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Spectrum of qubit oscillations from generalized Bloch equations
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We have developed a formalism suitable for calculation of the output spectrum of a detector continuously
measuring quantum coherent oscillations in a solid-state qubit, starting from microscopic generalized Bloch
equations. The results coincide with those obtained using Bayesian and master equation approaches. The
previous results are generalized to the cases of arbitrary detector response and finite detector temperature.
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l. INTRODUCTION exactly coincide with the resuls!® obtained using the stan-
dard master equation formalism. In spite of the same results,
Quantum-cohereniRabi oscillations in a two-level sys- the interpretations are quite different since the Bayesian for-
tem represent a simple and fundamental example of a normalism describes individual monitoring of quantum evolu-
trivial quantum behaviot.Recently the increased interest in tion in time and treat$(t) as a classical measurement result,
this subject has been obviously related to the use of twowhile the master equation formalism can describe only
level systemsqubity as building blocks of a prospective ensemble-averaged magnitudes and in some sense should
quantum computérThe emphasis has naturally shifted from treat I(t) as a quantum operatofThe results of the two
traditional observations of Rabi oscillations in ensembles oformalisms coincide becaus(w) is essentially an average
two-level atoms to studies of single qubits. Concentrating iquantity. However, the master equation formalism is not
this paper on solid-state qubits, let us mention recent densuited for some more general situations—for example, for a
onstrations of single-qubit quantum coherent oscillations irguantum feedback analy$i$tand for describing correlation
both timeé** and frequency® domains.(Rabi oscillations in  experiment$?]
individual guantum dots have been also demonstrated by tra- The results forS(w) have been confirmed in Ref. 14
ditional optical mean$;however, we will discuss only solid- using a somewhat different approach based on the general
state qubits with electronic readout. theory of linear detectors. In Ref. 15 the results have been
Even though the experiments of Refs. 3—-6 have beewonfirmed using the approach of quantum trajectétigs
done with single qubits, their results are essentially ensembladopted from quantum opticthis approach is similar to the
averaged. Another possible experimental setupdsrtinu-  Bayesian formalism It has been also showhthat the same
ousmonitoring of single-qubit quantum oscillatiofBSig. 1).  formulas forS,(w) remain valid even when the condition of
Such a setup is similar to that used in experimé&ftajth  a weakly responding detector is not satisfige detector
the difference that the detector output sigh@d)) was actu- response\l to the change of the qubit state is comparable to
ally not studied experimentally. the average currert).
The basic questions in prospective experiments of the In principle, the ratiof S;(Q)—S,]/Sy can be arbitrarily
type shown in Fig. 1 are the followingl) what is the effect large (in contrast to the result abové S (w) is measured
of continuous quantum measurement on the qubit evolutionyithout ever measuring(t). A simple example of such a
(2) how does the detector outpi(t) look like, and(3) what  setup is the absorption and emission of photons at resonant
is the relation between detector output and qubit evolutionfrequency(). A more sophisticated example of such a mea-
Some answers to these questions have been obtained recenflyrement of qubit oscillations has been considered in Ref.
(see, e.g., the review in Ref. 10 and references therein  16. The idea is to use a rotating measurement basis, in which
In this paper we will consider a relatively simple ques-there are essentially no oscillations, but rather jumps be-
tion: what is the spectral densi§/(w) of the detector output tween two stationary states due to external noise. Formally
[(t) and how high is the spectral peak corresponding tashifting the zero-frequency spectrum of such a continuous
quantum oscillations of the qubit statBQotice that we as- measurement to the frequen€y, one can obtain an arbi-
sume detector output(t) to be a classical magnitude, so trarily high spectral peakThere is no restriction on the ratio
Si(w) does not depend on a particular method of furtherS,(w=0)/S, in a strong-dephasing ca¥&% Such setups,
signal processing This question has been addressed alreadyiowever, are not the subject of the present paper since we
in a number of papergee, e.g., Refs. 12—-18sing various  limit ourselves to the straightforward case of Fig. 1 wi¢h)
techniques. being the usual classical signal which can be amplified fur-
Spectral density5(w) has been calculated using Baye- ther by any good amplifier. Also, we do not consider here
sian formalism*?°in Ref. 12 for the case of a weakly re-

sponding(linean detector. In particular, it has been shown -
that the spectral pea% (Q)) at the frequency) of quantum qubit detector ﬁ

oscillations cannot be higher thais¢whereS; is the noise

pedestal due to intrinsic detector noise. It has been also FIG. 1. Schematic of a single solid-state qubit continuously
shown that the results of the Bayesian formalism $g(w) measured by a detector.
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qubit II. SYSTEM AND GENERALIZED BLOCH EQUATIONS

