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Continuous weak measurement of quantum coherent oscillations
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We consider the problem of continuous quantum measurement of coherent oscillations between two quan-
tum states of an individual two-state system. It is shown that the interplay between the information acquisition
and the backaction dephasing of the oscillations by the detector imposes a fundamental limit, equal to four, on
the signal-to-noise ratio of the measurement. The limit is universal, e.g., independent of the coupling strength
between the detector and system, and results from the tendency of quantum measurement to localize the system
in one of the measured eigenstates.
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Coherent oscillations between the two states of a quantumot happen, and the measurement provides only limited in-
two-state system represent one of the most basic and diretarmation about the system. Such a weak measurement,
manifestations of quantum mechanics and are encountered iowever, perturbs the system only slightly and can be per-
practically all areas of physics. The question of how to meaformed continuously. Below we consider quantitatively the
sure them directly in an individual two-state system was apProcess of continuous weak measurement of quantum-
parently formulateti* for the first time in the context of coherent oscillations. We calculate the spectral density of the
quantum dynamics of Josephson junctions, where the oscifletector output and show that the trade off between the ac-
lating variable, the magnetic flux in a superconducting loopauisition of information and dephasing due to the detector
is macroscopic. A common feature of the measuremenackaction on the oscillations imposes a fundamental limit,
schemes suggested in this context is the use of convention@fiual to four, on the signal-to-noise ratio of the measure-
“projective” measurements that localize the flux in one of its ment. In this Work, we use a more conventional nonselective
eigenstates and suppress the oscillations. The time evoluti@PProach to measurement, which discusses only the quanti-
of the oscillations can then only be studied if the experimenties averaged over the detector output. All the results can be
is repeated many times with the same initial conditions, andeproduced within the selective description of the measure-
the information about oscillations is contained in the prob-ment process?
ability distribution of the measurement outcomes. This Although the main conclusions of our work are quite gen-
means that the oscillations are effectively studied in an en€ral, in what follows we prefer to use the language of a
semble of systems, not in an individual system. Anotherparticular system: two coupled quantum dots measured with
practical, disadvantage of the projective measurements is tifequantum-point contact. Quantum-point contacts were used
need to control the system dynamics externally on a timés electron detectors in Refs. 11-13 and described theoreti-
scale shorter than the oscillation period, in order to allow forcally in Refs. 14-18,10. Coherent-electron oscillations in
preparation of the initial state of the system, free evolution ofcoupled dots were observed indirectly in the dc transport
the oscillations, and subsequent measurement. Since the d¢¥1der microwave irradiatiof?.
cillation frequency is limited from below by several factors, ~ The Hamiltonian of the systeiisee inset in Fig. ®)] is
including decoherence time and temperature, this require-
ment presents at the very least a challenging techni<_:al _prob- H=— 1(gaZJrAchJr o,U)+ E skaiTkaik, (2)
lem. Although this problem has been solved for oscillations 2 iK
of charge in a Cooper-pair boxt presents considerable ob-
stacle to direct time-domain observation of quantum- u=>u. S al
coherent oscillations in other systems, e.g., oscillations of T Vi ikjp-
magnetic flux in superconducting quantum interference de-
vices (SQUID's), which has been observed only through theThe first two terms here describes an electron oscillating be-
spectroscopy of energy levéls. tween the two discrete energy states localized in the quantum

The aim of our work is to point out that the problem of dots: ¢ is the energy difference between the stated/2 is
measurement of quantum-coherent oscillations in an inditheir tunnel coupling, and th@s denote Pauli matrices. The
vidual two-state system can be somewhat simplified if pro-operatorsa;, represent point-contact electrons in the two
jective measurements are replaced with a weak continuowscattering states=1,2 (incident from the two contact elec-
measurement, and to study the quantitative characteristics tfodes with momentunk. The couplijnge,U/2 is due to an
such a measurement scheme. As is emphasized frequently additional scattering potentiat U(x)/2 created in the point
the theory of quantum measuremefgse, e.g., Refs. 739  contact by the electron occupying one or the other dot. The
the “textbook” projective quantum measurement requirespoint contact is biased with a dc voltageso that changes in
the dynamic interaction between the system and the detecttine scattering potential lead to changes in the curient
to be sufficiently strong to establish nearly perfect correlathrough the contact. We takeV to be much smaller than
tion between their states. If the interaction is weak, this doedoth the Fermi energy in the point contact and the inverse
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FIG. 1. The diagranfinset in(a)] of the coherent electron oscillations between the two discrete energy states in coupled quantum dots
measured with a point contact. The oscillations are detected through modulation of the i{tjremthe point contact biased with a voltage
V. Plotted curves show the spectral den8{fw) of the current in the case of symmetric coupling between the point contact and the dots
for several values ofa) the energy biag between the dots reflected in the oscillation frequeficy (A2+ €2)*2 and (b) the ratel” (9) of
the measurement-induced dephasing.

