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Simple quantum feedback of a solid-state qubit
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We propose an experiment on quantum feedback control of a solid-state qubit, which is within the reach of
the present-day technology. Similar to an earlier propfRaRuskov and A. N. Korotkov, Phys. Rev. 86,
041401R) (2002], the feedback loop is used to maintain coherent oscillations in a qubit for an arbitrarily long
time; however, this is done in a significantly simpler way, which eases the bandwidth problem. The main idea
is to use the quadrature components of the noisy detector current to monitor approximately the phase of qubit
oscillations. The price for simplicity is a less-than-ideal operation: the fidelity is limited to about 95%. The
feedback loop operation can be experimentally verified by the appearance of a positive in-phase component of
the detector current relative to an external oscillating signal used for synchronization.
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The needs of quantum computingre fueling the rapid that, p(t) is compared with the desired quantum stagé),
progress in experiments with solid-state qubits. In particularand the calculated difference is used to control the qubit
quantum coheren{Rabj oscillations have been demon- Hamiltonian in order to decrease the difference. Notice that
strated using superconducting charge, flux, and phase qubitfie measurement backaction necessarily shifts the phase of
as well as double-quantum-dot quiditSuccessful experi- coherent oscillations in a random way; however, the infor-

ments with two superconducting qubits have also beemation contained in(t) is sufficient to monitor this change
performed One of the directions for the advanced qubit and therefore restore the desired phase.

gglri]ér-zlt;fereﬁg?ﬂa&?}?cr?fcg]neb%uﬁggjjr?nfgedf;r%trzoggrgl SIe? An important difficulty in such an experiment is the ne-
for qubit ini?ializétion and is also an im or?antdemonstrgtioncessny o solve the Bayesian equations in real time. More-
9 P over, the bandwidth of the line deliveriddt) to the circuit

by itself, clarifying the controversial issue of gradual col- . . . o .
lapse of a quantum statén optics quantum feedback con- solving the Bayesian equations, should be significantly wider

trol was proposed more than a decade ago and has pethan the fre.q.uency) of cohergn.t oscillations. Unfortunately, _
already demonstrated experimentaJly. these co_ndltlor_ws are unreahsnc for the present-day experi-
For the analysis of a quantum feedback we have to tak&ents with solid-state qubits. .
into account the process of continuous qubit collapse. There- In this paper we propose and analyze a much simpler way
fore, the conventional approach to continuous quantuntFig. 1) of processing the information carried by the detector
measuremeht is inapplicable, and it is necessary to use thecurrentl(t). The idea is to use the fact that besides ndidg,
recently developed Bayesian apprdadr the equivalent contains an oscillating contribution due to coherent oscilla-
(though technically much differentapproach of quantum tions in the measured qubit. Therefore, if we aplly to a
trajectories’ The possibility of a quantum feedback is basedsimple tank circuitwhich is in resonance witf), then the
on the fact that measurement by an ideal solid-state detect@lhase of the tank circuit oscillations will depend on the
(with a 100% quantum efficiency) does not decohere a phase of the qubit oscillations. Instead of using the tank cir-
single qubit? even though it decoheres an ensemble of qubitguit, a theoretically almost equivalent procedure is to mix
because each qubit evolves in a different way. The random() with the signal from a local oscillataFig. 1) in order to
evolution of a qubit in the process of measurement can bgetermine two quadrature amplitudesl & at the frequency

monitored using the noisy detector output, with the accuracy) which will carry information on the phase of coherent
depending ony, so that for an ideal detect¢®,=1) even the

monitoring of a qubit wave function is possible. An example H=Hy[1=FX (5] —
of a theoretically ideal solid-state detecto? tee quantum | control ¢
point contact( comparable to 1 has been demonstrated
experimentally?). The single-electron transistor is signifi-
cantly nonidedt®! (< 1) in the semiclassical “orthodox”
mode of operation; however, it can reach ideality in some
modes based on cotunneling or Cooper pair tunnéfng.

Monitoring of the quantum state in real time can naturally FIG. 1. Schematic of the proposed quantum feedback loop. Two
be used for continuous feedback control of a quantum sysyadrature components of the detector curtéare used to moni-
tem. In the proposal of Ref. 4 the quantum feedback is usegy approximately the phase difference between qubit coherent os-
to maintain quantum coherent oscillations in a qubit for angjjjations and a local oscillator, which is then used to control the
arbitrarily long time. This is done by measuring the noisy qubit parameteH (feedback strength is characterized by parameter
currentl(t) in a weakly coupled detector and using the quan+). The phase can also be monitored using a tank circuit. Positive
tum Bayesian equatiofigo translate information contained average in-phase quadratué) is an experimental indication of
in I(t) into the evolution of qubit density matrip(t). After  quantum feedback operation.
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oscillations. Since the diffusion of the oscillation phase is a 2.0 L T ey :
slow procesqassuming weak coupling to the detector and
environmeny, the further circuitry can be relatively slow,
limited by the qubit dephasing rate, but not limited by the 15
much higher frequenc§). The simplicity of the information
processing and alleviation of the bandwidth problem are the
main advantages of this proposal in comparison with Ref. 4.
(The bandwidth of the line between the detector and the
mixer should still be much larger thdd; however, it is not a 0.5
problem for the on-chip mixing.The experiment can be re-
alized using either superconducting or GaAs technofogy.

