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Selective quantum evolution of a qubit state due to continuous measurement
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We consider a two-level quantum system~qubit! that is continuously measured by a detector. The informa-
tion provided by the detector is taken into account to describe the evolution during a particular realization of
the measurement process. We discuss the Bayesian formalism for such ‘‘selective’’ evolution of an individual
qubit and apply it to several solid-state setups. In particular, we show how to suppress qubit decoherence using
continuous measurement and a feedback loop.

DOI: 10.1103/PhysRevB.63.115403 PACS number~s!: 73.23.2b, 03.65.Ta
r
a

u
an
m
m

a
u
tio
th

ou
fo
’’

su
ca
all
s
-
ur

io
tl

te
e

h
ive
e-
n
tr
ix

d
-
in
o
p

this

ea-

r
efs.
in-

ult is
om
The
ap-
ble;

ea-
ob-

; in

ach

ns
e
rent
iffu-
m

-
al-
ee,
on
, it
ics

the
-
l is-
ex-
of
ncy

tor,
de-
ide
-
the
I. INTRODUCTION

Studies of two-level quantum systems have acquired
cently a new meaning related to the use of this simple qu
tum object as an elementary cell~qubit! of a quantum
computer.1 This paper addresses the measurement of a q
state, so it necessarily touches the long-standing
still somewhat controversial problem of quantu
measurement,2–4 which is known under the name of quantu
state ‘‘collapse.’’

Having in mind a solid-state realization of qubit~for dif-
ferent proposals see, e.g., Refs. 5–9! let us emphasize that
realistic detector has a noisy output signal, so the meas
ment of a qubit state should necessarily have finite dura
in order to provide an acceptable signal-to-noise ratio. In
situation the ‘‘orthodox’’ collapse postulate10–12 cannot be
applied directly, since the measurement is not instantane
The necessity of a more general formalism is obvious,
example, in the case when the qubit ‘‘self-evolution
changes the quantum state considerably during a mea
ment process. Even if there is no self-evolution, one
wonder what happens with the qubit state after a parti
completed measurement~when the signal-to-noise ratio i
still on the order of unity!. So, we need a formalism to de
scribe the gradual qubit evolution, caused by the meas
ment process. As will be discussed later, the Schro¨dinger
equation alone is not sufficient for the complete descript
of this evolution, and should be complemented by a sligh
generalized collapse principle.

Continuous quantum measurement was a subject of ex
sive theoretical analysis during last two decades, and th
are two main approaches to this problem. One approac
based on the theory of interaction with a dissipat
environment.13,14 Taking the trace over the numerous d
grees of freedom of the detector, it is possible to obtai
gradual evolution of the measured system density ma
from the pure initial state to the incoherent statistical m
ture, thus describing the measurement process.15,16 Since the
procedure implies an averaging over theensemble, the final
equations of this formalism are deterministic and can be
rived from the Schro¨dinger equation alone, without any no
tion of state collapse. The success of the theory in describ
many solid-state experiments has supported an opinion c
mon nowadays that the collapse principle is a needless
0163-1829/2001/63~11!/115403~15!/$15.00 63 1154
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of quantum mechanics. Because of the dominance of
approach~at least in the solid-state community! we will call
it ‘‘conventional.’’

The other general approach to continuous quantum m
surement~see, e.g., Refs. 17–37! explicitly or implicitly uses
the idea of the state collapse~notice the close relation of this
approach to the theory of ‘‘operations’’ and ‘‘effects’’ fo
the description of imprecise measurements—see, e.g., R
38–40!. Since quantum measurement is a fundamentally
deterministic process so that the exact measurement res
typically unpredictable, the approach describes the rand
evolution of the quantum state of the measured system.
important advantage in comparison with the conventional
proach is the absence of averaging over the total ensem
hence, it is possible to describe the evolution of anindividual
quantum system during a particular realization of the m
surement process. The evolution of the measured system
viously correlates with a particular measurement outcome
other words, it is selected by~conditioned on! the measure-
ment result. So, this approach is usually called the appro
of selectiveor conditional quantum evolution. There is a
rather broad variety of formalisms and their interpretatio
within the approach.17–37 Depending on the details of th
studied measurement setup and applied formalism, diffe
authors discuss quantum trajectories, quantum state d
sion, stochastic evolution of the wave function, quantu
jumps, stochastic Schro¨dinger equation, complex Hamil
tonian, method of restricted-path integral, Bayesian form
ism, etc.~for comparison between several different ideas s
e.g., Ref. 19!. The approach of selective quantum evoluti
is relatively well developed in quantum optics; in contrast
was introduced into the context of solid-state mesoscop
only recently.34

In the present paper we continue the development of
Bayesian formalism34,36,37,41,42for selective quantum evolu
tion of a qubit due to continuous measurement. Severa
sues of the formalism derivation and interpretation are
plained in more detail than in previous papers. A new way
derivation is presented for a special case of low-transpare
quantum point contact~tunnel junction! as a detector. We
also discuss equations~briefly mentioned in Ref. 36! for the
evolution of a qubit measured by single-electron transis
which go beyond the approximation used for a nonideal
tector in Ref. 34. Special attention is paid to a regime outs
the ‘‘weakly responding’’ limit. Finally, we discuss the op
eration of a quantum feedback loop that can suppress
©2001 The American Physical Society03-1
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qubit decoherence caused by interaction with the envir
ment.

II. EXAMPLES OF MEASUREMENT SETUP

The total HamiltonianH of a qubit continuously mea
sured by a detector,

H5HQB1HDET1HINT , ~1!

consists of terms describing the qubit, the detector, and t
interaction. The qubit Hamiltonian

HQB5
«

2
~c1

†c12c2
†c2!1H~c1

†c21c2
†c1! ~2!

is characterized by the energy asymmetry« between two
levels and the mixing~tunneling! strengthH ~we assume rea
H without loss of generality!. The Hamiltonian~2! is written
in the basis defined by the coupling with the detector. W
will refer to mutually orthogonal statesu1& and u2& as ‘‘lo-
calized’’ states in order to distinguish them from the ‘‘dia
onal’’ basis consisting of the ground and excited stat
which differ in energy by\V5(4H21«2)1/2.

A. Double-dot measured by tunnel junction

Our study will be applicable to several different types
qubits and detectors. As the main example we conside
double quantum dot occupied by a single electron, the p
tion of which is measured by a low-transparency tunnel ju
tion nearby~see Fig. 1!. Following the model of Ref. 43, le
us assume that the tunnel barrier height depends on th
cation of the electron in either dot 1 or 2; then the curr
through the tunnel junction~which is the detector output! is
sensitive to the electron location. In this case the detector
interaction Hamiltonians can be written as

HDET5(
l

Elal
†al1(

r
Erar

†ar1(
l ,r

T~ar
†al1al

†ar !,

HINT5(
l ,r

DT

2
~c1

†c12c2
†c2!~ar

†al1al
†ar !, ~3!

where bothT and DT are real and their dependence on t
states in electrodes (l ,r ) is neglected. If the electron occu
pies dot 1, then the average current through the detecto

FIG. 1. Tunnel junction as a detector of the electron position
the double-dot that affects the barrier height. The currentI (t) ~de-
tector output! reflects the evolution of the density matrixr i j (t) of
the measured two-level system~qubit!.
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I 152p(T1DT/2)2r lr re
2V/\ (V is the voltage across th

tunnel junction andr l ,r are the densities of states in th
electrodes! while if the measured electron is in dot 2, th
average current isI 252p(T2DT/2)2r lr re

2V/\.
The difference between the currents,

DI[I 12I 2 , ~4!

determines the detector response to the electron position~no-
tice the different sign in the definition ofDI used in Ref. 34!.
Because of the finite noise of the detector currentI (t), the
two states of the system cannot be distinguished insta
neously and the signal-to-noise ratio gradually improves w
the increase of the measurement duration. Let us define
typical measurement timetm necessary to distinguish be
tween the two states as the time for which the signal-to-no
ratio is close to unity:44

tm5
~AS11AS2!2

2~DI !2
, ~5!

whereS1 andS2 are the low-frequency spectral densities
the detector noise for statesu1& and u2&. ~As will be seen
later, tm also determines the time scale for selective evo
tion of the qubit state due to measurement.! For a low-
transparency tunnel junctionS1,252eI1,2coth(beV/2), where
b is the inverse temperature. At sufficiently small tempe
tures, b21!eV ~we assume zero temperature unless s
cially mentioned!, the detector shot noise is given by th
Schottky formula,

S1,252eI1,2. ~6!

