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Nonideal quantum detectors in Bayesian formalism
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The Bayesian formalism for a continuous measurement of solid-state qubits is extended to a model which
takes into account several factors of the detector nonideality. In particular, we consider additional classical
output and backaction noises~with finite correlation!, together with quantum-limited output and backaction
noises, and take into account possible asymmetry of the detector coupling. The formalism is first derived for a
single qubit and then generalized to the measurement of entangled qubits.
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I. INTRODUCTION

The problem of continuous qubit measurement is o
significant importance for solid-state quantum computin1

because the measurement of a solid-state qubit typically
quires a significant time and thus can interpl
nontrivially2–9 with the intrinsic evolution of the qubit sys
tem. The evolution of a single solid-state qubit~without en-
semble averaging! due to continuous measurement can
described by the Bayesian formalism~for a review see Ref.
10! which takes into account the noisy measurement ou
of the detector. Apart from different notations, the Bayes
formalism practically coincides with the version of the qua
tum trajectory formalism6 adapted to solid-state setups fro
the theory developed for quantum optics.11

The interaction between the measured quantum sys
and continuously operating detector leads to a rand
gradual change of the measured system, which is often ca
quantum backaction. However, the noisy component of
detector output is correlated with this backaction; theref
the evolution of the measured system during the meas
ment process can be inferred from the noisy detector out
In the quantum Bayesian approach the detector outpu
taken into account using the classical Bayes theorem12

which is applied in a straightforward way to the diagon
elements of the density matrix of the measured system, w
a special care is taken of nondiagonal matrix elements.

Actually, there are many approaches with a similar me
odology~though the formalisms may look very different! and
similar results, which have been developed in various ar
of physics. These approaches have been pioneered by
theories developed more than two decades ago by Da
Kraus, and Holevo,13 which have generalized the ‘‘ortho
dox’’ quantum measurement and lead to the theories des
ing continuous quantum measurement. An important con
bution has been the approach of the restricted path integr14

Among all areas of physics, the theory of continuous qu
tum measurement has been best developed in quantum o
~see, e.g., Ref. 15!, where it is often called as the quantu
trajectory approach~for more references see Ref. 10!.

The Bayesian approach is developed mostly for the c
tinuous measurement of solid-state qubits and necessaril
quires several simplifying assumptions. Even though the
tector gets entangled with the qubit in a course
measurement, we assume that the detector cannot be
0163-1829/2003/67~23!/235408~11!/$20.00 67 2354
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coherent state for a significantly long time. Therefore t
entanglement is neglected and we discuss the random ev
tion of the qubit, correlated with the random evolution of t
detector~in some sense this is a quasiclassical approa!.
Moreover, we assume that intrinsic quantum evolution of
detector is much faster than qubit evolution, so that the
called Markov approximation can be used and the dete
noise spectral density can be assumed to be frequency i
pendent. This condition in typical situations can be expres
aseV/\@V, whereV is the detector bias voltage andV is a
typical ~Rabi! frequency of the qubit evolution. In othe
words, the energy involved in the detector operation sho
be much larger than the typical energy of the measured
tem ~actually, without this condition the interaction betwee
the qubit and detector cannot be meaningfully considered
a measurement!. The purpose of these assumptions is to e
sure that the detector output is a classical quantity and is
involved in further quantum interactions~in the quantum
theory of linear amplifiers developed by Caves16 this condi-
tion corresponds to large amplifier gain in units of number
quanta—see discussion in Ref. 16!. One more usual assump
tion of the Bayesian approach~which can be easily removed!
is that the detector output is continuous. While a disconti
ous detector output~‘‘quantum jumps’’! is a more typical
situation in the quantum trajectory approach applied to so
state qubits,6 both formalisms basically coincide~as has been
shown in Ref. 6!, in spite of some technical differences.

One of the main predictions of the Bayesian formalism
the absence of the single qubit decoherence during the m
surement by a good~ideal! detector,4 in contrast to decoher
ence of an ensemble of qubits17,18 ~even though each mea
surement path involves experimentally monitorable p
qubit states, the paths are random and therefore differ
leading to the decoherence as a result of ensemble avera
or averaging over the measurement result!. Moreover, the
state of a solid-state qubit can be gradually purified in
course of continuous measurement. In particular, this ma
possible to monitor the phase of quantum coherent~Rabi!
oscillations of the qubit. Such monitoring can be natura
used in the quantum feedback control19,20 of the Rabi oscil-
lations which suppresses the qubit decoherence due to e
ronment~for quantum feedback in quantum optics see, e
Refs. 21–24!. Another potentially useful application of th
Bayesian formalism is a recent prediction that two qubits c
be made fully entangled by their continuous measurem
with an equally coupled detector.25
©2003 The American Physical Society08-1
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The efficiency of the quantum feedback loop operat
crucially depends on the ideality~quantum efficiency! of the
detector. For example, 100% synchronization between
qubit Rabi oscillations and desired pure oscillations is p
sible only for 100% ideal detector.20 Many other effects re-
lated to continuous measurement of solid-state qubits, wh
have been predicted using the Bayesian formalism~see, e.g.,
Refs. 4 and 25–28! also depend significantly on the detect
ideality. The idealityh of a continuously operating solid
state detector can be generally defined as a ratio betwee
detector performance and the performance of a quant
limited detector, in which the output and backaction nois
are strictly related, reaching the lower bound of an inequa
similar to the Heisenberg uncertainty relation. More ex
definition will be discussed later.

