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Spectrum of qubit oscillations from generalized Bloch equations
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We have developed a formalism suitable for calculation of the output spectrum of a detector continuously
measuring quantum coherent oscillations in a solid-state qubit, starting from microscopic generalized Bloch
equations. The results coincide with those obtained using Bayesian and master equation approaches. The
previous results are generalized to the cases of arbitrary detector response and finite detector temperature.
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I. INTRODUCTION

Quantum-coherent~Rabi! oscillations in a two-level sys
tem represent a simple and fundamental example of a n
trivial quantum behavior.1 Recently the increased interest
this subject has been obviously related to the use of t
level systems~qubits! as building blocks of a prospectiv
quantum computer.2 The emphasis has naturally shifted fro
traditional observations of Rabi oscillations in ensembles
two-level atoms to studies of single qubits. Concentrating
this paper on solid-state qubits, let us mention recent d
onstrations of single-qubit quantum coherent oscillations
both time3,4 and frequency5,6 domains.~Rabi oscillations in
individual quantum dots have been also demonstrated by
ditional optical means;7 however, we will discuss only solid
state qubits with electronic readout.!

Even though the experiments of Refs. 3–6 have b
done with single qubits, their results are essentially ensem
averaged. Another possible experimental setup is acontinu-
ousmonitoring of single-qubit quantum oscillations~Fig. 1!.
Such a setup is similar to that used in experiments,8,9 with
the difference that the detector output signalI (t) was actu-
ally not studied experimentally.

The basic questions in prospective experiments of
type shown in Fig. 1 are the following:~1! what is the effect
of continuous quantum measurement on the qubit evolut
~2! how does the detector outputI (t) look like, and~3! what
is the relation between detector output and qubit evoluti
Some answers to these questions have been obtained rec
~see, e.g., the review in Ref. 10 and references therein!.

In this paper we will consider a relatively simple que
tion: what is the spectral densitySI(v) of the detector outpu
I (t) and how high is the spectral peak corresponding
quantum oscillations of the qubit state?@Notice that we as-
sume detector outputI (t) to be a classical magnitude, s
SI(v) does not depend on a particular method of furth
signal processing.# This question has been addressed alre
in a number of papers~see, e.g., Refs. 12–19! using various
techniques.

Spectral densitySI(v) has been calculated using Bay
sian formalism11,20 in Ref. 12 for the case of a weakly re
sponding~linear! detector. In particular, it has been show
that the spectral peakSI(V) at the frequencyV of quantum
oscillations cannot be higher than 4S0 whereS0 is the noise
pedestal due to intrinsic detector noise. It has been
shown that the results of the Bayesian formalism forSI(v)
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exactly coincide with the results12,13 obtained using the stan
dard master equation formalism. In spite of the same res
the interpretations are quite different since the Bayesian
malism describes individual monitoring of quantum evo
tion in time and treatsI (t) as a classical measurement resu
while the master equation formalism can describe o
ensemble-averaged magnitudes and in some sense s
treat I (t) as a quantum operator.@The results of the two
formalisms coincide becauseSI(v) is essentially an averag
quantity. However, the master equation formalism is n
suited for some more general situations—for example, fo
quantum feedback analysis11,21and for describing correlation
experiments.22#

The results forSI(v) have been confirmed in Ref. 1
using a somewhat different approach based on the gen
theory of linear detectors. In Ref. 15 the results have b
confirmed using the approach of quantum trajectories23,24

adopted from quantum optics~this approach is similar to the
Bayesian formalism!. It has been also shown15 that the same
formulas forSI(v) remain valid even when the condition o
a weakly responding detector is not satisfied~the detector
responseDI to the change of the qubit state is comparable
the average currentI 0).

In principle, the ratio@SI(V)2S0#/S0 can be arbitrarily
large ~in contrast to the result above! if SI(v) is measured
without ever measuringI (t). A simple example of such a
setup is the absorption and emission of photons at reso
frequencyV. A more sophisticated example of such a me
surement of qubit oscillations has been considered in R
16. The idea is to use a rotating measurement basis, in w
there are essentially no oscillations, but rather jumps
tween two stationary states due to external noise. Form
shifting the zero-frequency spectrum of such a continu
measurement to the frequencyV, one can obtain an arbi
trarily high spectral peak.@There is no restriction on the rati
SI(v50)/S0 in a strong-dephasing case.12–15# Such setups,
however, are not the subject of the present paper since
limit ourselves to the straightforward case of Fig. 1 withI (t)
being the usual classical signal which can be amplified f
ther by any good amplifier. Also, we do not consider he

FIG. 1. Schematic of a single solid-state qubit continuou
measured by a detector.
©2003 The American Physical Society03-1
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quantum feedback setups, which can provide an arbitra
high spectral peak of the detector current at the oscilla
frequencyV.21

Notice that the main result@SI(V)2S0#/S0<4 for a
simple setup seems to contradict the experimental resul
Ref. 25 which claim the measurement ofSI(v) from a
single-spin precession in an scanning-tunneling-microsco
based setup~a significantly different, but still an analogou
experiment!. However, in a similar recent experiment26 the
maximum observed peak-to-pedestal ratio for a measurem
of a single-spin precession was a little less than 4.27 We
cannot explain the disagreement between the theory and
periment of Ref. 25; however, we note that in a recent th
retical paper17 which considers a somewhat similar setup, t
possibility of a relatively high spectral peak has not be
confirmed. The spectral peak ofSI(v) due to qubit oscilla-
tions has been also considered theoretically in Ref. 18; h
ever, the peak magnitude has not been calculated.

