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Quantum feedback control of a solid-state qubit
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We have studied theoretically the basic operation of a quantum feedback loop designed to maintain a desired
phase of quantum coherent oscillations in a single solid-state qubit. The degree of oscillations synchronization
with external harmonic signal is calculated as a function of feedback strength, taking into account available
bandwidth and coupling to environment. The feedback can efficiently suppress the dephasing of oscillations if
the qubit coupling to the detector is stronger than the coupling to the environment.

DOI: 10.1103/PhysRevB.66.041401 PACS nuntder73.23—b, 03.65.Yz, 03.67.Lx

The principle of feedback control is used in a wide varietycoherent oscillations in a solid-state qukiQuantum feed-
of physical and engineering problems. In particular, it can béback in optics has been proposed and studied earlier—see,
applied in a straightforward way to tune the oscillation phasee.g., Refs. 7, 9—1pIn particular, we will study dependence
of a harmonic oscillator in order to achieve a desired synof the loop operation on the feedback strength, available
chronization with some reference oscillator. An intriguing bandwidth, and dephasing due to environment.
and fundamental question is whether continuous feedback As an example of the measurement seftig. 1) we con-
can be used to control quantum systems; for instanceSsider a qubit represented by a single electron in a double
whether or not it is possible to tune the phase of quantunfluantum do{DQD), the location of which is measured by a
coherent(Rabi oscillations in a qubittwo-level systen® quantum point contadtQPQ nearby in a way used in Ref.

At first sight the quantum feedback seems to be impos16. If the electron is in the dot @tate|2)) which is closer to
sible because according to the “orthodox” Co||ap5e QPC than dot 1, then the QPC tunnel barrier is hlgher and so
postulaté the quantum state is abruptly destroyed by the acthe average currert through QPC is smaller than the aver-
of measurement. However, as was shown 2 decades ago, &€ currentl; corresponding to the electron in the dot 1
particular by Leggett,in a typical solid-state setup the col- (state|1)). Consequently, from the QPC current one gets
lapse of a qubit state should be considered as a continuoiformation about the electron location. We consider a real-
process rather than as an instantaneous event. istic case of weak responsé) =1, —1,<Io=(l;+1,)/2. In

While the Leggett theory as well as a majority of similar this case the measurement tirBg¢2(A1)?, which is neces-
approaches can describe orgpsemblesof quantum sys- —sary to achieve signal-to-noise ratio equal tthéreS, is the
tems, the theory describing the gradual collapse single ~ QPC shot noisg is much larger thae/l,, so the QPC cur-
solid-state qubit was developed only recertly(A similar ~ rentl(t) is continuous on the measurement time scale.
problem in quantum optics was solved much earlier—see, The evolution of the qubit density matrix during the
e.g., Refs. 6 and 7 and references in Ref.Basically, the measurement process is described within the Bayesian for-
theory says that the evolution of a single quantum systenmalism by equatioris'
due to continuous measurement is governed by the informa-
tion continuously acquired from the detector. Similarly to
classical probability, the Bayes formflithat naturally takes
into account incomplete information from the detector, can

. . H 2Al
P11:_P22:_2g |mP12+P11P22?|[|(t)_|0]1 1)

still be applied to the density matrix of the measured quan- . e H Al

tum system; thus the formalism is called Bayesian. P12~z pratiz(pua— Pzz)—(Pu—Pzz)g[l () —lolp12
In case of a poor detector the extra noise acting back onto

the input disturbs the measured system more than the limit — YP12, 2

determined by the uncertainty principle; this leads to gradual
decoherence of the measured system. In contrast, when me#heree andH are, respectively, the energy asymmetry and
sured with a goodquantum-limited detector, the quantum tunneling strength of the qubithe qubit Hamiltonian is
system does not loose the coherefeeen though the quan- Hqv=(£/2)(cic,—cicy) +H(clc,+cley)], and y=y4+ ve
tum state evolves randomlymoreover, its density matrix is the dephasing rate due to the detector nonideajigy and
can be gradually purifi€dwhich basically means acquiring coupling with the environmenty).!” Theoretically, y4=0
as much information about the system as permitted by quarwhen qubit is measured by a QPC; however, if instead of
tum mechanics. QPC we use a single-electron transigt8ET), then dephas-
Since the Bayesian formalism allows us to monitor theing vq is usually quite significafit'® (except the case when
continuous evolution of a quantum system in a process othe SET operates in a cotunneling regifid.
measurement, this naturally gives rise to a possibility of con- Notice that the ensemble dephasing rafe=vy
tinuous feedback control of a quantum system. In this paperf (A1)2/4S, is larger thany because of differing evolution
we will study the operation of a feedback loop proposed inof the ensemble members due to randoft). Individual
Ref. 4 and designed to maintain a desired phase of quanturealizations can be simulated using the forrula
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=S,. If Egs. (1) and (2) are averaged ovef(t) (we use . . . .