A quantum point contact~QPC! at low temperature is
theoretically an ideal quantum detector4 that follows from
the results of Refs. 2 and 29. A nearly ideal operation of
QPC has been demonstrated experimentally.30,31The fact that
a superconducting quantum interference device~SQUID! can
theoretically reach the limit of an ideal detector follows32

from the results of Ref. 33. A normal state single-electr
transistor ~SET! is not a good quantum detector at usu
operating points above the Coulomb blockade threshold3,19

However, its quantum efficiency improves when we
closer to the threshold19,34 and becomes much better whe
the operating point is in the cotunneling range~below the
threshold!, in which case the limit of an ideal detector can
achieved.35,36 Superconducting SET is generally better th
normal SET as a quantum-limited detector and can appro
100% ideality in the supercurrent regime37 as well as in the
double Josephson-plus-quasiparticle regime.38 Finally, the
resonant-tunneling SET~Ref. 5! can reach complete idealit
in the small-bias limit.

In the simplest version of the Bayesian formalism4 a non-
ideal solid-state detector is modeled as an ideal symm
cally coupled detector39 and a ‘‘pure dephasor’’ in paralle
~environment or just extra backaction noise!. In this case the
nonideality leads to an extra term in the Bayesian equatio
which introduces the gradual decay of the nondiagonal
ments of the density matrix of the measured qubit. It w
implied that such backaction dephasing is also equivalen
the extra noise at the detector output. However, the equ
lence has never been proven explicitly, and this is one of
goals of the present paper.

In a more advanced version of the Bayesi
formalism,40,19 a possible correlation between the outp
noise of a nonideal detector and the backaction noise is ta
into account. However, the formulas for the evolution of t
qubit density matrix in this case have been presented with
any derivation, just from physical intuition. Moreover, com
parison of these formulas with the results obtained by G
and Milburn28 for an ideal but asymmetrically coupled d
tector~which shifts the energy levels of the measured qu!
reveals some difference. Even though the difference is m
~second order in the detector response, which is assume
be small!, it points to some incorrectness of the initial fo
mulas of Ref. 40~corrected formulas can be found in Re
10!. The main goal of this paper is to present a mathemat
23540
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derivation of the Bayesian formalism for a nonideal detec
with correlated output and backaction noises, using aphe-
nomenologicalmodel which adds correlated classical noi
to the quantum-limited noise of an ideal detector. In spite
introducing the quantum-limited and classical noises in
model on different footing, there is no distinction betwe
them in the final equations for the measured qubit evoluti
and the detector is characterized by six real numbers: th
current~operating point!, the response, the total output nois
the total backaction noise, their correlation, and the indu
shift of the qubit energy asymmetry. After the derivation
formalism for the measurement of one qubit, we generaliz
to the continuous measurement of an arbitrary number
entangled qubits.

Notice that the issue of the asymmetric detector coupl
to qubit has been recently discussed for a QPC in term
the tunneling phase dependence on the qubit state.31,32,41,42

For a small-transparency QPC the formalism is significan
simplified28 and is a direct generalization of the model
Ref. 2. We will use the results of Ref. 28 to model an ide
asymmetric detector.

While we model the detector nonideality by an addition
classical noise, let us mention a different approach to
nonideality in Ref. 28, in which a random fraction of ele
trons tunneled through the detector is assumed to be miss
In our opinion, such model is not well applicable to soli
state detectors, even though it perfectly describes the in
ciency of a photodetector in a similar problem in quantu
optics.

II. MODEL

We will use the phenomenological model of a nonide
solid-state detector of a qubit state shown in Fig. 1. It co
sists of an ideal detector and three sources of additional c
sical noise. We assume that the detector output is the n
currentI (t) ~we have in mind a QPC or a SET as a detecto!.
The ideal detector is characterized by the output noise s

FIG. 1. Schematic of a nonideal solid-state detector measuri
qubit state. The detector is modeled as an ideal quantum dete
and three sources of additional classical noise: output noisej1(t)
with the white spectral densityS1, backaction noisej2(t) fully
correlated withj1(t), and uncorrelated backaction noisej3(t). The
total noise densityS01S1 of the output detector currentI (t) in-
cludes the contributionS0 from the noise of ideal detector curren
I d(t).
8-2
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NONIDEAL QUANTUM DETECTORS IN BAYESIAN FORMALISM PHYSICAL REVIEW B67, 235408 ~2003!
tral densityS0 @we assume flat~‘‘white’’ ! noise spectrum#
and its backaction onto the measured qubit which will
called quantum-limited noise or just quantum noise.~Actu-
ally, because of the quantum relation between the ou
noise and the backaction, the output noise could also
called quantum; however, we will avoid such terminolog
emphasizing the assumption that the quantum behavior
not propagate beyond the ideal detector.!

The first source of an additional classical noise adds
noisy componentj1(t) with the white spectral densityS1 to
the outputI d(t) of the ideal detector, so that the final outp
is I (t)5I d(t)1j1(t). The second noise source is the clas
cal noisej2(t) which is 100% correlated with~proportional
to! the noisej1(t) and affects the qubit energy asymmetry«.
@The qubit Hamiltonian is

Hqb5
«

2
~c2

†c22c1
†c1!1H~c1

†c21c2
†c1!, ~1!

where the tunneling strengthH is assumed to be real withou
loss of generality.# The relative magnitude of the nois
j2(t)5Aj1(t) is characterized by the parameterA. Finally,
the third classical noise source is the white noisej3(t) which
also affects the qubit energy asymmetry« @so that «→«
1j2(t)1j3(t)]. The second and third noise sources toget
are obviously equivalent to one white noise source, parti
correlated withj1(t). However, we prefer to split it into the
fully correlated and uncorrelated parts for clarity. Obvious
the qubit parameterH can also be affected by the detect
noise; however, we do not take this effect into account,
cause the qubit dephasing is more naturally caused by
noise of its energy asymmetry« ~which corresponds to the
measured degree of freedom! and also because the induce
noise ofH is negligible, for example, for a single-Coope
pair qubit measured by an SET.