To avoid an explicit account of the detector quantum noi
we will consider only processes at frequenciesv!eV/\ ~in
particular, we assumetm

21!eV/\).
The major part of the paper will be devoted to the detec

in the ‘‘weakly responding’’ regime when two states of th
detector differ only a little~one can also call this regim
‘‘linear,’’ while the term ‘‘weak coupling’’ is reserved for a
different meaning!, in particular,

uDI u!I 0 , I 0[~ I 11I 2!/2, ~7!

uS12S2u!S0 , S0[~S11S2!/2, ~8!

so the typical measurement time is

tm52S0 /~DI !2. ~9!

For a weakly responding detector the time scalee/I 0 of in-
dividual electron passages through the detector is m
shorter thantm , so the current can be considered continuo
on the measurement time scale.

B. Double-dot and quantum point contact

Besides the low-transparency tunnel junction as a de
tor, we can also consider a quantum point contact with a
trary transparencyT that depends on the electron position
the double dot. This setup in the context of continuous qu
tum measurement has been extensively studied b

n

3-2
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experimentally45,46and theoretically.47–52In spite of a some-
what different mathematical description~we will not write
the Hamiltonian explicitly! this case is very close to the ca
above, which we prefer because of its simplicity. The ob
ous feature is the different formula for the shot noise,53

S1,252eI1,2~12T1,2!, ~10!

where I 1,25T1,2e
3V/p\. Notice that for the quantum poin

contact as a detector we make the condition~7! for weakly
responding regime a little stronger,uDI u!(12T1,2)I 1,2, so
that both transmitted and reflected currents can be consid
continuous on the measurement time scale.

C. Cooper-pair box and single-electron transistor

Another interesting measurement setup~Fig. 2! intro-
duced in Ref. 54 in the context of a solid-state quant
computer, is a single-Cooper-pair box measured by a sin
electron transistor~a somewhat similar setup has been
cently used for the experimental demonstration55 of quantum
oscillations in the time domain!. The qubit in this case is
represented by two charge states of a small-capacitance
sephson junction. The Josephson coupling provides the
trix elementH in Eq. ~2! that is assumed to be much small
than the single-electron charging energy, so that only
charge states~adjusted by the gate voltage to be close
energy! are important. The capacitively coupled singl
electron transistor~assumed to be in the normal state! is sen-
sitive to the charge state of the Cooper-pair box and serve
the detector; the currentI (t) through the transistor is th
measurement output.

One can find the detailed discussion of the Hamilton
for this measurement setup in Ref. 54. The qubit state aff
the energy of the middle island of the single-electron tran
tor ~Fig. 2!, so the interaction is of ‘‘density-density’’ type

HINT5
DE

2
~c2

†c22c1
†c1!S (

m
am

† am2constD , ~11!

where the factor in large brackets is the number of ex
electrons on the transistor island. In the ‘‘orthodox’’ regim
of sequential single-electron tunneling56,57 in the transistor,
the energy changeDE affects the rates of tunneling throug
the two tunnel junctions and thus affects the average cur
I. In the simplest case when the electrons can tunnel onl
a strict alternating sequence with ratesGL andGR , the aver-
age currentsI 1 and I 2 can be calculated as56

I i5eGL,iGR,i /~GL,i1GR,i !, ~12!

FIG. 2. Single-electron transistor~detector! measuring the
charge state of the single-Cooper-pair box~qubit!.
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where i 51,2 corresponds to the charge state of the qu
Well outside the Coulomb blockade range the difference
tween the rates isGL,22GL,152DE/e2RL and GR,22GR,1
5DE/e2RR , whereRL(R)@\/e2 are the resistances of tun
nel junctions.

The measurement time to distinguish between statesu1&
andu2& for this setup is given by Eq.~5!, in which the spec-
tral density of the single-electron transistor current can
calculated using equations of Refs. 58 and 59~the Schottky
formula used for this purpose in Ref. 54 is valid only in
limiting case!. In the special case corresponding to Eq.~12!
the shot noise is given by the formula59

Si52eIi~GL,i
2 1GR,i

2 !/~GL,i1GR,i !
2. ~13!

D. Two SQUID’s

One more solid-state realization of continuous quant
measurement of a qubit can be done using two flux state
a SQUID as a qubit and another inductively coupled SQU
as a detector.60 The corresponding Hamiltonian and calcul
tions of the SQUID noise can be found, e.g., in Ref. 61.
minor difference in the formalism is related to the fact th
the typical output signal from a SQUID is voltage instead
current in the examples above.

III. RESULTS OF THE CONVENTIONAL APPROACH

The goal of the present paper is the analysis of a selec
evolution of the qubit state due to continuous measurem
taking into account the detector outputI (t). However, before
that let us review the results of the convention
approach43,47–52,54 to this problem that does not take int
account the detector output.

We describe the quantum state of a qubit by the den
matrix r i j in the basis of localized statesu1& andu2&, so that
r i i (r111r2251) is the probability to find the system in th
stateu i & if an instantaneous measurement in this basis is
formed, whiler12 (r215r12* ) characterizes the coherence;
particular,ur12u25r11r22 corresponds to a pure state. In th
conventional approach13 the evolution ofr i j is calculated
using the Schro¨dinger equation for the combined system i
cluding the detector and then tracing out the detector deg
of freedom that leads to the following equations:43,47–52,54

ṙ1152 ṙ22522
H

\
Im r12, ~14!

ṙ125 i
«

\
r121 i

H

\
~r112r22!2Gdr12, ~15!

where the effect of continuous measurement is described
the ensemble decoherence rateGd . ~Such equations in simi-
lar problems when the environment causes dephasing
known for many years, see, e.g., Refs. 13, 62, and 63.!

For a double-dot measured by a tunnel junction~Fig. 1!
the decoherence rate has been obtained in Ref. 43:
3-3
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Gd5
~AI 12AI 2!2

2e
. ~16!

Comparing this equation with Eqs.~5! and~6! one can easily
notice thatGd has a direct relation to the typical measur
ment timetm :

Gd5~2tm!21. ~17!

This relation obviously remains valid in the weakly respon
ing regime when the decoherence rate can be expresse

Gd5~DI !2/4S0 . ~18!

In the case of a finite-transparency quantum point con
as a detector45–52 the ensemble decoherence rate has b
mainly studied in the weakly responding regime. T
result45–47,50–52most important for us is that for symmetr
coupling Eq.~18! is still valid, just the shot noise is now
given by Eq.~10! instead of Eq.~6! ~as mentioned, the tem
perature is zero!. In the asymmetric case, if the phase
transmitted and reflected electrons in the detector is sens
to statesu1& andu2&, then there is an extra term in the equ
tion for the decoherence rate, so the decoherence
faster46,49,51,52than given by Eq.~18!.

The inequalityGd.(2tm)21 has been also obtained i
Ref. 54 for a single-electron transistor measuring a sing
Cooper-pair box. The interaction Hamiltonian~11! allows us
to relate the dephasing rate,Gd5(DE)2Sm/4\2, to the low-
frequency spectral densitySm of the fluctuating numberm of
extra electrons on the transistor central island. These fluc
tions have been calculated in Refs. 58 and 59 within
framework of the orthodox theory.56 In particular, assuming
the weakly responding regime and the two-charge-state
namics corresponding to Eqs.~12! and ~13! we obtain41,64

Gd5
~DE!2GLGR

\2~GL1GR!3
~19!

