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Nonideal quantum detectors in Bayesian formalism
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The Bayesian formalism for a continuous measurement of solid-state qubits is extended to a model which
takes into account several factors of the detector nonideality. In particular, we consider additional classical
output and backaction noiséwith finite correlation, together with quantum-limited output and backaction
noises, and take into account possible asymmetry of the detector coupling. The formalism is first derived for a
single qubit and then generalized to the measurement of entangled qubits.
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[. INTRODUCTION coherent state for a significantly long time. Therefore the

entanglement is neglected and we discuss the random evolu-
The problem of continuous qubit measurement is of dion of the qubit, correlated with the random evolution of the
significant importance for solid-state quantum computing detector(in some sense this is a quasiclassical apprpach

because the measurement of a solid-state qubit typically révloreover, we assume that intrinsic quantum evolution of the
quires a Significant time and thus can interp|aydetect0r is much faster than qublt eVOlUtlon, so that the so-

nontrivially?~® with the intrinsic evolution of the qubit sys- Called Markov approximation can be used and the detector
tem. The evolution of a single solid-state qubitthout en-  N0iSe spectral density can be assumed to be frequency inde-
semble averagingdue to continuous measurement can pePendent. This condition in typical situations can be expressed
described by the Bayesian formaligifior a review see Ref. aseV/n>{), whereV is the detector bias voltage atillis a

10) which takes into account the noisy measurement outputP'IOiCaI (Rabj freqqency of _the qubit evolution. !n other
words, the energy involved in the detector operation should

of the detector. Apart from different notations, the Bayesia%e much larger than the typical energy of the measured sys-

Iom]?rgsggrac:;ﬂgl.Zcr)?']r;cd'gefevg'ig Tj.;i;?g Soéttlj]esilrj::{tem (actually, without this condition the interaction between
u J y ; P ; P the qubit and detector cannot be meaningfully considered as

the the‘?fy devgloped for quantum optiés. a measuremehtThe purpose of these assumptions is to en-
The interaction between the measured quantum Systeg|,e that the detector output is a classical quantity and is not
and continuously operating detector leads to a randomygjved in further quantum interactionén the quantum
gradual change of the measured system, which is often callgleory of linear amplifiers developed by Catfethis condi-
quantum backaction. However, the noisy component of thgion corresponds to large amplifier gain in units of number of
detector output is correlated with this backaction; thereforgyuanta—see discussion in Ref.)1&ne more usual assump-
the evolution of the measured system during the measureion of the Bayesian approactvhich can be easily removgd
ment process can be inferred from the noisy detector outputs that the detector output is continuous. While a discontinu-
In the quantum Bayesian approach the detector output isus detector output‘quantum jumps’) is a more typical
taken into account using the classical Bayes thedfem, situation in the quantum trajectory approach applied to solid-
which is applied in a straightforward way to the diagonalstate qubit$,both formalisms basically coincidas has been
elements of the density matrix of the measured system, whilshown in Ref. , in spite of some technical differences.
a special care is taken of nondiagonal matrix elements. One of the main predictions of the Bayesian formalism is
Actually, there are many approaches with a similar meththe absence of the single qubit decoherence during the mea-
odology(though the formalisms may look very differ¢mind ~ surement by a gootidea) detectof in contrast to decoher-
similar results, which have been developed in various areasnce of an ensemble of qubit$® (even though each mea-
of physics. These approaches have been pioneered by tBarement path involves experimentally monitorable pure
theories developed more than two decades ago by Daviequbit states, the paths are random and therefore different,
Kraus, and Holevd? which have generalized the “ortho- leading to the decoherence as a result of ensemble averaging
dox” guantum measurement and lead to the theories descrilor averaging over the measurement rgsWoreover, the
ing continuous quantum measurement. An important contristate of a solid-state qubit can be gradually purified in a
bution has been the approach of the restricted path int&yral.course of continuous measurement. In particular, this makes
Among all areas of physics, the theory of continuous quanpossible to monitor the phase of quantum cohef&gbi
tum measurement has been best developed in quantum optigscillations of the qubit. Such monitoring can be naturally
(see, e.g., Ref. 15where it is often called as the quantum used in the quantum feedback cont?df of the Rabi oscil-
trajectory approaclkifor more references see Ref.)10 lations which suppresses the qubit decoherence due to envi-
The Bayesian approach is developed mostly for the conronment(for quantum feedback in quantum optics see, e.g.,
tinuous measurement of solid-state qubits and necessarily r&efs. 21-24 Another potentially useful application of the
quires several simplifying assumptions. Even though the deBayesian formalism is a recent prediction that two qubits can
tector gets entangled with the qubit in a course ofbe made fully entangled by their continuous measurement
measurement, we assume that the detector cannot be inwith an equally coupled detect®t.
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The efficiency of the quantum feedback loop operation  classical noise f================="=s=--===-c---- '
; . . . . fully S1
crucially depends on the idealitguantum efficiencyof the affecting &

detector. For example, 100% synchronization between the . - M ,
qubit Rabi oscillations and desired pure oscillations is pos- sional
sible only for 100% ideal detect8t.Many other effects re- qubit |, nenal AR ROR
lated to continuous measurement of solid-state qubits, which (¢ gy [T «— 17| detector Sp classical (il So+S1
have been predicted using the Bayesian formalisee, e.g., 7 q‘ll.an.t“g" current
Refs. 4 and 25-28also depend significantly on the detector bagl?atzioni
ideality. The idealityn of a continuously operating solid- noise 1
state detector can be generally defined as a ratio between tf cl detector |

detector performance and the performance of a quantum
limited detector, in which the output and backaction noises
are strictly related, reaching the lower bound of an inequality FIG. 1. Schematic of a nonideal solid-state detector measuring a
similar to the Heisenberg uncertainty relation. More exactjubit state. The detector is modeled as an ideal quantum detector
definition will be discussed later. and three sources of additional classical noise: output rige