Let us start with the symmetric ideal detector, neglect
classical noisesj1,2,3(t) and use the basic Bayesian forma
ism to describe the measurement process~i.e., the result of
quantum backaction onto qubit!; then the evolution of the
qubit density matrixr i j (t) is4,10,19

ṙ1152 ṙ22522
H

\
Im r121r11r22

2DI

S0
@ I d~ t !2I 0#, ~2!

ṙ125 i
«

\
r121 i

H

\
~r112r22!2~r112r22!

DI

S0
@ I d~ t !2I 0#r12.

~3!

Here DI[I 12I 2 is the detector response,I 1 is the average
detector current for the qubit stateu1&, I 2 is the average
current for the stateu2&, andI 0[(I 11I 2)/2. For the validity
of Eqs. ~2! and ~3! we have to assume4,10,19 the weakly re-
sponding detector,uDI u!I 0, sufficiently large detector volt-
age ~much larger than the qubit energies!, and assume tha
the passage of individual electrons in the detector is m
faster than the qubit evolution,I 0 /e@(4H21«2)/\, so that
the current can be considered as continuous~see the brief
discussion of the conditions in the Introduction!.
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For simulations, Eqs.~2! and~3! should be complemente
by the equation

I d~ t !2I 05
DI

2
~r112r22!1j0~ t !, ~4!

where j0(t) is the pure output noise of the ideal detect
with flat spectral densityS0.

Equations~2! and ~3! are written in the so-called Stra
tonovich form,43 which assumes symmetric definition of th
derivative, ṙ(t)5 limt→0@r(t1t/2)2r(t2t/2)#/t. For the
forward definition of derivative, ṙ(t)5 limt→0@r(t1t)
2r(t)#/t ~Itô form!, Eqs.~2! and ~3! transform into19

ṙ1152 ṙ22522
H

\
Im r121r11r22

2DI

S0
j0~ t !, ~5!

ṙ125 i
«

\
r121 i

H

\
~r112r22!2~r112r22!

DI

S0
r12j0~ t !

2
~DI !2

4S0
r12, ~6!

while the relation~4! remains unchanged.@The general rule
of transformation is the following:43 for an arbitrary system
of equationsẋi(t)5Gi(x,t)1Fi(x,t)j(t) in the Stratonovich
form, the corresponding equations in the Itoˆ form are ẋi(t)
5 Gi (x,t)1Fi (x,t)j (t)1 (Sj /4)(kFk(x,t)]Fi (x,t) /]xk .]
The advantage of the Itoˆ form is that the averaging over th
noise j0(t) is straightforward~we just need to eliminate
terms withj0), so it is easy to obtain the ensemble averag
evolution:

ṙ1152 ṙ22522
H

\
Im r12, ~7!

ṙ125 i
«

\
r121 i

H

\
~r112r22!2

~DI !2

4S0
r12. ~8!

On the other hand, the advantage of the Stratonovich form
the validity of usual calculus rules~which do not work in the
Itô form! and therefore easier physical interpretation of eq
tions.

Let us emphasize that the single qubit in this mod
~which assumes ideal detector! does not decohere during th
measurement process, as easier to see from Eqs.~2! and~3!.
However, because of the probabilistic nature of quant
measurement, the ensemble of qubits does decohere
different qubits will go along different ‘‘trajectories.’’ The
ensemble decoherence rate (DI )2/4S0 is determined by this
quantum randomness and therefore can be naturally ca
‘‘quantum-limited’’ decoherence rate.~It can also be called
‘‘information-limited’’ ensemble decoherence, since its o
gin is the tendency of qubit state to evolve either into st
u1& or u2&, corresponding to the information acquired fro
the measurement.19!

While it is not trivial to take into account additional clas
sical noisesj1 and j2 ~this will be done in the following
sections!, the account of the noisej3 is very simple. It obvi-
8-3
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ALEXANDER N. KOROTKOV PHYSICAL REVIEW B 67, 235408 ~2003!
ously leads to the additional dephasing term2g3r12 in Eqs.
~3!, ~6!, and ~8!, where g35S3/4\2 is proportional to the
spectral densityS3 of j3(t). We will characterize this noise
by the dephasing rateg3 instead of characterizing it byS3.
~The relationg35S3/4\2 can be easily derived addingj3(t)
to « in the Stratonovich form, then translating the equat
into Itô form, and averaging overj3.!

The natural definition of the detector ideality factorh in
this case is4,10,19

h[
G0

GS
, ~9!

where G0[(DI )2/4S0 is the quantum-limited contribution
andGS5G01g3 is the total ensemble dephasing rate. Si
ply speaking, this definition of ideality is the ratio betwe
quantum contribution and total backaction noise.

III. IDEAL SYMMETRIC DETECTOR AND ADDITIONAL
OUTPUT NOISE

Let us now take into account additional output no
j1(t), while j2(t) is still zero. We also switch offj3(t),
since it is trivial to add its effect later. In order to deriv
Bayesian equations in this case, let us also assumeH5«
50 ~‘‘frozen’’ qubit ! and add the effects ofH and« later. For
H5«50, Eqs.~2! and ~3! have a simple solution4,19 which
can be interpreted as a consequence of the ‘‘quantum B
theorem’’:44

r11~t!5F11
r22~t!

r11~t!G
21

5F11
r22~0!

r11~0!

exp@2~ Ī d2I 2!2t/S0#

exp@2~ Ī d2I 1!2t/S0#
G21

, ~10!

r22~t!512r11~t!, ~11!

r12~t!5r12~0!
@r11~t!r22~t!#1/2

@r11~0!r22~0!#1/2
~12!

5

r12~0!expF2
~DI !2t

4S0
GexpF2

~ Ī d2I 0!2t

S0
G

r11~0!expF2
~ Ī d2I 1!2t

S0
G1r22~0!expF2

~ Ī d2I 2!2t

S0
G ,

~13!

where Ī d is the average of the detector current during
time interval between 0 andt:

Ī d5
1

tE0

t

I d~ t !dt. ~14!