Let us finally mention one more theoretical approach~de-
veloped by Gurvitz! to the analysis of detector outputI (t)
based on the generalized Bloch equations28 which describe
the evolution of the coupled ‘‘qubit1detector’’ density
matrix.29 The advantage of this approach is the straightf
ward microscopic derivation of generalized Bloch equatio
from the Schro¨dinger equation, while in the approaches me
tioned above~Bayesian, master equation, quantum traj
tory! the collapse ansatz is either explicitly or implicit
used. The generalized Bloch equations have been use
calculate some statistical characteristics ofI (t) in Ref. 19;
however, the spectral densitySI(v) has been obtained onl
at the frequencies lower than the ensemble dephasing
and so the spectral peak due to quantum oscillations has
out of the scope of Ref. 19.

In this paper we show how the generalized Bloch eq
tions can be used to calculate the detector output spe
density SI(v) for a particular measurement setup~Fig. 2!.
The case of an arbitrary qubit coupling with detector a
finite detector temperature is considered. We prove that
results forSI(v) coincide with those obtained previously~in
a narrower validity range! by the master equation and Bay
sian approaches. The Bayesian results are generalized t
case of an arbitrary response factor and finite detector t
perature; it is shown that the equivalence of the results of
three approaches still holds in this case.~The main goal of
this paper is a development of new calculation metho
though we also obtain some new results.!

FIG. 2. Small-transparency quantum point contact~tunnel junc-
tion! as a qubit state detector. The barrier height depends on
electron position in the double-dot system.
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II. SYSTEM AND GENERALIZED BLOCH EQUATIONS

We consider the system~Fig. 2! introduced in Ref. 29 and
studied extensively after that.8,9,11–15,18,20,21,24The qubit is
represented by a single electron in a double-quantum
The detector is a quantum point contact~QPC! whose barrier
height depends on the electron position, so the curreI
through the QPC measures the qubit state in the basi
localized statesu1& and u2&. We will limit ourselves to the
case of a small-transparency QPC which is equivalent t
simple tunnel junction. The Hamiltonian of the system,

H5HQB1HDET1HINT , ~1!

describes the qubit, detector, and their interaction:

HQB5
«

2
~c2

†c22c1
†c1!1H~c1

†c21c2
†c1!, ~2!

HDET5(
l

Elal
†al1(

r
Erar

†ar1(
l ,r

~Mal
†ar1H.c.!,

~3!

HINT5(
l ,r

DM

2
~c1

†c12c2
†c2!al

†ar1H.c. ~4!

~for simplicity M andDM are assumed to be real and ener
independent!. The average detector currents corresponding
the qubit statesu1& and u2& are equal to I 152p(M
1DM /2)2r lr re

2V/\ and I 252p(M2DM /2)2r lr re
2V/\,

correspondingly (V is the voltage across the tunnel junctio
e is the electron charge, andr l ,r are the densities of states i
the electrodes!, while the corresponding detector noises ha
white spectrum and are given by the Schottky formula

S1,252eI1,2. ~5!

Note that the detector voltageV is assumed to be larg
enough, so that the typical quantum noise frequencyeV/\ is
much higher than all relevant frequencies.

In the following we will distinguish the weakly respond
ing limit uDI u!I 0, where DI[I 12I 2 is the detector re-
sponse andI 0[(I 11I 2)/2, and the finite-response cas
uDI u;I 0. Notice that the word ‘‘coupling’’ is reserved for a
different combination of parameters,C[\(DI )2/S0H @here
S0[(S11S2)/2], which affects the quality factor of quantum
oscillations of the qubit. The frequency of unperturbed os
lations ~without detector! is equal to V[A4H21«2/\,
whereH is the qubit tunneling matrix element~assumed to
be real! and« is the qubit energy asymmetry.