~notice a different expression in Ref. 54!. In this case

2Gdtm5
8GL

2GR
2~GL

21GR
2 !

~GL1GR!2~GL
2\/e2RR2GR

2\/e2RL!2
, ~20!

so for GL;GR this product is necessarily large,Gd
@(2tm)21, sinceRR,L@\/e2. However, if the tunnel rates
are very different~that happens close to the Coulomb bloc
ade threshold!, then the dephasing rate can be comparabl
(2tm)21. AssumingGR@GL one can simplify Eq.~20! to

2Gdtm58~GL /GR!2~RLe2/\!2. ~21!

Formally, this expression becomes less than 1 ife2GLRL

,\GR /A8; however, in this case the significant cotunneli
makes the orthodox approach invalid and the quantum n
contribution becomes important.58 In the cotunneling regime
~well below the Coulomb blockade threshold! Gd should be
obviously comparable to (2tm)21 because in this case esse
tially the barrier height~the energy of the virtual state! is
sensitive to a measured state, so the detecting principle
comes similar to the case of Fig. 1. The inequalityGd
11540
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>(2tm)21 should remain valid in the cotunneling regime
well; this fact will be obvious from the Bayesian formalism

The quantum backaction of a SQUID in the linea
response approximation was calculated in Ref. 65. It w
shown that the total energy sensitivity of a SQUID (e IeV

2e IV
2 )1/2 ~which takes the backaction into account! is limited

by \/2. HereeV is the ‘‘output’’ energy sensitivity@the out-
put signal of a SQUID isV(t)#, e I describes the intensity o
backaction noise, ande IV characterizes their correlation
From the inequalitye IeV>\2/4 we easily get an inequality
for spectral densities:sIsV>\2(dV/dF)2, wheredV/dF de-
scribes the SQUID response to the fluxF. For the two-
SQUID measurement setup considered in the present pa
the qubit dephasing due to backaction noise isGd
5(DF)2sI /4\2 whereDF is the measured flux differenc
between two qubit states. Using the inequality above for
productsIsV we obtain a lower bound for the ensemble d
coherence rate:52 Gd>(DV)2/4sV5(2tm)21 similar to all
other setups discussed above. This lower bound can
achieved only when the SQUID sensitivity is quantum
limited.

Notice that the main equations~14! and ~15! of the con-
ventional formalism do not depend on the detector out
I (t), and so they cannot be used for the prediction of
detector current behavior@for generality, we again choos
the current as a detector output signal even though fo
SQUID it should be changed toV(t)#. An important step
toward this goal has been taken in Ref. 43 for a tunnel ju
tion as a detector~a similar analysis for the single-electro
transistor has been performed in Refs. 54 and 66!. Let us
divide the density matrixr i j into terms corresponding to
different numbersn of electrons passed through the meas
ing tunnel junction,r i j 5(nr i j

n ~only diagonal terms inn are
considered!. Then the evolution of these terms is given b
the equations43

ṙ11
n 52

I 1

e
r11

n 1
I 1

e
r11

n2122
H

\
Im r12

n , ~22!

ṙ22
n 52

I 2

e
r22

n 1
I 2

e
r22

n2112
H

\
Im r12

n , ~23!

ṙ12
n 5 i

«

\
r12

n 1 i
H

\
~r11

n 2r22
n !2

I 11I 2

2e
r12

n 1
AI 1I 2

e
r12

n21 ,

~24!

while Eqs.~14! and~15! can be derived from Eqs.~22!–~24!
after summation overn.

Even though these equations couple the evolution of
system density matrix with the number of electrons pas
through the detector, they cannot predict the behavior of
current I (t) and do not allow the calculation ofr i j for a
given realization ofI (t). Actually, this is quite expected
since the conventional formalism describes theensemble av-
eragedevolution while the analysis of a particular measu
ment realization requires a formalism suitable for anindi-
vidual quantum system.~The use of the conventiona
formalism was the reason why several recent attempts49,66,67

to analyze the detector current were not very successful.! The
3-4



ro
di

e

en

n

a

c
p
m
rr
i

re
an
us
t

-

e

ow

al-
evo-
i-
nal

ns.
ince
the
with

e-
an-
u-

r
e
p-
oth

-

th-
ere
o

8
de-

SELECTIVE QUANTUM EVOLUTION OF A QUBIT . . . PHYSICAL REVIEW B 63 115403
analysis of a particular realization of the measurement p
cess can be performed using the Bayesian formalism
cussed in the next section.

IV. BAYESIAN FORMALISM

In the Bayesian formalism~the name originates from th
Bayes formula68,69 for probabilities! that was derivedonly
for the weakly responding~linear! regime, the evolution of
the qubit density matrix during a particular measurem
process is described by the equations34

ṙ1152 ṙ22522
H

\
Im r121r11r22

2DI

S0
@ I ~ t !2I 0#,

~25!

ṙ125 i
«

\
r121 i

H

\
~r112r22!2~r112r22!

3
DI

S0
@ I ~ t !2I 0#r122gdr12 ~26!

~in Stratonovich interpretation, see below!, which replace
Eqs.~14! and ~15! of the conventional formalism. Here

gd5Gd2
~DI !2

4S0
>0 ~27!

is the decoherence rate due to the ‘‘pure environment’’~ideal
continuous measurement does not produce this decohere!,
which differs from the ensemble decoherence rateGd . One
can see thatgd50 in the example of a tunnel junction as
detector, which thus can be called an ideal detector,h51,
where

h[12
gd

Gd
5

1

2Gdtm
. ~28!

A similar ideal situation occurs for a quantum point conta
when Gd5(DI )2/4S0, and also for the two-SQUID setu
when the sensitivity of the measuring SQUID is quantu
limited and the output and backaction noises are unco
lated. The important prediction of the Bayesian formalism
that in such an ideal situation~which is experimentally ac-
cessible!, an initially pure state of the qubit remains pu
during the evolution; moreover, an initially mixed state c
be gradually purified in the course of continuo
measurement.34 ~For a somewhat similar, though differen
phenomenon see Ref. 70.!

Equations~25! and ~26! allow us to calculate the evolu
tion of r i j for a given measurement outputI (t). In order to
analyze the behavior ofI (t), these equations should b
complemented by the formula

I ~ t !2I 05
DI

2
~r112r22!1j~ t !, ~29!

where j(t) is a zero-correlated~‘‘white’’ ! random process
with the same spectral density as the detector noise,71 Sj

5S0. The stochasticity of the detector current does not all
us to predict exactly the evolution ofr i j in each particular
11540
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realization of the measurement process; however, the form
ism describes the mutual dependence of the stochastic
lutions ofr i j (t) andI (t) and thus allows us to make exper
mental predictions not accessible by the conventio
approach.

When Eq.~29! is substituted into Eqs.~25! and ~26!, we
get a system of nonlinear stochastic differential equatio
The analysis of such equations requires special care, s
their solution depends on the accepted definition of
derivative72 ~this happens because the noise increases
the decrease of the time scale, and soj2dt5const5Sj/2
does not decrease withdt). In Eqs. ~25! and ~26! we have
used the symmetric definition,ṙ(t)5 lim

t→0
@r(t1t/2)

2r(t2t/2)#/t. This is the so-called Stratonovich interpr
tation of the nonlinear stochastic equations. The main adv
tage of this interpretation is that all standard calculus form
las @for example, (f g)85 f 8g1 f g8# remain valid,72 so the
intuition based on usual~nonstochastic! differential equa-
tions typically works well~this is the reason why we prefe
the Stratonovich interpretation!. Its other advantage is th
correct limit in the case when the white noise term is a
proximated by a properly converging sequence of smo
functions.72

However, for some purposes~e.g., for averaging over sto
chastic variables and for numerical simulations! it is more
convenient to use another definition of the derivative:ṙ(t)
5 lim

t→0
@r(t1t)2r(t)#/t. This is called the Itoˆ interpreta-

tion and it is the most commonly used interpretation in ma
ematical literature on stochastic differential equations. Th
is a simple rule of translation between the tw
interpretations:72 for an arbitrary system of equations

ẋi~ t !5Gi~x,t !1Fi~x,t !j~ t ! ~30!

in Stratonovich interpretation, the corresponding Itoˆ equation
that has the same solution is

ẋi~ t !5Gi~x,t !1
Sj

4 (
k

]Fi~x,t !