Stratonovich definition for stochastic differential equatipns ~ FIG. 2. Correlation functiorK,(7) of the qubit quantum oscil-

then we get usual ensemble_averaged equa‘(i‘tmﬂnms pro- lations forC=1 and feedback factor§=0 (thln solid |in9, 0.05

portional toAl disappear and is replaced byl'). (thick solid ling, and 0.5(dashed ling Nondecaying oscillations
It is natural to characterize the effect of extra dephasing'® dué to synchronization by the feedback.

vq by the detector ideality (efficiency #=1[1 . .
4 7445, /(A1)2]. One can shof? that = (%1/2¢,)? where for moderately weak coupling between the qubit and detec-

. — 2 — £
eq is the total energy sensitivity of the detectpey tor: C=f(Al)%/SH=1 (nofice that the Q factor of

=(€i€0) "% wheree, is the usualoutpup energy sensitivity ols_;cnlatllont§h IS gqual to ?ﬁf S%g_lk: 'SOSt'ltlha Weakl th_)u'
ande¢; is a similar quantity characterizing backaction to theP ing). In the absence of feedback {0) the correlation

input]. So, an ideal cas@=1 corresponds to a detector with funct||ort1. decays t(.) zferq, (\;vk}[le_tf?r Tlnltetfeedback.factor the
quantum-limited sensitivity. correlations remain for indefinitely long tim@ssuming per-

To realize a feedback loofig. 1), we can monitor the IﬁCtt rtﬁferencet OSC]L"at(?gThE Inondecaﬁ/lng cq:jrela‘t[;:)ns shor;/v
qubit evolution using the detector currdrft) plugged into at the quantum teedback loop reaily provides the synchro-

Egs. (1) and (2). Then the qubit state is compared with the nization of quantum oscillations. The degree of synchroniza-

desired state, and the difference signal is used to control thien depends on the feedback fackorOne can see that for a

. moderate value df = 0.5 the synchronization is already very
qubit parameter$l and/ore. In our example the feedback . -
loop is designed to stabilize the quantum oscillations of thegOOd[the ideal case would bi,(7) =cos17)/2].

state of a symmetric qubit(=0), so the desired evolution is . For analytical analysis we take into account _that in the
ideal caseyy=y,=0 the qubit state is pufeand using Egs.

p11(t) =1—poy(t) =[1+cos(2)]/2, p1at) = p3y(t) ~ ; :

=isin(Qt)/2, where the frequency i§)=(4H?+&%)Y9% (1)—(3) start with the equation

=2H/%. As a difference(“error” ) signal we use the phase d Al [ Al 2FH

differenceA ¢ (A ¢|<r) between the desired valugy(t) gid¢=—sing| Scosp+ | ———Ad, (4
|

=Qt(mod27) and the monitored value ¢(t)
=arctar2 Imp5(t)/[ p12(t) —p2o(t)]). This difference is which assumes the absence of phase slipggood or mod-
used to control the qubit parametdr(changing the barrier erate synchronizationFor weak coupling ¢/8<1) we can
height of DQD; here we study a linear control;,=(1  neglect the first term in parentheses and average the random
—FXAg¢)H, where F is the dimensionless feedback term over sinp assuming almost harmonic evolution that

factor?? leads to the simplified equation

In this paper we neglect additional time délaythe feed-
back network, however, we take into account the finite band- EA¢=E— EA(b (5)
width of a line carrying detector currefiwhich is a critical dt h '