Here Eq. ~10! is the consequence of the classical Bay
theorem12 and Eq. ~12! says that the degree of the qub
purity is conserved.@It is easy to include the effect of finite
23540
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«, which just leads to an extra factor exp(i«t/\) in Eqs.~12!
and ~13!; however, we will not do that in order to keep th
formulas shorter.#

Since the detector output is nowI (t)5I d(t)1j1(t), we
have to expressr i j (t) in terms of I (t) and average it over
the noisej1(t). Naively thinking, we have to use the subs
tution

Ī d5 Ī 2x, Ī 5
1

tE0

t

I ~ t !dt, x5
1

tE0

t

j1~ t !dt, ~15!

and average Eqs.~10! and~13! over the noise contributionx
using the weight factorp(x)5(2pD1)21/2exp(2x2/2D1)
whereD15S1/2t is the variance ofx. However, this is not a
correct procedure because the probability distribution ofx is
correlated withĪ ~though it is not correlated withĪ d). So
instead, we have to use the conditional distribution ofx for a
given Ī :

p~x!5P~x!Y E P~x8!dx8, ~16!

P~x!5
exp~2x2/2D1!

A2pD1
Fr11~0!

exp@2~ Ī 2x2I 1!2/2D0#

A2pD0

1r22~0!
exp@2~ Ī 2x2I 2!2/2D0#

A2pD0
G , ~17!

whereD05S0/2t. ~Let us stress again that bothĪ d andx are
assumed to be classical quantities.! Introducing the weight
factor p(x) into Eq. ~10!, substituting Ī d5 Ī 2x, and inte-
grating overx, we get the averaged equation

r11~t!5F11
r22~0!

r11~0!

exp@2~ Ī 2I 2!2t/SS#

exp@2~ Ī 2I 1!2t/SS#
G21

, ~18!

whereSS[S01S1 is the total output noise. The only differ
ence compared with Eq.~10! is the change ofĪ d into Ī and
change ofS0 into SS ~this is quite expected sincer11 be-
haves as a classical probability and the classical Bayes
mula still works!.

To calculater12(t) averaged over the noisej1(t), we
have to do a similar procedure. We multiple Eq.~13! by the
weight factorp(x), use substitutionĪ d5 Ī 2x, and integrate
over x. In this way we obtain

r12~t!

5

r12~0!expF2
~DI !2t

4S0
GexpF2

~ Ī 2I 0!2t

SS
G

r11~0!expF2
~ Ī 2I 1!2t

SS
G1r22~0!expF2

~ Ī 2I 2!2t

SS
G .

~19!

Comparing Eqs.~13! and~19!, we see thatĪ d changes intoĪ
and S0 changes intoSS , except in the second factor of th
8-4
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numerator, whereS0 remains unchanged. Let us represe
this factor as exp@2(DI)2t/4SS#exp(2g1t), where

g15
~DI !2S1

4S0SS
. ~20!

So, the effect of additional output noisej1 on the Eqs.
~10!–~13! is the following: the output currentI d from the
ideal part of the detector changes into the output currenI,
the spectral densityS0 corresponding to the ideal part of th
detector changes into the total output noiseSS , and the non-
diagonal matrix element acquires the dephasing factor
(2g1t). Differentiating the new equations over time~if we
do it in a simple first-order way, we automatically get equ
tions in the Stratonovich form! and adding terms due toH, «,
and noisej3, we obtain

ṙ1152 ṙ22522
H

\
Im r121r11r22

2DI

SS
@ I ~ t !2I 0#, ~21!

ṙ125 i
«

\
r121 i

H

\
~r112r22!2~r112r22!

DI

SS
@ I ~ t !2I 0#r12

2~g11g3!r12. ~22!

We see that the effect of the extra output noisej1(t) is simi-
lar to the effect of the extra backaction noisej3(t) and both
lead to the qubit dephasing.

From physical reasoning, the way of separation of
detector into the ideal part and additional noise sourcesj1(t)
andj3(t) is arbitrary, as long as the total output noiseSS and
total ensemble qubit dephasing rateGS are fixed~in other
words, SS and GS are the only physically relevant quant
ties!. It is easy to check that Eqs.~21! and ~22! satisfy this
requirement because

g11g35GS2
~DI !2

4SS
, GS5

~DI !2

4S0
1g3 . ~23!

@The total ensemble dephasing rateGS can be formally found
from Eqs.~21! and~22! by translating them into Itoˆ form that
adds ensemble dephasing rate (DI )2/4SS .]

Comparing Eqs.~21! and ~22! with Eqs. ~2! and ~3!, we
naturally introduce a more general definition of the detec
ideality:

h5
~DI !2/4SS

GS
, ~24!

which is again the ratio of the quantum-limited part of t
ensemble qubit dephasing and its total dephasing rate.~No-
tice that the numerator is not the ‘‘real’’ quantum backacti
determined byS0, but the information-limited backaction de
termined bySS .) In particular, for our model in the cas
j3(t)50 ~no classical backaction! we obtain h5S0 /(S0
1S1).

IV. CORRELATED OUTPUT AND BACKACTION NOISES

Now let us add the classical backaction noisej2(t) which
affects the qubit energy« @so that«→«1j2(t)], and which
is 100% correlated with the output noise source,j2(t)
5Aj1(t). We again start with Eqs.~10!–~13! for the ‘‘fro-
23540
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zen’’ qubit. Addition ofj2(t) does not affect diagonal matri
elements, so Eq.~18! remains unchanged. In order to calc
late r12(t) averaged over the noisesj1 andj2, we multiply
Eq. ~13! by the factor exp@i\21*0

tj2(t)dt#5exp(iAxt/\) and
average it overx with the weightp(x) given by Eqs.~16!
and ~17!. This leads to the equation

r12~t!