traversal time of the contact. This allows us to linearize the ve SD+iu
energy spectrum of the point-contact electroag=uvgk, U12=T T U, =U7,. (3)
wherev¢ is the Fermi velocity, and neglect the momentum 2(DR)

dependence of the coupling matrix elements;;
= [dxy" (X)U(X) ¢;(x) of the perturbatior in the basis of
the two scattering stateg (x). We also assume that thé;
are sufficiently small for the point contact to operate as
linear detector, and treat the contact’s response to electron
the dots in the linear-response approximation.

Quantum oscillations of electron between the dots creat

The imaginary part ofJ;,, expressed through a dimension-
less parameteu in Eq. (3), does not affect the curremt
Qualitatively, it characterizes the degree of asymmetry in the
acoupling of the quantum dots to the point contact0 if the
Bbrturbation potential (x) is applied symmetrically with
respect to the main scattering potential of the point contact.
e . € When the point contact is used as a detector in a quantum
an oscnlat_lng component of the cur_reln_throu_gh the point measurement, the currenplays the role of the measurement
contact. Since the phase of the oscillation diffuses under th8utput and should behave classically. This condition requires

?aCkaCt'OE Oftthr? shott nplsg gf ttr;]e point ctonlta:jct, thte O_?C'][!afdwe spectral density df to be much larger than the spectral
lons are best characterized by their spectral density. 10 fin ensity of the zero-point fluctuations in the relevant fre-

the spectral density of the currehtve choose the origin of . g
the c%ordinatex algn the contact in such a wa t%at the gquency range. It ' satisfied v_vhen the voltaggacross the
turbed ft ng tential is effectivel y ic. | point contact, which determines the magnitude and the
unperturbed scattering potential IS elfectively SYmmetric, 1.€.y, .o g5 g frequency of the shot noise Igfis sufficiently
the reflection amplitudes for both scattering states are th%rge eVse,A. For the point contact to be an effective de-
:’;mme. ;Ic—nrt]iinr'ethi?) rfugﬁgéosizrt?é?irncalsigiztse%at a pamthe tector,eV should also be much larger than the temperaiure
ymp 9 9 In this regime, it is straightforward to find the correlation
o functions of the perturbatiob and the current at frequen-
UF T i cies much smaller tharV, in the zeroth order irJ from
|l=— D(aap—asa '
L %[ (Phap~Bozp) Egs.(1), (2), and(3):

+i(DR)%e *“Pl(aja;,—afai,)], (2 eV (8D)2+u?
- . (UOUt+D)o=5——pr 80, @
whereD and R=1-D are the transmission and reflection 77
probabilities of the point contadt, is a normalization length,
and the variation of the momentum near the Fermi points (U(t)l(t+r)>0=22—7\7/(i5D+u)5(r— 7). ©)

(i.e., the difference betweekand p) was neglected every-
where besides the phase factor in the second term. The rea-
son for keeping this factor will become clear later. The spectral density dfat low frequencies is dominated by
In the linear-response regime, the current response of thiée regular shot noise, and the current-correlation function is
point contact is driven by the part of the perturbation KO(7)=(1(t)I(t+7))o—(1)2=e(1)RS(r), where (I)
causing transitions between the two scattering stgies =e?VD/ . The time delayy=|x|/vg in Eq. (4) comes from
Considering the effect of this perturbation on the stationarnthe phase factoe ' ~P)X kept in Eq.(2), and is infinitesi-
(symmetric and antisymmetjicombinations of the scatter- mally small for small traversal time of the contact. It is nev-
ing states, one can show that the real part of the transitiorrtheless important for resolving the ambiguity in averages
matrix elemenU ,, is related to the chang#D of the trans-  involving the time ordering of andU that are needed for the
mission probability of the contact: calculation of the current responsefdt’(Z{I(t)U(t")})o
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=e?V(8D+iu)/w. Condition of the large bias voltage, to- of the dephasing rat€) is determined purely by the rate of
gether with the condition of weak dot-contact coupling, al-information acquisition about the state of the quantum dots
lows us to neglect renormalization of the tunnel amplitdde and can be written ak = (51)%/4S,, where Sy=2¢e(I)R is

in the Hamiltonian(1) associated with this coupling—see, the spectral density of the current shot noise of the point

e.g., Ref. 20. contact!® This part of the dephasing is fundamentally un-
Expression for the current-correlation functih(7) in  avoidable and reflects the tendency of quantum measurement
the interaction representation with respectXas to localize the measured system in one of the eigenstates of

the measured observable, in our case, the electron

K () =Tr{p()1()S'(t+ 7,t)I(t+7)S(t+7t)}, (6) positiono,.

