While for Q=` the squeezing does not depend
on coupling with detectorC0&1 for a fixed pulse durationdt
fsee Fig. 5sad and Eq.s52dg, for a finiteQ the squeezing starts
to decrease for too smallC0, since coupling with detector
competes with coupling to environment.fThe effect is to
some extent similar to the effect ofAmod,1; in particular,
the squeezing atv=2v0/n decreases stronger withn as in

Fig. 4sbd.g Notice that for infiniteQ the environment tem-
perature is not important since nanoresonator is not coupled
to the environment and the evolution is determined by cou-
pling with detector only.

For an analytical analysis let us mention first that the
asymptotic purity Trsr2d=1/Îu is no longer equal toÎh,
since Eq.s35d should be replaced by

u̇

v0
= C0ufstdudxsh−1 − ud −

2u

Q
+

2dx

Q
coth

"v0

2T
. s61d

For Q@1 we can neglect small asymptotic oscillations ofu
and assume a practically constant asymptotic valueũ. Since
the average of Eq.s61d over the oscillation period should be
equal to zero in the asymptotic regime, we can findũ from
equation

C0dx
dtvdt

2p
sh−1 − ũd −

2

Q
Sũ − dx coth

"v0

2T
D = 0, s62d

wheredx
dt is dx averaged over the pulse duration whiledx is

averaged over the whole period.
To find dx

dt and dx we use Eqs.s36d–s38d which are still
applicable for the asymptotic oscillations ofdx, dp, anddxp if
h−1 in these equations is replaced withũ. Still assuming no
phase shiftw in the case of exact resonancev=2v0/n sthis
has been confirmed numericallyd, we obtain

sh−1 − ũdfÎũ + A2v0dt − A sinsv0dtdg + s2pn/C0Qd

3fcoths"v0/2TdÎũ + A2 − ũg = 0. s63d

One more equation which relatesũ andA follows from zero

average of ḋx+ ḋp in the stationary regime. Using Eqs.
s31d–s33d and modified Eqs.s36d–s38d we find

sh−1 − 2A2 − ũdv0dt + 2AÎũ + A2 sinsv0dtd − s2pn/C0Qd

3fÎũ + A2 − coths"v0/2Tdg = 0. s64d

We have checked that the squeezingS=sA+ÎA2+ ũd / ũ
fsee Eq.s41dg calculated from the numerical solution of Eqs.
s63d and s64d practically coincides with results from direct
solution of Eqs.s31d–s33d for C0Q*10. It is also easy to
check that in the limitQ=` Eq. s64d transforms into Eq.
s48d; therefore we reproduce our previous resultss50d and
s52d for squeezing.

Solid lines in Fig. 8 show the dependence of maximum
squeezingsoptimized over the pulse durationdtd as a func-
tion of the productC0Q for several temperatures of the envi-
ronment, calculated numerically using Eqs.s63d ands64d for
v=2v0. These results are fitted well by the formula

Smax=
3

4
F ÎhC0Q

coths"v0/2Td
G1/3

, s65d

shown by dashed lines in Fig. 8. As we see, the scaling
sC0Qd1/3 is more restrictive than scalingsC0Qd1/2 which could
be guessed from Eq.s60d.

For an analytical estimate ofSmax let us start with high-
temperature case,T@"v0. The thermal noise contributes to
the increase ofx-variancesdue to random walkd crudely as8

FIG. 7. SqueezingS as a function of the pulse durationdt for
stroboscopic measurements with a particular “waiting time”tw al-
lowed for squeezing buildup.
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ḋx=s2T/"v0dsv0/Qd. In stationary state this increase is com-
pensated by the squeezing buildup contribution which can be

estimated from Eq.s54d as ḋx=−s2/nT0dC0v0dt /S2, assum-
ing thatS is mainly limited by the effect ofQ-factor fsoS is
much smaller than the value given by Eq.s52d for infinite Qg.
Equating two contributions, we obtainS2=s2/nd
3sdt /T0dC0Qs"v0/2Td. Addition of quantum noise to the
thermal noise leads to replacement of 2T/"v0 by
coths"v0/2Td, which gives

S = F2

n

v0dt

2p

C0Q

coths"v0/2TdG1/2

. s66d

We have checked that numerical solutions of Eqs.s63d and
s64d practically coincide with this formula when squeezing
S@1 is mainly limited byQ-factor. Finally, comparing this
formula with the limitation for infiniteQ fEq. s52dg and
optimizing over dt, we obtain the estimateSmax
=afÎhC0Q/n coths"v0/2Tdg1/3 confirming the fitting for-
mula s65d, with the numerical factora.1.03; this factor is
obviously supposed to overestimate the result of numerical
optimization, Eq.s65d.