5

r12~0!expF2
~DI !2t

4S0
GexpF2

~ Ī 2I 0!2t

SS
G

r11~0!expF2
~ Ī 2I 1!2t

SS
G1r22~0!expF2

~ Ī 2I 2!2t

SS
G

3expF i

\
~ Ī 2I 0!A

S1

SS
tGexpF2

S0S1

SS

A2

4\2
tG , ~25!

in which only the last line is different from Eq.~19!.
Differentiating this equation over time~again, we auto-

matically obtain the Stratonovich form! and adding terms
due toH, «, andj3, we get

ṙ125 i
«

\
r121 i

H

\
~r112r22!1

i

\
@ I ~ t !2I 0#A

S1

SS
r12

2~r112r22!
DI

SS
@ I ~ t !2I 0#r122~g11g21g3!r12,

~26!

whereg1 is given by Eq.~20! andg2 is

g25
S0S1

SS

A2

4\2
. ~27!

Physically relevant parameters of the detector are the t
output noiseSS5S01S1, total ensemble dephasing rateGS ,
and the correlation between output and backaction noi
Since three sources of the backaction noise in Fig. 1
uncorrelated, the ensemble dephasing rate is

GS5~DI !2/4S01A2S1/4\21g3 ~28!

@the same result can be obtained by translating Eq.~26! into
Itô form and performing ensemble averaging#. Following
Refs. 40 and 19, let us characterize the noise correlation
the magnitude~real number!

K5
S«I

\SS
, ~29!

whereS«I is the mutual spectral density of the detector o
put noise and induced fluctuations of« ~strictly speaking,S«I
in our notation is only the real part of the mutual spect
density, while the imaginary part can formally describe t
detector response32!. In our caseK5AS1 /\SS . Expressing
qubit evolution only in terms of physically relevant quan
ties, we obtain

ṙ1152 ṙ22522
H

\
Im r121r11r22

2DI

SS
@ I ~ t !2I 0#, ~30!
8-5
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ṙ125 i
«̃

\
r121 i

H

\
~r112r22!1 iK @ I ~ t !2I 0#r122~r112r22!

3
DI

SS
@ I ~ t !2I 0#r122g̃r12, ~31!

where

g̃5GS2
~DI !2

4SS
2

K2SS

4
~32!

and the new notation«̃5« is introduced to accommodate th
measurement-induced shift of« discussed in the next sec
tion.

Equations~30!–~32! are the main result of this paper fo
the measurement of one qubit~the results of the next sectio
will lead to the same equations!. Comparing Eqs.~30!–~32!
with similar equations presented~but not derived! in Refs. 40
and 19, we notice a difference: the termiK @ I (t)2I 0#r12 was
incorrectly replaced in Refs. 40 and 19 by the termiK @ I (t)
2(r11I 11r22I 2)#r12. Notice though that the effect of the
differenceiK (DI /2)(r112r22)r12 is minor sincer112r22 is
the oscillating magnitude and averages to zero. As will
mentioned later, Eqs.~30!–~31! in the caseg̃50 ~this is
possible for asymmetric ideal detector! coincide with the cor-
responding equations of Ref. 28 if«̃ includes the detector
induced shift.

To translate Eqs.~30!–~31! from Stratonovich to Itoˆ form,
notice that

I ~ t !2I 05
DI

2
~r112r22!1j0~ t !1j1~ t ! ~33!

and the sum of two output white noisesj011(t)[j0(t)
1j1(t) is the white noise with the spectral densitySS . Then
using the standard rule of translation, we obtain Itoˆ equations

ṙ1152 ṙ22522
H

\
Im r121r11r22

2DI

SS
j011~ t !, ~34!

ṙ125 i
«̃

\
r121 i

H

\
~r112r22!1 iK j011~ t !r122~r112r22!

3
DI

SS
j011~ t !r122S g̃1

~DI !2

4SS
1

K2SS

4 D r12, ~35!

while the relation between output currentI (t) and pure noise
j011(t) is still given by Eq.~33!. ~Notice that the above
mentioned incorrect term is correct in the Itoˆ form of the
equation, so the mistake was due to mixing the Stratonov
and Itô forms.! The corresponding ensemble-averaged eq
tions can be obtained by erasing terms containingj011(t) in
Eqs.~34! and ~35!:

ṙ1152 ṙ22522
H

\
Im r12, ~36!

ṙ125 i
«̃

\
r121 i

H

\
~r112r22!2GSr12, ~37!

where the total ensemble decoherence rateGS is given by
Eqs.~28! and/or~32!.
23540
e

h
a-

Since g̃.0 @otherwise solution of Eqs.~34! and ~35!
would violate inequalityur12u2<r11r22], we obtain the fun-
damental limitation for the ensemble dephasing:

GS>
~DI !2

4SS
1

K2SS

4
. ~38!

Besides the definition of the detector idealityh given by Eq.
~24! which would giveh512(g̃1K2SS/4)/GS , it is natu-
ral to introduce another definition of the ideality19

h̃512
g̃

GS
5

~DI !2/4SS1K2SS/4

GS
, ~39!

since the termK2SS/4 does not correspond to the dephasi
of a single qubit. One more possible definition of ideal
~which also gives 100% ifg̃50) is

h̃25
1

11g̃/@~DI !2/4SS#
5

~DI !2/4SS

GS2K2SS/4
, ~40!

so that (h̃2)21/2 directly corresponds10 to the total energy
sensitivity of the detector in units of\/2. In the caseK50
all the definitions coincide,h5h̃5h̃2.