In order to consider the detector output as a classical
nal and use Markovian analysis of the dynamics, we sho
assumeeV@\V ~see the remark about quantum noi
above!. To consider individual electron tunneling in the d
tector, we also needeV/\@I /e, which translates into a con
dition of sufficiently large resistance:R@\/e2 ~even for a
multimode QPC!. However, in the weakly responding regim
the second condition can be relaxed toeV/\@(DI )2/S0,
which translates intoR@(DI /I 0)2\/e2 ~the transparency o
each mode is still small!.

he
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Our starting point is the generalized Bloch equation29

describing theensemble-averagedevolution of the density
matrix r i j

n in which the subscripts (i , j 51,2) label the qubit
state, whilen is the number of electrons passed through
detector~only matrix elements diagonal inn are considered
because the nondiagonal elements decay very fast!. For our
system the generalized Bloch equations are
following:29,11

ṙ11
n 52

I 1
11I 1

2

e
r11

n 1
I 1

1

e
r11

n211
I 1

2

e
r11

n1122
H

\
Im r12

n ,

~6!

ṙ22
n 52

I 2
11I 2

2

e
r22

n 1
I 2

1

e
r22

n211
I 2

2

e
r22

n1112
H

\
Im r12

n ,

~7!

ṙ12
n 52

I 1
11I 1

21I 2
11I 2

2

2e
r12

n 1
AI 1

1I 2
1

e
r12

n211
AI 1

2I 2
2

e
r12

n11

1 i
«

\
r12

n 1 i
H

\
~r11

n 2r22
n !. ~8!

Here

I i
15

I i

12exp~2eV/T!
, I i

25I i
1exp~2eV/T! ~9!

are the partial currents in two directions (I i5I i
12I i

2) andT
is the detector electron temperature. Notice that this temp
ture is different from what was considered in Refs. 12–14
those papers the effect of nonzero temperature of a pas
environment coupled to the qubit was studied, so the imp
tant parameter wasT/\V. In this paper~similar to Ref. 24!
we consider the effective detector temperature and the
portant parameter isT/eV, while a finite temperatureT al-
ways impliesT@\V. ~The phonon temperature in the vicin
ity of the qubit may still be low, sinceT is only the electron
temperature.! The density matrixr i j

n obeys the natural nor
malization condition(n(r11

n 1r22
n )51.

Notice that tracing the generalized Bloch equations~6!–
~8! over the detector degree of freedomn, one obtains a
conventional master equation for the qubit:

ṙ11522
H

\
Im r12, r111r2251, ~10!

ṙ125 i
«

\
r121 i

H

\
~r112r22!2Gr12, ~11!

where r i j 5(nr i j
n and the ensemble decoherence rateG is

equal to29,24

G5
~AI 1

12AI 2
1!2

2e
1

~AI 1
22AI 2

2!2

2e

5
~AI 12AI 2!2

2e
coth~eV/2T!. ~12!
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~The decoherence rateg for a single system without en
semble averaging is different—see Appendix B.!

III. SPECTRAL DENSITY via MacDONALD’S FORMULA

The generalized Bloch equations couple the qubit evo
tion and the numbern of electrons passed through the dete
tor. So to calculate the spectral densitySI(v) of the detector
current, we need to expressSI(v) in terms ofn. This can be
easily done for theclassicalrandom processI (t) using the
MacDonald’s formula30

SI~v!52vE
0

`d^Q2~t!&
dt

sin~vt!dt, ~13!

where ^Q2(t)&5^@* t
t1tI (t8)dt82^I &t#2& and averaging is

over timet ~MacDonald’s formula has been also used in R
17 for a similar purpose!. In our case the average current
equal toI 0 ~see below! for a nonzero qubit tunnelingH, so

^Q2~t!&5e2^n2~t!&2~ I 0t!2, ~14!

where^n2(t)& is the average square of the number of ele
trons passed through the detector during time intervalt.

To calculate^n2(t)& we can use the generalized Bloc
equations and the obvious relation

^n2~t!&5(
n

n2@r11
n ~t!1r22

n ~t!#. ~15!

However, the situation is not too simple because the l
hand side contains the averaging over time while the rig
hand side is essentially ensemble averaging which depe
on the initial conditionr i j

n (0). Quite naturally we should
assumen50 att50 ~we just start counting att50), so that
r i j

n (0)5dn0r i j (0), but the question about the choice o
r i j (0) remains unclear because the qubit state actually o
lates in time~for a nonzeroH, which case we always assum
below!. A natural choice is to use the ensemble-averag
stationary value, r i j ,st5 limt→`(n@r i j

n (t)1r i j
n (t)# ~even

though no steady state is reached in the real-time dynam!,
and it is possible to prove that this choice is really correct
the following way.

As we know from the Bayesian formalism,11 we can in
principle monitor the oscillating evolution of the qubit de
sity matrix r i j (t) in an individual realization of the experi
ment using the detector outputI (t) ~even though this canno
be done using generalized Bloch equations!. So the correct
procedure of calculatinĝn2(t)& would be the following.
The right-hand side of Eq.~15! should be calculated for vari
ous initial valuesr i j (t50) corresponding to valuesr i j (t) in
a sufficiently long realization of a process, and then the re
should be averaged over the timet ~i.e., weighted proportion-
ally to the occurrence frequency of variousr i j ). Now it is
very important that the generalized Bloch equations~6!–~8!
are linear with respect to the initial condition. This mea
that instead of averaging the result forn2(t) over the initial
conditionr i j (t50), we can use the initial condition whic
is itself the value averaged over time—i.e., the station
3-3
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valuer i j ,st discussed above~of course, we implicitly use the
process ergodicity!. This ends the proof.