A quantum point contactQPQ at low temperature is Wwith the white spectral densit$,;, backaction noise,(t) fully
theoretically an ideal quantum deteétdhat follows from  correlated withéy(t), and uncorrelated backaction noiégt). The
the results of Refs. 2 and 29. A nearly ideal operation of thdotal noise densitys,+S, of the output detector currer(t) in-
QPC has been demonstrated experimenf&ﬁﬂﬂ'he factthat Cludes the contributiois, from the noise of ideal detector current
a superconducting quantum interference de{®&@UID) can (1)
theoretically reach the limit of an ideal detector follofvs
from the results of Ref. 33. A normal state single-electronderivation of the Bayesian formalism for a nonideal detector
transistor (SET) is not a good quantum detector at usualWith correlated output and backaction noises, usinghe-
operating points above the Coulomb blockade threshbld. nomenologicaimodel which adds correlated classical noise
However, its quantum efficiency improves when we goto the quantum-limited noise of an ideal detector. In spite of
closer to the threshold3* and becomes much better when introducing the quantum-limited and classical noises in the
the operating point is in the cotunneling rangelow the —model on different footing, there is no distinction between
threshold, in which case the limit of an ideal detector can bethem in the final equations for the measured qubit evolution,
achieved®3¢ Superconducting SET is generally better thanand the detector is characterized by six real numbers: the dc
normal SET as a quantum-limited detector and can approackHIrent(operating point the response, the total output noise,
100% ideality in the supercurrent regifias well as in the the total backaction noise, their correlation, and the induced
double Josephson-plus-quasiparticle regifn&inally, the  shift of the qubit energy asymmetry. After the derivation of
resonant-tunneling SE{Ref. 5 can reach complete ideality formalism for the measurement of one qubit, we generalize it
in the small-bias limit. to the continuous measurement of an arbitrary number of

In the simplest version of the Bayesian formalfssnon- ~ entangled qubits.
ideal solid-state detector is modeled as an ideal symmetri- Notice that the issue of the asymmetric detector coupling
cally coupled detectd? and a “pure dephasor” in parallel to qubit has been recently discussed for a QPC in terms of
(environment or just extra backaction noisk this case the the tunneling phase dependence on the qubit Stafet"*>
nonideality leads to an extra term in the Bayesian equationd;0r & small-transparency QPC the formalism is significantly
which introduces the gradual decay of the nondiagonal elesimplifiec® and is a direct generalization of the model of
ments of the density matrix of the measured qubit. It wasRef. 2. We will use the results of Ref. 28 to model an ideal
implied that such backaction dephasing is also equivalent t8Symmetric detector.
the extra noise at the detector output. However, the equiva- While we model the detector nonideality by an additional

lence has never been proven explicitly, and this is one of thélassical noise, let us mention a different approach to the
goals of the present paper. nonideality in Ref. 28, in which a random fraction of elec-

In a more advanced version of the Bayesiantrons tunneled through the detector is assumed to be missing.
formalism?#®'® a possible correlation between the output!n our opinion, such model is not well applicable to solid-
noise of a nonideal detector and the backaction noise is takefiate detectors, even though it perfectly describes the ineffi-
into account. However, the formulas for the evolution of theciency of a photodetector in a similar problem in quantum
qubit density matrix in this case have been presented withol@ptics.
any derivation, just from physical intuition. Moreover, com-
parison of these formulas with the results obtained by Goan
and Milburrf® for an ideal but asymmetrically coupled de-
tector (which shifts the energy levels of the measured qubit  We will use the phenomenological model of a nonideal
reveals some difference. Even though the difference is minosolid-state detector of a qubit state shown in Fig. 1. It con-
(second order in the detector response, which is assumed sists of an ideal detector and three sources of additional clas-
be small, it points to some incorrectness of the initial for- sical noise. We assume that the detector output is the noisy
mulas of Ref. 40(corrected formulas can be found in Ref. currentl(t) (we have in mind a QPC or a SET as a detéector
10). The main goal of this paper is to present a mathematicalhe ideal detector is characterized by the output noise spec-

1. MODEL
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tral density S, [we assume flat“white” ) noise spectrum For simulations, Eqg2) and(3) should be complemented
and its backaction onto the measured qubit which will beby the equation

called quantum-limited noise or just quantum noig&ctu-

ally, because of the quantum relation between the output
noise and the backaction, the output noise could also be
called quantum; however, we will avoid such terminology, . . .
emphasizing the assumption that the quantum behavior doé@ere £o(t) s the pure output noise of the ideal detector
not propagate beyond the ideal detegtor. with flat spectral densitg,.

The first source of an additional classical noise adds the Eduations(2) and (3) are written in the so-called Stra-
noisy component,(t) with the white spectral densit$; to tonovich fo_rm, which assumes symmetric definition of the
the outputl 4(t) of the ideal detector, so that the final output derivative, p(t) =lim,_o[ p(t+ 7/2)—p(t—7/2)]/7. For the
is 1(t)=14(t)+ &4(t). The second noise source is the classi-forward definition of derivative, p(t)=Ilim_ _ o[ p(t+7)

Al
|d(t)_|o:7(P11_P22)+§o(t), (4)

cal noiseé,(t) which is 100% correlated wittproportional ~ — p(t)]/7 (It form), Egs.(2) and(3) transform intd®
to) the noiset;(t) and affects the qubit energy asymmetry
[The qubit Hamiltonian is H 2Al

p11= — P2o= _2z|m P2t P11p22§50(t)1 (5

&
Hap= (€3¢, C161) + H(cic,+ cicy), (1) . & H Al
p1o=I1 gplz‘i“' %(Pn_Pzz)_ (P11~ Pzz)gplzgo(t)
where the tunneling strength is assumed to be real without 2
loss of generality. The relative magnitude of the noise _(abh p (6)
& (1) =A&, (1) is characterized by the paramet&r Finally, 45, "

the third classical noise source is the white ndig) which while the relation(4) remains unchange@iThe general rule

also affects the qubit energy asymmety[so thate—e L .43 ;
. . of transformation is the following? for an arbitrary system
+&,(1) + &3(1)]. The second and third noise sources together 6 y sy

are obviously equivalent to one white noise source, partially’f €3uations«(t) =G;(x,t) + Fi(x,) §(t) in the Stratonovich
correlated withé,(t). However, we prefer to split it into the form, the corresponding equations in the feam arex;(t)
fully correlated and uncorrelated parts for clarity. Obviously, = Gi(X,t) + Fi(X,t) £(t) + (Sg/4)ZFi(X,t) 9F; (X,1) ] Xy .]