We consider the systeffig. 2) introduced in Ref. 29 and
studied extensively after th&f:11-1518202124rhe qubit is
represented by a single electron in a double-quantum dot.
The detector is a quantum point conté@PC whose barrier
height depends on the electron position, so the curfent
through the QPC measures the qubit state in the basis of

FIG. 2. Small-transparency quantum point contactinel junc-  l0calized states1) and[2). We will limit ourselves to the

tion) as a qubit state detector. The barrier height depends on thg@Se of a small-transparency QPC which is equivalent to a
electron position in the double-dot system. simple tunnel junction. The Hamiltonian of the system,

detector

H=Hopt Hpert+ HinT: (1)

guantum feedback setups, which can provide an arbitrarily . _ QB TIDET lNT _ _

high spectral peak of the detector current at the oscillatioflescribes the qubit, detector, and their interaction:
frequency.?!

_ Notice that the main resuIE_S,(Q)—SO]/_SO$4 for a HQBZE(C;C2_CIC1)+H(CIC2+C301)1 )
simple setup seems to contradict the experimental results of

Ref. 25 which claim the measurement 8f(w) from a

single-spin precession in an scanning-tunneling-microscope- Hoe =S Eala+S Eala + Ma'a +H.c
based setuga significantly different, but still an analogous DET Z S zr: e IE,;( actHe),

experiment However, in a similar recent experiméhthe 3
maximum observed peak-to-pedestal ratio for a measurement

of a single-spin precession was a little less thafl ¥ve o AM + +

cannot explain the disagreement between the theory and ex- H'NT_ZJ 7 (Gt CL)aatHc, @

periment of Ref. 25; however, we note that in a recent theo- o

retical papel’ which considers a somewhat similar setup, the(for simplicity M andAM are assumed to be real and energy
possibility of a relatively high spectral peak has not beenmdepender)t The average detector currents corresponding to
confirmed. The spectral peak 8f(w) due to qubit oscilla- e qubit states|1) and [2) are equal tol;=2m(M

2 2 _ _ 2 2
tions has been also considered theoretically in Ref. 18; how? AM/2)°pipeV/ih and 1,=2m(M—AM/2)"p\p & Vih,
ever, the peak magnitude has not been calculated. correspondingly Y is the voltage across the tunnel junction,

Lot s il menton one more heorlcal pproga 5 ' G harge, andy v e densies ofstates
veloped by Gurvitz to the analysis of detector outpugt) P d

based on the generalized Bloch equatfBnshich describe white spectrum and are given by the Schottky formula

