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Continuous weak measurement of quantum coherent oscillations
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~Received 22 February 2001; revised manuscript received 8 May 2001; published 5 October 2001!

We consider the problem of continuous quantum measurement of coherent oscillations between two quan-
tum states of an individual two-state system. It is shown that the interplay between the information acquisition
and the backaction dephasing of the oscillations by the detector imposes a fundamental limit, equal to four, on
the signal-to-noise ratio of the measurement. The limit is universal, e.g., independent of the coupling strength
between the detector and system, and results from the tendency of quantum measurement to localize the system
in one of the measured eigenstates.
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Coherent oscillations between the two states of a quan
two-state system represent one of the most basic and d
manifestations of quantum mechanics and are encounter
practically all areas of physics. The question of how to m
sure them directly in an individual two-state system was
parently formulated1–4 for the first time in the context o
quantum dynamics of Josephson junctions, where the o
lating variable, the magnetic flux in a superconducting lo
is macroscopic. A common feature of the measurem
schemes suggested in this context is the use of convent
‘‘projective’’ measurements that localize the flux in one of
eigenstates and suppress the oscillations. The time evolu
of the oscillations can then only be studied if the experim
is repeated many times with the same initial conditions, a
the information about oscillations is contained in the pro
ability distribution of the measurement outcomes. T
means that the oscillations are effectively studied in an
semble of systems, not in an individual system. Anoth
practical, disadvantage of the projective measurements is
need to control the system dynamics externally on a t
scale shorter than the oscillation period, in order to allow
preparation of the initial state of the system, free evolution
the oscillations, and subsequent measurement. Since th
cillation frequency is limited from below by several factor
including decoherence time and temperature, this requ
ment presents at the very least a challenging technical p
lem. Although this problem has been solved for oscillatio
of charge in a Cooper-pair box,5 it presents considerable ob
stacle to direct time-domain observation of quantu
coherent oscillations in other systems, e.g., oscillations
magnetic flux in superconducting quantum interference
vices~SQUID’s!, which has been observed only through t
spectroscopy of energy levels.6

The aim of our work is to point out that the problem
measurement of quantum-coherent oscillations in an in
vidual two-state system can be somewhat simplified if p
jective measurements are replaced with a weak continu
measurement, and to study the quantitative characteristic
such a measurement scheme. As is emphasized frequen
the theory of quantum measurements~see, e.g., Refs. 7–9!,
the ‘‘textbook’’ projective quantum measurement requir
the dynamic interaction between the system and the dete
to be sufficiently strong to establish nearly perfect corre
tion between their states. If the interaction is weak, this d
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not happen, and the measurement provides only limited
formation about the system. Such a weak measurem
however, perturbs the system only slightly and can be p
formed continuously. Below we consider quantitatively t
process of continuous weak measurement of quant
coherent oscillations. We calculate the spectral density of
detector output and show that the trade off between the
quisition of information and dephasing due to the detec
backaction on the oscillations imposes a fundamental lim
equal to four, on the signal-to-noise ratio of the measu
ment. In this work, we use a more conventional nonselec
approach to measurement, which discusses only the qu
ties averaged over the detector output. All the results can
reproduced within the selective description of the measu
ment process.10

Although the main conclusions of our work are quite ge
eral, in what follows we prefer to use the language o
particular system: two coupled quantum dots measured w
a quantum-point contact. Quantum-point contacts were u
as electron detectors in Refs. 11–13 and described theo
cally in Refs. 14–18,10. Coherent-electron oscillations
coupled dots were observed indirectly in the dc transp
under microwave irradiation.19

The Hamiltonian of the system@see inset in Fig. 1~a!# is

H52
1

2
~«sz1Dsx1szU !1(

ik
«kaik

† aik , ~1!

U5(
i j

Ui j (
kp

aik
† ajp.