the qubit parameteH can also be affected by the detector The advantage of the Ittorm is that the averaging over the
noise; however, we do not take this effect into account, benoise &(t) is straightforward(we just need to eliminate
cause the qubit dephasing is more naturally caused by tHerms with&), so it is easy to obtain the ensemble averaged
noise of its energy asymmetgy (which corresponds to the evolution:

measured degree of freedpmand also because the induced

noise ofH is negligible, for example, for a single-Cooper- o ﬂ
pair qubit measured by an SET. pu= P22~ 25 1M pz, ™
Let us start with the symmetric ideal detector, neglect all
classical noiseg; , ft) and use the basic Bayesian formal- . e .H (Al)2
ism to describe the measurement procgss, the result of p12= 13 p1oti g (p1a— P22~ 45, P ®
guantum backaction onto quhitthen the evolution of the
qubit density matrixo;; (t) jg+10.19 On the other hand, the advantage of the Stratonovich form is

the validity of usual calculus rulgsvhich do not work in the
_ _ H 2A1 Ito form) and therefore easier physical interpretation of equa-
P11:—1022:—Zg|mP12+P11022§[|d(t)—|0]' (2)  tions. _ ' o
Let us emphasize that the single qubit in this model
(which assumes ideal detectaloes not decohere during the
) & H measurement process, as easier to see from(Bgand (3).
plZ:'%p12+'ﬁ(Pll_pZZ)_(pll_pﬂ)g[ld(t)_IO]plZ' However, because of the probabilistic nature of quantum
©) measurement, the ensemble of qubits does decohere since
different qubits will go along different “trajectories.” The
Here Al=1,—1, is the detector responsk, is the average ensemble decoherence ratkl[%/4S, is determined by this
detector current for the qubit stafé), 1, is the average quantum randomness and therefore can be naturally called
current for the stat€), andl =(1,+1,)/2. For the validity = “quantum-limited” decoherence ratélt can also be called
of Egs. (2) and (3) we have to assurfié®'®the weakly re- “information-limited” ensemble decoherence, since its ori-
sponding detectotAl|<I,, sufficiently large detector volt- gin is the tendency of qubit state to evolve either into state
age (much larger than the qubit energieand assume that |1) or |2), corresponding to the information acquired from
the passage of individual electrons in the detector is muckhe measurement)

faster than the qubit evolutiomg/e> (4H2+ £2)/#, so that While it is not trivial to take into account additional clas-
the current can be considered as continu@ee the brief sical noisesé; and &, (this will be done in the following
discussion of the conditions in the Introduction section$, the account of the nois&; is very simple. It obvi-
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ously leads to the additional dephasing tefnyzp1,in EQs. ¢, which just leads to an extra factor ekpf) in Egs.(12)
(3), (6), and (8), where y;=S3/4h? is proportional to the  and (13); however, we will not do that in order to keep the
spectral densitys; of &3(t). We will characterize this noise formulas shortet.

by the dephasing ratg; instead of characterizing it b$;. Since the detector output is noMit) =14(t) + £,(t), we
(The relationy;=S;/4%” can be easily derived adding(t)  have to expresp;;(7) in terms ofI(t) and average it over
to e in the Stratonovich form, then translating the equationihe noiseé; (t). Naively thinking, we have to use the substi-

into 1to form, and averaging ovefs.) tution
The natural definition of the detector ideality factgrin
this case i$1%1° — — —Afr 1(r
[¢=1—x, I= —f I(t)dt, x= —f & (tHdt, (15
I TJo TJo
_1lo
77:1*_2' 9 and average Eq$10) and(13) over the noise contributior

using the weight factorp(x)=(27D;) Y%exp(—x42D,)
where I'y=(A1)%/4S, is the quantum-limited contribution whereD,=S,/27 is the variance ok. However, this is not a
andI'y=T"g+ y; is the total ensemble dephasing rate. Sim-correct procedure because the probability distributior isf
ply speaking, this definition of ideality is the ratio between correlated withl (though it is not correlated withg). So
quantum contribution and total backaction noise. instead, we have to use the conditional distributiox &dr a

givenl|:
Ill. IDEAL SYMMETRIC DETECTOR AND ADDITIONAL

OUTPUT NOISE
p(X)=P(X)/ j P(x")dx’, (16)
Let us now take into account additional output noise

&1(1), while &,(t) is still zero. We also switch off;(t),

: e S2 . . 2
since it is trivial to add its effect later. In order to derive exp(—x“/2D)

P(x)= exd — (1 —x—1,)2/2D,]

p11(0

Bayesian equations in this case, let us also assHme V27D, 27D,
=0 (“frozen” qubit) and add the effects ¢f ande later. For .
H=¢=0, Egs.(2) and(3) have a simple solutidr® which exd — (I —x—1,)%/2D¢]
can be interpreted as a consequence of the “quantum Bayes +p220) > ' (17)
A4 7Dy
theorem”!
. whereD = Sy/27. (Let us stress again that bokth andx are
pu(m)=|1+ paAT) assumed to be classical quantit}elsnt@du&ing the weight
1 p11(7) factor p(x) into Eq. (10), substitutingl 4=1—x, and inte-
— ) -1 grating overx, we get the averaged equation
114 p220) exp — (14— 12)°7/S] (10 B
p11(0) expl — (Ig—11)27iSo]| p2a0) exil - (1-1)%7/Ss ]
p1(7m)=| 1+ — , (18
P11(0) exy — (1 —1,)%7/Ss]
p2A7)=1=p1s(7), (11 . . .
whereSs=Sy+ S, is the total output noise. The only differ-
[p1a(7)pox T)]H? ence compared with Eq10) is the change of into | and
p1A7)=p1A0)——— 0 (12 change ofS, into Sy (this is quite expected singe,; be-
[p12(0)p2A0)] haves as a classical probability and the classical Bayes for-
. mula still works.
(A1)?r (lg—10)%7 To calculatep,,(7) averaged over the noisg(t), we
Plz(o)exr{— 45, expg — S have to do a similar procedure. We mﬂltiple Ef3) by the
= (I_—I V27 (I_—I V27|’ weight factqrp(x), use subfstitutiorid=l —X, and integrate
Pll(o)eXF{ _td U7 +p22(0)ex;{ - d—z} overx. In this way we obtain
So So
13 piA7)
where | 4 is the average of the detector current during the (A)27 (1—=1g)?r
time interval between 0 anet P12(0)eXF{ T a5, ex;{ T s
2 2 '
— g op[u 04&
lg= TJO I 4(t)dt. (14) p11(0) S p220) S
(19

Here Eq.(10) is the consequence of the classical Bayes . .
theoremt® and Eq.(12) says that the degree of the qubit Comparing Eqs(13) and(19), we see that, changes intd
purity is conserved[It is easy to include the effect of finite and Sy changes intdSs, except in the second factor of the
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numerator, wheres, remains unchanged. Let us representzen” qubit. Addition of&,(t) does not affect diagonal matrix

this factor as exp-(Al)?7/4Ss Jexp(—y,7), where
(AD)*S;
Y1= 45,S;s

So, the effect of additional output noigsg on the Egs.