The idea of this proposal partially stems from the fact that 0.0
in the absence of feedback, the qubit oscillations lead to a
noticeable peak in the spectral densgyw) of the detector
current atw= (), with the peak-to-pedestal ratio up to four

: 3 . .
times'* (somewhat similar experiments have been reporte(ﬂwg time 7 without feedback for several values of coupli@g The

o ; :
reqent_lyl )- Since 4 is not_ a big n_umber, _one would expeCtdashed and dotted lines are for classical sigiisée text Inset:
quite inaccurate phase information carried by the currengigiibution of A for severalr at weak coupling.

quadratures and therefore poor operation of the feedback.

Surprisingly, the quantum feedback operates much better S . .
thar? expgc);ed q P ent oscillations. Moreover, in the ideal cage0 the state

Let us consider a “charge” qubieither double quantum eventually becomes puPeso thatP=1 and the evolution can

dot or single Cooper pair box with Hamiltonian be described by only one parametgt).
qu:(sIZ)(CZCZ—cIcl)+H(c}cz+c§cl), where CI,z and ¢, We assume that two quadrature components of the detec-
are the creation and annihilation operators in the basis dpr current(Fig. 1) are determined as

“localized” (charge statesg is their energy asymmetry, and t

the tunnelingH=Hy+Hy,(t) can be controlled by the feed- X(t)=f [1(t) = lg]cog Qt)e gt (3
back loop(Hy,). We assume the standard coupfifig)'® be- e

tween the charge qubit and the detedtprantum point con- t

tact or single-electron transisjor Instead of writin _ et rtnr

Hamiltonian gxplicitly, we will char)acterize the measurergent Y(®) :J [1(t") = Iolsin(Qt")e "t 4

by two levels of the average detector currdgtandl,, cor- -

responding to the two charge states, by the detector outpwihere() is the local oscillator frequency applied to the mixer
noise§, and by the qubit ensemble dephasing datdue to  and 7 is the averagingrelaxation time constant! Similar
detector backaction and environment. Assuming a suffiformulas are also applicable to the case of a tank circuit with
ciently large detector voltage and quasicontinuous detectahe resonant frequency) and quality factorQ=Q7/2.
currentl(t), we describe the qubit evolution by the Bayesianlf the detector current would be a harmonic signal
equation8 (in Stratonovich form 1(t) =1+ 3 PAIl codQt+ ¢), then g=—arctari(Y)/(X)), so it

pr1=—2H Im pyo+ 2py1p2d 1(t) = 15]AI/S, (1) is natural to use
ém(t) = — arctartY/X) (5)

:
<e] 1.0

v b v b v e b g
LANL I L L O B

[=]

FIG. 2. Dependence of monitoring inaccuraky,,,s on averag-

p12=liep1a+iH(p11= p2d) = ¥p12 _ _ _
as a monitored estimate of the phase sifift) between the

= (P11~ p22)pudl (0 = 1JAITS,, (@ Coherent oscillations and the local oscillator -y means av-
where h=1,Al=1,-1,,15=(1;+1,)/2, and y=I'-(Al)?/4S.  eraging over timg
The decoherence ratg= y4+ 7y, of the single qubit is due to Let us assumey=0 and analyze first how close is the

the detector nonidealityyy=(%"1-1)(Al)?/4S, and the ad- estimatedy(t) to the actual phase(t) without feedback, in
ditional coupling with environment(y,). The current Which case¢ evolves in a diffusive manner due to the de-
[(t)=lo+(p11—pa) Al /2+&(t) has the noise componegtt) tector backaction. Figure 2 shows the rms phase difference
with the flat(white) spectral densit. [Averaging overg(t)  Adms={(dm— )32 (solid lines as a function ofr for sev-
would lead to the standard masi@&loch) equatiof® with eral values of the dimensionless qubit-detector coupling
the ensemble dephasing rafe] Notice that in the case C=(Al)?/SH,, calculated numerically using Monte Carlo
£=0 (which is assumed unless mentioned otheryyise can  simulation of the measurement proc8gst weak coupling,
disregard the evolution of Re, (it becomes zero at C=1, the curves practically coincide, and the minimum
t>T1), so only two degrees of freedom are left, which Adms=0.44 is achieved at~4S/(A1)?=1/T, as expected,
may be parametrized asp;;—pp=PcodQt+¢) and since I determines the phase  diffusiéf?!3