the evolution of the coupled “qubitdetector” density S, ,=2el; . (5)
matrix?° The advantage of this approach is the straightfor- ’ '
ward microscopic derivation of generalized Bloch equationdNote that the detector voltag¥ is assumed to be large
from the Schidinger equation, while in the approaches men-enough, so that the typical quantum noise frequeiédf; is
tioned above(Bayesian, master equation, quantum trajec-much higher than all relevant frequencies.
tory) the collapse ansatz is either explicitly or implicity  In the following we will distinguish the weakly respond-
used. The generalized Bloch equations have been used g limit [Al[<Ilo, where Al=I,—1, is the detector re-
calculate some statistical characteristics! (tf) in Ref. 19;  sponse andl,=(l,+1,)/2, and the finite-response case
however, the spectral densi§(») has been obtained only |Al[~1,. Notice that the word “coupling” is reserved for a
at the frequencies lower than the ensemble dephasing ragtfferent combination of parameter§=7(A1)%/SgH [here
and so the spectral peak due to quantum oscillations has be&=(S; + S;)/2], which affects the quality factor of quantum
out of the scope of Ref. 19. oscillations of the qubit. The frequency of unperturbed oscil-
In this paper we show how the generalized Bloch equatations (without detector is equal to Q= 4H?+&%/%,
tions can be used to calculate the detector output spectrathereH is the qubit tunneling matrix elemeassumed to
density S;(w) for a particular measurement set(pig. 2. be real ande is the qubit energy asymmetry.
The case of an arbitrary qubit coupling with detector and In order to consider the detector output as a classical sig-
finite detector temperature is considered. We prove that theal and use Markovian analysis of the dynamics, we should
results forS,(w) coincide with those obtained previougip ~ assumeeV=#() (see the remark about quantum noise
a narrower validity rangeby the master equation and Baye- abovg. To consider individual electron tunneling in the de-
sian approaches. The Bayesian results are generalized to ttestor, we also needV/7>1/e, which translates into a con-
case of an arbitrary response factor and finite detector tendition of sufficiently large resistanc&>#/e? (even for a
perature; it is shown that the equivalence of the results of thenultimode QPQ. However, in the weakly responding regime
three approaches still holds in this cagBhe main goal of the second condition can be relaxed ed/A>(A1)?/S,,
this paper is a development of new calculation methodswhich translates int®R>(Al/1,)?#%/€? (the transparency of
though we also obtain some new resuilts. each mode is still small
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SPECTRUM OF QUBIT OSCILLATIONS FROM . ..

Our starting point is the generalized Bloch equatfons
describing theensemble-averagedvolution of the density
matrix pi“]- in which the subscriptsi(j =1,2) label the qubit
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(The decoherence rate for a single system without en-
semble averaging is different—see Appendiy B.

state, whilen is the number of electrons passed through the ||| SPECTRAL DENSITY via MacDONALD'S FORMULA

detector(only matrix elements diagonal im are considered
because the nondiagonal elements decay very. fast our

system the generalized Bloch equations are
following:2%1
. 17+ 17 by H
— -1 +1
p11=— e Put ngl +€P21 —Z%Impgz,
(6)
. 15 +15 I Py H
— -1 +1
p2=— e P22t gPSz +€sz +2%|mp22,
(7
B B A o P PN N P P,
pP12=— 26 Pt g P12t o P12
€ H
iz platiz (P11 p2))- (8)
Here
+ li -+
I I =1"exp—eVIT) 9

P T I exp(—eVIT)

are the partial currents in two directiong£1;"—1,7) andT
is the detector electron temperature. Notice that this temper
ture is different from what was considered in Refs. 12—-14. |
those papers the effect of nonzero temperature of a passi

tant parameter was/A ). In this paper(similar to Ref. 24
we consider the effective detector temperature and the i
portant parameter i$/eV, while a finite temperaturd@ al-
ways impliesT>#%(). (The phonon temperature in the vicin-
ity of the qubit may still be low, sinc& is only the electron
temperature. The density matrixpi”j obeys the natural nor-
malization condition ,(p1,+p5,) = 1.

Notice that tracing the generalized Bloch equati¢@s-
(8) over the detector degree of freedam one obtains a
conventional master equation for the qubit:

. H
p11= —Z%Im P12, p1tp2=1, (10)

. € H
pP12= '%Plzﬂg(f’n_l)zz)_rplzv (11
where p;

npi”]- and the ensemble decoherence ratés
equal té

5,24

r

_ G2 ()
2 e

e 2

coth(eV/2T). (12

(=12
- 2e

The generalized Bloch equations couple the qubit evolu-

thdion and the numben of electrons passed through the detec-

tor. So to calculate the spectral densByw) of the detector
current, we need to expreSy ) in terms ofn. This can be
easily done for theclassicalrandom proces$(t) using the
MacDonald’s formuld’

»d(Q?(7)
S,(a))=2wfo %

sin(w7)dT, (13

where (Q?(7))=([[{""I(t")dt’—(1)7]?) and averaging is
over timet (MacDonald’s formula has been also used in Ref.
17 for a similar purpose In our case the average current is
equal tol ; (see belowfor a nonzero qubit tunnelingl, so