(10—(193) is the following: the output currenty from the
ideal part of the detector changes into the output curkent

(20

the spectral densit$, corresponding to the ideal part of the

detector changes into the total output ndsse and the non-

diagonal matrix element acquires the dephasing factor exp

(—7). Differentiating the new equations over tin(i¢ we

do it in a simple first-order way, we automatically get equa-

tions in the Stratonovich forjrand adding terms due to, ¢,
and noisef;, we obtain

. . H 2Al
P11:_P22:_25|m p1ot P11922§[|(t)_|0]1 (21

. e H Al
p12=1 f_LPlz‘H z(Pll_Pzz)_ (P11~ Pzz)g[l (O —lolp12

—(v11 v3)p12- (22

We see that the effect of the extra output ndis@) is simi-
lar to the effect of the extra backaction noi&gt) and both
lead to the qubit dephasing.

From physical reasoning, the way of separation of the

detector into the ideal part and additional noise souégés
andé&;(t) is arbitrary, as long as the total output no&eand
total ensemble qubit dephasing rdig are fixed(in other
words, Sy andI'y are the only physically relevant quanti-
ties). It is easy to check that Eq821) and (22) satisfy this
requirement because

(A1)?

4Ss '
[The total ensemble dephasing réte can be formally found
from Eqgs.(21) and(22) by translating them into Ttéorm that
adds ensemble dephasing ratd Y?/4Ss .]

Comparing Egs(21) and (22) with Egs.(2) and(3), we

(A1)?

Y1t vys=Is— 2:E+73_ (23

naturally introduce a more general definition of the detector

ideality:

 (A1)%/4sg

T (24

which is again the ratio of the quantum-limited part of the

ensemble qubit dephasing and its total dephasing (iite-

tice that the numerator is not the “real” quantum backaction

determined bys,, but the information-limited backaction de-
termined bySs.) In particular, for our model in the case
&5(1)=0 (no classical backactignwe obtain 7=S;/(S,

elements, so Eq18) remains unchanged. In order to calcu-
late p15(7) averaged over the noisés and &,, we multiply
Eq. (13) by the factor exfiz~1fJ&(t)dt]=exp(Axr#) and
average it ovex with the weightp(x) given by Eqs.(16)
and(17). This leads to the equation

p1A7) )
) P12(0)exp{—(A4|S)027 xn[—('_s'jo
P11(0)ex;{ - (T_ITl)ZT +p22(0)ex;{ - (I_—S|:)27
Xexr{’z_“—_"))A%T eXF{—%%T . @9

in which only the last line is different from E@19).

Differentiating this equation over timégain, we auto-
matically obtain the Stratonovich fopmand adding terms
due toH, &, and&;, we get

. & . H i Sl
p12=1 7 p1otl g(Pn‘Pzz)*‘ g['(t)—lo]Agplz
Al
_(P11_P22)§[|(t)_lo]Plz_(YDL Y2+ ¥3)p12,
(26)
wherey; is given by Eq.(20) and vy, is
SoS1 A?
S e @

Physically relevant parameters of the detector are the total

output noiseSy = Sy+ S,, total ensemble dephasing rdte,

and the correlation between output and backaction noises.
Since three sources of the backaction noise in Fig. 1 are

uncorrelated, the ensemble dephasing rate is

(28)

[the same result can be obtained by translating(E§). into
Ito form and performing ensemble averagingollowing

[y =(Al)%/4Sy+ A?S,/4h°+ v,

Refs. 40 and 19, let us characterize the noise correlation by

the magnituddreal number

K= Ssl
_ﬁsz'

(29

whereS,, is the mutual spectral density of the detector out-

put noise and induced fluctuationsefstrictly speakings,,

in our notation is only the real part of the mutual spectral
density, while the imaginary part can formally describe the
detector respons®. In our caseK =AS; /%Sy . Expressing
qubit evolution only in terms of physically relevant quanti-
ties, we obtain

+S).

IV. CORRELATED OUTPUT AND BACKACTION NOISES

Now let us add the classical backaction najsét) which
affects the qubit energy [so thate — &+ &,(t)], and which
is 100% correlated with the output noise sourég(t)
=A¢&,(t). We again start with Eq410)—(13) for the “fro-

2Al1

: : H
P11=_P22=_25|m P12+P11P22§[|(t)_|0]’ (30
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H
c %(Pll_Pzz)“‘iK[l(t)_|0]P12_(P11_P22)

k’lz:igmz*'i
Al -
Xg['(t)"o]Plz_ YP12, (31)
where
- A% K2
Vzrz—(4si - 4SZ (32

and the new notation= ¢ is introduced to accommodate the
measurement-induced shift ef discussed in the next sec-
tion.

Equations(30)—(32) are the main result of this paper for
the measurement of one quliihe results of the next section
will lead to the same equationsgComparing Eqs(30)—(32)
with similar equations presentébut not derivedin Refs. 40
and 19, we notice a difference: the terd{ | (t) — 1] p1, Was
incorrectly replaced in Refs. 40 and 19 by the teil(t)
—(p11l1tp2d2)]p12. Notice though that the effect of their
differenceiK (A1/2)(p11— p22) p12 IS MINOr SiNCep 11— P2 IS
the oscillating magnitude and averages to zero. As will b
mentioned later, Eqs(30)—(31) in the casey=0 (this is
possible for asymmetric ideal detedtapincide with the cor-
responding equations of Ref. 2873f includes the detector-
induced shift.