parameter for a possible experimenore specifically, we ~ . ] ] . ]
average the curren(t) with a rectangular window of dura- Where 2§(t) is the white noise with spectral density;
tion 7, |a(t)ET;1fLT I(t")dt’, before plugging it into =(Al) /28.-Th|s eq_uatlon dgscrlbes a particle diffusion in
Egs.(1) and(2), so that tahe “available” density matrip,(t) the para_bollc potentidive again assurda¢|<w). The cor- ;
d'ff. ¢ h ,“t » densit o (1) Also. t a responding Fokker-Planck equation has an exact solution
s;\tgr?orrot?e c?)rr;l;;e)oned?nsglj }:r;npallwr;:i@t(lrr)\e dSe(I)z;\yO \(/:v(:am&? that is used to calculate the correlation functign(r)
=¢,— Q(t— k7,) with k=1/2 (we found thatk=1/2 pro- ;n<;|§t5%a(f)(é))(pfeﬁggg)DCOSQT/Z' In this way we obtain the
vides the best operation of the feedback loop

Let us start with the case of ideal detectgr 1, absence cosQ 7 C
of extra environmenty,=0, and infinite bandwidthr,=0. K, ()= TGXF{E(GZFHM‘— 1)], (6)
Figure 2 shows numerically calculated correlation function
K (7)=(z(t+ 7)z(t)) wherez=p,,—p,,, for several feed- which fits well the Monte Carlo results whefi8<1 and
back factors:F=0, 0.05, and 0.5. The curves are obtainedC/16F=<1 (weak coupling and moderate or good synchroni-
using Monte Carlo simulaticrf of the measurement process zation. As an example, the dots in Fig. 3 show the numeri-
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FIG. 3. Dots: asymptotic amplitud&y, of K,(7) oscillations as
a function of feedback factdf for several couplings with the de-
tector,C=0.5, 1, and 2. Solid lines: analytical approximatidp,
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FIG. 4. Synchronization degre® as a function of feed-
back factorF for several valuesr, of detector signal averaging:
7/T=0, 1/3, and 2/3, whereT=27x/Q. Dashed line D

=exp(—C/16F)/2. Dashed lines: corresponding numerical results=exp(—C/32F) almost coincides with the upper curve. Dotted line

for D?/2.

cally calculatedusing the least-mean-square fisymptotic
amplitudeAg, of K,(7) oscillations(at 7— ) as a function
of the feedback factoF for three values of the coupling,

corresponds to “direct” feedback with,=T/10.

chronization andD is asymptotically approaching 1 at large
F. The analytical resulD=exp(—C/32F) (dashed line in
Fig. 4) is very close to the numerical results at moderate and

while solid lines show the corresponding analytical curvesyood synchronization.

Ax,=exp(—=C/16F)/2.

The correlation functiorK,(7)={l(t+ 7)I(t)) of the de-
tector current (t) is somewhat similar t&,(7), however, it
also has the decaying contributfdrdue to correlatiork ,,

Finite available bandwidth of the detector curréft) (fi-
nite averaging timer, in our formalism worsens the perfor-
mance of the quantum feedback loop. The solid lines in Fig.
4 show the dependence of the synchronization deDrde

and as-function contribution due to the detector noise. Thefor r,/T=0, 1/3, and 2/3, wher&= 27/ is the oscillation

analytical result for the same regime as above,

(A1)?
4

Ki(n)= 2 8(n)+ S (e K, (7)

period. Obviously, a significant information loss occurs when
T4 becomes comparable 19 leading to a decrease bf The
curvesD(F) saturate at largé allowing us to introduce the
dependenc® ., 7). Calculations for the parameters of Fig.
4 show pretty good synchronizatiod,,,,=0.993, for ,

also agrees well with the Monte Carlo results. The spectrakT/30, whileD ,,,,=0.98, 0.92, and 0.57 for,=T/10, T/3,
density S;(w) of the detector current can be obtained as aand 2T/3, respectively.