Thus to calculateSI(v) we should solve the generalize
Bloch equations starting from the stationary initial conditi
r i j

n (0)5dn0r i j ,st , then calculatên2(t)& using Eq.~15!, and
then use MacDonald’s formula~13! to obtainSI(v). Notice
that the stationary stater i j ,st can be easily obtained from th
master equations~10! and ~11! and the conditionṙ i j 50,
which gives~at HÞ0)

r11,st5r22,st51/2, r12,st50. ~16!

~The stationary state would be different if the qubit had
extra coupling to a passive environment;12,13however, we do
not consider such a case.!

One can use this method to calculateSI(v) in a straight-
forward way ~we have done it numerically!; however, it is
better to use an analytical simplification, calculating direc
d^n2(t)&/dt5(nn2@ ṙ11

n (t)1 ṙ22
n (t)#. Using Eqs. ~6! and

~7! and shifting the summation overn in terms containing
r i i

n61 , one gets the equation

d^n2~t!&
dt

5
I 0

e S 2^n~t!&1coth
eV

2TD
1

DI

e S A~t!1
z~t!

2
coth

eV

2TD , ~17!

where

A~t![(
n

n@r11
n ~t!2r22

n ~t!#, ~18!

^n~t!&[(
n

n@r11
n ~t!1r22

n ~t!#, ~19!

z~t![(
n

@r11
n ~t!2r22

n ~t!#. ~20!

Notice thatz(t)50 since the evolution starts from the st
tionary state,r i j

n (0)5dn0r i j ,st , so the corresponding term i
Eq. ~17! vanishes.

To calculatê n(t)&, we again use Eqs.~6! and ~7!, shift
the summation overn, and obtain the equation

d^n~t!&/dt5I 01z~t!DI /2. ~21!

Since the last term vanishes because ofz(t)50 and since
^n(0)&50, we obtain a simple result^n(t)&5I 0t. In par-
ticular, this means that the average detector current is e
to I 0 ~we have used this result above!.

One can see that the term 2I 0^n(t)&/e52I 0
2t from Eq.

~17! exactly cancels the contribution from the derivative
the last term of Eq.~14!. The term (I 0 /e)coth(eV/2T) from
Eq. ~17! after being plugged into MacDonald’s formula~13!
gives the constant noise pedestal 2eI0 coth(eV/2T) ~as usual,
we should use a smooth integral cutoff at high frequenci!.
In this way we get the equations
07530
n
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f

SI~v!5S0 coth
eV

2T
12veDI E

0

`

A~t!sin~vt!dt,

SI~v!5S0 coth
eV

2T
12eDI E

0

`dA~t!

dt
cos~vt!dt, ~22!

which expressSI(v) via A(t) or Ȧ(t) @the last equation is
obtained using integration by parts and taking into acco
A(0)50].

To calculateA(t) ~or Ȧ), we notice that the generalize
Bloch equations~6!–~8! couple the dynamics ofA(t) with
two more magnitudes

Y~t![(
n

n Im r12
n ~t!, ~23!

X~t![(
n

n Rer12
n ~t!, ~24!

via the equations

Ȧ5
DI

2e
24

H

\
Y1

I 0

e
z, ~25!

Ẏ5
H

\
A1

«

\
X2GY1b Im r12, ~26!

Ẋ52
«

\
Y2GX1b Rer12, ~27!

whereb5@(I 1
1I 2

1)1/22(I 1
2I 2

2)1/2#/e. Because of the station
ary initial conditions,z(t)5r12(t)50, so the equations ar
further simplified and become a closed system:

Ȧ5~DI /2e!24~H/\!Y, ~28!

Ẏ5~H/\!A1~«/\!X2GY, ~29!

Ẋ52~«/\!Y2GX. ~30!

Solving these equations with the initial conditionA(0)
5X(0)5Y(0)50, one can obtainA(t) and therefore
SI(v).

In the case of a symmetric qubit«50, the evolution ofX
is decoupled and one can find the analytical solution

dA~t!

dt
5

DI

2e
exp@2Gt/2#FcosṼt1

G

2Ṽ
sinṼtG , ~31!

whereṼ5AV22G2/4. Substituting this expression into Eq
~22! we finally obtain

SI~v!5S0 coth
eV

2T
1

V2~DI !2G

~v22V2!21G2v2
. ~32!