]xk
Fk~x,t !1Fi~x,t !j~ t !,

~31!

wherexi(t) are the components of the vectorx(t), Gi andFi
are arbitrary functions, and the constantSj is the spectral
density of the white noise processj(t). Applying this trans-
formation to Eqs.~25!, ~26!, and ~29! we get the following
equations in Itoˆ interpretation:

ṙ1152 ṙ22522
H

\
Imr121r11r22

2DI

S0
j~ t !, ~32!

ṙ125 i
«

\
r121 i

H

\
~r112r22!2~r112r22!

DI

S0
r12j~ t !

2Fgd1
~DI !2

4S0
Gr12, ~33!

while the currentI (t) is still given by Eq.~29!. Similar equa-
tions ~in a different notation! have been obtained in Ref. 2
for a symmetric two-level system measured by an ideal
3-5
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tector («50,gd50). Notice that the Itoˆ interpretation has
been used in the majority of theories describing selec
evolution due to quantum measurement~see Refs. 17–19 an
references therein!.

Using the Itôinterpretation it is easier to see that avera
ing of the evolution equations over the random processj(t)
~i.e., averaging over different detector outputs! leads to the
conventional equations~14! and ~15!. However, for the
analysis of an individual realization of the evolution, Iˆ
equations are typically less transparent for physical interp
tation. For example, the term2r12(DI )2/4S0 in Eq. ~33!
does not actually cause decoherence in an individual rea
tion but just compensates the noise term proportional toj2dt
due to the Itoˆ definition of the derivative, and sor12(t) does
not decrease exponentially in time ifHÞ0. Similarly, the
fact that the measurement tries to localize the density ma
in one of two states is not clear from Eqs.~32! and~33! while
it is obvious from Eqs.~25!–~29!.

To avoid confusion due to the difference between S
tonovich and Itoˆ interpretations, it is helpful to write the
exact solution of Eqs.~25! and ~26! @which is also the solu-
tion of Eqs.~32! and ~33!# in the special caseH50:

r11~ t1t!

r22~ t1t!
5

r11~ t !

r22~ t !

exp@2~ Ī ~t!2I 1!2t/S0#

exp@2~ Ī ~t!2I 2!2t/S0#
, ~34!

r12~ t1t!

@r11~ t1t!r22~ t1t!#1/2
5

r12~ t !ei«t/\

@r11~ t !r22~ t !#1/2
e2gdt, ~35!

where

Ī ~t![
1

tEt

t1t

I ~ t8!dt8 ~36!

is the detector current averaged over the time intervalt,t
1t). These equations have clear physical meaning: Eq.~34!
is just the Bayes formula while Eq.~35! describes gradua
decoherence due to the ‘‘pure environment’’ characteri
by gd . „The Bayes formula68,69 says that the updated prob
ability P* (A) of a hypothesisA given that eventF has
happened in an experiment, is equal
P(A)P(FuA)/(B@P(B)P(FuB)# where P(A) is the prob-
ability before the experiment,P(FuA) is the conditional
probability of eventF for hypothesisA, and the sum is ove
the complete set of mutually exclusive hypotheses. For
cussion of the so-called quantum Bayes theorem see, e
Ref. 40.…

A useful tool for analysis of the measurement proces
Monte Carlo simulation of an individual process realizatio
For this purpose we can use Eqs.~34! and ~35! comple-
mented by the simulation of evolution due to finiteH. Let
us choose a sufficiently small time stepDt ~much smaller
than\/H) and apply the following algorithm. First, for eac
time step (t,t1Dt) we pick the averaged currentĪ
[(Dt)21* t

t1DtI (t8)dt8 as a random number using the pro
ability distribution
11540
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P~ Ī !5
r11~ t !

~2pD !1/2
expF2

~ Ī 2I 1!2

2D
G1

r22~ t !

~2pD !1/2

3expF2
~ Ī 2I 2!2

2D
G , ~37!

whereD5S0/2Dt. Then Ī is substituted into Eqs.~34! and
~35! to calculater i j (t1Dt) from r i j (t). The last step of the
procedure is the additional evolution duringDt due to finite
H ~rotation in ther11-r12 plane!. Then the whole procedure
is repeated for the next time stepDt and so on.

An alternative algorithm can be based directly on theˆ
equations~32! and ~33! that are more natural for numerica
simulations than the Stratonovich equations because of
‘‘forward-looking’’ definition of the derivative. For suffi-
ciently small Dt @now much smaller than all time scale
S0 /(DI )2, \/H, \/«, andgd

21# we first calculate the aver

aged pure noise,j̄[(Dt)21* t
t1Dtj(t8)dt8, as a random

number using the Gaussian distribution

P~ j̄ !5~2pD !21/2exp@2~ j̄ !2/2D#, ~38!

where againD5S0/2Dt. Then this number is substituted int
Eq. ~32!:

r11~ t1Dt !5r11~ t !22Dt~H/\!Im r12~ t !1r11~ t !r22~ t !

3~2DI /S0!j̄Dt ~39!

and similarly into Eq.~33!. Then the updating procedure
repeated for the next stepDt and so on. The detector curren
can be calculated using Eq.~29!.

Both Monte Carlo algorithms are equivalent; however, t
first algorithm is better because it allows longer time ste
The equivalence for smallDt can be proven analytically us
ing a second-order series expansion of Eqs.~34! and~35! and
has also been checked numerically. Notice that forDt
!S0 /(DI )2, the current distribution~37! is indistinguishable
from the distributionP( j̄1DI (r112r22)/2) given by Eq.
~38!.

A typical result of the Monte Carlo simulation is shown
Fig. 3. The solid lines show a particular realization of t
evolution ofr(t) ~diagonal and nondiagonal elements of t
density matrix! for a symmetric qubit,«50, measured by a
detector with couplingC[\(DI )2/S0H50.1 and ideality
factor h50.7. The real part ofr12(t) is not shown since its
evolution is decoupled fromr11(t) and Imr12(t). The com-
pletely incoherent initial state is chosen,r11(0)50.5,
r12(0)50. Nevertheless, the measurement leads to
gradual onset of quantum coherent Rabi oscillations. T
happens because the measurement randomly tries to loc
the qubit, while the finiteH provides oscillations when the
state becomes at least partially localized. The qubit stat
gradually purified, eventually reaching a pure state if t
detector is ideal. For a nonideal detector~Fig. 3! the state
remains partially incoherent, which decreases the amplit
of the oscillations.

The qubit gradually ‘‘forgets’’ its initial state during the
evolution and the density matrixr(t) becomes determined
3-6
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mostly by the detector record. To illustrate this fact, t
dashed lines in Fig. 3 show the qubit evolution calculated
Eqs. ~25! and ~26! starting from two localized states an
assuming that the detector current~not shown! is exactly the
same as in the measurement realization corresponding to
solid lines. As expected, after the time comparable totm the
dashed lines become close to the solid lines.