(Q¥(m))y=e*(n*(m)—(lon)?,

where(n?(7)) is the average square of the number of elec-
trons passed through the detector during time interval

To calculate(n?(7)) we can use the generalized Bloch
equations and the obvious relation

(14)

<n2<r>>=§ n?[pi(7) + pB 7)1. (15)

?—iowever, the situation is not too simple because the left-
rhéamd side contains the averaging over time while the right-

h

environment coupled to the qubit was studied, so the impor-

and side is essentially ensemble averaging which depends
on the initial conditionpi“j(O). Quite naturally we should

nssumer=0 atr=0 (we just start counting at=0), so that

p{}(0)=5n0pij(0), but the question about the choice of
pij(0) remains unclear because the qubit state actually oscil-
lates in time(for a nonzerdd, which case we always assume
below). A natural choice is to use the ensemble-averaged
stationary value, pjj =lim_..2[pi(t) +pjj(1)] (even
though no steady state is reached in the real-time dynamics
and it is possible to prove that this choice is really correct in
the following way.

As we know from the Bayesian formalisthwe can in
principle monitor the oscillating evolution of the qubit den-
sity matrix p;;(t) in an individual realization of the experi-
ment using the detector outpl(tt) (even though this cannot
be done using generalized Bloch equatjor&o the correct
procedure of calculatingn?(7)) would be the following.
The right-hand side of Eq15) should be calculated for vari-
ous initial valueg;j(7=0) corresponding to valugs;(t) in
a sufficiently long realization of a process, and then the result
should be averaged over the timng.e., weighted proportion-
ally to the occurrence frequency of variogg). Now it is
very important that the generalized Bloch equatié)s-(8)
are linear with respect to the initial condition. This means
that instead of averaging the result fof( ) over the initial
condition p;;(7=0), we can use the initial condition which
is itself the value averaged over time—i.e., the stationary
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valuep;; < discussed abovéf course, we implicitly use the eV o

process ergodicily This ends the proof. Si(@) =Sy cotho— +2weAl f A(7)sinfw7)dT,
Thusto calculateS;(w) we should solve the generalized 0

Bloch equations starting from the stationary initial condition Y d

pij(0)= Snopij,st» then calculatén?(7)) using Eq.(15), and S,(w)=SocothE+2eAl f

then use MacDonald’s formuld3) to obtainS,(w). Notice 0

that the stationary stajg; s; can be easily obtained from the which expressS,(w) via A(7) or A(7) [the last equation is

master equation$10) and (1)) and the conditionp;;=0,  optained using integration by parts and taking into account
which gives(at H#0) A(0)=0].

A(7)
dr

cofwr)dr, (22

_ —1/2 —0 (16) To calculateA(7) (or .A), we notice that the generalized
Pi1st™ P2zst™ 24 Pr2st™ Y Bloch equationg6)—(8) couple the dynamics afi(r) with

(The stationary state would be different if the qubit had antWo more magnitudes

extra coupling to a passive environméft3however, we do

not consider such a cage. N T)EZ nimply7), (23
One can use this method to calcul&éw) in a straight- n

forward way (we have done it numerically however, it is

bett;ar to use_ an a2r1&_1l?1/t|cal s!Tpllflcat|oQ, calculating directly X( T)EE nReply(7), (24)

d{n°(7))/dr=2,nTp1,(7) +p5(7)]. Using Egs.(6) and n

(7) and shifting the summation over in terms containing

n+1 . via the equations
pii” . one gets the equation

AL H g
d(n?(7)) o eV A= £—4%3}+EZ, (25
T—E 2<n(T)>+COthE
. H e
Al \% = Zy—
+—(A(T)+ Mcothe—), (17) V=2 A+ 2 X=TY+bImpy,, (26)
e 2 2T
where X=— %y— IF'X+bRep,, (27)
A(1)=2 n[ply(n) —phs D], (18 whereb=[(171;)Y?—(171,)Y?]/e. Because of the station-
n ary initial conditions,z(7) = p4,(7) =0, so the equations are
further simplified and become a closed system:
] ) V=(H/h) A+ (elh)X—T, (29
2(1)=25 [ph(7) = p3A7)]- (20
X=—(elh)Y-TX. (30

Notice thatz(7) =0 since the evolution starts from the sta-
tionary statepi”j(O)z dnoPij st» SO the corresponding term in
Eq. (17) vanishes.