~ The dot density matriyp satisfies the same set of equa-
wherep(t) is the total density matrix of the point contact and tions (8), except for the normalizatiomy;+ p,=1, and its
quantum dots at timg the trace is taken over both systems, stationary value ip = 1/2. Solving Eqs(8) with the initial
and S(t+7,t)=Texp{(—i/2)[{"dt'o,U} is the time- conditiono,(0)= o, and averaging,o,(7) overp=1/2 we
evolution operator. Taking the trace over the electron statefind the correlation function(7) and the spectral density
in the point contact in E¢(6) with the help of the correlation s (w)=2f"_K,(7)e'“"dr for e=0:
functions(4) and(5), we get

r0?(s1)?

2
(o) S|(w)=So+(w2_Qz)2+rzwz-

(10
4 < 0,0, T)) . (7)

Ki(1)=K{?(r)+

The averagé- - -) in Eq. (7) is taken over the two states of In the case of biased dots wite0, it is convenient to
the quantum dots with the stationary dot density magrix calculate the spectrum numerically from E@). The spec-
established as a result of the interaction with the point contrum in this case is plotted in Fig. 1 for several valueseof
tact and averaged over its dynamics. The current chahge and the dephasing raté. For weak dephasing, <A, the
=e?(6D)V/ is the current response to electron oscillationsspectrum consists of a zero-frequency Lorentzian that van-
between the dots, and,(7) now denotes the full time evo- ishes ate=0 and grows with increasing|, and a peak at
lution of o,, driven both by the dot Hamiltonian and the the oscillation frequencyQ=(A?+ €)% Although the
interactionU with the point contact. Qualitatively, Eq7)  width of the oscillation peak i$* and can be small for suf-
shows that the current correlation function directly reflectsficiently weak dot-contact coupling, its height cannot be ar-
the correlation function of the electron position in the dotsbitrarily large in comparison to the background-noise spec-
given byo,. tral density Sy. At e=0, when the amplitude of the
The time dependence of the operatof ) in Eq. (7) is  oscillations is maximum, the peak heightSs, .= (81)2/T.
obtained by tracing out the point-contact degrees of freedorfven in this case, the ratio of the peak height to the back-
in Eq. (6) with the help of theU-U correlation function(4).  ground is limited:
In this way we get the standard set of equations for the ma-
trix elementso;; of o,(7): Smax  4(6D)?

S (8D)2+u?

(11
0'11=A|m0'12, UlZZ(iS_F)Ulz_iA(Tll, (8)
This limitation is universal, e.g., independent of the coupling
strength between the dots and the point contact, and reflects
(6D)2+u? quantitatively the interplay between measurement of the
ervm (9) guantum coherent oscillations and their backaction dephas-
ing. The fact that the height of the spectral line of the oscil-
describes backaction dephasing of the coherent-electron olgtions can not be much larger than the noise background
cillations between the dots by the point contact. Equat@®n means that, in the time domain, the oscillations are drowned
shows that the dephasing rate reaches a minimum in the caiethe shot noise.
of symmetric dot-contact couplingi&0). In this case, the The total intensity of the oscillation line in the spectrum:
rate of dephasing by a point contact has been found in Refs.
14-16 for a single quantum-dot. In the double-dot case the f” s w (81)? 12
situation is quite different in that the dephasing rBtenani- 0 [ '(w)_s‘)]ﬂ_ 4 (12
fests itself directly as the width of the spectral line of the
guantum-coherent oscillations. Increased dephasing in théoes depend on the strength of coupling to the point contact,
case of asymmetric dot-contact coupling was discussethcreasing as the coupling becomes stronger. An interesting
gualitatively in Ref. 18 and studied experimentally in Ref.feature of Eq.(12) is that it stresses the impossibility of a
13. Since the decrease bf with decreasing asymmetny  simple classical interpretation of the quantum-coherent oscil-
does not affect the current response of the point contactations, since the intensity of harmonic classical oscillations
symmetric coupling corresponds to an optimum in its operaof the same amplitudél /2 would be two times smaller, and
tion as a detector. In this regime, the point contact representso classical signal of this amplitude could produce the oscil-
an ideal quantum detector in a sense that the minimum valulation line with intensity(12).