It is easy to check that at zero temperature this re
coincides with the results of Refs. 12–15@SI(v) at finite
detector temperatureT;eV has not been considered prev
3-4
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ously#. Notice, however, that it does not assume a wea
responding detector (uDI u!I ) as in Refs. 12–14. On th
other hand, the derivation of Eq.~32! assumes a low-
transparency QPC as a detector, while a much broader c
of linear detectors was considered in Refs. 12–14.

With the temperatureT increase, the noise pedest
S0 coth(eV/2T) increases while the spectral peak aroundV
becomes lower and wider@Fig. 3~a!# because of theG in-
crease@see Eq.~12!#. The integral over the peak,

E
0

`

@SI~v!2S0 coth~eV/2T!#
dv

2p
5

~DI !2

4
, ~33!

FIG. 3. ~a! Spectral densitySI(v) of the detector current in a
weakly coupled (C51) and weakly responding (DI /I 050.1) re-
gime at detector temperaturesT50, eV/2, andeV for a symmetric,
«50 ~solid lines!, and asymmetric qubit with«5H ~dotted lines!.
~b! SI(v) for a symmetric qubit and weakly coupled detectorC
51) at T50 for several response ratiosDI /I 050.1, 1, 1.5, and 2.
~c! The same as in~b! for an asymmetric qubit with«5H.
07530
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does not depend on the temperature.~As will be seen later,
this formula remains valid for«Þ0 as well.!

The peak-to-pedestal~‘‘signal-to-noise’’! ratio

SI~V!2S0 coth~eV/2T!

S0 coth~eV/2T!
5

~DI !2

GS0 coth~eV/2T!

5
4

@coth~eV/2T!#2

~AI 11AI 2!2

2~ I 11I 2!

~34!

has an upper bound equal to 4 and decreases with temp
ture as well as due to the finite-response ratiouDI u/I 0. In
particular, in the case of a very strong responseuDI u52I 0
(I 250), the upper bound for the peak-to-pedestal ratio i
instead of 4@see Fig. 3~b!#. Overall, the effect of the finite
response on the spectral peak shape is similar to the effe
detector nonideality.12

Let us emphasize that the derivation of Eq.~32! did not
use any assumption about the magnitude of the couplinC
[\(DI )2/S0H between the qubit and detector, so Eq.~32!
remains valid even when the oscillations are destroyed du
strong coupling~‘‘quantum Zeno’’ effect! and replaced by a
telegraph noise. The analysis of the finite-coupling effec
completely similar to that of Refs. 12 and 13. In particul
the quality factor of oscillations~disregarding the noise ped
estal! is equal to

Q5
V

G
5

8

C
~AI 11AI 2!2

4I 0

1

coth~eV/2T!
, ~35!

and the transition into the overdamped regime occurs aQ
,1/2.

For an asymmetric qubit«Þ0, the analytical solution of
Eqs.~28!–~30! is too lengthy, so it is easier to use numeric
calculations and then calculate the Fourier transform~22!
also numerically@Figs. 3~a! and 3~c!#. In Appendix A we
show that the result is still equivalent to the results of Re
12–15~within the common validity range!.

Hence, the analysis ofSI(v) at finite qubit asymmetry«
is completely similar to that of Refs. 12–14. In particular,
finite « leads to a decrease of the spectral peak around
quencyV and the origination of an extra peak around ze
frequency~Fig. 3!, while the integral~33! does not change
@this is a consequence ofKẑ(0)51—see Appendix A#. An
analytical expression

SI~v!5S0 coth
eV

2T
1

«2~DI !2/~4H2G!

11~v\2V2/4H2G!2

1
~DI !2/@G~11«2/2H2!#

11$~v2V!2/@G~11«2/\2V2!#%2
~36!

can be obtained in the limitG!V. @We represent the de
nominator of the last term a little bit differently, though in a
equivalent form as compared to Eq.~17! of Ref. 12.#

Notice that for both Bloch and master equation a
3-5
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proaches, the case of a finite detector response does no
mally differ from the case of a weakly responding detect
In contrast, for the Bayesian approach these two cases
significantly different, so the generalization of the results
SI(v) to a finite detector response is not trivial. We perfo
this generalization in Appendix B and show that Bayes
results still exactly coincide with the results of the mas
equation approach~for a somewhat similar derivation usin
the quantum trajectory formalism see Ref. 15!.

IV. CONCLUSION

The main result of this paper is the development of a n
method ofSI(v) calculation for a detector measuring qua
tum coherent oscillations of a qubit, based on the mic
scopic generalized Bloch equations,29 which couple the qubit
and detector degrees of freedom. As the detector we assu
a low-transparency QPC~tunnel junction!. We have shown
that SI(v) calculated in this way coincides with the resu
obtained previously12–15 by the Bayesian, master equatio
and quantum trajectory methods, though in this paper
have considered a slightly wider validity range~our formal-
ism takes into account a finite detector temperatureT and
assumes arbitrary detector responseuDI u/I 0).