As follows from Eqs.s65d, s66d, and s52d, the effect of
finite Q-factor is not important only when bothC0Q and
C0Q"v0/T are much larger thanS3/Îh,h / sv0dtd3.

V. QUANTUM FEEDBACK OF THE PACKET CENTER

As shown in the previous section, thex-width of the
monitored Gaussian wave packet can be squeezed well be-
low the ground state width by applying periodic modulation
ufstdu of the measurement strength. However, because of the
measurement back-action, the center of the wave packet un-
dergoes random evolution described by Eqs.s26d and s27d,
and without feedback diffuses far away from the origin. The
diffusion is eventually limited either by damping due to finite
Q-factor or by very largesformally infinite in our modeld
effective temperaturesvoltaged of the detector.25,30,33 Even
though the evolution of the wave packet center can be moni-
tored using Eqs.s26d and s27d in each realization of the

process and therefore the produced squeezed state is in prin-
ciple useful for applications, large fluctuations of the center
position would clearly lead to technical difficulties. The goal
of this section is to show that the wavepacket center can be
kept very close to origin all the time using quantum feed-
back.

The feedback is described by the forceF in Eq. s27d.
Similar to Refs. 33 and 30 we choose the linear feedback of
the form

F = − mv0gxkxl − gpkpl, s67d

wherekxl andkpl are the continuously monitored values. To
analyze the feedback performance we characterize30,33 the
distribution of the packet center positionkxl and center mo-
mentum kpl by the ensemble averagessover realizationsd
kkxll and kkpll and the variancesDkxl=kkxl2l−kkxll2, Dkpl

=kkpl2l−kkpll2, Dkxlkpl=kkxlkpll−kkxllkkpll. In the notation
of doubled angle brackets the inner brackets mean averaging
with the density matrixr in an individual realization of the
process, while the outer brackets is averaging over realiza-
tions. Notice that a natural characteristic of the total
x-deviation of the state from the origin is the sumDx+Dkxl

+kkxll2, so the feedback goal is to ensureDkxl+kkxll2&Dx

=sDx0d2/S to keep the squeezed state sufficiently well cen-
tered.

The equations forkkẋll and kkṗll derived from Eqs.s26d
and s27d lead to the ensemble-averaged evolution

kkẍll + sgp + v0/Qdkkẋll + sv0
2 + gxv0dkkxll = 0, s68d

which shows thatkkxll eventually relaxes to zero for positive
gp even if Q-factor is infinite.

Introducing dimensionless variancesdkxl;Dkxl2mv0/",
dkpl;Dkpl2/"mv0, anddkxlkpl;Dkxlkpl2/", we derive30,33 the
following equations from Eqs.s26d and s27d:

ḋkxl/v0 = 2dkxlkpl + C0ufstdudx
2, s69d

ḋkpl/v0 = − 2dkxlkpl − 2mFdkxlkpl − 2Fdkpl + C0ufstdudxp
2

− s2/Qddkpl, s70d

ḋkxlkpl/v0 = dkpl − dkxl − mFdkxl − Fdkxlkpl + C0ufstdudxdxp

− s1/Qddkxlkpl, s71d

whereF=gp/v0 and m=gx/gp are the dimensionless feed-
back parameters.

We have simulated these equations numerically using the
asymptotic solutions of Eqs.s31d–s33d for dx, dp, anddxp. We
have mostly studied the resonancev=2v0 in the weakly
coupling regime. Since finiteQ-factor helps to decrease fluc-
tuations ofkxl, we have considered only the caseQ=`. The
main finding is that for both harmonic and stroboscopic
modulation of measurement, the center position variancedkxl

can be made much smaller than the packet variancedx at
time momentst= j2p /v sj is integerd when the packet
squeezing is at its maximum.