V. ACCOUNT OF ASYMMETRIC IDEAL DETECTOR

So far we have assumed that the ideal part of the dete
in Fig. 1 does not induce the shift of the qubit energy asy
metry « ~i.e., in our terminology assumed symmetrical
coupled detector!. However, in general the coupling with de
tector changes«, so it should be treated self-consistently19

As an example, the operating point of an SET as a detect
slightly shifted by different charge states of the measu
qubit. This generally leads to the change of the average
tential v of the SET island, which affects back the qub
energy asymmetry«. Notice thatv can also be temporary
shifted by a fluctuation of the current through SET, leadi
to the correlation between the output and backaction noi
So, in this example the shift of« and noise correlation are
closely related. Similar situation occurs when as a dete
we use a QPC, which location relative to the qubit is ge
metrically asymmetric.31,42 Then the qubit state affects th
phase of the QPC current,45 and in return each electron pas
ing through the QPC affects the phase difference betw
qubit statesu1& and u2&, thus leading to effective shift of«.
Correspondingly, the noise of the QPC current causes
correlated noise of«, so again these effects are closely r
lated.

The asymmetric coupling can be relatively easy taken i
account for a small-transparency QPC using the model a
lyzed in Ref. 28. The detector and its interaction with t
qubit are described by Hamiltonians

Hdet5(
l

Elal
†al1(

r
Erar

†ar1(
l ,r

~Tar
†al1T* al

†ar !,

Hint5(
l ,r

~c1
†c12c2

†c2!S DT

2
ar

†al1
DT*

2
al

†ar D , ~41!
8-6
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in which we neglect the dependence of tunnel matrix e
mentsT and DT on the electron states (l ,r ) in electrodes.
The only difference of this model from the model of Ref.
@which leads to Eqs.~2! and~3!# is the possibility of complex
T and DT ~actually,T can be assumed real without loss
generality!. Following the procedure developed in Ref.
it is possible to show46 that in the corresponding Bloc

equation forṙ12
n ~wherer i j

n is the density matrix with accoun
of the numbern of electrons passed through the detect!
the term2 AI 1I 2e21r12

n21 should be replaced by

exp(iw)AI 1I 2e21r12
n21 , where w5arg@(T1DT/2)(T*

2DT* /2)]. Therefore each electron tunneling through t
detector adds the phasew to r12, thus affecting the qubit
energy asymmetry«.

The assumption of weak detector response impliesuDTu
!uTu, so thatuwu!1.28 The extra phase leads to the ext
term i (u/\)I dr12 in Eq. ~3! whereu[\w/e. Separating it
into the average and fluctuating parts, we obtain the follo
ing equations for the asymmetric ideal detector in the S
tonovich form:
pl

23540
-

-
-

ṙ1152 ṙ22522
H

\
Im r121r11r22

2DI

S0
@ I d~ t !2I 0#, ~42!

ṙ125 i
«̃

\
r121 i

H

\
~r112r22!1 i

u

\
@ I d~ t !2I 0#r12

2~r112r22!
DI

S0
@ I d~ t !2I 0#r12, ~43!

where «̃5«1D« and D«5uI 05\wI 0 /e. Equations~42!
and~43! in Itô form have been obtained in Ref. 28~notice a
different definition ofu).47 Let us mention that even thoug
Eqs.~2! and~43! have been derived for a particular model
the detector@Eq. ~41!#, we expect them to be applicable to
significantly broader class of asymmetric ideal detectors~i.e.,
finite-transparency QPC’s, quantum-limited dc SQUID
etc.!. Notice that Eqs.~42! and ~43! are formally similar to
Eqs.~30! and~31! exceptg̃50 ~ideal detector! and the self-
consistent value«̃ is now different from«.

The solution of Eqs.~42! and ~43! in the simple caseH
50 is still given by Eqs.~10! and~11! for r11 andr22, while
Eqs.~12! and ~13! for r12 should be replaced by
r12~t!5r12~0!
@r11~t!r22~t!#1/2

@r11~0!r22~0!#1/2
ei «̃t/\eiu( Ī d2I 0)t/\ ~44!

5

r12~0!expF2
~DI !2t

4S0
2

~ Ī d2I 0!2t

S0
GexpF i

«̃t1u~ Ī d2I 0!t

\
G

r11~0!expF2
~ Ī d2I 1!2t

S0
G1r22~0!expF2

~ Ī d2I 2!2t

S0
G . ~45!
ce
ise

n

ion
Let us now add the classical noisesj1 , j2, andj3 ~see Fig.
1! to our model of asymmetric ideal detector.48 Using the
procedure explained in two previous sections, we multi
Eq. ~45! by the factor exp(iAxt/\) wherex5t21*0

tj1(t)dt,
average the resulting equation and Eq.~10! over the distri-
bution p(x) given by Eqs.~16! and ~17!, differentiate the
result over time, and add the terms due toH andj3. In this
way we obtain the following Stratonovich equations:

ṙ1152 ṙ22522
H

\
Im r121r11r22

2DI

SS
@ I ~ t !2I 0#,

~46!

ṙ125 i
«̃

\
r121 i

H

\
~r112r22!1

i

\

AS11uS0

SS
@ I ~ t !2I 0#r12

2~r112r22!
DI

SS
@ I ~ t !2I 0#r122g̃r12, ~47!

where
y
g̃5

~DI !2S1

4S0SS
1

S0S1

SS

~A2u!2

4\2
1g3 . ~48!

It is interesting to notice that the single-qubit decoheren
rate g̃ can be decreased by adding the backaction no
j2(t)5Aj1(t) with A5u ~i.e., having the same correlatio
with the output noise as the quantum backaction!, even
though it increases the ensemble dephasing rate

GS5~DI !2/4S01u2S0/4\21A2S1/4\21g3 . ~49!