To calculate(n(7)), we again use Eqg6) and(7), shift
the summation oven, and obtain the equation

Solving these equations with the initial conditioA(0)
=X(0)=)(0)=0, one can obtainA(r) and therefore
S|((1))

In the case of a symmetric qukit=0, the evolution oft
is decoupled and one can find the analytical solution
d{n(7))/dr=1y+2z(7)Al/2. (21) dA(7) Al

———=-—exd —I'7/2
Since the last term vanishes because(af)=0 and since dr 2e H-T7/2]

(n(0))=0, we obtain a simple resu{in(r))=1y7. In par- ~

ticular, this means that the average detector current is equiihereQ) =yQ“—1"%/4. Substituting this expression into Eq.

to I, (we have used this result above (22) we finally obtain
One can see that the term 2n(7))/e=213r from Eq.

. (31)

- r ~
cosQ 7+ —sinQ 7
20

(17) exactly cancels the contribution from the derivative of S (w)=Socothi/+ QAT (32

the last term of Eq(14). The term (,/e)coth@V2T) from ! 2T (02— 02247202

Eq. (17) after being plugged into MacDonald’s formula3)

gives the constant noise pedestallgcoth@V/2T) (as usual, It is easy to check that at zero temperature this result
we should use a smooth integral cutoff at high frequencies coincides with the results of Refs. 12—15,(w) at finite

In this way we get the equations detector temperatur€~eV has not been considered previ-
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S (@S,

does not depend on the temperatu#s will be seen later,
- this formula remains valid foe #0 as well)
The peak-to-pedestéisignal-to-noise”) ratio

S(Q)—SycotheVv/2T) (A1)?
SocotheVI2T)  TI'SycotheV/2T)

4 (VI3 +15)2

:[cotf(eV/ZT)]z 2(11+13)

(34

S(©)/S,

has an upper bound equal to 4 and decreases with tempera-
- ture as well as due to the finite-response rdfid|/1. In
particular, in the case of a very strong respohsé| =21,
(I,=0), the upper bound for the peak-to-pedestal ratio is 2
instead of 4[see Fig. &)]. Overall, the effect of the finite
response on the spectral peak shape is similar to the effect of
detector nonideality?

Let us emphasize that the derivation of E§2) did not
use any assumption about the magnitude of the couling
=#(A1)%/SyH between the qubit and detector, so E8R)
remains valid even when the oscillations are destroyed due to
strong coupling(“quantum Zeno” effecj and replaced by a

SI((")/SO

telegraph noise. The analysis of the finite-coupling effect is
completely similar to that of Refs. 12 and 13. In particular,
the quality factor of oscillationgdisregarding the noise ped-
esta) is equal to

Q

r

(V11+12)?

A

1
coth(eV/2T)’

_2. 8 35
Q=1=¢ (39
and the transition into the overdamped regime occur§ at
<1/2.

- For an asymmetric qubi # 0, the analytical solution of

FIG. 3. (a) Spectral density§ (w) of the detector current in a
weakly coupled ¢=1) and weakly respondingA(/l,=0.1) re-
gime at detector temperaturés-0, eV/2, andeV for a symmetric,
£=0 (solid lineg, and asymmetric qubit witk =H (dotted lines.
(b) Sj(w) for a symmetric qubit and weakly coupled detect6r (
=1) atT=0 for several response ratiad /I ,=0.1, 1, 1.5, and 2.

(c) The same as ifb) for an asymmetric qubit witk =H.

ously]. Notice, however, that it does not assume a weakly
responding detector|41|<l) as in Refs. 12—-14. On the
other hand, the derivation of E(32) assumes a low-
transparency QPC as a detector, while a much broader class

of linear detectors was considered in Refs. 12—-14.