FIG. 8. The squeezingS maximized over the stroboscopic pulse
durationdt as a function of nanoresonatorQ-factor smultiplied by
coupling with detectorC0 and square root of efficiencyhd for sev-
eral values of nanoresonator temperatureT. Solid lines are the nu-
merical results, dashed lines correspond to the fitting formulas65d.
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Solid lines in Fig. 9sad show stationary values ofdkxl at
the center of the stroboscopic pulses, as function of the feed-
back factorF and several values of feedback factorm. The
chosen pulse durationdt=0.05T0 corresponds todx=1/S
=0.091, while the results fordkxl shown in Fig. 9sad are much
smaller. One can see that the feedback can operate suffi-
ciently well even form=0, so the term withgx in Eq. s67d is
not really necessary; however, nonzerom is beneficial since
it leads to even smallerdkxl. The curves in Fig. 9sad saturate
at F→`, and the saturation value ofdkxl decreases with in-
crease ofm.

Solid lines in Fig. 9sbd show the dependencedkxlsFd for a
fixed valuem=5 and several values of the pulse durationdt
and couplingC0. One can see thatdkxl decreases with de-
crease of bothdt andC0. Sincedx does not depend onC0 fsee
Eq. s52dg, the ratiodkxl /dx obviously decreases at small cou-
pling.

The packet center variancedkxlstd changes significantly
within the pulse duration; however, typically it is still much
smaller than 1/S. Dashed lines in Figs. 9sad and 9sbd show
dkxl maximized over the pulse durationsthe maximumdkxl,max

dt

is achieved at the end of pulsed. The dependence ofdkxl,max
dt

on F, m, dt, andC0 is generally similar to the behavior ofdkxl

at the pulse center, though the values are several times
higher.

For an analytical estimate ofdkxl let us assumeF@1 and
m*1 swe also assumeC0!1 anddt /T0!1d. Because of the
strong damping terms in Eqs.s69d–s71d, the variancesdkxl,

dkpl, and dkxlkpl decay practically to zero before the start of
the measurement pulse. Within the pulse durationdkxlkpl can
be found from Eq.s71d as dkxlkpl<−mdkxl. Substituting this
value into Eq.s69d and using initial conditiondkxls−dt /2d
=0 at the beginning of the pulse, we obtaindkxlstd
=v0C0e−dt/2

t dx
2stdexpf−2mv0st−tdgdt. Now using the station-

ary solutiondxstd<S−1+sv0td2S /h which follows from Eq.
s36d for w=0 andS@1, we can calculate the variancedkxl at
the pulse centerst=0d:

dkxl =
C0sv0dtd3

12h
E

0

1/2

s1 + 12y2d2 expf− 2myv0dtgdy.

s72d

In the casemv0dt@1 this expression simplifies to

dkxl = C0sv0dtd2/24mh, s73d

while in the opposite casemv0dt!1 it gives

dkxl = C0sv0dtd3/5h. s74d

In both casesdkxl is much smaller thanS−1=v0dt /2Î3h fsee
Eq. s52dg for small v0dt and/or smallC0/Îh.

It is easy to see that the maximum value ofdkxlstd within
the pulse duration is achieved at its endst=dt /2d, and can be
calculated by Eq.s72d with the lower integration limit ex-
tended toy=−1/2 and with extra factor exps−mv0dtd. In
particular, this givesdkxl,max

dt =16dkxl for mv0dt@1 and

dkxl,max
dt =2dkxl for mv0dt!1, which confirms numerical result

and shows thatdkxl,max
dt can also be made much smaller than

dx=1/S, similar to the result fordkxl.
Overall, the analytical and numerical results show that the

feedback is sufficiently efficient for a broad range of feed-
back parametersF andm.

At the end of this section we would like to discuss the
following concern on the possibility of using the quantum
feedback in the case of stroboscopic measurements. The gen-
eral idea of stroboscopic QND measurement is to avoid ob-
taining any information on phase of the nanoresonator oscil-
lations, while quantum feedback requires us to know the
phase of packet center oscillations. So, a natural question is
how it happens that we monitor this phase.

A qualitative answer is that once we knowkxl and kpl,
their further evolution can be extracted from the measure-
ment recordIstd via Eqs.s26d ands27d even though the mea-
surement is performed during only a small fraction of the
period. sDuring “off” phases the evolution is deterministic
and feedback is still continuously applied based on oscillat-
ing calculated values ofkxl andkpl.d Initial knowledge ofkxl
and kpl can be eventually obtained also using Eqs.s26d and
s27d starting from anysincorrectd initial condition, since the
solution of the equations gradually forgets initial condition
and is eventually dominated by the noise term known from
the measurement record.