To translate Eq930)—(31) from Stratonovich to ltdorm,
notice that

Al
|(t)_|0:7(P11_P22)+§0(t)+§1(t) (33

and the sum of two output white noises, (t)=&q(t)
+ &,(t) is the white noise with the spectral densBy. Then
using the standard rule of translation, we obtaineltmiations

) . H Al
P11= — P2o= — 2% Im pqo+ lezzg £o+1(D), (39

. e H .
p12=15 p1otl g(Pu—Pzz) +iK&p (D) p1o—(p11—p22)

(AD)*  K*Sy
482 4 P12,
while the relation between output curréiit) and pure noise

&0+ 1(t) is still given by Eq.(33). (Notice that the above-
mentioned incorrect term is correct in thé form of the

Al ~
X§§o+1(t)P12_ Y+ (35

e
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Since y>0 [otherwise solution of Eqs(34) and (35)
would violate inequality p5/><p11p,5], We obtain the fun-
damental limitation for the ensemble dephasing:

(A)?  K?Sy
as, A
Besides the definition of the detector idealiygiven by Eq.
(24) which would given=1—(y+K?Ss/4)/Ty , it is natu-
ral to introduce another definition of the ideatity
Y (A1)?/4Ss +K?Ss/4

- I ,
since the ternK?Sy/4 does not correspond to the dephasing
of a single qubit. One more possible definition of ideality

(which also gives 100% ify=0) is
B 1 _(AN?/4sy
1+9/[(A1)?/4Ss] Ts—K2?Sg/4’

y= (39

(39

72

(40)

so that (7,) Y2 directly correspond§ to the total energy
Sensitivity of the detector in units df/2. In the cas&K =0

all the definitions coincidey= 7= 7,.

V. ACCOUNT OF ASYMMETRIC IDEAL DETECTOR

So far we have assumed that the ideal part of the detector
in Fig. 1 does not induce the shift of the qubit energy asym-
metry ¢ (i.e., in our terminology assumed symmetrically
coupled detector However, in general the coupling with de-
tector changes, so it should be treated self-consisterifly.

As an example, the operating point of an SET as a detector is
slightly shifted by different charge states of the measured
qubit. This generally leads to the change of the average po-
tential v of the SET island, which affects back the qubit
energy asymmetry. Notice thatv can also be temporary
shifted by a fluctuation of the current through SET, leading
to the correlation between the output and backaction noises.
So, in this example the shift of and noise correlation are
closely related. Similar situation occurs when as a detector
we use a QPC, which location relative to the qubit is geo-
metrically asymmetrié>*? Then the qubit state affects the
phase of the QPC currefitand in return each electron pass-
ing through the QPC affects the phase difference between
qubit stateg1) and|2), thus leading to effective shift of.
Correspondingly, the noise of the QPC current causes the

equation, so the mistake was due to mixing the StratonovicRorrelated noise of, so again these effects are closely re-
and ltoforms) The corresponding ensemble-averaged equapted.

tions can be obtained by erasing terms contairgifg, (t) in
Egs.(34) and(35):

H
2_

bll: _bzzz 47 Impj,, (36)

- . 8 .
p12=1 gplz""

7 (37

(P11— P22 — szlz.

where the total ensemble decoherence fateis given by
Egs.(28) and/or(32).

The asymmetric coupling can be relatively easy taken into
account for a small-transparency QPC using the model ana-
lyzed in Ref. 28. The detector and its interaction with the
qubit are described by Hamiltonians

Hdet:Z E.a,*a,+§r) Era;rar+|§:, (Tala,+T*a/a,),

*

AT
H=3 (cles—cleo)| 3 atart yala|. @D
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in which we neglect the dependence of tunnel matrix ele- . H 2A1

mentsT and AT on the electron stated,¢) in electrodes. P11~ ~ P22= 25 IMpyyt lezzgﬂd(t)—'o], (42
The only difference of this model from the model of Ref. 2

[which leads to Eqg2) and(3)] is the possibility of complex pe H P
T and AT (actually, T can be assumed real without loss of p;,=i %p12+i %(pll— p2o) i %[ld(t)—|o]plz
generality. Following the procedure developed in Ref. 2,

it is possible to shof that in the corresponding Bloch ﬂ 43)

— - lq(t)—1
equation forp!), (wherepj] is the density matrix with account ~(p11 P22 So U0~ lolpaz _
of the numbem of electrons passed through the detector ‘;"2;{23‘; ;8I;:3Af§rn??gvAe8b:ezlno:kfltzipilnoe/g.inEggﬁthg?iizz
-1 n-1 .

the ternf i/11_|nzi P12 ShOUId_ be replaced *by different definition of¢).*” Let us mention that even though
exp(e)Viile tply ", where o= ard (T+AT/2)(T Egs.(2) and(43) have been derived for a particular model of
—AT*/2)]. Therefore each electron tunneling through theipe detectofEq. (41)], we expect them to be applicable to a
detector adds the phageto pi,, thus affecting the qubit  sjgnificantly broader class of asymmetric ideal detedtioes,
energy asymmetry. finite-transparency QPC's, quantum-limited dc SQUIDs,

The assumption of weak detector response imgleE| etc). Notice that Eqs(42) and (43) are formally similar to
<|T|, so that|¢|<1.® The extra phase leads to the extra gqs, (30) and (31) excepty=0 (ideal detectorand the self-
termi(6/h1)14p1 in Eq. (3) where 6=r/e. Separating it . nqistent valua is now different frome.
into the average and fluctuating parts, we obtain the follow- The solution of Eqs(42) and (43) in the simple caséd
ing equations for the asymmetric ideal detector in the Stra—  is siill given by Eqs(10) and(11) for p;; andp,,, while
tonovich form: Egs.(12) and(13) for p,, should be replaced by

112 _
[P12(7)pooA7)] gierlhgi 6(1g~1o) /A

(7)=p120) (44)
O L1102 0)12
(AD%7 (1g—1g)? e+ 0(lg—1o)
plz(O)ex;{— 4807_ d SOO T exr{l °r hd 0 T}

B (Ta—11)27 (Ta—12)%7 (49

(O)exp{ S +p22(0)ex;{ - d—z}

P11 SO SO
|
Let us now add the classical noisés, &,, and¢; (see Fig. ~ (AD?S; $4S; (A—6)?