With the temperatureT increase, the noise pedestal
Sy coth@VI2T) increases while the spectral peak arodad
becomes lower and widdFig. 3(a)] because of thd" in-

creasd see Eq(12)]. The integral over the peak,

(AD?
7

o dw
fo [S(w)—S cotr(eV/ZT)]E

(33

Eqgs.(28)—(30) is too lengthy, so it is easier to use numerical
calculations and then calculate the Fourier transf¢2®)
also numerically[Figs. 3a) and 3c)]. In Appendix A we
show that the result is still equivalent to the results of Refs.
12-15(within the common validity range

Hence, the analysis &, (w) at finite qubit asymmetry
is completely similar to that of Refs. 12—14. In particular, a
finite & leads to a decrease of the spectral peak around fre-
quency{) and the origination of an extra peak around zero
frequency(Fig. 3), while the integral(33) does not change
[this is a consequence &f;(0)=1—see Appendix A An
analytical expression

eV £%(A1%/(4H7T)
S/(w)=Sycotho— +

2T 14+ (wh?Q?/4H7T)?

(AD?/[T(1+¢&?/2H?)]
1+{(w—Q)2[T (1+£%/42Q?)]}?

(36)

can be obtained in the limE'<(). [We represent the de-
nominator of the last term a little bit differently, though in an
equivalent form as compared to Ed.7) of Ref. 12]

Notice that for both Bloch and master equation ap-
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S/ (w) to a finite detector response is not trivial. We perform

this generalization in Appendix B and show that Bayesian

results still exactly coincide with the results of the master =~ APPENDIX A: EQUIVALENCE TO THE RESULT
equation approackfor a somewhat similar derivation using OF THE MASTER EQUATION APPROACH

the quantum trajectory formalism see Ref).15 Let us recall that the master equation apprdathas-

sumes no correlation between the detector noise and qubit
evolution and treats the oscillating part of the currgi} as
being proportional to the quantum operai()'r), so the spec-
The main result of this paper is the development of a newiral densityS;(w) should be calculated as
method ofS;(w) calculation for a detector measuring quan-
tum coherent oscillations of a qubit, based on the micro- (A2 (=
scopic generalized Bloch equatio%“?sr,vhich couple the qubit S/(w)=Syert 7 4f Ky7r)codwr)dr, (Al)
and detector degrees of freedom. As the detector we assumed 0
a low-transparency QPQunnel junction. We have shown
that S;(w) calculated in this way coincides with the results whereSy.; is the detector noise andg(r)E(E(H— T)E(t)> is
obtained previousff~'° by the Bayesian, master equation, the correlation function of. In the case of a weakly re-
and quantum trajectory methods, though in this paper weponding detector the detector noise level does not depend
have considered a slightly wider validity rangeur formal-  on the qubit state anBy.=S, coth@V2T). The same for-
ism takes into account a finite detector temperaflirand  mula remains valid in the case of moderate or strong re-
assumes arbitrary detector respopsél/1). sponse because at high frequer@ye)=2e({I")+{I~)
Besides that, we have generalized the Bayesian method ef 2e(1 )coth@V2T), and the average curre(it) remains to
S/(w) calculation to the case of an arbitrary detector re-be equal tdy. As shown in Refs. 12 and 13, the correlation
sponse and temperaturélhe generalization of the master function K; is equal to the value of(7)=p1;(7) = p2a(7)
equation method is formally triviglWe have proved that the obtained from the master equatiod$) and(11) with initial
results of all three methods still coincide in such generalizegonditionpy3(0)=1, p5(0)=p15(0)=0. (Actually, in those
case. papers only the case of a weakly responding detector at zero
The model we have considered describes essentially d§mperature has been considered; however, the method can
ideal detector. The detector nonideality can be phenomend® €asily generalized, since formally the only change in the

logically taken into account by introducing an extra Master equation is a differeit) o o
dephasing term into the generalized Bloch, master, and L€t us show tha§(w) calculated in this way coincides

. . o R with the result obtained from Eq22) at arbitrary qubit
Bayesian equations, containing,. This will lead to an