The tendency to qubit-state localization due to measu
ment can be described quantitatively using the determin
part of Eqs.~25! and~29!. However, because of the equatio
nonlinearity the typical localization timet l cannot have a
unique definition. If we define it via an exponential-grow
factor exp(t/tl) for r11(t) evolution whenr11 is close to 1/2,
then

t l52S0 /~DI !2, ~40!

which exactly coincides with the definition of the typic
measurement timetm . @If for the definition we choose the
exponential-decrease factor exp(2t/tl) when the state is al
most localized, thent l would be twice smaller.#

V. DERIVATION BASED ON BAYES FORMULA

In this section we briefly review the derivation of th
Bayesian formalism presented in Ref. 34, which was ba

FIG. 3. Solid lines: gradual purification of the qubit dens
matrix r(t) in the course of continuous measurement, starting fr
the completely incoherent state. Dashed lines show the evolu
starting from localized states, assuming the same detector cur
11540
y

the

e-
ic

d

on the correspondence between classical and quantum
surements.

In the classical case (H50, r1250) the measuremen
process can be described as an evolution of probabilitiesr11
and r22 that reflect our knowledge about the system sta
Then for arbitraryDt ~which can be comparable totm) the
average currentĪ obviously has the probability distribution
given by Eq.~37!. After the measurement duringDt the in-
formation about the system state has increased and the p
abilities r11 and r22 should be updated using the measu
ment resultĪ and the Bayes formula~34!, which completely
describes the classical measurement.

The next step is an important assumption: in the quan
case withH50 the evolution ofr11 andr22 is still given by
Eq. ~34! because there is no principal possibility to disti
guish between classical and quantum cases, performing
this kind of measurement. Even though this assumption
quite obvious, it is not derived formally but should rather
regarded as a consequence of the correspondence prin
In other words, this is the natural generalization of the c
lapse postulate to the case of incomplete~imprecise! mea-
surement.

The comparison with classical measurement cannot
scribe the evolution ofr12; however, there is an upper limit
ur12u<@r11r22#

1/2. Surprisingly, this inequality is sufficien
for the exact calculation ofr12(t) in the important specia
case of an ideal detector andH50. Averaging this inequality
over all possible detector outputsĪ using distribution~37! we
get the inequality

ur12~ t1t!u<@r11~ t !r22~ t !#1/2exp@2~DI !2t/4S0#. ~41!

On the other hand, for such averaged dynamics Eq.~41!
actually reaches the upper bound@see Eqs.~14!, ~15!, and
~18!# in the cases discussed in Sec. III~tunnel junction, sym-
metric quantum point contact, or quantum-limited SQUID
a detector!. This is possibleonly if in each realization of the
measurement process the initially pure density matrixr i j (t)
stays pure all the time,ur12(t)u25r11(t)r22(t). This fact has
been the main point in the Bayesian formalism derivation
Ref. 34.

As the next step of the derivation, a mixed initial state h
been taken into account~for H50 and an ideal detector!
using conservation of the ‘‘degree of purity’’@Eq. ~35! with
gd50# that directly follows from a statistical consideratio
Then the qubit state evolution due to finiteH has been sim-
ply added to the evolution due to measurement. Finally,
interaction with the extra environment~which does not pro-
vide any measurement result! has been taken into account b
introducing the decoherence rategd .

First-order series expansion of the corresponding eq
tions for r i j (t1Dt) leads to differential equations~25! and
~26!. The reason why we get equations in Stratonovich int
pretation is that the first-order expansion is necessarily ba
on the standard calculus rules that are valid only in this
terpretation. Using a second-order expansion we can ob
differential equations both in Stratonovich and Itoˆ interpre-
tations, depending on the definition of the derivative.

n
nt.
3-7



he

e
37

e

r’
im
e

tp
u
w

io

o
m

d
nt

.

e
th
th
e

x

r
-

sit

n
s

in
d

c

can

-

he

ALEXANDER N. KOROTKOV PHYSICAL REVIEW B 63 115403
VI. ALTERNATIVE DERIVATION OF THE FORMALISM

Let us discuss now an alternative way of deriving t
Bayesian formalism, which is based on Eqs.~22!–~24! of the
conventional approach~a somewhat similar derivation of th
Bayesian formalism has been recently presented in Ref.!.
Since these equations have been derived43 only for the tunnel
junction as a detector, we limit ourselves to this case.

Equations~22!–~24! describe the coupled evolution of th
qubit density matrixr i j and the numbern of electrons passed
through the detector, considering the ‘‘qubit plus detecto
as a closed system. We need to make a small but very
portant step in order to describe an individual measurem
process: we need to construct an open system that ou
classical information to the outside. For this purpose let
introduce the next stage of the measurement setup that
be called ‘‘pointer’’ ~see Fig. 4!. By definition, the pointer
deals only with classical signals while quantum descript
is allowed for the detector.

Let us consider the following model. The pointer does n
interact with the detector most of the time, however, at ti
momentst5tk (k51,2, . . . ) thepointer measures~in simple
orthodox way! the total numbern of electrons passed
through the detector. By our assumption the measuren
should be a classical number, so after each measureme
the pointer the numbernk5n(tk) is well defined. However,
during the ‘‘free’’ evolution of the ‘‘qubit plus detector’’
between the measurements by pointer, the numbern(t) gets
smeared according to Schro¨dinger equation, i.e., satisfy Eqs
~22!–~24!. By introducing sufficiently frequent readout~col-
lapse! into the model we get the ability to describe the tim
dependence of the detector current. Of course, many o
collapse scenarios are possible, however, if we show
within some limits the measurement process does not dep
on the choice of timestk , this is a good argument justifying
the generality of the model.

The collapse att5tk can be described in the orthodo
way.10–12 The probability P(n) to measuren electrons
passed through a detector is

P~n!5r11
n ~ tk!1r22

n ~ tk!. ~42!

The measurement by pointer picks some random numbenk
according to distribution~42!, however, after the measure
ment this number is already well defined and the den
matrix should be immediately updated~collapsed!:10–12

r i j
n ~ tk10!5dn,nk

r i j ~ tk10!, ~43!

r i j ~ tk10!5
r i j

nk~ tk20!

r11
nk~ tk20!1r22

nk~ tk20!
, ~44!

wheredn,nk
is the Kronecker symbol. After that the evolutio

is described by Eqs.~22!–~24! until the next collapse occur
at t5tk11.

The detector current in our model has a natural averag
during time period betweentk21 andtk and can be calculate
as Ī k5eDnk /Dtk , where Dnk[n(tk)2n(tk21) and Dtk
[tk2tk21. Since the detector output is intended to refle
11540
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the evolution of the measured system,tk should be suffi-
ciently frequent, in particularDtk!\/H. For a while let us
completely neglect the terms proportional toH in Eqs.~22!–
~24! and discuss their effect later. Then these equations
be solved exactly. For the initial conditionr i j

n (0)
5dn,0r i j (0) the solution is

r11
n ~ t !5

~ I 1t/e!n

n!
exp~2I 1t/e!r11~0!, ~45!

r22
n ~ t !5

~ I 2t/e!n

n!
exp~2I 2t/e!r22~0!, ~46!

r12
n ~ t !5

~AI 1I 2t/e!n

n!
expS 2

I 11I 2

2e
t1

i«t

\ D r12~0!.

~47!

Similar equations describe the evolution afterkth measure-
ment by the pointer, justt is shifted bytk andn is shifted by
nk . Using Eqs.~43! and ~44! we derive the iterative equa
tions for the qubit density matrix:

r11~ tk!5r11~ tk21!I 1
Dnkexp~2I 1Dtk /e!

3@r11~ tk21!I 1
Dnkexp~2I 1Dtk /e!

1r22~ tk21!I 2
Dnkexp~2I 2Dtk /e!#21, ~48!

r22~ tk!512r11~ tk!, ~49!

r12~ tk!5r12~ tk21!F r11~ tk!r22~ tk!

r11~ tk21!r22~ tk21!G
1/2

3 exp~ i«Dtk /\!, ~50!

while the probabilityP(nk) to getn5nk at t5tk is

P~nk!5
~Dtk /e!Dnk

~Dnk!!
@ I 1

Dnkexp~2I 1Dtk /e!r11~ tk21!