Let us assume that we start using Eqs.s26d ands27d with
“incorrect” initial conditionskx1s0dl and kp1s0dl instead of
“correct” valueskx2s0dl andkp2s0dl, and let us show that the

FIG. 9. Variance of the wave packet centerdkxl at the middle of
the stroboscopic measurement pulsessolid linesd and the variance
dkxl,max

dt maximized over the pulse durationsdashed linesd, as func-

tions of feedback parameterF for several values ofsad feedback
parameterm and sbd parametersC0 and dt. We assumeQ=`,
h=1, v=2v0, andAmod=1.
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normalized differences between the corresponding solutions
x̃=skx1l−kx2ld /Î" /2mv0 and p̃=skp1l−kp2ld /Î"mv0/2 de-
cay to zero with time. Since the same measurement record
Istd is used for both solutions, the value of the noise term
j= I −kIl is affected byx̃, and the difference evolves as

dx̃/dt = v0fp̃ − C0ufstdudxx̃g, s75d

dp̃/dt = v0f− x̃ − C0ufstdudxpx̃ − p̃/Qg. s76d

Finite Q-factor obviously damps oscillations ofx̃ and p̃, so
for a worst case let us assumeQ=`. Then the evolution of
the “energy function”«̃= x̃2+ p̃2 is d«̃ /dt=−2v0C0ufstdusdxx̃

2

+dxpx̃p̃d. Assuming weak coupling, using asymptotic
time dependence of variancesdx=S−1+Af1−coss2v0tdg,
dxp=A sins2v0td fsee Eqs.s36d and s38dg, and assuming
x̃= «̃1/2 sinsv0t+fd, p̃= «̃1/2 cossv0t+fd, we derive
equation d«̃ /dt=−«̃v0C0ufstduhsA+S−1df1−coss2v0t+2fdg
−Afcoss2v0td−coss2fdgj. After averaging over the short
pulse durationdt, the expression in curly brackets becomes
Af1+coss2fdg sv0dtd2 / 6 +S−1f1−coss2fd s1−sv0dtd2 / 6dg,
which is always positive. Therefore,«̃ decays to zero, and
this happens on the time scale,T0h1/2C0

−1sv0dtd−2, compa-
rable to the timescale of purity saturation and squeezing
buildup ssee Sec. IV Cd. So, we have proven thatkxl andkpl
calculated from Eqs.s26d and s27d eventually depend only
on the measurement record and do not depend on initial val-
ues. As a by-product, this statement also means that a mix-
ture of Gaussian statesswhich in general is not Gaussiand
eventually becomes a single Gaussian state.

VI. VERIFICATION OF SQUEEZED STATE

The fact that the squeezed state of a nanoresonator can be
prepared by the modulated measurement and quantum feed-
back, does not automatically mean that this state may be
useful for the measurement of extremely weak forces, and
even that such state can be checked experimentally in a
straightforward way. As an example of such problem, in one
of setups analyzed in Ref. 63 the squeezed in-loop optical
state is realized by using quantum feedback, but the squeez-
ing of the output light is impossible. Fortunately, as we dis-
cuss below, in our case there is no problem with observabil-
ity of the squeezed state.

We have studied the possibility to verify the squeezed
state of the nanoresonator in the following way. After the
preparation of the squeezed state by stroboscopic measure-
ment and feedback, the feedback at some momentst=0d is
switched off, while the stroboscopic measurement continues.
Considering for simplicity the case of one measurement per
nanoresonator periodsn=2,v=v0d, we average the position
measurement resultxj

m for the j th pulse over many pulses
seach pulse gives a very imprecise result because of weak
couplingd:

XN =
1

N
o
j=1

N

xj
m =

1

N
o
j=1

N
1

dtk0
E

jT0−dt/2

jT0+dt/2

fIstd − I00gdt. s77d

As we show below, for a squeezed initial state, the r.m.s.
fluctuation ofXN can be much smaller than if we would start

with the ground statesand much smaller thanDx0d. This is
the way to verify squeezing, and also this procedure is ex-
actly what can be used for an ultrasensitive force measure-
ment with accuracy beyond the standard quantum limit.fNo-
tice that for two measurements per period,v=2v0, the
definition s77d should be modified by adding odd
s“p-phase”d contributions with negative sign. Then all re-
sults of this section are valid forv=2v0 as well.g For sim-
plicity in this section we neglect the effect of finite quality
factor Q of the nanoresonator.