) asymmetrye. For this purpose we introduce the new vari-
increase of the ensemble decoherence Fatand, therefore, ablea=(2e/A1).1 [so that we need to prowe() = Ks(7)]
to a wider and lower peak ofS(w), corresponding N P )= RAT

to the qubit oscillationd?=*® A similar procedure can be and from Eqs(28)~(30) derive a new system of equations

done to take into account a qubit-controlled change of

the  detector tunneling phdse® (then T a=—4(H/h)y, (A2)

=[21,— \/412—(Al/cosf)?](2e) ‘coth@Vi2T) where 6

=arg(M* AM)) even though such detector is still ideal in .

the generalized sendk!*'°The effect of a weak extra cou- y=(elf)x+(H/Ah)a-TYy, (A3)

pling between the qubit and a passive finite-temperature en-

vironment (with the temperature different fromd) can be

taken into account in a way similar to Refs. 12—14. We did

not consider these effects in the present paper because their

treatment is exactly the same as in previous papers. wherey=(2e/Al)Y andx=(2e/Al) X. It is easy to see that
An experimental measurement 8f(w) and verification these equations coincide with the master equati@dsand

of the upper bound<£4S,) for the spectral peak correspond- (11) for z Imp,, and Rep;,, respectively. SinceA(0)

ing to qubit oscillations seems to be the easiest experimert A(0)=)(0)=0, the initial conditions for new variables

related to a continuous monitoring of a nontrivial single-are a(0)=1 and x(0)=y(0)=0—i.e., exactly the initial

qubit evolution. This makes it preferable for sooner realiza-conditions forK; calculation. Thereforea(r)=K3(7) and

tion in comparison with more interesting but more difficult the spectral densit,(w) calculated using the generalized

proposed experimerf§?? on monitoring of a solid-state Bloch equations coincides with the result of the master equa-

qubit. tion approach.

IV. CONCLUSION

X=—(elt)y—Tx, (A4)
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APPENDIX B:  GENERALIZATION [Actually, in Eq.(B6) instead ofl; one can writel;" if the
OF THE BAYESIAN RESULTS FOR S(w) tunneling is in the positive direction and if it is in the

The Bayesian results f@ (o) have been derived in Ref. negative direction; however., the com_asponding temperature
12 only for the case of a weakly responding detector infactors cancel each othgit is interesting to note that the
which the detector currentt) can be considered as continu- 9€Nn€ralized Bayesian equations do not contain any decoher-

ous and the qubit evolution is described by the equatfdis ence term even at finite temperature. This is because our
model of the low-transparency QPC describes an ideal

. _ 2Al H detectot and counting tunnel events in both directions gives
P11=— P2o=pP11P2o—=—L1 (1) = 1]~ 2% Imp4,, (B1)  more information than measurement of only the total current
So (1" —17) assumed in EqgB1)—(B3).

For the evolution simulation Eq$B4)—(B8) should be
complemented by the statistics of tunnel events in the detec-
tor. This statistics is described by thearying) ratesp™ and
p- of tunneling events in the positive and negative direc-

. Al €
p12=—(p11— Pzz)g[l () —=lolp12— vp12t I P12

H : g €\
+Iz(pll—p22), (B2)  tions, respectively:
T()=(17/e)pr(t)+(15/€)paft), B9
wherey=T—(A1)?/4S, is the qubit decoherence rate with- Pr(O=(1/€)pu(D+(12/€)p2(1) (BY)
out ensemble averaging [for our model /T “(=(17/e)py(t) + (15 /e 0. (B10)
=cosh 4(eVI2T), so thaty=0 atT=0] and the statistics of P (O=(11/€)p1(U+(12/€)p2xd
I(t) can be modeled as It is important to notice that ensemble averaging of the evo-
lution equationgB4)—(B8) over random moments of tunnel-
()= 1o=[p1a(t) — part) JAI/2+ &(1), (83) ing events described by Eq@9) and (B10) leads’ to the

conventional master equatiorf$0) and (11) with the en-
where &(t) is the white noise with the spectral densBy  semble decoherence rdfegiven by Eq.(12).
=Sp. Notice the significant difference in the meaningpgf To calculateS,(w) we will use the method developed in
in the Bayesian equations and in the master equation singgef. 31 and write the current correlation functie)(7)
Egs.(B1) and(B2) describe individual qubit evolution with- =(|(t+ 7)I(t))=K,(—7) at 7==0 as
out ensemble averaging. Also notice that the detector noise