2 Im py,=P sin(Qt+ ), where the feedback-maintained fre- {[¢(t) -~ ¢(0)]?)/t=T. At a larger 7, ¢, includes too much
guency() (see belowis assumed to be equainless stated irrelevant information from a distant past, while at a smaller
otherwisg to the bare frequenc§)y=(4H3+s)Y? of coher- 7 the quadrature amplitudes suffer too much from noise. At
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7—0 (as well as atr—®) Ad¢ms— m/V3=1.81, corre- o0———— e b 1o
sponding to the uniform distribution af ¢=¢,,— ¢ within 3 -
+ interval (all phases are defined moduler2 0.8
It is important to notice that the calculatédp,,,s is sig-
nificantly smaller than for a naive classical case, in which the
noiseé(t) is not correlated with the diffusive evolution df
The dotted line in Fig. 2 shows the result for such a
case at weak couplingfor this curve we assumed
[(t)—lg= \@(AI/Z)cos(Qt+¢)+§(t), diffusive evolution of¢
with coefficientI'/2, and no correlation betweehand ¢,
which corresponds to correct spectdfifEven more surpris- 00 Y
ingly, at 7>2.55/(Al)? the inaccuracy\ ¢ in the quantum Too o1 o2 T T s
case is smaller than for the classical noiseless case shown by F/C
the daShe,d lingwe assumedf,(t) :,0’ while ¢ evolve_s a_ls FIG. 3. Solid lines: Dependence of the synchronization degree
above, Wh'ch means that th90|§e improves the monitoring D on the feedback factdr in ideal caseg y=0) for severalr. Ex-
accuracy This quantum behavior can be understood fromyerimentally, D can be measured via average in-phase current
the phase evolution equattbwhich follows'® from Egs.(1) quadraturgX). The dashed line is for classical feedback, the dotted
and(2), line is for quantum feedback of Ref. 4.

g
=)

D, <X>(4/7Al)
°
N

I
[

¢ =~ [11) = Tolsin(Qt + #)(AI/S) + Qo — Q. (6) whereF,=(Tr p(t)pq(t)) is fidelity andpy corresponds to the
desired perfect coherent oscillatioff;=1,#4=0). Figure 3

that the quadrature component of the nofsevhich shifts shows (solid lineg the_ dependence .dD on the feedback
factor F for several time constants in the case of weak

the observed phasgé,, also shifts the actual phaggin the coupling C=0.1 andy=0 (we normalizeF by C, so the

same direction. In other words, when the noise looks like )
oscillations, it forces the real coherent oscillations to evolvegrs]gItgaﬂricet'ecamétdgar;?f gl?rp\)/(znﬂa?g)rmgfir?u(rlr?efs;ol?ﬁat the
closer to what is observed. !

The inset in Fig. 2 shows the distribution af¢ in the oversteering” effect at a largdf makes the feedback per-

weak-coupling limit for several values af The distributions formance = worse. Somewhat unexpectedlyr=1/I

e . . > =45/(Al)? is no longer an optimum, and the smaller time
are significantly non-Gaussian with the central part S|gn|f|-Con tants are actually better. It can be shown that the feed
cantly narrower tham\ ¢, It is interesting that the value stants ar uafly ' Show i

_ 2 - - back loop can operate even a Q)™*<I""%; however, we
7=45/(A1) c_orrespondmg to the m|n|m_umA¢_rms, are not interested in this wide-bandwidth regime. Limiting
does not provide the highest peak of the) distribution. ourselves tor~S/(Al)% we see that the maximum achiev-
Let us compare the monitored phase evolution . ’ .

S . 2L N2 able synchronization degrd®,,,, is about 90%(that corre-
$m=—[1(1) = lolSiN(Qt+ )/ (X+ YT with Eq. (6). We  gh5n4s 10 the fidelity, of about 95%. It is impossible to
would ezxpe;:t the bzest approximation o by ¢m  reach 100%, because the monitored simple phase estimate
when (X°+Y%)=(S/AI)% Using definitions (3) and (4) 4 s different from the actuad; however, the fidelity is stil
and the current-current correlation functtén(l(0)I(t))  surprisingly high for such a simple feedback loop. It is inter-
=(S/2)68(t) +(Al/2)%cod Qt)exd —(A1)*/8S], we obtain  esting to note that a very crude estimate Df,., as
(X2+Y%)=911/4+1/(1+85/(A1)*7)] at Qr>1 and cogAdme using MirAdp,md =0.44 from the analysis with-
C<1, so the condition(X?+Y?)=(S/Al)? is satisfied at out feedback, works quite well, c@44)=0.90 (though for
T(AI)Z/S:(Z/S)(V’Tl—l)22.16. We checked numerically different 7). The dashed line in Fig. 3 shows the feedback
that this value indeed corresponds to the highest peakfof performance for the classical signal corresponding to the dot-
distribution. ted line in Fig. 2, assuming(Al)2/S=1. As expected, the

