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We propose an experiment on quantum feedback control of a solid-state qubit, which is within the reach of
the present-day technology. Similar to an earlier proposalfR. Ruskov and A. N. Korotkov, Phys. Rev. B66,
041401sRd s2002dg, the feedback loop is used to maintain coherent oscillations in a qubit for an arbitrarily long
time; however, this is done in a significantly simpler way, which eases the bandwidth problem. The main idea
is to use the quadrature components of the noisy detector current to monitor approximately the phase of qubit
oscillations. The price for simplicity is a less-than-ideal operation: the fidelity is limited to about 95%. The
feedback loop operation can be experimentally verified by the appearance of a positive in-phase component of
the detector current relative to an external oscillating signal used for synchronization.
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The needs of quantum computing1 are fueling the rapid
progress in experiments with solid-state qubits. In particular,
quantum coherentsRabid oscillations have been demon-
strated using superconducting charge, flux, and phase qubits,
as well as double-quantum-dot qubits.2 Successful experi-
ments with two superconducting qubits have also been
performed.3 One of the directions for the advanced qubit
control is realization of the quantum feedback control of a
solid-state qubit,4 which can be used in a quantum computer
for qubit initialization and is also an important demonstration
by itself, clarifying the controversial issue of gradual col-
lapse of a quantum state.sIn optics quantum feedback con-
trol was proposed more than a decade ago and has been
already demonstrated experimentally.5d

For the analysis of a quantum feedback we have to take
into account the process of continuous qubit collapse. There-
fore, the conventional approach to continuous quantum
measurement6,7 is inapplicable, and it is necessary to use the
recently developed Bayesian approach8 or the equivalent
sthough technically much differentd approach of quantum
trajectories.9 The possibility of a quantum feedback is based
on the fact that measurement by an ideal solid-state detector
swith a 100% quantum efficiencyhd does not decohere a
single qubit,8 even though it decoheres an ensemble of qubits
because each qubit evolves in a different way. The random
evolution of a qubit in the process of measurement can be
monitored using the noisy detector output, with the accuracy
depending onh, so that for an ideal detectorsh=1d even the
monitoring of a qubit wave function is possible. An example
of a theoretically ideal solid-state detector is8 the quantum
point contactsh comparable to 1 has been demonstrated
experimentally10d. The single-electron transistor is signifi-
cantly nonideal7,8,11 sh!1d in the semiclassical “orthodox”
mode of operation; however, it can reach ideality in some
modes based on cotunneling or Cooper pair tunneling.12

Monitoring of the quantum state in real time can naturally
be used for continuous feedback control of a quantum sys-
tem. In the proposal of Ref. 4 the quantum feedback is used
to maintain quantum coherent oscillations in a qubit for an
arbitrarily long time. This is done by measuring the noisy
currentIstd in a weakly coupled detector and using the quan-
tum Bayesian equations8 to translate information contained
in Istd into the evolution of qubit density matrixrstd. After

that, rstd is compared with the desired quantum staterdstd,
and the calculated difference is used to control the qubit
Hamiltonian in order to decrease the difference. Notice that
the measurement backaction necessarily shifts the phase of
coherent oscillations in a random way; however, the infor-
mation contained inIstd is sufficient to monitor this change
and therefore restore the desired phase.

An important difficulty in such an experiment is the ne-
cessity to solve the Bayesian equations in real time. More-
over, the bandwidth of the line deliveringIstd to the circuit
solving the Bayesian equations, should be significantly wider
than the frequencyV of coherent oscillations. Unfortunately,
these conditions are unrealistic for the present-day experi-
ments with solid-state qubits.

In this paper we propose and analyze a much simpler way
sFig. 1d of processing the information carried by the detector
currentIstd. The idea is to use the fact that besides noise,Istd
contains an oscillating contribution due to coherent oscilla-
tions in the measured qubit. Therefore, if we applyIstd to a
simple tank circuitswhich is in resonance withVd, then the
phase of the tank circuit oscillations will depend on the
phase of the qubit oscillations. Instead of using the tank cir-
cuit, a theoretically almost equivalent procedure is to mix
Istd with the signal from a local oscillatorsFig. 1d in order to
determine two quadrature amplitudes ofIstd at the frequency
V, which will carry information on the phase of coherent