The analysis of the distribution ofXN sover realizationsd is
very simple in the case of instantaneous but imprecise mea-
surements,dt→0, C0dt=const, since the Hamiltonian evolu-
tion of the resonator in between the measurements can be
completely neglected. Therefore the problem reduces to a
classical sequential measurement of a “particle” position,
which is initially characterized by the Gaussian probability
distribution with varianceDx0

2/S srecall Dx0=Î" /2mv0d,
while each imprecise measurement has variance
sDx0d2/C0v0dt. In particular,N measurements with resultsxj

m

are equivalent to oneN-times stronger measurement with
resultXN fmathematically this is because the product of sev-
eral measurement Gaussians as in Eq.s9d is the Gaussian
with added inverse variances and centered atXNg. Then dis-
tribution of XN is the convolution of the initial state Gaussian
and the total measurement Gaussianfsee Eq.s7dg; so the
varianceDX,N of XN is equal to the sum of corresponding
variances,

DX,N = Dx0
2S 1

S +
1

NC0v0dt
D . s78d

For completeness let us also mention that afterN measure-
ments the “actual” position is characterized by the Gaussian
probability fsee Eq.s9dg with varianceDx0

2sS+NC0v0dtd−1

sinverse variances are added for product of Gaussiansd and
centered atXN/ s1+S /NC0v0dtd, which is the weighted sum
of the initial center of distributionsassumed to be zerod and
the measurement resultXN.

Obviously, atN@1/C0v0dt the variance ofXN given by
Eq. s78d is significantly smaller for a squeezed statesS.1d
than for the ground statesS=1d. Even though this difference
can be rigorously verified only by performing many experi-
ments to accumulate statistics forDX,N, it can be observed
even in a single experiment with good reliability ifS@1 sfor
applications like force detection we should discuss single
realizationsd. The error probability for distinguishing be-
tween the two cases in one trial is essentially the overlap of
two distributions forXN, which is crudelyS−1/2 for N→`
sratio of distribution widthsd. fA better approximation for
error probability to distinguish between two Gaussians with
coinciding centers and different variancesD1 and D2 is
sln R/2pRd1/2 whereR=D1/D2@1; in our caseR=S.g So,
the squeezed state withS@1 can be reliably verified even in
a single experiment.

Unfortunately, this result requires the assumption of infi-
nitely strong coupling with detectorsC0→`d, so it is not
obvious if it holds in the practical case of weak coupling
sC0!1d or not. The anticipated problem is that for suffi-
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ciently largeN which makes the second term in Eq.s78d
sufficiently small, the nanoresonator heating due to measure-
ment backaction may already eliminate the squeezingsthe
feedback is offd. To resolve this issue we have calculated
DX,N for stroboscopic modulation numerically by Monte
Carlo simulation of realizations using Eqs.s26d ands27d and
then averaging over realizations. Such simulation happened
to be not too simple; in particular, the time step should be
chosen carefully. As a check of the simulation accuracy we
were comparing the variance ofkxl obtained by averaging
over Monte Carlo realizations with the results from Eqs.
s69d–s71d without feedback; the difference was checked to be
within a few percent.

Solid lines in Fig. 10 show the numerical results forDX,N
for weak couplingsC0=0.1d and two values of pulse dura-
tion: sad dt /T0=0.05 andsbd dt /T0=0.02. The initial state is
either ground state or asymptotic zero-centered squeezed
state corresponding to the same measurement parameters, so
that the squeezing is given by Eq.s52d and preparation of the
squeezed state differs from its verification only by quantum
feedback switched on or off. Dashed lines in Fig. 10 are
calculated using Eq.s78d. One can see that the numerical
results follow the simple analytics when the contribution
from the measurement accuracy in Eq.s78d dominates; how-
ever, at larger number of pulsesN the numerical results de-

viate upwards and eventuallyDX,N starts to increase withN,
which is expected because of the nanoresonator “heating”
due to measurement back-action.

The numerical minimum ofDX,N for squeezed statessS
@1d in Fig. 10 is a little higher thans2/SdDx0

2. We have
checked that the minimum is still close tos2/SdDx0

2 for sev-
eral other values ofC0 anddt. As seen in Fig. 10, this mini-
mum is achieved atN close to 2Nb, whereNb given by Eq.
s55d is the estimate of number of measurement pulses for
squeezing buildup. We have checked that this result also
holds for different values ofC0 and dt. The fact that the
minimum of DX,N is higher thans2/SdDx0

2 is not surprising
since the average varianceDx ssquare of the wave packet
widthd within the pulse durationdt is s2/SdDx0

2 for S@1
ssee Sec. IV B 3d. Hence, one could even guess thatDX,N
should be always larger than Eq.s78d with 1/S replaced by
2/S. However, actuallyDX,N goes below such a bound for a
range ofN. Some understanding of this fact can be provided
by an argument that for a classical measurement the nan-
oresonator motion duringdt would be averaged and soXN
would depend only on the nanoresonator position at the cen-
ters of the measurement pulses.