The first two terms here describes an electron oscillating
tween the two discrete energy states localized in the quan
dots:« is the energy difference between the states,2D/2 is
their tunnel coupling, and ther’s denote Pauli matrices. Th
operatorsaik represent point-contact electrons in the tw
scattering statesi 51,2 ~incident from the two contact elec
trodes! with momentumk. The couplijngszU/2 is due to an
additional scattering potential6U(x)/2 created in the point
contact by the electron occupying one or the other dot. T
point contact is biased with a dc voltageV, so that changes in
the scattering potential lead to changes in the currenI
through the contact. We takeeV to be much smaller than
both the Fermi energy in the point contact and the inve
©2001 The American Physical Society10-1
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FIG. 1. The diagram@inset in ~a!# of the coherent electron oscillations between the two discrete energy states in coupled quantu
measured with a point contact. The oscillations are detected through modulation of the currentI (t) in the point contact biased with a voltag
V. Plotted curves show the spectral densitySI(v) of the currentI in the case of symmetric coupling between the point contact and the
for several values of~a! the energy biase between the dots reflected in the oscillation frequencyV5(D21e2)1/2 and ~b! the rateG ~9! of
the measurement-induced dephasing.
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traversal time of the contact. This allows us to linearize
energy spectrum of the point-contact electrons:«k5vFk,
wherevF is the Fermi velocity, and neglect the momentu
dependence of the coupling matrix elementsUi j

5*dxc i* (x)U(x)c j (x) of the perturbationU in the basis of
the two scattering statesc i(x). We also assume that theUi j
are sufficiently small for the point contact to operate a
linear detector, and treat the contact’s response to electro
the dots in the linear-response approximation.

Quantum oscillations of electron between the dots cre
an oscillating component of the currentI through the point
contact. Since the phase of the oscillation diffuses under
backaction of the shot noise of the point contact, the osc
tions are best characterized by their spectral density. To
the spectral density of the currentI we choose the origin o
the coordinatex along the contact in such a way that th
unperturbed scattering potential is effectively symmetric, i
the reflection amplitudes for both scattering states are
same. Then, the current operator calculated at a pointx in the
asymptotic region of the scattering states is

I 5
evF

L (
kp

@D~a1k
† a1p2a2k

† a2p!

1 i ~DR!1/2e2 i (k2p)uxu~a1k
† a2p2a2k

† a1p!#, ~2!

where D and R512D are the transmission and reflectio
probabilities of the point contact,L is a normalization length
and the variation of the momentum near the Fermi po
~i.e., the difference betweenk and p) was neglected every
where besides the phase factor in the second term. The
son for keeping this factor will become clear later.

In the linear-response regime, the current response of
point contact is driven by the part of the perturbationU
causing transitions between the two scattering statesc1,2.
Considering the effect of this perturbation on the station
~symmetric and antisymmetric! combinations of the scatter
ing states, one can show that the real part of the transi
matrix elementU12 is related to the changedD of the trans-
mission probability of the contact:
16531
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vF

L

dD1 iu

2~DR!1/2
, U215U12* . ~3!

The imaginary part ofU12, expressed through a dimensio
less parameteru in Eq. ~3!, does not affect the currentI.
Qualitatively, it characterizes the degree of asymmetry in
coupling of the quantum dots to the point contact;u50 if the
perturbation potentialU(x) is applied symmetrically with
respect to the main scattering potential of the point conta

When the point contact is used as a detector in a quan
measurement, the currentI plays the role of the measureme
output and should behave classically. This condition requ
the spectral density ofI to be much larger than the spectr
density of the zero-point fluctuations in the relevant fr
quency range. It is satisfied when the voltageV across the
point contact, which determines the magnitude and
threshold frequency of the shot noise ofI, is sufficiently
large,eV@«,D. For the point contact to be an effective d
tector,eV should also be much larger than the temperatureT.
In this regime, it is straightforward to find the correlatio
functions of the perturbationU and the currentI at frequen-
cies much smaller thaneV, in the zeroth order inU from
Eqs.~1!, ~2!, and~3!:

^U~ t !U~ t1t!&05
eV

4p

~dD !21u2

DR
d~t!, ~4!

^U~ t !I ~ t1t!&05
e2V

2p
~ idD1u!d~t2h!. ~5!

The spectral density ofI at low frequencies is dominated b
the regular shot noise, and the current-correlation functio
KI

(0)(t)5^I (t)I (t1t)&02^I &25e^I &Rd(t), where ^I &
5e2VD/p. The time delayh[uxu/vF in Eq. ~4! comes from
the phase factore2 i (k2p)uxu kept in Eq.~2!, and is infinitesi-
mally small for small traversal time of the contact. It is ne
ertheless important for resolving the ambiguity in averag
involving the time ordering ofI andU that are needed for the
calculation of the current response:i *dt8^T$I (t)U(t8)%&0
0-2
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5e2V(dD1 iu)/p. Condition of the large bias voltage, to
gether with the condition of weak dot-contact coupling,
lows us to neglect renormalization of the tunnel amplitudeD
in the Hamiltonian~1! associated with this coupling—se
e.g., Ref. 20.