One can easily see that introducing the total correlat
between the output noise and the backaction~including
quantum! noise,

K5
AS11uS0

\SS
, ~50!

we reduce Eqs.~46! and~47! to Eqs.~30! and~31! discussed
in the previous section.~The only new feature is the
measurement-induced energy shift«→ «̃, which can also
8-7
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have a simple classical contribution due to the shift of
detector operating point.! Therefore the corresponding Itˆ
equations are still given by Eqs.~34! and ~35! and the
ensemble-averaged equations are still given by Eqs.~36! and
~37!, while the relation between the single-qubit decohere
g̃ and ensemble decoherenceGS still satisfies Eq.~32!. Thus
we conclude that the Bayesian description of the meas
ment process given by Eqs.~30!–~37!, which is expressed in
terms of the physically relevant quantitiesK, SS , andGS ,
remains valid in the case when the ideal part of the dete
is assumed asymmetrically coupled to the qubit. Simila
the limitation ~38! for GS remains valid and the definition
~39! and ~40! of the detector ideality can still be used.

Let us emphasize again that the phenomenologically
troduced separation between the quantum and classical n
contributions does not show up in the Bayesian descrip
of the continuous single qubit measurement@Eqs.~30!–~32!#,
and the detector in our model is completely described by
quantities: dc output current~‘‘operating point’’! I 0, response
DI , output noiseSS , ensemble dephasing rateGS , correla-
tion magnitudeK, and the induced qubit energy shiftD«.
The quantitiesSS , GS , andK are analogous to the outpu
input, and cross-correlation noise terms, which are usu
used for the description of a classical amplifier~and similarly
for the description of a quantum amplifier—see, e.g., Ref.
and references therein!. The induced energy shiftD« is
somewhat similar to the effect of a finite amplifier input im
pedance onto the previous stage parameters.

VI. DETECTOR MEASURING ENTANGLED QUBITS

Finally, let us consider the case when the detecto
coupled toN arbitrarily entangled and arbitrary interactin
qubits. Following Ref. 49 we introduce the measurement
sis consisting of 2N statesu i & and up to 2N different levelsI i
of the detector average current~some average currents ca
coincide!. For an ideal symmetric detector and ‘‘frozen’’ qu
bits, Hqbs50, whereHqbs is the Hamiltonian of intrinsic
evolution of the qubits, the evolution of the density matrixr
of qubits due to measurement is described by simple ‘‘qu
tum Bayes’’ equation,44,49

r i j ~t!5r i j ~0!
APi~t!Pj~t!

(
k

rkk~0!Pk~t!

, ~51!

wherePi(t) is the probability of obtaining particular mea
surement result (Ī d in this case! assuming stateu i & of the
measured system:

Pi~t!5
1

A2pD0

expF2
~ Ī d2I i !

2

2D0
G , D05

S0

2t
~52!

~we again assume that the currentsI i do not differ much, and
therefore the detector noiseS0 is state independent!.

To take into account additional output noisej1(t) with
spectral densityS1, we have to perform the averaging of th
density matrixr i j over x5 Ī 2 Ī d with the weight factor
23540
e

e

e-

or
,

-
ise
n

ix

ly

2

is

-

-

p~x!5P~x!Y E P~x8!dx8, ~53!

P~x!5

expS 2
x2

2D1
D

A2pD1
(

k
rkk~0!

expF2
~ Ī 2x2I k!

2

2D0
G

A2pD0

.

~54!

This procedure~without account of other noise sources! will
lead to the equation presented in Ref. 49 and correspond
the detector idealityh5S0 /(S01S1), similar to the one-
qubit case.

For the classical backaction noise which is 100% cor
lated withj1(t), we should take into account that it can b
coupled differently to different qubits. Let us assume that
energy of each stateu i & is affected by the classical backactio
noise, proportional toj1, so that« i→« i1Aij1(t), whereAi
are arbitrary constants. Then Eq.~51! should be multiplied
by the factor exp@i(Aj2Ai)xt/\# ~in the one-qubit case the
previously definedA would correspond toA22A1).

Similarly, to take into account the possible asymmetry
the quantum backaction noise, let us assume that each
tron tunneling through the ideal part of the detector shifts
phases corresponding to statesu i & ~differently for different
states!, that leads to the extra factor exp@i(ui2uj)Ī dt/\# in Eq.
~51!.

The uncorrelated classical noisej3(t) is also assumed to
be coupled differently to the statesu i &, so that « i→« i
1gij3(t), wheregi are some constants. The averaging ov
noise j3 is simple and leads to the extra factor exp@2(gi
2gj)

2S3t/4\2# in Eq. ~51!.
Taking into account the effect ofu i , averaging over the

noisej1(t) ~and fully correlated backaction noise! andj3(t),
differentiating equations over time, and adding the intrin
evolution of qubits, we finally obtain the following equatio
in the Stratonovich form:

ṙ i j 52
i

\
@Hqbs,r# i j 1 i

D« i j

\
r i j 1 iK i j F I ~ t !2

I i1I j

2 Gr i j

1r i j

1

SS
(

k
rkkF S I ~ t !2

I i1I k

2 D ~ I i2I k!

1S I ~ t !2
I j1I k

2 D ~ I j2I k!G2g̃ i j r i j , ~55!

where the first term describes the intrinsic evolution of qub
due toHqbs, D« i j 5(u i2u j )(I i1I j )/2 is the effective energy
shift due to detector asymmetry,SS5S01S1 is the total out-
put noise,

Ki j 5
~Aj2Ai !S11~u i2u j !S0

\SS
~56!

is the correlation factor between output and backact
noises, and the dephasing rate is
8-8
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g̃ i j 5
~ I i2I j !

2S1

4S0SS
1

~gi2gj !
2S3

4\2

1
S0S1

4\2SS

@~Aj2Ai !2~u i2u j !#
2. ~57!