The minimum ofDX,N for the case when we start mea-
surement procedure from the ground state, is only a little
larger thanDx0

2 ssee Fig. 10d, which means that the accumu-
lated measurement accuracy becomes better than the stan-
dard quantum limitDx0 at sufficiently smallerN than when
the back-action heating becomes important. Therefore, the
ratio of DX,N starting with the ground and squeezed states
sdotted lines in Fig. 10d reaches the maximum of approxi-
matelyS /2 fin the case of instantaneous measurements de-
scribed by Eq.s78d, this ratio would approachS at N→`g.

Thus, our numerical results show that for a proper dura-
tion of the measurement procedures,NbT0d the variances
DX,N for the squeezed and ground initial states are signifi-
cantly different, and therefore these states can be reliably
distinguished. The squeezed state verification using a weakly
coupled detector is only by a factor,2 less efficient than a
similar procedure using instantaneous measurements by a
strongly coupled detector. Even though these results have
been obtained neglecting the effect of the resonatorQ-factor,
we do not expect a significant difference for finiteQ because
it equally affects the preparation of the squeezed state and its
verification. Finally, let us mention that if an external force
has shifted the nanoresonator position byDx, the procedure
discussed in this section can detect the force ifDx
*Î2/SDx0.

VII. CONCLUSION

As analyzed in this paper, the uncertainty of the nanoreso-
nator position can be squeezed significantly below the
ground state level by using the modulated in timesv
<2v0/nd continuous measurement of the nanoresonator po-
sition with the QPC or RF-SET detector. The measurement
strength can be modulated by applying the periodic voltage
across the detector. For the RF-SET the modulation can also
be done by varying the gate voltage; however, it is important
that such modulation periodically brings the SET into the

FIG. 10. VarianceDX,N of the measurement resultXN fsee Eq.
s77dg as a function of numberN of stroboscopic measurement
pulses. The measurement procedure is applied either to the ground
state or to the squeezed state prepared by the same procedure
complemented with quantum feedback. Panelssad and sbd are for
different durations of the measurement pulses, corresponding to ini-
tial squeezingS=11.0 andS=27.6. Solid lines are the numerical
results for finite pulse durationdt, while dashed lines correspond to
Eq. s78d sinstantaneous measurementsd. Dotted lines are the ratios
of the results shown by solid lines. Force detection beyond the
standard quantum limit is possible whenDX,N/Dx0

2,1.
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Coulomb blockade regime, so that the back-action is periodi-
cally switched offsactually, similar gate voltage modulation
is also possible for the QPC, but it is quite unnaturald. The
mechanism of squeezing is similar to the stroboscopic QND
measurements:8,12,13 for periodic measurement pulses sepa-
rated by integer number of half-periods of oscillation, the
free evolution of the resonator is to the large extent compen-
sated, which allows the buildup of the effective measurement
strength for repeated imprecise measurements; therefore the
squeezed state is produced when effective measurement ac-
curacy becomes better than the ground state widthDx0. A
significant difference between our analysis and the standard
QND case of instantaneous stroboscopic measurements is the
assumption of weak coupling with detector,C0&1, while C0
should be infinitely large for instantaneous measurements.
Obviously, the squeezed state oscillates with time, so that the
moments of minimum position uncertaintyDx0/ÎS and the
minimum momentum uncertainty" /2Dx0ÎS are shifted in
time by T0/4=p /2v0.