1I 2
Dnkexp~2I 2Dtk /e!r22~ tk21!#. ~51!

It is instructive to check that the averaging ofr i j (tk) over the
result of measurement att5tk gives simple equations

r11~ tk!5r11~ tk21!, r22~ tk!5r22~ tk21!, ~52!

r12~ tk!5r12~ tk21!exp~ i«Dtk /\!

3 exp@2~AI 12AI 2!2Dtk/2e#, ~53!

FIG. 4. The pointer is introduced into the model to extract t
classical signal from the detector.
3-8
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which are consistent with the conventional equatio
~14!–~16!.73

One can easily see that Eq.~48! can be interpreted as th
Bayes formula, while Eq.~50! is the conservation of the
‘‘degree of purity,’’ similar to the approach reviewed abov
The complete equivalence between Eqs.~48!–~51! and Eqs.
~34!–~37! is achieved ifuDI u!I 0 and also the probing time
Dtk is much longer than the typical timeI 0 /e between indi-
vidual electron passages in the detector~so that the current is
essentially continuous!. In this case the Poissonian distrib
tions ~45! and ~46! obviously become Gaussian, and so t
probability distributions for the currentĪ 5eDnk /Dtk given
by Eq. ~37! and Eq.~51! coincide. Similarly, Eqs.~48!–~50!
for r i j evolution coincide with Eqs.~34! and~35! applied to
an ideal detector,gd50.74

If the probing period is within the rangee/I 0!Dtk
!eI0 /(DI )2, the evolution ofr i j is smooth and so Eqs.~48!
and ~49! can be written in a differential form that coincide
with Eqs. ~25! and ~26! of the Bayesian formalism withH
50 andgd50. The effect of finiteH can be now taken into
account by the addition of obvious terms into Eqs.~25! and
~26!. However, this can be done only ifDtk!H/\ because in
the opposite case the terms of more than the first powerH
should be added to Eqs.~48!–~50! indicating a nontrivial
interplay between two effects.

So, we have shown that in the weakly responding ca
DI !I 0, Eqs. ~22!–~24! of the conventional approac
complemented by a sufficiently frequent readout~collapse!,
e/I 0!Dtk!min@eI0 /(DI)2, \/H# lead to the equations of th
Bayesian approach. The decoherence rategd is zero because
the model43 describes a tunnel junction that is an ideal d
tector.

VII. EFFECT OF COLLAPSE DUE TO POINTER

The simple model considered in the previous section
lows us to analyze the effect of the repeated measurem
by pointer on the qubit dynamics in more detail and beyo
the approximations of the Bayesian approach. First, it is
portant to notice that in this model the event of collapse
t5tk does not disturb the qubit measurement by the detec
More specifically, the collapse with unknown resultnk is
equivalent to the absence of the collapse. To prove this f
Eqs.~43! and~44! can be averaged with the distribution~42!
that results in unity operator.

The absence of disturbance by pointer is because in
model there are no density matrix elements that couple
tector states with different number of passed electro
Physically, this is a consequence of the assumption of
detector-barrier transparency and infinite number of electr
in the detector electrodes, so that the ‘‘attempt frequency
much larger than any collapse frequency~for a quantum
point contact the necessary condition for this assumptio
the large resistance,R@\/e2). In other words, this model is
intrinsically Markovian and the detector is classical in
sense that the passage of individual electrons through de
tor is essentially classical~not quantum! random process.75

The absence of the disturbance by collapse with unkno
result does not mean, however, that we can forget abou
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collapse and make it only ‘‘at the end of the day.’’ An
readout from the detector necessarily changes the qubit
~or in other words, informs us about the change! and thus
affects the qubit evolution.

In the limit of sufficiently frequent readout,Dtk
!min(e/I1, e/I2,\/H,\/«), the evolution equations~22!–~24!
and~42!–~44! simplify because at most one electron can p
through the detector between readouts. During the period
time when no electrons are passed through the detector
evolution is essentially described by Eqs.~22!–~24! with n
50, while the frequent collapses just restore the density m
trix normalization, leading to the continuous qubit evolutio

ṙ1152 ṙ22522
H

\
Im r122

DI

e
r11r22, ~54!

ṙ125
i«

\
r121

iH

\
~r112r22!1

DI

2e
~r112r22!r12. ~55!

However, at moments when one electron passes through
detector, the qubit state changes abruptly; this chang
given by Eqs.~48!–~50! with Dnk51 andDtk→0:

r11~ t10!5
I 1r11~ t20!

I 1r11~ t20!1I 2r22~ t20!
, ~56!

r22~ t10!512r11~ t10!, ~57!

r12~ t10!5r12~ t20!Fr11~ t10!r22~ t10!

r11~ t20!r22~ t20!G
1/2

, ~58!

and can be obviously interpreted as the Bayesian upd
Equations~54!–~58! correspond to the framework of ‘‘quan
tum jump’’ model.18,37

It is easy to see that initially pure qubit state remains p
under quantum jump evolution~54!–~58! and the density
matrix is gradually purified if started from a mixed state. T
lines in Fig. 5 show a particular realization of such evoluti
for I 1 /e5H/\, I 1 /I 253, and completely incoherent initia
state,r11(0)50.5, r12(0)50. Each discontinuity of curves
corresponds to the passage of an electron through the d
tor ~the jumps ofr12 are typically smaller than the jumps o
r11). The matrix elementr11 always jumps up becauseI 1
.I 2 and so the electron passage indicates that the stateu1& is
somewhat more likely than stateu2&. The jumps are more
pronounced whenr11 is closer to 0.5 because the jump am
plitude is Dr115DIr11r22/(I 1r111I 2r22) @see Eq.~56!#.
The model allows us to consider finite ratioI 1 /I 2 in contrast
to Eqs.~25! and ~26! of the Bayesian approach. In the lim
of weakly responding detector,uDI u!I 0, the amplitude of
quantum jumps~54!–~56! is negligible and Eqs.~25! and
~26! are restored~in this sense they describe a ‘‘quantu
diffusion’’ model.37! Notice, however, that equations of th
Bayesian approach are applicable to a broader class of d
tors.

Since the model~22!–~24! describes the ideal detecto
the qubit state in Fig. 5 eventually becomes completely pu
However, if the readout periodDtk is not sufficiently small,
the information about the moments of electron pass
3-9
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through the detector is partially lost that decreases
knowledge about the qubit state. In the formalism this le
to a partial decoherence of the qubit density matrix. T
symbols in Fig. 5~dots, triangles, squares, and crosses! rep-
resent the readout with several different periods for exa
the same realization of a measurement process as for
lines that represent very frequent readout. When the rea
is still sufficiently frequent~dots!, we can monitor the qubi
evolution with a good accuracy~dots almost coincide with
the lines!. However, with the increase of the readout perio
r11 becomes close to 0.5 andr12 becomes close to zero
indicating a strongly mixed state. Figure 6 shows the co
sponding decrease of the average coherence factoru[1
24^r11r222ur12u2& with increase of the readout periodDtk
~equal time between readouts is assumed!. The averaging is
done over the readout moments for sufficiently long reali
tion of the measurement process. We also tried few o
expressions that describe the density matrix coherence, a
them show a similar dependence onDtk . Notice the vanish-
ing coherence in Fig. 6 when the ratio betweenDtk
and the quantum oscillation periodp\/H is close to an
integer number~the regime of quantum nondemolitio
measurements3,32!.