Besides that, we have generalized the Bayesian metho
SI(v) calculation to the case of an arbitrary detector
sponse and temperature.~The generalization of the maste
equation method is formally trivial.! We have proved that the
results of all three methods still coincide in such generali
case.

The model we have considered describes essentially
ideal detector. The detector nonideality can be phenome
logically taken into account by introducing an ext
dephasing term into the generalized Bloch, master,

Bayesian equations, containingṙ12. This will lead to an
increase of the ensemble decoherence rateG and, therefore,
to a wider and lower peak ofSI(v), corresponding
to the qubit oscillations.12–15 A similar procedure can be
done to take into account a qubit-controlled change
the detector tunneling phase13–15

„then G

5@2I 02A4I 0
22(DI /cosu)2#(2e)21 coth(eV/2T) where u

5arg(M* DM )… even though such detector is still ideal
the generalized sense.11,14,15The effect of a weak extra cou
pling between the qubit and a passive finite-temperature
vironment ~with the temperature different fromT) can be
taken into account in a way similar to Refs. 12–14. We
not consider these effects in the present paper because
treatment is exactly the same as in previous papers.

An experimental measurement ofSI(v) and verification
of the upper bound (<4S0) for the spectral peak correspon
ing to qubit oscillations seems to be the easiest experim
related to a continuous monitoring of a nontrivial sing
qubit evolution. This makes it preferable for sooner reali
tion in comparison with more interesting but more difficu
proposed experiments20–22 on monitoring of a solid-state
qubit.
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APPENDIX A: EQUIVALENCE TO THE RESULT
OF THE MASTER EQUATION APPROACH

Let us recall that the master equation approach12,13 as-
sumes no correlation between the detector noise and q
evolution and treats the oscillating part of the currentI (t) as
being proportional to the quantum operatorẑ(t), so the spec-
tral densitySI(v) should be calculated as

SI~v!5Sdet1
~DI !2

4
4E

0

`

Kẑ~t!cos~vt!dt, ~A1!

whereSdet is the detector noise andKẑ(t)[^ẑ(t1t) ẑ(t)& is
the correlation function ofẑ. In the case of a weakly re
sponding detector the detector noise level does not dep
on the qubit state andSdet5S0 coth(eV/2T). The same for-
mula remains valid in the case of moderate or strong
sponse because at high frequencySI(`)52e(^I 1&1^I 2&
52e^I &coth(eV/2T), and the average current^I & remains to
be equal toI 0. As shown in Refs. 12 and 13, the correlatio
function Kẑ is equal to the value ofz(t)5r11(t)2r22(t)
obtained from the master equations~10! and~11! with initial
conditionr11(0)51, r22(0)5r12(0)50. ~Actually, in those
papers only the case of a weakly responding detector at
temperature has been considered; however, the method
be easily generalized, since formally the only change in
master equation is a differentG.!

Let us show thatSI(v) calculated in this way coincide
with the result obtained from Eq.~22! at arbitrary qubit
asymmetry«. For this purpose we introduce the new va
ablea[(2e/DI )Ȧ @so that we need to provea(t)5Kẑ(t)]
and from Eqs.~28!–~30! derive a new system of equations

ȧ524~H/\!y, ~A2!

ẏ5~«/\!x1~H/\!a2Gy, ~A3!

ẋ52~«/\!y2Gx, ~A4!

wherey[(2e/DI )Ẏ andx[(2e/DI )Ẋ. It is easy to see tha
these equations coincide with the master equations~10! and
~11! for z, Im r12, and Rer12, respectively. SinceA(0)
5X(0)5Y(0)50, the initial conditions for new variable
are a(0)51 and x(0)5y(0)50—i.e., exactly the initial
conditions for Kẑ calculation. Thereforea(t)5Kẑ(t) and
the spectral densitySI(v) calculated using the generalize
Bloch equations coincides with the result of the master eq
tion approach.
3-6
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APPENDIX B: GENERALIZATION
OF THE BAYESIAN RESULTS FOR SI „v…

The Bayesian results forSI(v) have been derived in Ref
12 only for the case of a weakly responding detector,
which the detector currentI (t) can be considered as contin
ous and the qubit evolution is described by the equations20,11

ṙ1152 ṙ225r11r22

2DI

S0
@ I ~ t !2I 0#22

H

\
Im r12, ~B1!

ṙ1252~r112r22!
DI

S0
@ I ~ t !2I 0#r122gr121 i

«

\
r12

1 i
H

\
~r112r22!, ~B2!

whereg5G2(DI )2/4S0 is the qubit decoherence rate with
out ensemble averaging @for our model g/G
5cosh22(eV/2T), so thatg50 atT50] and the statistics o
I (t) can be modeled as

I ~ t !2I 05@r11~ t !2r22~ t !#DI /21j~ t !, ~B3!

where j(t) is the white noise with the spectral densitySj

5S0. Notice the significant difference in the meaning ofr i j
in the Bayesian equations and in the master equation s
Eqs.~B1! and~B2! describe individual qubit evolution with
out ensemble averaging. Also notice that the detector n
j(t) is now significantly correlated with the qubit evolutio
r i j (t).