We have considered harmonics22d and stroboscopics23d
modulations with frequencyv and modulation amplitude
Amod. As anticipated,Amod=1 is found to be the optimum
value for maximum squeezing in both cases. We have found
that only a moderate squeezingS=Î3h srequiring relatively
high detector quantum efficiencyhd is possible for the har-
monic modulation with twice the resonator frequency,v
=2v0 fsee Eqs.s40d, s41d, ands43d, and Fig. 3g. In contrast,
an arbitrary strong squeezing is in principle possible for the
stroboscopic modulation when the measurementsand there-
fore back-actiond is switched completely off in between mea-
surement pulses of short durationdt. If not limited by effects
of resonator quality factorQ, the squeezing can be up to
S=2Î3h /v0dt at frequencyv=2v0/n fsee Eqs.s50d–s53d
and Figs. 4 and 5g. The squeezing buildup requires on the
order ofÎh /C0sv0dtd2 measurement pulsesfsee Eq.s55dg, so
for a limited “waiting time” tw the squeezing cannot exceed
S.2h1/4sC0tw/T0d1/2 fsee Fig. 7 and Eqs.s58d–s60dg. Finite
Q-factor of the nanoresonator limits the squeezing by
S=fs2/ndsv0dt /2pdC0Q/coths"v0/2Tdg1/2 fsee Eq. s66dg;
after optimization overdt this leads to the limitation
S.s3/4dfÎhC0Q/n coths"v0/2Tdg1/3 fsee Fig. 8 and Eq.
s65dg. Notice that this result is consistent with the mentioned
in the Introduction condition of quantum behavior8 Ttm/Q
&" for a good detector,h,1, and measurement time
tm=4/C0v0 corresponding tox-accuracy equal toDx0.

While the modulated measurement squeezes the width of
the resonator wave packet, the position of its centerkxl fluc-
tuates due to random back-action from the detector, and may
deviate very far away from the origin. To keep the packet
center nearx=0 we apply quantum feedback similar to Refs.
33 and 30sthe packet center in momentum space in this case
will be kept near zero as welld. We have foundfsee Fig. 9
and Eqs.s73d and s74dg that the feedback can keep the de-
viation of kxl from zero at the level much smaller than the
packet width Dx0/ÎS, which means that the ensemble-
averaged squeezing practically does not differ from the
packet width squeezing.

Verification of the squeezed state can be performed in
essentially the same way as its preparation, the only differ-

ence is that the quantum feedback should be switched off.
We have studied the distribution of the position measurement
resultXN averaged overN stroboscopic measurement pulses
and foundssee Fig. 10d that for a significant range ofN
before the back-action heating becomes important, the width
of XN distribution is close toÎ2/SDx0, which may be much
smaller than the ground state widthDx0. The analyzed pro-
cedure can be applied in a straightforward way for ultrasen-
sitive force detection beyond the standard quantum limit: the
force can be detected when it causes the nanoresonator shift
Dx larger thanÎ2/SDx0.

For an estimate of the present-day experimental param-
eters let us use the data from Ref. 5. The experimental sen-
sitivity of 3.8 fm/ÎHz for the nanoresonator withv0/2p
=19.7 MHz andDx0=21 fm can be translated into the di-
mensionless couplingC0.5310−7. For theQ-factor of 3.5
3104 and using a crude estimate for quantum efficiency
h,10−1, we have the productC0QÎh.6310−2. Since this
product should be larger than at least 10 for a noticeable
squeezingssee Fig. 8d, we should conclude that it is still 2–3
orders of magnitude less than needed for squeezing. How-
ever, the necessary improvement of experimental parameters
may be reachable in a reasonably near futuresnotice thatC0
scales quadratically with responsek0; the estimates of Ref.
30 giveC0.10−3d. sRecently one of the authors succeeded in
fabrication of a 30 MHz resonator with low-temperature
Q-factor of 2.33105 and a 9.8 MHz resonator withQ=1.5
3105d. For reasonably realistic parametersC0,10−2,
Q,106, andh,0.3 the productC0QÎh.53103, therefore
the low-temperature squeezingS.13 is possible, and a sig-
nificant squeezing survives up to temperaturesT,10"v0.

In an experiment it may be convenient to flip every sec-
ond time the sign of stroboscopic voltage pulse applied to the
detector. Then the information about the average positionXN
fsee Eq.s77dg can be extracted from the low-frequency com-
ponent of the detector currentssomewhat similar to the RF-
SET mixer of Ref. 4d. Even though we expect that the high-
frequency component would still be necessary for quantum
feedback, the results of Sec. VI indicate that the preparation-
detection procedure should work reasonably well even with-
out feedback if the preparation time is comparable to the
squeezing buildup timesso that the back-action heating is not
yet too strongd.