and o,,= —0q;1. The rate
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When the backaction dephasing rétancreases, the os- _ € Q

cillation line broadens towards the lower frequencies, and s;;(7)=TI, ﬁ—coth{ﬁ]sn

eventually turns into the growing spectral peak at zero fre-

guency that reflects the incoherent electron jumps between

TA?
+(—1)) —=(s11—52),
( )202( 11~ S22)

the two dots. At largd”, when the coherent oscillations are 1A 7)=(ie =T'0)S12, (13
suppressed, the rate of incoherent tunneling decreases wilfith the initial conditions s;;= —S,,=€/Q, and s;,=
increasingl’. For instance, ab’>(), the tunneling rate iy  —A/(Q). The characteristic energy-relaxation rate in Bp)

=A?/2T" and the spectral density of the point-contact re-is I';=v A2/, wherev = (1/7)(U$,+ U3, (L/vg)?, and the
sponse 2has 2the 2standard Lorentzian for8)(w)—S,  total dephasing rate is

=2vy(61)/(4y "+ w?). Suppression of the tunneling raje

with increasing dephasing ralé is an example of the ge- To=[v(A%Qcoth Q/2T) + 4 T) +T' (267 +4%)]/20%.
neric “quantum zeno effect” in which quantum- The dot density matrix in the eigenstates basis satisfies
measurement suppresses the decay rate of a metastable staailar equations, and the stationary values of its matrix el-
In the context of search for the macroscopic quantum cohegements arer11=(1“5+1“t)/21“t and rqy,=0, where I';

ent oscillations, the Lorentzian spectral density has been o= <coth(X/2T) +T A%/ Q2. From these relations and Egs.

served and used for measuring the tunneling rate of incohef13) we find the spectral density:

ent quantum flux tunneling in SQUID%.

2 2
The maximum signal-to-noise rati§,,,/Sy (11) is at- S(w)=Sy+ () €2 1_<E) L
tained if the fundamental backaction of the detector is the 0?2 i) Jo2+T3
only dephasing mechanism of the coherent oscillations. In
the case of measurement with a point contact, the fundamen- A? I'o
: : ; : = —— . (14)
tal measurement-induced dephasing considered above is cre- 2 < (wiQ)2+F§

ated by the backscattering padt;, (1) of the dot-contact ) )

interaction that dominates at large bias voltayedhe for- ~ AS before, the spectral density consists of a zero-frequency
ward scatteringJ;, U, does not affect the currehtin the ~ Lorentzian and peaks at() of width I'y that represent the
contact but creates a weak additional dephasing and energ _herer_n electron oscillations. Engrgy relaxation with char-
relaxation mechanism for the oscillations. We now want to2Cteristic ratel’, broadens the oscillation peak and reduces

discuss the effect of such a weak relaxation on the spectrd® N€ightSnax, so that the relative magnitude of the peak,

density of the oscillations noticeable if the backactionlsma?( Sp decreases in comparison with its value without re-
axation.

dephasing is also weak,<A. ) )
The inclusion of the additional weak relaxation does not " Summary, we have considered a continuous weak quan-

modify the calculations that lead to E€7), apart from a tum_ mgasurement by a point contact of quantum-coherent
trivial modification that now the average, is nonvanishing oscillations in a two-state system, and calculated the spectral

and the current-correlation function should be calculated ad€nSity of the output signal of the measurement. It has been
K, (7) = KO(7) + (8112)2 (12)( 0 y0f(7) + o (7)) shown that the backaction dephasing introduced into the os-
™ Yz z z

cillation dynamics by the measurement imposes the funda-
mental limit on its signal-to-noise ratio. We also calculated
the effect of energy relaxation on the output spectrum.

—(0,)?]. For weak coupling, it is convenient to find the time
evolution ofo,(7) in the basis of eigenstates of the two-state
Hamiltonian— (e o,+ A o) /2. Solving the Heisenberg equa-
tion of motion up to the second order in the dot-contact The authors are grateful to K.K. Likharev and A. Maassen
coupling, and tracing out the contact degrees of freedom, wean den Brink for critical reading of the manuscript. This
get a set of equations for the evolution of the matrix elementsvork was supported in part by ARO Grant No.

s;j of o,(7) in the eigenstates basis: DAAD199910341 and AFOSR Grant No. F496209810025.
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