1) to our model of asymmetric ideal detectBrUsing the =15 + S an? +vs. (48)

procedure explained in two previous sections, we multiply
Eq. (45) by the factor expgfx7/%) wherex= 7~ 1[7&,(t)dt,

average the resulting equation and EtQ) over the distri-
bution p(x) given by Egs.(16) and (17), differentiate the
result over time, and add the terms dueH@nd &5. In this
way we obtain the following Stratonovich equations:

It is interesting to notice that the single-qubit decoherence

rate y can be decreased by adding the backaction noise
& (t)=A¢&(t) with A= 4 (i.e., having the same correlation
with the output noise as the quantum backagticeven
though it increases the ensemble dephasing rate

. . H 2A1 I's=(A1)2%/4Sy+ 6°Syldh%+ A2S, /402 + y5.  (49)
p11= ~p22= — 25 Im P12+P11P22§[|(t)_|0]a ' °
(46) One can easily see that introducing the total correlation
between the output noise and the backactiorcluding
guantum noise,

. € H I AS+ 05y
p12=1 5 protl %(Pu‘ﬂzz)*’ % T['(t)_lo]l?lz AS,+ 0S,
=75 (50)
Al - Sy
—(p1—p2) [ (1) =lolp1o— vP12, (47 .
Sy we reduce Eq946) and(47) to Eqgs.(30) and(31) discussed
in the previous section(The only new feature is the
where measurement-induced energy shift-z, which can also
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have a simple classical contribution due to the shift of the

detector operating point.Therefore the corresponding”Ito p(X)ZP(X)/ j P(x")dx’, (53
equations are still given by Eq$34) and (35 and the

ensemble-averaged equations are still given by Bf.and _

(37), while the relation between the single-qubit decoherence ;{ X ) F{ (I=x=1 k)z}

'y and ensemble decohererice still satisfies Eq(32). Thus ex 2D, ex 2Dg

we conclude that the Bayesian description of the measure- P(X)= “ b, ; prk(0) 55

ment process given by Eg80)—(37), which is expressed in e o (54)

terms of the physically relevant quantiti&s Sy, andI'y,

remains valid in the case when the ideal part of the detectofy,g brcedurdwithout account of other noise sourgesl
is assumed asymmetrically coupled to the qubit. Similarly,eqq g the equation presented in Ref. 49 and corresponds to

the limitation (38) for I's remains valid and the definitions the detector idealityn=S/(S.+S.). similar to the one-
(39) and (40) of the detector ideality can still be used. qubit case. ¥7=So/(Sot+ S,

Let us emphasize again that the phenomenologically in-" £ the classical backaction noise which is 100% corre-
trodu'ced' separation between the.quantum an(_j classicql n.OiF:’:ﬁed with £,(t), we should take into account that it can be
contributions does not show up in the Bayesian description, e differently to different qubits. Let us assume that the
of the contmuous_smgle qubit measuremEE"qS.(SO)f(BZ)], _energy of each state) is affected by the classical backaction
and the detector in our model is completely described by six .o proportional td@,, so thate;— &, +A £ (t), whereA,
quantities: dc output currefftoperating point’) l,, response are a’rbitrary constanté. Then E(I($l) IShOI.IJ|d bé multipliéd

Al, output noiseSy , ensemble dephasing rafg , correla- ) A ; :
. . . . . y the factor exp(A;—A)x7#] (in the one-qubit case the
tion magnitudeK, and the induced qubit energy shifte. previously definedA \l/vould correspond ta\,— A,).

The quantitiesS; , T's, andK are analogous to the output, Similarly, to take into account the possible asymmetry of
input, and cross-correlation noise terms, which are usually,e quantum backaction noise, let us assume that each elec-
;Jse?]foé the Qe.scnp?on ofa cIassmaI@mphﬁend S|m|I<’:Il?rny aron tunneling through the ideal part of the detector shifts the
or the description of a quantum amplifier—see, e.g., Rel. 34, ;¢ corresponding to statés (differently for different

and references therginThe induced energy shifie is . .
somewhat similar to the effect of a finite amplifier input im- states, that leads to the extra factor ¢x@—¢)lq7/%] in Eq.
pedance onto the previous stage parameters. (5D). . . .
The uncorrelated classical noigg(t) is also assumed to
be coupled differently to the statgs), so thate;—e;
VI. DETECTOR MEASURING ENTANGLED QUBITS +0;&3(t), whereg; are some constants. The averaging over

Finally, let us consider the case when the detector i§10is€ &3 is simple and leads to the extra factor xg
coupled toN arbitrarily entangled and arbitrary interacting —9))°Ss74%°] in Eq. (51).
qubits. Following Ref. 49 we introduce the measurement ba- Taking into account the effect of;, averaging over the
sis consisting of Y statedi) and up to 2 different levelsl; ~ Nnoise&(t) (and fully correlated backaction nojsandé,(t),
of the detector average currefgome average currents can differentiating equations over time, and adding the intrinsic
coincide. For an ideal symmetric detector and “frozen” qu- €volution of qubits, we finally obtain the following equation
bits, Hgps=0, WhereHgys is the Hamiltonian of intrinsic  in the Stratonovich form:
evolution of the qubits, the evolution of the density majix

of qubits due to measurement is described by simple “quan- i Ag;; ) i+
tum Bayes” equatiof#4° pij= = 7 [HqpspLij +1 == pij +Kij 1) = ——py)
VPi(7)Pi(7) 1 i+ 1y
pij(1)=pij(O)——————, (5 i 2 pkk(ut)— ~ )(li—lo
> P 0)P(7)
k
|(t)——|"JrIk (=1 | = Yipij (55
where P;(7) is the probability of obtaining particular mea- - 2 i TP
surement resultlg in this casg assuming statéi) of the
measured system: where the first term describes the intrinsic evolution of qubits
due toH s, Agjj=(6,— 0;)(1;+1;)/2 is the effective energy
1 r{ (Td_ 1))2 S shift due to detector asymmeti§y = Sy+ S, is the total out-
P.(7)= exd ——————|, Dg==— (52 ut noise,
I( ) \/TDO 2D0 0 2r ( ) p
(we again assume that the currehtdo not differ much, and B (Aj=A)S + (60— 0)Sy 6
therefore the detector nois is state independent i hSs (56)