&(t) is now significantly correlated with the qubit evolution Ki(m)=sd(7)+{I")Ye[p*(r]+)—p (7]+)]
pij(1). —{1~ (] =)—p (-
To consider the case of a detector with a finite response (IMelp* (=) =p~(7]-)], (B1D)

factor|Al|/15, we necessarily need to take into account in-where s=S,(«)/2 determines the pedestal &(w) and
dividual tunnel events in the detector becalséecomes p=(7/+) is the average rate of tunneling in the positive
comparable tay/e. Hence, the current is not continuous (p*) or negative p~) direction at timet+ =, for the condi-
anymore and we have to use generalized Bayesiafion that at timet a tunneling in the positivel ¢-) or negative
equation$' (which are essentially similar to the equations of (|—) direction has occurred.
the quantum jump formalisff). Then the qubit evolution The value ofs should be chosen in a way to provide the
during the time intervals between tunnel events in the deteccorrect value of5,() =S, coth@V2T) which can be calcu-
tor is continuous and given by the small-time generalizedated in the same manner as in Appendix A. For the calcula-
Bloch equations fop% with the restored normalization, tion of p~(7/+) let us notice that as seen from E@6),
Al v H after the positive tunnelingat 7=0) the value ofz=p;
: . e — Doy i
pP11= ~ P22= " ?CO“'( ﬁ) P11P22~ 23 1M 1, (B4) paz 1S equal to

Z(t+0|+)= l1p11—12p22
l1p11t 12022

) Al eV € H

P27 % cotf( ZT)(p11 p22)p12+|ﬁ Pty (P11~ p22). where p;; are taken before the tunneling. Averagiagt
(B5  +0|+) over the positive tunneling evenfter, equivalently,

over time with the weight factop™(t), which is propor-

tional to the denominator of EqB12)], we get(z(t+0

[+))y={l1p11—12p2)/{l), expressed via simple averaging

(B12)

while each tunnel event in the detectat timet=t,) causes
an abrupt changécollapse of the qubit state:

I p1a(t—0) over time. S_ir_lce(p11)=<p22>=1/2, the expression can be
p11(t+0)= , (B6) further simplified:(z(t+0|+))=A1/2(l). A similar calcula-
11p12(t=0) 120241 —0) tion shows that pya(t+0|+))=(p1)(1112)¥2(1)=0.
It is sufficient to know(z(t+ 0| +)) and{p;,(t+0|+)) to
Pp2Att0)=1=p1(t,+0), (B7) calculatep™(7]+) because of the linearity of the averaged

1 evolution equationg10) and (11) in terms ofz and p4, and
p1atit0) [ praltit0)poo(ti+0) (gg) linearity of Egs.(B9) and (B10). Using Eqs.(10) and (11)
p1tk—0) | p1(tk—0)po(t,—0)] with averaged initial conditions at=0, we can show

075303-7
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+

I+

IT—15 Al
2<|>Z(7')1

_2e

4=

p(7+)— (B13)

e

where z(7) is calculated from Eqgs(10) and (11) starting
from initial conditionp,,=1, p,»=p1,=0. Finally noticing
that the expressions do not depend on the direction of tu
neling at 7=0 and combining the terms in E¢gB11l) we
obtain

PHYSICAL REVIEW B67, 075303 (2003

Al)?
( 4) z(7),

with the samez(7) as above. The constant tefir)? does not
contribute to the Fourier  transform Sj(w)
=2[7_K,(7)cosr)dr (formally it leads to a5 function at
w=0), while the second term of E¢B14) gives the same
contribution as the second term of Hd1). Consequently,

the calculation ofS,(w) using the generalized Bayesian ap-
proach leads to the same result as the master equation ap-
proach.

K (7>0)=(1)2+ (B14)
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