To consider the case of a detector with a finite respo
factor uDI u/I 0, we necessarily need to take into account
dividual tunnel events in the detector becauseG becomes
comparable toI 0 /e. Hence, the current is not continuou
anymore and we have to use generalized Baye
equations11 ~which are essentially similar to the equations
the quantum jump formalism24!. Then the qubit evolution
during the time intervals between tunnel events in the de
tor is continuous and given by the small-time generaliz
Bloch equations forr i j

0 with the restored normalization,

ṙ1152 ṙ2252
DI

e
cothS eV

2TD r11r2222
H

\
Im r12, ~B4!

ṙ125
DI

2e
cothS eV

2TD ~r112r22!r121 i
«

\
r121 i

H

\
~r112r22!,

~B5!

while each tunnel event in the detector~at timet5tk) causes
an abrupt change~collapse! of the qubit state:

r11~ tk10!5
I 1r11~ tk20!

I 1r11~ tk20!1I 2r22~ tk20!
, ~B6!

r22~ tk10!512r11~ tk10!, ~B7!

r12~ tk10!

r12~ tk20!
5Fr11~ tk10!r22~ tk10!

r11~ tk20!r22~ tk20!G
1/2

. ~B8!
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@Actually, in Eq. ~B6! instead ofI i one can writeI i
1 if the

tunneling is in the positive direction andI i
2 if it is in the

negative direction; however, the corresponding tempera
factors cancel each other.# It is interesting to note that the
generalized Bayesian equations do not contain any deco
ence term even at finite temperature. This is because
model of the low-transparency QPC describes an id
detector11 and counting tunnel events in both directions giv
more information than measurement of only the total curr
(I 12I 2) assumed in Eqs.~B1!–~B3!.

For the evolution simulation Eqs.~B4!–~B8! should be
complemented by the statistics of tunnel events in the de
tor. This statistics is described by the~varying! ratesp1 and
p2 of tunneling events in the positive and negative dire
tions, respectively:

p1~ t !5~ I 1
1/e!r11~ t !1~ I 2

1/e!r22~ t !, ~B9!

p2~ t !5~ I 1
2/e!r11~ t !1~ I 2

2/e!r22~ t !. ~B10!

It is important to notice that ensemble averaging of the e
lution equations~B4!–~B8! over random moments of tunne
ing events described by Eqs.~B9! and ~B10! leads11 to the
conventional master equations~10! and ~11! with the en-
semble decoherence rateG given by Eq.~12!.

To calculateSI(v) we will use the method developed i
Ref. 31 and write the current correlation functionKI(t)
[^I (t1t)I (t)&5KI(2t) at t>0 as

KI~t!5sd~t!1^I 1&e@p1~tu1 !2p2~tu1 !#

2^I 2&e@p1~tu2 !2p2~tu2 !#, ~B11!

where s5SI(`)/2 determines the pedestal ofSI(v) and
p6(tu6) is the average rate of tunneling in the positi
(p1) or negative (p2) direction at timet1t, for the condi-
tion that at timet a tunneling in the positive (u1) or negative
(u2) direction has occurred.

The value ofs should be chosen in a way to provide th
correct value ofSI(`)5S0 coth(eV/2T) which can be calcu-
lated in the same manner as in Appendix A. For the calcu
tion of p6(tu1) let us notice that as seen from Eq.~B6!,
after the positive tunneling~at t50) the value ofz5r11
2r22 is equal to

z~ t10u1 !5
I 1r112I 2r22

I 1r111I 2r22
, ~B12!

where r i i are taken before the tunneling. Averagingz(t
10u1) over the positive tunneling events@or, equivalently,
over time with the weight factorp1(t), which is propor-
tional to the denominator of Eq.~B12!#, we get ^z(t10
u1)&5^I 1r112I 2r22&/^I &, expressed via simple averagin
over time. Sincê r11&5^r22&51/2, the expression can b
further simplified:̂ z(t10u1)&5DI /2^I &. A similar calcula-
tion shows that̂ r12(t10u1)&5^r12&(I 1I 2)1/2/^I &50.

It is sufficient to knoŵ z(t10u1)& and^r12(t10u1)& to
calculatep6(tu1) because of the linearity of the average
evolution equations~10! and ~11! in terms ofz andr12 and
linearity of Eqs.~B9! and ~B10!. Using Eqs.~10! and ~11!
with averaged initial conditions att50, we can show
3-7
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p6~tu1 !2
^I 6&

e
5

I 1
62I 2

6

2e

DI

2^I &
z~t!, ~B13!

where z(t) is calculated from Eqs.~10! and ~11! starting
from initial conditionr1151, r225r1250. Finally noticing
that the expressions do not depend on the direction of
neling at t50 and combining the terms in Eq.~B11! we
obtain

*On leave of absence from Institute of Nuclear Research
Nuclear Energy, Sofia BG-1784, Bulgaria.