In the special caseH50 all the information about the
qubit state is contained in the result of the last measurem
by pointer. This fact can be easily proven by applying E
~48!–~50! twice and checking that resulting qubit dens
matrix does not depend on the resultn1 of the first measure-
ment while the dependence on the second resultn2 is the

FIG. 5. The lines show a gradual purification of the qubit de
sity matrix r(t) in the regime of quantum jumps~frequent detector
readout with one-electron accuracy!. The dots, triangles, square
and crosses correspond to finite readout periodsDtk /(\/H)50.5, 1,
2, and 3, respectively.
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same as in the case of only one last measurement. Simil
the probability distributionP(n2) @see Eq.~51!# averaged
over the resultn1 of the first measurement exactly coincid
with P(n2) in absence of the first measurement.

It is interesting to discuss the generalization of the mo
to the case of a low-transparency tunnel junction with fin
temperature of electrodes. Then each of the currentsI 1 and
I 2 can be decomposed into two currents flowing in oppos
directions,

I i5I i
12I i

2 , I i
1/I i

25beV, ~59!

where i 51,2, b is the inverse temperature, andV is the
voltage across junction. In this case Eqs.~22!–~24! are re-
placed by the following equations:

ṙ11
n 52

I 1
11I 1

2

e
r11

n 1
I 1

1

e
r11

n211
I 1

2

e
r11

n1122
H

\
Im r12

n ,

~60!

ṙ22
n 52

I 2
11I 2

2

e
r22

n 1
I 2

1

e
r22

n211
I 2

2

e
r22

n1112
H

\
Im r12

n ,

~61!

ṙ12
n 5 i

«

\
r12

n 1 i
H

\
~r11

n 2r22
n !2

I 1
11I 1

21I 2
11I 1

2

2e
r12

n

1
AI 1

1I 2
1

e
r12

n211
AI 1

2I 2
2

e
r12

n11 . ~62!

If the readout period Dtk is much shorter than
min(e/Ii

6 ,\/H), the detector still does not decrease the qu
coherence in spite of the finite temperature. However, if
dividual electron passages are not resolved, the informa
about the number of electrons passed in each direction is
that leads to the qubit decoherence. In the framework
Bayesian formalism in the case of quasicontinuous curr
e/I i

6!Dtk!min@eIi /(DIi)
2,\/H#, we can easily calculate th

output current noiseS052eI0coth(beV/2) and the ensemble

-

FIG. 6. The average qubit coherence factoru as a function of
the readout periodDtk for the measurement process shown
Fig. 5.
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decoherence rateGd5coth(beV/2)(DI )2/8eI0 ~see also the
derivation in Ref. 37!. Thus calculated detector ideality fac
tor,

h5@ tanh~beV/2!#2, ~63!

becomes significantly less than unity at temperaturesb21

*eV.

VIII. DETECTOR WITH CORRELATED OUTPUT
AND BACKACTION NOISES

Let us assume again a weakly responding~linear! detector
and consider the case when the output detector noise is
related with the ‘‘backaction’’ noise that provides the flu
tuations«(t) of the qubit energy level difference and thu
leads to the qubit dephasing. For example, this is the typ
situation for a single-electron transistor as a detector.58,59 In
this case the knowledge of the noisy detector outputI (t)
gives some information about the probable backaction n
‘‘trajectory’’ «(t) that can be used to improve our know
edge of the qubit state. The compensation for the most p
able trajectory«(t) leads to improved Bayesian evolutio
equations:36

ṙ1152 ṙ22522
H

\
Im r121r11r22

2DI

S0
@ I ~ t !2I 0#,

~64!

ṙ125 i
«

\
r121 i

H

\
~r112r22!2~r112r22!

DI

S0
@ I ~ t !2I 0#

3r121 iK@ I ~ t !2~r11I 11r22I 2!#r122g̃dr12, ~65!

whereK5(d«/dw)SIw /S0\ characterizes the correlation b
tween the noise of currentI through the single-electron tran
sistor and the noise of its central electrode potentialw (SIw is
the mutual low-frequency spectral density!.76 The term in
square brackets afterK in Eq. ~65! is just the ‘‘pure output
noise’’ from Eq. ~29!. The dephasing rateg̃d in Eq. ~65! is
now decreased because of partial recovery of the cohere

g̃d5Gd2
~DI !2

4S0
2

K2S0

4
. ~66!

The term containingK in Eq. ~65! is proportional to the
averagew(t) for given I (t). Performing ensemble averagin
of this term@essentially, considering noisew(t) as uncorre-
lated with I (t)#, we can reduce Eqs.~64! and ~65! to Eqs.
~25! and~26!, while additional ensemble averaging overI (t)
leads to the conventional equations~14! and ~15!.

The obvious inequalityg̃d>0 ~in the opposite case th
conditionur12u2<r11r22 would be violated! imposes a lower
bound for the ensemble decoherence rateGd :

Gd>
~DI !2

4S0
1

K2S0

4
, ~67!

which is stronger than the inequality 2Gdtm>1 ~see Sec.
III !.
11540
or-

al

e

b-

ce:

Inequality ~67! can be also interpreted in terms of th
energy sensitivity of a single-electron transistor. Let us
fine the output energy sensitivity ase I[(dI/dq)22S0/2C
where C is the total island capacitance anddI/dq is the
response to the externally induced chargeq. Similarly, let us
characterize the backaction noise intensity byew[CSw/2
and the correlation between two noises by the magnit
e Iw[(dI/dq)21SIw/2. Since in absence of other decoheren
sourcesGd5Sw(CDE/2e\)2, whereDE is the energy cou-
pling between qubit and single-electron transistor~see Sec.
III !, and using also the reciprocity propertyDq5CDE/e
5d«/dw, we can rewrite Eq.~67! as

~e Iew2e Iw
2 !1/2>\/2, ~68!

similar to the result of Ref. 65~see also Refs. 52 and 77–80!.
When the limit\/2 is achieved, the decoherence rate

g̃d5
~DI !2

4S0
F e Iew2e Iw

2

~\/2!2
21G ~69!

in Eqs. ~64! and ~65! for the selective evolution of an indi
vidual qubit vanishes,g̃d50. In this sense the detector
ideal, h̃51, where

h̃[12
g̃d

Gd
5

\2~dI/dq!2

S0Sw
1

~SIw!2

S0Sw
, ~70!

even though it can be a nonideal detector (h,1) by the
previous definition,h5\2(dI/dq)2/S0Sw . Notice a simple
relation,

h5h̃5
~\/2!2

e Iew
5

1

2Gdtm
, ~71!

in absence of correlation between noises ofw(t) and I (t),
(SIw)2!S0Sw .

A similar conclusion is also valid for other kinds of de
tectors: a quantum-limited total energy sensitivity\/2 is
equivalent to detector ideality,h̃51. Besides the tunne
junction,43 quantum point contact,47,51 and SQUID,65 the re-
gime of ideal quantum detection is also achievable by sup
conducting single-electron transisitor77 and normal single-
electron transistor in cotunneling mode.78,79 ~The resonant-
tunneling single-electron transisitor80 has ideality factor
comparable, but not equal, to unity.!

IX. QUANTUM FEEDBACK LOOP

The Bayesian formalism allows us to monitor the evo
tion of an individual qubit using weak continuous measu
ment, thus avoiding strong instantaneous perturbations.
information can be used to control the qubit parameter«
andH in order to tune continuously the qubit state in such
way that the evolution follows the desired trajectory~some-
what similar ideas have been discussed in Refs. 31, 35,
and 82!. This is possible even in the presence of decohere
due to the environment and so presents an opportunit
suppress such decoherence.

Continuous qubit purification using a quantum feedba
3-11
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loop42 can be useful for a quantum computer. All quantu
algorithms require the supply of ‘‘fresh’’ qubits with well
defined initial states. This supply is not a trivial proble
since a qubit left alone for some time deteriorates due
interaction with the environment. The usual idea is to use
ground state that should be eventually reached and doe
deteriorate. However, to speed up the qubit initialization
need to increase the coupling with environment, wh
should be avoided. Another possible idea is to perform
projective measurement, after which the state becomes w
defined. However, in the realistic case the coupling with
detector is finite, which makes projective measurement
possible. So, a different idea is helpful: to tune the qu
continuously in order to overcome the dephasing due to
environment and so keep the qubit ‘‘fresh.’’