Expression for the current-correlation functionKI(t) in
the interaction representation with respect toU is

KI~t!5Tr$r̃~ t !I ~ t !S†~ t1t,t !I ~ t1t!S~ t1t,t !%, ~6!

wherer̃(t) is the total density matrix of the point contact an
quantum dots at timet, the trace is taken over both system
and S(t1t,t)5T exp$(2i/2)* t

t1tdt8szU% is the time-
evolution operator. Taking the trace over the electron sta
in the point contact in Eq.~6! with the help of the correlation
functions~4! and ~5!, we get

KI~t!5KI
(0)~t!1

~dI !2

4
^szsz~t!&. ~7!

The averagê•••& in Eq. ~7! is taken over the two states o
the quantum dots with the stationary dot density matrixr
established as a result of the interaction with the point c
tact and averaged over its dynamics. The current changdI
[e2(dD)V/p is the current response to electron oscillatio
between the dots, andsz(t) now denotes the full time evo
lution of sz , driven both by the dot Hamiltonian and th
interactionU with the point contact. Qualitatively, Eq.~7!
shows that the current correlation function directly refle
the correlation function of the electron position in the do
given bysz .

The time dependence of the operatorsz(t) in Eq. ~7! is
obtained by tracing out the point-contact degrees of freed
in Eq. ~6! with the help of theU-U correlation function~4!.
In this way we get the standard set of equations for the
trix elementss i j of sz(t):

ṡ115DIms12, ṡ125~ i«2G!s122 iDs11, ~8!

ands2252s11. The rate

G5eV
~dD !21u2

8pDR
~9!

describes backaction dephasing of the coherent-electron
cillations between the dots by the point contact. Equation~9!
shows that the dephasing rate reaches a minimum in the
of symmetric dot-contact coupling (u50). In this case, the
rate of dephasing by a point contact has been found in R
14–16 for a single quantum-dot. In the double-dot case
situation is quite different in that the dephasing rateG mani-
fests itself directly as the width of the spectral line of t
quantum-coherent oscillations. Increased dephasing in
case of asymmetric dot-contact coupling was discus
qualitatively in Ref. 18 and studied experimentally in R
13. Since the decrease ofG with decreasing asymmetryu
does not affect the current response of the point cont
symmetric coupling corresponds to an optimum in its ope
tion as a detector. In this regime, the point contact repres
an ideal quantum detector in a sense that the minimum v
16531
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of the dephasing rate~9! is determined purely by the rate o
information acquisition about the state of the quantum d
and can be written asG5(dI )2/4S0, whereS052e^I &R is
the spectral density of the current shot noise of the po
contact.10 This part of the dephasing is fundamentally u
avoidable and reflects the tendency of quantum measurem
to localize the measured system in one of the eigenstate
the measured observable, in our case, the elec
positionsz .

The dot density matrixr satisfies the same set of equ
tions ~8!, except for the normalization,r111r2251, and its
stationary value isr51/2. Solving Eqs.~8! with the initial
conditionsz(0)5sz and averagingszsz(t) overr51/2 we
find the correlation function~7! and the spectral densit
SI(v)52*2`

` KI(t)eivtdt for e50:

SI~v!5S01
GV2~dI !2

~v22V2!21G2v2
. ~10!

In the case of biased dots witheÞ0, it is convenient to
calculate the spectrum numerically from Eq.~8!. The spec-
trum in this case is plotted in Fig. 1 for several values oe
and the dephasing rateG. For weak dephasing,G!D, the
spectrum consists of a zero-frequency Lorentzian that v
ishes ate50 and grows with increasingueu, and a peak at
the oscillation frequencyV5(D21e2)1/2. Although the
width of the oscillation peak isG and can be small for suf
ficiently weak dot-contact coupling, its height cannot be
bitrarily large in comparison to the background-noise sp
tral density S0. At e50, when the amplitude of the
oscillations is maximum, the peak height isSmax5(dI )2/G.
Even in this case, the ratio of the peak height to the ba
ground is limited:

Smax

S0
5

4~dD !2

~dD !21u2
<4. ~11!

This limitation is universal, e.g., independent of the coupli
strength between the dots and the point contact, and refl
quantitatively the interplay between measurement of
quantum coherent oscillations and their backaction deph
ing. The fact that the height of the spectral line of the osc
lations can not be much larger than the noise backgro
means that, in the time domain, the oscillations are drow
in the shot noise.