Notice that there are obviously no dephasing terms for d
onal matrix elements. Also notice that Eq.~55! is applicable
to both linear and nonlinear detectors, including purely q
dratic detectors,50 as long as the condition of weak respon
is satisfied.

Translating Eq.~55! into Itô form, we obtain

ṙ i j 52
i

\
@Hqbs,r# i j 1 i

D« i j

\
r i j 1 iK i j S I ~ t !2(

k
rkkI kD r i j

1r i j

1

SS
S I ~ t !2(

k
rkkI kD S Ii1I j22(

k
rkkI kD2G i j r i j ,

~58!

where the ensemble dephasingG i j is related to the single
system dephasingg̃ i j as

G i j 5
~ I i2I j !

2

4SS
1

Ki j
2 SS

4
1g̃ i j ~59!

and in our particular case is equal to

G i j 5
~ I i2I j !

2

4S0
1

~Aj2Ai !
2S1

4\2
1

~u i2u j !
2S0

4\2
1

~gi2gj !
2S3

4\2
.

~60!

Since the combinationI (t)2(krkkI k in Eq. ~58! is a pure
noise because of the relation

I ~ t !5(
k

rkkI k1j0~ t !1j1~ t !, ~61!

the ensemble averaged evolution is described by the red
equation

ṙ i j 52
i

\
@Hqbs,r# i j 1 i

D« i j

\
r i j 2G i j r i j . ~62!

Because of the reciprocity, it is natural to assume that
backaction couplingsAj2Ai , u i2u i , and gi2gj are pro-
portional to the signal couplingI i2I j , so thatAj2Ai5(I i
2I j )a, u i2u j5(I i2I j )Q, and gi2gj5(I i2I j )g. ~Actu-
ally, this assumption implies detector linearity and also t
all interactions with qubits occur via one ‘‘port of entry.’’ It i
not valid, for example, when several geometrical parts of
detector interact with qubits in different ways.! With this
assumption the parametersD« i j , Ki j , g̃ i j , andG i j used in
evolution equations~55! and ~58! become

D« i j 5Q~ I i
22I j

2!/2, ~63!
23540
-

-

ed

e

t

e

Ki j 5
aS11QS0

\SS
~ I i2I j !, ~64!

g̃ i j 5~ I i2I j !
2F S1

4S0SS
1

~a2Q!2S0S1

4\2SS

1g3,nG , ~65!

G i j 5~ I i2I j !
2S 1

4S0
1

a2S1

4\2
1

Q2S0

4\2
1g3,nD , ~66!

whereg3,n5gS3/4\2. Notice that there will be no dephasin
between statesu i & andu j & if the detector is equally coupled t
these states,I i5I j .

The detector ideality in this case can be characterized b
single number~or few numbers for different definitions!,
which does not depend on the state of the measured sys
Extending the definitions~24!, ~39!, and ~40! discussed in
previous sections, the detector ideality can be character
by the parameter combinations

h5
1/4SS

GS,n
, h̃5

1/4SS1Kn
2SS/4

GS,n
,

h̃25
1/4SS

GS,n2Kn
2SS/4

, ~67!

where Kn[(aS11QS0)/\SS and GS,n[1/4S01a2S1/4\2

1Q2S0/4\21g3,n . In the casea5Q50 all definitions of
ideality coincide and the evolution equation~55! reduces to
the equation derived in Ref. 49. In the case of finitea and/or
Q, more natural definitions areh̃ andh̃2 ~again,h̃2

21/2 is the
total energy sensitivity in units of\/2). However, idealityh
can also be a useful parameter, for example, if there is
way to control the degree of freedom affected by the ba
action noiseQj01aj1, and therefore the correspondin
dephasing cannot be reduced by a feedback procedure.

VII. CONCLUSION

In this paper we have analyzed the process of continu
measurement of a solid-state qubit by a nonideal solid s
detector. We have considered the phenomenological m
of the detector~Fig. 1! consisting of an ideal~quantum-
limited! part and classical noise sources which contribute
the output (j1) and backaction (j21j3) noises. The possible
correlation between classical output and backaction no
sources is taken into account by separating the backac
noise into a contributionj2(t) fully correlated with output
noisej1(t) and the uncorrelated contributionj3(t). For the
description of the ideal part we have started with the Ba
sian equations of Refs. 4, 10 and 19 and then used the m
of an asymmetrically coupled ideal detector developed
Ref. 28. The asymmetric coupling changes the s
consistent energy difference between two qubit states. A
this change fluctuates in time and the fluctuations are co
lated with the output noise, thus producing an effect sim
to the correlation of classical noises.

The main result of the paper for the one-qubit case is
8-9
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derivation of evolution equations~30!–~31! and~34!–~35! in
Stratonovich and Itoˆ form, respectively. In these equation
the detector is characterized by the total output noiseSS ,
induced ensemble qubit decoherence rateGS , and the total
correlationK @see Eq.~50!# between output and backactio
noises, so that the phenomenological detector separation
the quantum part and extra noises is irrelevant.~Notice that
these three quantities are the counterparts of output, in
and cross-correlation noise terms used for the descriptio
a classical amplifier.! The relation between ensemble a
single qubit decoherence rates is given by Eq.~32!, which
leads to the fundamental limitation~38! for the ensemble
decoherence rate. The discussed definitions of the dete
ideality @see Eqs.~24!, ~39!, and~40!# are various combina
tions of the single qubit decoherence rate, ensemble deco
ence, and the ‘‘information acquisition’’ rate (DI )2/4SS . A
e,

ys

n,

-

o-

a-

m

el

ic
.

23540
to
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100% ideal detector corresponds to the absence of si
qubit decoherence.

The theory developed for a single qubit measuremen
generalized to the case of entangled qubits in section VI.
evolution equation is given by Eqs.~55! and ~58!, while the
relation between ensemble and single system decoher
rates is given by Eq.~59!.
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