FIG. 1. Schematic of the proposed quantum feedback loop. Two
quadrature components of the detector currentIstd are used to moni-
tor approximately the phase difference between qubit coherent os-
cillations and a local oscillator, which is then used to control the
qubit parameterH sfeedback strength is characterized by parameter
Fd. The phase can also be monitored using a tank circuit. Positive
average in-phase quadraturekXl is an experimental indication of
quantum feedback operation.
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oscillations. Since the diffusion of the oscillation phase is a
slow processsassuming weak coupling to the detector and
environmentd, the further circuitry can be relatively slow,
limited by the qubit dephasing rate, but not limited by the
much higher frequencyV. The simplicity of the information
processing and alleviation of the bandwidth problem are the
main advantages of this proposal in comparison with Ref. 4.
sThe bandwidth of the line between the detector and the
mixer should still be much larger thanV; however, it is not a
problem for the on-chip mixing.d The experiment can be re-
alized using either superconducting or GaAs technology.2,3,10

The idea of this proposal partially stems from the fact that
in the absence of feedback, the qubit oscillations lead to a
noticeable peak in the spectral densitySIsvd of the detector
current atv<V, with the peak-to-pedestal ratio up to four
times13 ssomewhat similar experiments have been reported
recently14d. Since 4 is not a big number, one would expect
quite inaccurate phase information carried by the current
quadratures and therefore poor operation of the feedback.
Surprisingly, the quantum feedback operates much better
than expected.

Let us consider a “charge” qubitseither double quantum
dot or single Cooper pair boxd with Hamiltonian
Hqb=s« /2dsc2

†c2−c1
†c1d+Hsc1

†c2+c2
†c1d, where c1,2

† and c1,2

are the creation and annihilation operators in the basis of
“localized” scharged states,« is their energy asymmetry, and
the tunnelingH=H0+Hfbstd can be controlled by the feed-
back loopsHfbd. We assume the standard coupling8,13,15 be-
tween the charge qubit and the detectorsquantum point con-
tact or single-electron transistord. Instead of writing
Hamiltonian explicitly, we will characterize the measurement
by two levels of the average detector current,I1 and I2, cor-
responding to the two charge states, by the detector output
noiseSI, and by the qubit ensemble dephasing rateG due to
detector backaction and environment. Assuming a suffi-
ciently large detector voltage and quasicontinuous detector
currentIstd, we describe the qubit evolution by the Bayesian
equations8 sin Stratonovich formd,

ṙ11 = − 2H Im r12 + 2r11r22fIstd − I0gDI/SI , s1d

ṙ12 = i«r12 + iHsr11 − r22d − gr12

− sr11 − r22dr12fIstd − I0gDI/SI , s2d

where q=1,DI = I1− I2,I0=sI1+ I2d /2, and g=G−sDId2/4SI.
The decoherence rateg=gd+ge of the single qubit is due to
the detector nonideality,gd=sh−1−1dsDId2/4SI, and the ad-
ditional coupling with environmentsged. The current
Istd= I0+sr11−r22dDI /2+jstd has the noise componentjstd
with the flatswhited spectral densitySI. fAveraging overjstd
would lead to the standard mastersBlochd equation6,16 with
the ensemble dephasing rateG.g Notice that in the case
«=0 swhich is assumed unless mentioned otherwised, we can
disregard the evolution of Rer12 sit becomes zero at
t@G−1d, so only two degrees of freedom are left, which
may be parametrized asr11−r22=P cossVt+fd and
2 Im r12=P sinsVt+fd, where the feedback-maintained fre-
quencyV ssee belowd is assumed to be equalsunless stated
otherwised to the bare frequencyV0=s4H0

2+«2d1/2 of coher-

ent oscillations. Moreover, in the ideal caseg=0 the state
eventually becomes pure,8 so thatP=1 and the evolution can
be described by only one parameterfstd.

We assume that two quadrature components of the detec-
tor currentsFig. 1d are determined as

Xstd =E
−`

t

fIst8d − I0gcossVt8de−st−t8d/tdt8, s3d

Ystd =E
−`

t

fIst8d − I0gsinsVt8de−st−t8d/tdt8, s4d

whereV is the local oscillator frequency applied to the mixer
and t is the averagingsrelaxationd time constant.17 Similar
formulas are also applicable to the case of a tank circuit with
the resonant frequencyV and quality factor Q=Vt /2.
If the detector current would be a harmonic signal
Istd= I0+ 1

2PDI cossVt+f0d, thenf0=−arctanskYl / kXld, so it
is natural to use

fmstd ; − arctansY/Xd s5d

as a monitored estimate of the phase shiftfstd between the
coherent oscillations and the local oscillatorsk¯l means av-
eraging over timed.