A reasonably small difference betweegnand ¢, in the  performance is much worse than for the quantum feedback.
absence of feedback implies that we can expect decent of-he dotted line in Fig. 3 shows the operation of the quantum
eration of the quantum feedback loop in which the phasdeedback of Ref. 4 based on the exact monitoringpivhile
estimate ¢, is used for determining the feedback action.the dotted line can go below solid lines, at largéC it
Similar to Ref. 4 we consider the feedback loop, which aimsapproaches unity ad = exp(—C/32F).
to suppress the fluctuations of the oscillation phase, so that An important question is how the operation of the quan-
the goal is¢4(t)=0 (or as small as possiblelt has been tum feedback loop can be verified experimentally. One of the
shown that this goal can be fully reached using the lineaeasiest ways is to check that the average vakjeof the
feedback rule Hy,(t)/Ho=-F¢(t), which requires exact in-phase quadrature componetit) becomes positive, while
monitoring of ¢; here we analyze the operation of the feed-in the absence of feedback positive and negative values
back loop withHy,/ Hy=—F ¢(t), whereF is the dimension-  of X are obviously equally probable. Notice thainy
less feedback factdby definition |¢,,|< 7). Hamiltonian control of a qubit that is not based on the

We characterize the performance of the feedback loop binformation obtained from the detectoti.e., feedback
the synchronization degreeD=(P(t)cos(t))=2F,-1, contro) leads t8° (X)=0. It is easy to show that

A comparison with the equation fdﬁm (see below shows

201305-3



RAPID COMMUNICATIONS

ALEXANDER N. KOROTKOV PHYSICAL REVIEW B 71, 20130%R) (2005

1.0 I | 1 I 1 | 1 I 1 | I | | I 1

Cc=0.1
T(AD%/S;= 1

efficiency of quantum detectiomes=[ 771 +4v.S/(Al)?]™%
Figure 4 showgsolid lineg the feedback performance for
several values ofp.¢; assumingr(Al)?/S=1. One can see
that 7.¢;~ 0.1 is still sufficient for a noticeable operation of
the quantum feedback loop. Note tiiat, is limited by the
state purity factorD < P, which is(Ref. 1§ P= \27,; at
7e1+<<1 andC/ n<<1 (D,,=P can be reached by the feed-
back of Ref. 4 but not by the feedback studied here
Finally, let us discuss how accurately the conditions
0 =0y ande=0 should be satisfied in the experiment()lfis
different from(}, then without feedback the phagegrows
linearly in time [Eq. (6)]. However, if the feedback loop
operation is faster tha\Q|=|Q2 -, the linear growth of
¢ is stopped by adjusting the qubit frequen@Qy to match
the desired frequency). The dotted lines in Fig. 4 show
FIG. 4. Solid lines: Synchronization degr&e (and in-phase the feedback operation forp.=0.2 and two values
current quadraturéX)) as functions ofF for several values of the of A(), confirming that the operation is still satisfactory at
detection efficiencynesr. The dashed and dotted lines illustrate the |AQ|<CQ~T~ 71 Notice that the frequency mismatch

effects of the energy mismatcl # 0) and the frequency mismatch |aads to nonzerdé,,) and therefore can be noticed and cor-

N

n

D, <X>(4/tAl)

(Q#0Qp).

(Xy=[D+(P coq20t+ ¢))]7Al /4, and since the second term
in brackets vanishes at weak couplitand £=0), therefore
(X) is directly related toD. The numerical results for
(Xy/(7Al/4) practically coincide with the curves fdD in
Fig. 3 (within the thickness of the line

The ideal casey=0 is obviously not realizable in the ex-
periment because of the detector nonidealify<1) and
presence of the extra environmént,>0). Both effects can

rected. Energy mismatcke #0) also worsens the perfor-
mance of the feedback loop; however, the dashed lines in
Fig. 4 (7.1=0.5 show that a relatively large mismatch
=<H;) can be tolerated.

In conclusion, we have proposed and analyzed the quan-
tum feedback loop for a solid-state qubit, based on monitor-
ing the phase of coherent oscillations via quadrature compo-
nents of the current in a weakly coupled detector.
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