The total intensity of the oscillation line in the spectrum

E
0

`

@SI~v!2S0#
dv

2p
5

~dI !2

4
~12!

does depend on the strength of coupling to the point cont
increasing as the coupling becomes stronger. An interes
feature of Eq.~12! is that it stresses the impossibility of
simple classical interpretation of the quantum-coherent os
lations, since the intensity of harmonic classical oscillatio
of the same amplitudedI /2 would be two times smaller, an
no classical signal of this amplitude could produce the os
lation line with intensity~12!.
0-3
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When the backaction dephasing rateG increases, the os
cillation line broadens towards the lower frequencies, a
eventually turns into the growing spectral peak at zero
quency that reflects the incoherent electron jumps betw
the two dots. At largeG, when the coherent oscillations a
suppressed, the rate of incoherent tunneling decreases
increasingG. For instance, atG@V, the tunneling rate isg
5D2/2G and the spectral density of the point-contact
sponse has the standard Lorentzian formSI(v)2S0
52g(dI )2/(4g21v2). Suppression of the tunneling rateg
with increasing dephasing rateG is an example of the ge
neric ‘‘quantum zeno effect’’ in which quantum
measurement suppresses the decay rate of a metastable
In the context of search for the macroscopic quantum co
ent oscillations, the Lorentzian spectral density has been
served and used for measuring the tunneling rate of inco
ent quantum flux tunneling in SQUID’s.21

The maximum signal-to-noise ratioSmax/S0 ~11! is at-
tained if the fundamental backaction of the detector is
only dephasing mechanism of the coherent oscillations
the case of measurement with a point contact, the fundam
tal measurement-induced dephasing considered above is
ated by the backscattering partU12 ~1! of the dot-contact
interaction that dominates at large bias voltagesV. The for-
ward scatteringU11, U22 does not affect the currentI in the
contact but creates a weak additional dephasing and ene
relaxation mechanism for the oscillations. We now want
discuss the effect of such a weak relaxation on the spe
density of the oscillations noticeable if the backacti
dephasing is also weak,G!D.

The inclusion of the additional weak relaxation does n
modify the calculations that lead to Eq.~7!, apart from a
trivial modification that now the averagesz is nonvanishing,
and the current-correlation function should be calculated
KI(t)5KI

(0)(t)1(dI /2)2@(1/2)^szsz(t)1sz(t)sz&
2^sz&

2#. For weak coupling, it is convenient to find the tim
evolution ofsz(t) in the basis of eigenstates of the two-sta
Hamiltonian2(«sz1Dsx)/2. Solving the Heisenberg equa
tion of motion up to the second order in the dot-cont
coupling, and tracing out the contact degrees of freedom
get a set of equations for the evolution of the matrix eleme
si j of sz(t) in the eigenstates basis:
E

ar
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ṡj j ~t!5GeF e

V
2cothH V

2TJ sj j G1~21! j
GD2

2V2
~s112s22!,

ṡ12~t!5~ i«2G0!s12, ~13!

with the initial conditions s1152s225e/V, and s125
2D/V. The characteristic energy-relaxation rate in Eq.~13!
is Ge5vD2/V, wherev[(1/p)(U11

2 1U22
2 )(L/vF)2, and the

total dephasing rate is

G05@v„D2Vcoth~V/2T!14e2T…1G~2e21D2!#/2V2.

The dot density matrixr in the eigenstates basis satisfi
similar equations, and the stationary values of its matrix
ements are r 115(Ge1G t)/2G t and r 1250, where G t
[Gecoth(V/2T)1GD2/V2. From these relations and Eq
~13! we find the spectral density:

SI~v!5S01
~dI !2

V2 H e2F12S Ge

G t
D 2G G t

v21G t
2

1
D2

2 (
6

G0

~v6V!21G0
2J . ~14!

As before, the spectral density consists of a zero-freque
Lorentzian and peaks at6V of width G0 that represent the
coherent electron oscillations. Energy relaxation with ch
acteristic rateGe broadens the oscillation peak and reduc
its heightSmax, so that the relative magnitude of the pea
Smax/S0 decreases in comparison with its value without
laxation.

In summary, we have considered a continuous weak qu
tum measurement by a point contact of quantum-cohe
oscillations in a two-state system, and calculated the spe
density of the output signal of the measurement. It has b
shown that the backaction dephasing introduced into the
cillation dynamics by the measurement imposes the fun
mental limit on its signal-to-noise ratio. We also calculat
the effect of energy relaxation on the output spectrum.
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