Let us assumeg=0 and analyze first how close is the
estimatefmstd to the actual phasefstd without feedback, in
which casef evolves in a diffusive manner due to the de-
tector backaction. Figure 2 shows the rms phase difference
Dfrms=ksfm−fd2l1/2 ssolid linesd as a function oft for sev-
eral values of the dimensionless qubit-detector coupling
C;sDId2/SIH0, calculated numerically using Monte Carlo
simulation of the measurement process.8 At weak coupling,
C&1, the curves practically coincide, and the minimum
Dfrms<0.44 is achieved att<4SI / sDId2=1/G, as expected,
since G determines the phase diffusion:8,9,13

kffstd−fs0dg2l / t=G. At a larger t ,fm includes too much
irrelevant information from a distant past, while at a smaller
t the quadrature amplitudes suffer too much from noise. At

FIG. 2. Dependence of monitoring inaccuracyDfrms on averag-
ing time t without feedback for several values of couplingC. The
dashed and dotted lines are for classical signalsssee textd. Inset:
Distribution of Df for severalt at weak coupling.
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t→0 sas well as att→`d Dfrms→p /Î3<1.81, corre-
sponding to the uniform distribution ofDf=fm−f within
±p interval sall phases are defined modulo 2pd.

It is important to notice that the calculatedDfrms is sig-
nificantly smaller than for a naive classical case, in which the
noisejstd is not correlated with the diffusive evolution off.
The dotted line in Fig. 2 shows the result for such a
case at weak couplingffor this curve we assumed
Istd− I0=Î2sDI /2dcossVt+fd+jstd, diffusive evolution off
with coefficient G /2, and no correlation betweenj and f,
which corresponds to correct spectrum13g.Even more surpris-
ingly, att.2.5SI / sDId2 the inaccuracyDfrms in the quantum
case is smaller than for the classical noiseless case shown by
the dashed linefwe assumedjstd=0, while f evolves as
aboveg, which means that thenoise improves the monitoring
accuracy. This quantum behavior can be understood from
the phase evolution equation4 which follows18 from Eqs.s1d
and s2d,

ḟ = − fIstd − I0gsinsVt + fdsDI/SId + V0 − V. s6d

A comparison with the equation forḟm ssee belowd shows
that the quadrature component of the noisej, which shifts
the observed phasefm, also shifts the actual phasef in the
same direction. In other words, when the noise looks like
oscillations, it forces the real coherent oscillations to evolve
closer to what is observed.

The inset in Fig. 2 shows the distribution ofDf in the
weak-coupling limit for several values oft. The distributions
are significantly non-Gaussian with the central part signifi-
cantly narrower thanDfrms. It is interesting that the value
t=4SI / sDId2 corresponding to the minimumDfrms,
does not provide the highest peak of theDf distribution.
Let us compare the monitored phase evolution
ḟm=−fIstd− I0gsinsVt+fmd / sX2+Y2d1/2, with Eq. s6d. We
would expect the best approximation off by fm
when kX2+Y2l=sSI /DId2. Using definitions s3d and s4d
and the current-current correlation function13 kIs0dIstdl
=sSI /2ddstd+sDI /2d2cossVtdexpf−sDId2t /8SIg, we obtain
kX2+Y2l=SItf1/4+1/s1+8SI / sDId2tdg at Vt@1 and
C!1, so the conditionkX2+Y2l=sSI /DId2 is satisfied at
tsDId2/SI =s2/5dsÎ41−1d<2.16. We checked numerically
that this value indeed corresponds to the highest peak ofDf
distribution.

A reasonably small difference betweenf and fm in the
absence of feedback implies that we can expect decent op-
eration of the quantum feedback loop in which the phase
estimatefm is used for determining the feedback action.
Similar to Ref. 4 we consider the feedback loop, which aims
to suppress the fluctuations of the oscillation phase, so that
the goal isfstd=0 sor as small as possibled. It has been
shown that this goal can be fully reached using the linear
feedback rule Hfbstd /H0=−Ffstd, which requires exact
monitoring off; here we analyze the operation of the feed-
back loop withHfb/H0=−Ffmstd, whereF is the dimension-
less feedback factorsby definition ufmuøpd.