†Electronic mail: korotkov@ee.ucr.edu
1L. D. Landau and E. M. Lifshitz,Quantum Mechanics: Nonrela

tivistic Theory~Oxford, University Press, New York, 1977!.
2C. Bennett, Phys. Today48„10…, 24 ~1995!.
3Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Nature~London!

398, 786 ~1999!; Phys. Rev. Lett.87, 246601~2001!.
4D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbin

D. Esteve, and M. H. Devoret, Science296, 886 ~2002!.
5C. H. van der Wal, A. C. J. ter Haar, F. K. Wilhelm, R. N

Schouten, C. J. P. M. Harmans, T. P. Orlando, S. Lloyd, and J
Mooij, Science290, 773 ~2000!.

6J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J.
Lukens, Nature~London! 406, 43 ~2000!.

7T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer,
Park, C. Piermarocchi and L. J. Sham, Phys. Rev. Lett.87,
133603~2001!; H. Htoon, T. Takagahara, D. Kulik, O. Bakleno
A. L. Holmes, and C. K. Shih,ibid. 88, 087401~2002!.

8E. Buks, R. Schuster, M. Heiblum, D. Mahalu, and V. Umans
Nature~London! 391, 871 ~1998!.

9D. Sprinzak, E. Buks, M. Heiblum, and H. Shtrikman, Phys. R
Lett. 84, 5820~2000!.

10A. N. Korotkov, cond-mat/0209629; inQuantum Noise in Meso
scopic Physics, edited by Yu. V. Nazarov~to be published!.

11A. N. Korotkov, Phys. Rev. B63, 115403~2001!.
12A. N. Korotkov, Phys. Rev. B63, 085312~2001!.
13A. N. Korotkov and D. V. Averin, Phys. Rev. B64, 165310

~2001!.
14D. V. Averin, cond-mat/0004364, inExploring the Quantum-

Classical Frontier, edited by J. R. Friedman and S. Han~to be
published!.
07530
n-

KI~t.0!5^I &21
~DI !2

4
z~t!, ~B14!

with the samez(t) as above. The constant term^I &2 does not
contribute to the Fourier transform SI(v)
52*2`

` KI(t)cos(vt)dt ~formally it leads to ad function at
v50), while the second term of Eq.~B14! gives the same
contribution as the second term of Eq.~A1!. Consequently,
the calculation ofSI(v) using the generalized Bayesian a
proach leads to the same result as the master equation
proach.

d

,

E.

.

,

.

15H. S. Goan and G. J. Milburn, Phys. Rev. B64, 235307
~2001!.

16D. V. Averin, Phys. Rev. Lett.88, 207901~2002!.
17D. Mozyrsky, L. Fedichkin, S. A. Gurvitz, and G. P. Berma

Phys. Rev. B66, 161313~2002!.
18G. Hackenbroich, B. Rosenow, and H. A. Weidenmu¨ller, Phys.

Rev. Lett.81, 5896~1998!.
19Y. Makhlin, G. Scho¨n, and A. Shnirman, Phys. Rev. Lett.85,

4578 ~2000!.
20A. N. Korotkov, Phys. Rev. B60, 5737~1999!.
21R. Ruskov and A. N. Korotkov, Phys. Rev. B66, 041401~R!

~2002!.
22A. N. Korotkov, Phys. Rev. B64, 193407~2001!.
23H. M. Wiseman and G. J. Milburn, Phys. Rev. A47, 1652

~1993!.
24H.-S. Goan, G. J. Milburn, H. M. Wiseman, and H. B. Sun, Ph

Rev. B63, 125326~2001!.
25Y. Manassen, R. J. Hamers, J. E. Demuth, and A. J. Castell

Phys. Rev. Lett.62, 2531 ~1989!; Y. Manassen, I. Mukho-
padhyay, and N. R. Rao, Phys. Rev. B61, 16 223~2000!.

26C. Durkan and M. E. Welland, Appl. Phys. Lett.80, 458 ~2002!.
27C. Durkan~private communication!.
28Following the terminology of Ref. 29 we call as ‘‘generalize

Bloch equations’’ the equations for an averaged qubit den
matrix which include a detector degree of freedom~number of
tunneled electrons!, while ‘‘master equations’’ contain only qubi
degrees of freedom.

29S. A. Gurvitz, Phys. Rev. B56, 15 215~1997!.
30D. K. C. MacDonald,Noise and Fluctuations: An Introduction

~Wiley, New York, 1962!, Chap. 2.2.1.
31A. N. Korotkov, Phys. Rev. B49, 10 381~1994!.
3-8