Concluding, we hope that the QND squeezing of a nan-
oresonator can be demonstrated experimentally in a reason-
ably near future and will eventually be useful for the force
detection with sensitivity beyond the standard quantum limit.
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APPENDIX: GENERALIZED BAYESIAN FORMALISM
FOR A NANORESONATOR

In this Appendix we generalize the Bayesian equation
s18d to the case of a detector with correlation between output
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and back-action noises, and also discuss the contributions
from various kinds of the noise. We discuss only the nan-
oresonator evolution due to measurement; therefore the
terms H0, Henv, and Hfb in the Hamiltonians1d are ne-
glected. For simplicity we also do not consider the modula-
tion of measurement parameters.

Following the logic of Ref. 45, we discuss first the effects
of several additional classical noises. Let us start with addi-
tional classical white noisej1std at the output, so that the
total output noisej=jid+j1 consists of the “ideal quantum
contribution” jid discussed in Sec. IIfsee Eq.s17dg and j1;
the corresponding spectral densities areSI =Sid+S1. Using
the “double Bayesian” procedure of Ref. 45 it is simple to
show that averaging overj1 leads to the addition of the de-
coherence term −g1sx−x8d2rsx,x8d with g1=k2S1/4SidSI into
Eq. s17d. Therefore, the effect ofj1 is the reduction of the
quantum efficiencyh from the ideal valueh=1 down toh
=Sid /SI.

The second natural noise source is the classical forcej2std
suncorrelated withj1d with white spectral densityS2, which
leads to the stochastic term −j2stdx̂ in the Hamiltonian. Av-
eraging overj2 gives the extra decoherence term −g2sx
−x8d2rsx,x8d in Eq. s17d with g2=S2/4"2. Therefore the ef-
fect of j2 can still be taken into account by further reduction
of the efficiencyh.

When the nanoresonator is measured by a single-electron
transistor, the back-action force is in general correlated with
the output noise. To take this correlation into account, let us
introduce one more stochastic classical forcej3std=aj1std
fully correlated with output noisej1 sthis obviously accounts
for arbitrary correlation between the total forcej2+j3 and
j1d. Averaging overj3 leads to the terms

iKsx − x8drsx,x8djstd − sg3 + K2SI/4dsx − x8d2rsx,x8d

sA1d

with correlation factorK=aS1/"SI and decoherenceg3
=a2SidS1/4"2SI to be added into Eq.s17d. fNotice that Eq.
s17d is in the Itô form; there is no contributionK2SI /4 to
decoherence in the Stratonovich form.g The correlation term
cannot be described in terms of efficiencyh and requires
generalization of the Bayesian equations18d.

For measurement by single-electron transistor the average
back-action force actually depends on the nanoresonator po-
sition x in a rather complicated way, and this leads to addi-
tional potential energy termVaddsx̂d in the Hamiltonian. In
general this term contributes to unharmonicity of the nan-
oresonator, though for small amplitude of oscillations it
mainly shifts the equilibrium point and renormalizes the
spring constant.

The effects of correlation between the output and back-
action noises are also important for a detector with “asym-
metric” coupling described by nonzero relative phase43–45

between complex magnitudesM andDM in the Hamiltonian
termss4d ands5d. Evolution equations17d for such a detector
should be complemented44,45by the terms similar to Eq.sA1d
with correlation factorK=e−1uDM /MusinfargsDM /Mdg but
without dephasing,g3=0 sthe detector is still ideal in the
sense that a pure state of the nanoresonator remains pure in
the course of measurementd. Besides the correlation term, the
oscillator potential is changed by the contributionVaddsxd=
−"KsI0+kxd2/2k+const.

For completeness let us also consider the noise of the
spring constant described by the stochastic potential energy
j4x

2. Averaging over this noise leads to the term −gsprsx2

−x82d2rsx,x8d swhere gspr=S4/4"2d which has significantly
different form compared to the standard decoherence term
sin particular, this term makes the density matrix non-
Gaussiand.

Combining all contributions, the nanoresonator evolution
due to measurement is described in Itô form as

ṙsx,x8d = − S k2

4SI
+

K2SI

4
+ gdDsx − x8d2rsx,x8d

+ S k

SI
sx + x8 − 2kxld + iKsx − x8dDrsx,x8djstd

+ fVaddsx̂d,rgx,x8 − gsprsx2 − x82d2rsx,x8d, sA2d

whereK is the total correlation factor,gd is the total dephas-
ing, gspr is due to noise of the spring constant, andVaddsxd is
the renormalization of the resonator potential energy.
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