We characterize the performance of the feedback loop by
the synchronization degreeD=kPstdcosfstdl=2Fq−1,

whereFq=kTr rstdrdstdl is fidelity andrd corresponds to the
desired perfect coherent oscillationssPd=1,fd=0d. Figure 3
shows ssolid linesd the dependence ofD on the feedback
factor F for several time constantst in the case of weak
coupling C=0.1 andg=0 swe normalizeF by C, so the
results practically do not depend onC for C&1d sRef. 19d.
One can see that each curve has a maximum, so that the
“oversteering” effect at a largerF makes the feedback per-
formance worse. Somewhat unexpectedly,t=1/G
=4SI / sDId2 is no longer an optimum, and the smaller time
constants are actually better. It can be shown that the feed-
back loop can operate even att!V−1!G−1; however, we
are not interested in this wide-bandwidth regime. Limiting
ourselves tot,SI / sDId2, we see that the maximum achiev-
able synchronization degreeDmax is about 90%sthat corre-
sponds to the fidelityFq of about 95%d. It is impossible to
reach 100%, because the monitored simple phase estimate
fm is different from the actualf; however, the fidelity is still
surprisingly high for such a simple feedback loop. It is inter-
esting to note that a very crude estimate ofDmax as
cossDfrmsd using minsDfrmsd.0.44 from the analysis with-
out feedback, works quite well, coss0.44d=0.90 sthough for
different td. The dashed line in Fig. 3 shows the feedback
performance for the classical signal corresponding to the dot-
ted line in Fig. 2, assumingtsDId2/SI =1. As expected, the
performance is much worse than for the quantum feedback.
The dotted line in Fig. 3 shows the operation of the quantum
feedback of Ref. 4 based on the exact monitoring off; while
the dotted line can go below solid lines, at largeF /C it
approaches unity asD<exps−C/32Fd.

An important question is how the operation of the quan-
tum feedback loop can be verified experimentally. One of the
easiest ways is to check that the average valuekXl of the
in-phase quadrature componentXstd becomes positive, while
in the absence of feedback positive and negative values
of X are obviously equally probable. Notice thatany
Hamiltonian control of a qubit that is not based on the
information obtained from the detectorsi.e., feedback
controld leads to20 kXl=0. It is easy to show that

FIG. 3. Solid lines: Dependence of the synchronization degree
D on the feedback factorF in ideal casesg=0d for severalt. Ex-
perimentally, D can be measured via average in-phase current
quadraturekXl. The dashed line is for classical feedback, the dotted
line is for quantum feedback of Ref. 4.
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kXl=fD+kP coss2Vt+fdlgtDI /4, and since the second term
in brackets vanishes at weak couplingsand «=0d, therefore
kXl is directly related toD. The numerical results for
kXl / stDI /4d practically coincide with the curves forD in
Fig. 3 swithin the thickness of the lined.

The ideal caseg=0 is obviously not realizable in the ex-
periment because of the detector nonidealitysh,1d and
presence of the extra environmentsge.0d. Both effects can
be taken into account simultaneously introducing effective

efficiency of quantum detectionhef f=fh−1+4geSI / sDId2g−1.
Figure 4 showsssolid linesd the feedback performance for
several values ofhef f assumingtsDId2/SI =1. One can see
that hef f,0.1 is still sufficient for a noticeable operation of
the quantum feedback loop. Note thatDmax is limited by the
state purity factor,Dmax, P, which issRef. 18d P<Î2hef f at
hef f!1 andC/h!1 sDmax=P can be reached by the feed-
back of Ref. 4 but not by the feedback studied hered.

Finally, let us discuss how accurately the conditions
V=V0 and«=0 should be satisfied in the experiment. IfV is
different fromV0, then without feedback the phasef grows
linearly in time fEq. s6dg. However, if the feedback loop
operation is faster thanuDVu= uV−V0u, the linear growth of
f is stopped by adjusting the qubit frequencyV0 to match
the desired frequencyV. The dotted lines in Fig. 4 show
the feedback operation forhef f=0.2 and two values
of DV, confirming that the operation is still satisfactory at
uDVu!CV,G,t−1. Notice that the frequency mismatch
leads to nonzerokfml and therefore can be noticed and cor-
rected. Energy mismatchs«Þ0d also worsens the perfor-
mance of the feedback loop; however, the dashed lines in
Fig. 4 shef f=0.5d show that a relatively large mismatchs«
&H0d can be tolerated.

In conclusion, we have proposed and analyzed the quan-
tum feedback loop for a solid-state qubit, based on monitor-
ing the phase of coherent oscillations via quadrature compo-
nents of the current in a weakly coupled detector.
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