Fourier transform ofK,(7). While in the absence of feed-  The main potential practical importance of the quantum
back, the quantum oscillations in the qubit can provide onlyfeedback is the ability to suppress the effect of the qubit
a moderate peak 0§ (w) around frequency) (the peak dephasing caused by interaction with the environnisae
height cannot be larger than four times the noise pedéstal Fig. 2). This can be used, for example, for qubit initialization
the feedback synchronization leads to the appearancedof ain a solid-state quantum computer. Solid lines in Fig. 5 show

function at the frequency of desired oscillations.

the dependencB (F) for several magnitudes of the dephas-

Besides the correlation function and spectral density, wéng due to environmentd,=0, 0.1, and 0.5, wherel,

have studied one more characterisiig,of the synchroniza-

=y./[(A1)?/4S] is the ratio between the qubit coupling to

tiop degree. We definB as the average scalar produ_ct of thethe environment and to the detectare still assume an ideal
unit-length vector on the Bloch sphere corresponding to theletectoy. First of all, we see that the feedback still maintains
desired state and the vector corresponding to the actual stadée qubit phase synchronization for infinitely long time.

of the qubit. The equivalent definition B=2(Trppy)—1,
wherepq is the density matrix of the desired pure stifiehe
so-called fidelity is equal to eitheiD(+1)/2 or (D +1)/2,
depending on the definitiolf] Perfect synchronization cor-
responds td=1. It is simple to show that in the limit of
weak coupling and for symmetric distribution df¢ (un-
shifted desired frequengyA,, coincides withD?/2. Notice,
however, that at moderate coupling?/2 (dashed lines in
Fig. 3) is much closer to the analytical result thAp, .
Upper solid line in Fig. 4 shows the dependencéobn
the feedback factoF for C=1 and7r,=0. One can see that
D is proportional toF for small F (“soft” onset of the syn-

However, for finited, the degree of synchronizatidh satu-
rates at a level less than unity. We have studied numerically
the dependenc®,,(d.) for C=1/2, 1, and 2(while 7,
=0 andn=1) and found a linear dependence at sndall
Dnmax=1—-0.5d.. [A little better formula D=1
—0.5d./(1+d.) works reasonably well up td,<1.] This
means that the feedback loop can efficiently suppress the
qubit dephasing due to the coupling to the environment if
this coupling is much weaker than the qubit coupling to a
nearly ideal detector.

Notice that the solid lines shown in Figs. 4 and 5 are
calculated assuming the feedback control of the tunnel ma-

041401-3



RUSKO RUSKOV AND ALEXANDER N. KOROTKOV

1.00 TN NN N O N W EO TR AU TR [T N T

15 e

o O

[ w
PYRVERNS T T N T N M T T T T A M B OO

I
00
o3

D (synchronization degree)

0.80

1 2 3 4 5 6 7 8 9
F (feedback factor)

—_
<o

FIG. 5. DependencB(F) for C=1, r,=0, and several magni-
tudes of dephasing due to environmety=0, 0.1, and 0.5. Dashed
and dotted lines correspondd@=0 and limitation ofH, by 0 and
H/2, respectively.

trix elementH;,=H(1—-FXA ¢) even whenH;, becomes

performed numerical calculations with restrictioklg,>0

and Hy,>H/2. This leads to rather minor modifications of
the presented curvédashed and dotted lines in Fig. 5 show

the results fod,=0 andr,=0). However, important differ-
ence is thatD(F) goes down at largé, so the optimum
Dmax is achieved at some finite value bBf

Besides the discussed feedback based gncalculation,
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control formula is easily designed from the naive assumption
that the detector current directly follows the evolution of
p11)- Direct feedback is much simpler for experimental real-
ization since it does not require real-time solution of the
Bayesian equationdirect feedback in quantum optics has
been studied in Refs. 7, 10-)1%urprisingly, the direct feed-
back can also provide a good phase synchronization of quan-
tum oscillations ifF/C is close to 1/4see dotted line in Fig.

4). However, it requires more careful choicefofind 7, than

for the Bayesian feedback, and also suffers more signifi-
cantly from the restriction o, variation.

Experimentally, besides the realization of quantum feed-
back control of a DQD continuously measured by a QPC,
one can also think about the qubit based on a single-Cooper-
pair box measured by a single-electron transi&iee discus-
sion in Ref. 4. This realization can be preferable because of
a rapid progress of metallic single-electronics technology.
However, the problems are high output impedance of the
single-electron transistor and its nonideality as a quantum
detector. The third potential realization can be based on su-
perconducting quantum interference devices. For any realiza-
tion the major problem is the bandwidth: the feedback should

%e at least faster than the qubit dephasing. Because of that,

the quantum feedback of a solid-state qubit should probably
be attempted only after the realization of recently proposed
Bell-type two-detector correlation experiméfit, which
would show the possibility of quantum monitoring, the first
step to quantum feedback control.
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