To take into account additional output noigg(t) with

spectral density5;, we have to perform the averaging of the js the correlation factor between output and backaction
density matrixp;; overx=1—14 with the weight factor noises, and the dephasing rate is
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;,_:(Ii—lj)231+(9i—gj)253 K”:%(h_,j), (64)
b ASSs 4h? 7Sy
SoS, ) ~ J| St (@-0)°%S,
+@[(Aj_Ai)_(0i_0]‘)] . (57 yii=i—=1)) 4Sosz+ e + v3n|, (65
Notice that there are obviously no dephasing terms for diag- 1 a’s, 0%,
onal matrix elements. Also notice that E§5) is applicable Ti=(1;—1 .)2<_+ I, 7, 73n> . (66)
to both linear and nonlinear detectors, including purely qua- . \4Sy an? gp? ’

dratic detectors? as long as the condition of weak response
is satisfied.
Translating Eq(55) into 1td form, we obtain

Wherey3yn=g53,/4h2. Notice that there will be no dephasing
between statg$) and|j) if the detector is equally coupled to
these stated, =1;.
The detector ideality in this case can be characterized by a
I(t)— > pkklk)pij single number(or few numbers for different definitions
K which does not depend on the state of the measured system.
Extending the definition$24), (39), and (40) discussed in

. i .ASij i
pij =~ 7 [Haps plij+i—=pij +iK;)

1
+pij _( |(t)_2 Prl |i+|j—22 pkk|k)—rijpij , previous sections, the detector ideality can be characterized
Sy k k by the parameter combinations
(58 2
1/4Sy . LA4Sy+K(Ss/4
where the ensemble dephasihg is related to the single 7= Ts,' n= s, '
system dephasing; as ' '
~ 1/4S¢
(=1)% KiSs -~ M=, (67)
= '482' + "4 +7; (59) Ty ,—K2Sy/4
, , , where K,=(aS;+0Sy)/4S;y and I's ,=1/4S,+ a2S,/4h>
and in our particular case is equal to +O2Sy/4hi%+ y3,. In the casea=©=0 all definitions of

ideality coincide and the evolution equati¢sb) reduces to
T C(i—1? N (Aj—A)?S; N (6;—0,)°Sy N (0i—9))°Ss the equation derived in Ref. 49. In the case of fimitend/or
17 as, 452 4542 4%2 O, more natural definitions arg and7, (again, 7, Y is the
(60) total energy sensitivity in units df/2). However, idealityn

can also be a useful parameter, for example, if there is no

Since the combinatioh(t) — =, p.l « in Eg. (58) is a pure  way to control the degree of freedom affected by the back-

noise because of the relation action noise®¢y+aé;, and therefore the corresponding

dephasing cannot be reduced by a feedback procedure.

|(t)=Ek Pkt Eo(t) + £1(1), (62) VIl. CONCLUSION

the ensemble averaged evolution is described by the reduced IN this paper we have analyzed the process of continuous
equation measurement of a solid-state qubit by a nonideal solid state
detector. We have considered the phenomenological model
] i Agj; of the detector(Fig. 1) consisting of an idealquantum-
pij=— g[quS,p]”— +i % Pil —Tijpij - (62 limited) part and classical noise sources which contribute to
the output €;) and backactiond,+ £3) noises. The possible
. o correlation between classical output and backaction noise
Because of the reciprocity, it is natural to assume that the . Ken i b . he backacti
backaction couplingsh—A, . 8i— &, andg,—g; are pro- Sources is taken into account by separating the backaction
. ) oo e noise into a contributioré,(t) fully correlated with output
portional to the signal coupling—1;, so thatA;—A;=(l; . d th lated buti For th
“1a, —6=(1,—1)0, and g—gi=(l,—1:)g. (Actu- n0|se_§1(_t) and the uncorrelated contri utlcﬁg(t)_. or the
all J th,is élssdm tilon Jim iies detéctojr Iinéarit] énd also thadescrlptlon of the ideal part we have started with the Baye-
y: P P y tsian equations of Refs. 4, 10 and 19 and then used the model

?lclytlr\]/tglzgcf‘g)rnzxvgﬁ ?eubv';rs]g:zlé:/\é';longoﬁgttﬂg;engﬁs Ict)f'sth of an asymmetrically coupled ideal detector developed in
' P, 9 P Ref. 28. The asymmetric coupling changes the self-

detector.mteract with qubits in dn‘feNrent waysiith th|§ consistent energy difference between two qubit states. Also,
assumption the parametess:; , K, v, andI'j used in  thjs change fluctuates in time and the fluctuations are corre-

evolution equation55) and (58) become lated with the output noise, thus producing an effect similar
s o to the correlation of classical noises.
Aeij=0(I7-1)/2, (63) The main result of the paper for the one-qubit case is the
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derivation of evolution equation80)—(31) and(34)—(35) in 100% ideal detector corresponds to the absence of single
Stratonovich and Ttdorm, respectively. In these equations qubit decoherence.

the detector is characterized by the total output n&se The theory developed for a single qubit measurement is
induced ensemble qubit decoherence late and the total generalized to the case of entangled qubits in section VI. The
correlationK [see Eq.(50)] between output and backaction evolution equation is given by Eq&5) and(58), while the

noises, so that the phenomenological detector separation infglation between ensemble and single system decoherence
the quantum part and extra noises is irrelevaNbtice that  rates is given by E(59).

these three quantities are the counterparts of output, input,
and cross-correlation noise terms used for the description of
a classical amplifier. The relation between ensemble and
single qubit decoherence rates is given by E), which
leads to the fundamental limitatio(88) for the ensemble The author thanks R. Ruskov for permission to use his
decoherence rate. The discussed definitions of the detectegsult on ideal asymmetric detector prior to publication and
ideality [see Eqgs(24), (39), and(40)] are various combina- for critical reading of the manuscript. The work was sup-
tions of the single qubit decoherence rate, ensemble decohgyerted by NSA and ARDA under ARO Grant No. DAAD19-
ence, and the “information acquisition” rateA()%/4Ss. A 01-1-0491.

ACKNOWLEDGMENTS

IM. A. Nielsen and I. L. ChuangQuantum Computation and 2'H. M. Wiseman and G. J. Milburn, Phys. Rev. Lef0, 548
Quantum Informatior{Cambridge University Press, Cambridge, (1993.

2000. 22p_Tombesi and D. Vitali, Phys. Rev. %, 4913(1995.
23, A. Gurvitz, Phys. Rev. 56, 15215(1997. 23A. C. Doherty, S. Habib, K. Jacobs, H. Mabuchi, and S. M. Tan,
3Y. Makhlin, G. Schim, and A. Shnirman, Rev. Mod. Phy&3, 357 Phys. Rev. A62, 012105(2000.

(2001). 22M. A. Armen, J. K. Au, J. K. Stockton, A. C. Doherty, and H.
4A. N. Korotkov, Phys. Rev. B50, 5737(1999. Mabuchi, Phys. Rev. LetB89, 133602(2002.
5D. V. Averin, Fortschr. Phys48, 1055(2000. 25R. Ruskov and A. N. Korotkov, cond-mat/0206396, Phys. Rev. B
®H.-S. Goan, G. J. Milburn, H. M. Wiseman, and H. B. Sun, Phys.  (to be publisheg

Rev. B63, 125326(2001). 26, N. Korotkov, Phys. Rev. B3, 085312(2001).
L. N. Bulaevskii and G. Ortiz, Phys. Rev. LetB0, 040401 2’A. N. Korotkov, Phys. Rev. B4, 193407(2001.

(2003. ?8H.-S. Goan and G. J. Milburn, Phys. Rev.68, 235307(2001).

29 - - -
8D. Mozyrsky, L. Fedichkin, S. A. Gurvitz, and G. P. Berman, - - Aleiner, N..S. Wingreen, and Y. Meir, Phys. Rev. Lét®,

Phys. Rev. B66, 161313(2002. 30E37B40k(19|g7).S A — - v )
9A. V. Balatsky, Y. Manassen, and R. Salem, Phys. Re\663 N t“ S’(L : dcrjugzaer, 87-1(162;9;m, . Mahalu, and V. Umansky,
195416(2002. ature(Londo 1 .

31 ; ; ;
10A. N. Korotkov, cond-mat/0209629; iQuantum Noise in Meso- D. Sprinzak, E. Buks, M. Heiblum, and H. Shtrikman, Phys. Rev.

. . . Lett. 84, 5820(2000.
scopic Physicsedited by Yu. V. NazarovKluwer, Dordrecht, 32D, v, Averin, cond-mat/0004364, ifExploring the Quantum-
2003, p. 205. ' '

1 ) ) Classical Frontier edited by J. R. Friedman and S. Hedova
H. M. Wiseman and G. J. Milburn, Phys. Rev4&, 1652(1993. Science, Huntington, NY, 2002
'2A. Papoulis Probability, Random Variables, and Stochastic Pro- 33y, \; panilov. K. K. Likharev. and A. B. Zorin. IEEE Trans.

cessegMcGraw-Hill, New York, 199). Magn. MAG-19, 572 (1983.
13E. B. DaviesQuantum Theory of Open SystefAsademic, Lon-  34\1 H. Devoret and R. J. Schoelkopf, Natuteondon 406, 1039
don, 1976; K. Kraus, States, Effects, and Operations: Funda-  (2000.
mental Notions of Quantum Theof$pringer, Berlin, 19883 A. 35D, V. Averin, cond-mat/001005npublished
S. Holevo, Probabilistic and Stochastic Aspects of Quantum %A, Maassen van den Brink, Europhys. Lé&8, 562 (2002.

Theory(Elsevier, New York, 198p S7A. B. Zorin, Phys. Rev. Lett76, 4408(1996.

M. B. Mensky,Quantum Measurement and Decoherence: Models*®A. A. Clerk, S. M. Girvin, A. K. Nguyen, and A. D. Stone, Phys.
and Phenomenolog{Kluwer, Dordrecht, 2000 Rev. Lett.89, 176804(2002.

15H. J. CarmichaelAn Open System Approach to Quantum Optics®°Here the assumption of a symmetric detector means that the mea-
(Springer, Berlin, 1998 M. B. Plenio and P. L. Knight, Rev. surement process does not shift the energy levels of the mea-
Mod. Phys.70, 101(1998. sured qubit.

16C. M. Caves, Phys. Rev. D6, 1817(1982. 40A. N. Korotkov, Physica B280, 412 (2000).

A, O. Caldeira and A. J. Leggett, Ann. Phy@\.Y.) 149 374  “!L. Stodolsky, Phys. Lett. B59 193(1999.
(1983. 42p. N. Korotkov and D. V. Averin, Phys. Rev. B4, 165310

BW. H. Zurek, Phys. Today4(10), 36 (1991). (2002).

19A. N. Korotkov, Phys. Rev. B3, 115403(2001). 43B. Oksendal,Stochastic Differential Equationé&Springer, Berlin,

20R. Ruskov and A. N. Korotkov, Phys. Rev. @, 041401(2002. 1998.

235408-10



NONIDEAL QUANTUM DETECTORS IN BAYESIAN FORMALISM PHYSICAL REVIEW B67, 235408 (2003

44C. W. Gardiner,Quantum NoiseSpringer, Berlin, 1991 Chap. the “quantum diffusion” (“weakly responding) case, |Al]
2.2. <l,. We think that actually its effect can be significant.

“450ur formalism is applicable only for a setup in which the QPC “8Notice that for the model of a nonideal detector which “some-
current is recorded directly and so the phase information is lost. times misses the detection,” the quantum trajectory approach
The formalism would need modification, for example, for a  (Ref. 28 leads to an additional dephasing term in E43),
setup in which the QPC current is mixed within the coherence  gjimilar to the effect of our classical noiség and &s.
length with another current having common coherent ori@in 495 N Korotkov, Phys. Rev. /5, 052304(2002.
this case the whole setup should be considered as a dgtector 5oy, Mao, D. V. Averin, R. Ruskov, and A. N. Korotkofunpub-

46R. Ruskov(unpublishedl lished.

4TIn Ref. 28 it is stated that the effect of finiteis always small in

235408-11