The schematic of such state purification is shown in F
7. The qubit is continuously measured by a weakly coup
detector, and the detector signal is plugged into Eqs.~64! and
~65! @or into Eqs.~25! and~26! in a simpler case# to monitor
the evolution of the qubit density matrixr i j (t). This evolu-
tion is compared with the desired evolution, and the diff
ence is used to generate the feedback signal that control
qubit parametersH and « in order to reduce the differenc
with the desired qubit state.

We have simulated a feedback loop designed to main
the perfect quantum oscillations of a symmetric qubit«
50), so that the desired evolution isr115@11cos(Vt)#/2,
r125 i sin(Vt)/2 whereV52H/\. Let us assume an idea
detector,h51, so that the qubit decoherence rategd in Eqs.
~25! and ~26! is due to the extra environment. The ratio b
tween the decoherence rate and the ‘‘measurement r
(DI )2/4S0 is described by the factord[4S0gd /(DI )2.

To imitate a realistic situation, the currentI (t) is averaged
with a rectangular window of durationta running in time,
before it is plugged into Eqs.~25! and ~26!. So, thus calcu-
lated density matrixra(t) differs ~a little! from the ‘‘true’’
density matrixr(t) that is simultaneously simulated by th
Monte Carlo method described in Sec. IV. The feedback
nal is proportional to the differenceDf between the desired
oscillation phaseV(t2ta/2) and the phase calculated
f(t)[arctan@2 Imr12

a (t)/$r11
a (t)2r22

a (t)%#. Here the time
shift ta/2 partially compensates the detector signal delay
to averaging. The feedback signal is used to control the q
tunnel barrier:H f b(t)5H@12F3Df(t2td)# where F is
the dimensionless strength of the feedback andtd is an ad-
ditional time delay (td50 is preferable but not achievable
a realistic situation!.

Figure 8 shows typical realizations of the qubit’sr11 evo-
lution for C5\(DI )2/S0H51, «50, ta50.1\/H, td

FIG. 7. Schematic of continuous qubit purification using a qu
tum feedback loop.
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50.05\/H, and several values of the feedback factorF50,
0.3, and 3. No extra environment is assumed,d50. The
qubit evolution starts from a localized state:r11(0)51,
r12(0)50, and the desired evolution is shown by the thi
solid line. Without a feedback (F50) the phase of quantum
oscillations randomly fluctuates~diffuses! in time. However,
for sufficiently largeF the feedback ‘‘locks’’ the qubit evo-
lution and makes it close to the desired one. Further incre
of F decreases the difference between the actual and de
evolution. WhenF is too strong, the feedback loop becom
unstable. Overall, the behavior of this quantum feedb
loop is similar to the behavior of a traditional classical fee
back loop. In particular, we have checked that the increas
the averaging timeta and/or delay timetd eventually leads
to synchronization breakdown. A decrease of the dete
couplingC decreases the evolution disturbance due to m
surement and allows more accurate tuning of quantum os
lations; on the other hand, in this case the feedback con
becomes weaker and slower.

Qubit decoherence due to the presence of an extra e
ronment prevents complete purification of the quantum
cillations so that the average qubit coherence factoru be-
comes less than 100%. However, if the qubit coupling w
the detector is stronger than the coupling with its enviro
ment,d&1, the feedback loop still provides qubit evolutio
quite close to the desired one~see Fig. 9!. Most noticeably,
the phase of quantum oscillations does not diffuse far fr
the desired valueVt. So, for example, the spectral density
these oscillations has a delta-function shape at frequencV
~with exponentially small width! in contrast to the maximum
value of 4 for the peak-to-pedestal ratio in the case of qu
tum oscillations without feedback.41,51

X. DISCUSSION

The Bayesian formalism discussed in this pap
presents ~as any formalism of selective quantu
evolution17–37! a controversy in interpretation. First of all,
natural question is how it is possible that the qubit dens
matrix evolution can be described simultaneously by

-

FIG. 8. Particular realizations of the qubit evolution for a qua
tum feedback loop with strengthF53, 0.3, and 0~thin solid,
dashed, and dotted lines, respectively!. Thick line shows the desired
evolution. No extra environment is present,d50.
3-12
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conventional equations~14! and~15! and the Bayesian equa
tions ~25! and~26! @and even also by the improved Bayesi
equations~64! and ~65!#. Which equations are correct? Th
answer is as follows: all are correct depending on the pr
lem considered.

If only the ensemble evolution is studied~for example, the
ensemble of particles is measured, as in typical nuclear m
netic resonance experiments! then the conventional approac
is completely sufficient. It is also possible to use the Ba
sian equations; however, they should be averaged ove
possible measurement results, after which they coincide w
the conventional equations. So, the selective approach
not have real advantages for the study of the averaged
lution ~besides a significant computational gain in so
cases17–19!. There is still no advantage even for the major
of experiments with individual quantum systems~see ex-
amples in Sec. II! if the averaging is done over a number
repeated experiments, disregarding the results of individ
measurements~more exactly, when not more than one num
ber is recorded as a result of each run!.

The principal advantage of the selective evolution a
proach arises for continuous measurement of an individ
quantum system when the continuous detector outputI (t) is
recorded~or at least two numbers are recorded in each ru!.
In this case the selective approach gives the possibility
make experimental predictions, unaccessible for the conv
tional approach. The proposals of such experiments w
solid-state qubits have been discussed, for example, in
34 for a one-detector setup and in Ref. 42 for a two-dete
setup ~the latter experiment seems to be realizable at
present-day level of solid-state technology!.

In this case the density matrices calculated by the conv
tional and Bayesian equations are significantly differe
However, they do not contradict each other but rather
Bayesian-calculated density matrix is more accurate than
conventional counterpart. For example, there are no si
tions when two approaches predict different pure states
the qubit—then it would be possible to prove experimenta
that one of the approaches is wrong. Instead, in a typ

FIG. 9. Operation of the quantum feedback loop~particular re-
alization! for several decoherence rates due to extra environm
d5gd34S0 /(DI )250.3, 1, and 3~thin solid, dashed, and dotte
lines, respectively!. Thick solid line is the desired evolution.F
53, \(DI )2/S0H51, «50, ta50.1\/H, td50.05\/H.
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situation the conventional equations give a significan
mixed state~so, essentially no predictions are possible! while
the Bayesian equations give a pure state~and so some pre
dictions with 100% certainty are possible!. A similar relation
holds between Bayesian equations~25! and~26! and the im-
proved Bayesian equations~64! and~65!: the latter ones give
a more accurate description of qubit evolution and allow
to make more accurate predictions.

The difference between density matrices calculated in
ferent approaches can be easily understood if we treat
sity matrix not as a kind of ‘‘objective reality’’ but rather a
our knowledge about the qubit state~in accordance with or-
thodox interpretation of quantum mechanics!. Then it is ob-
vious that since Bayesian equations take into account a
tional information @detector outputI (t)#, they provide us
with a more accurate description of the qubit state than
conventional equations do.

Another controversial issue is the state collapse due
measurement~here it is more appropriate to mention th
mathematical formulation by Lu¨ders11,20 rather than by von
Neumann10!. The conventional equations are derived witho
any notion of collapse while the derivation of Bayesian eq
tions requires either implicit or explicit~as in the model of
Sec. VI! use of the collapse postulate. Philosophically, t
collapse postulate is almost trivial: when the result of t
measurement becomes available, we know for sure that
state of the measured system has changed consistently
the measurement result~even though it is generally impos
sible to predict the result with certainty!. In spite of being
trivial, this postulate in my opinion cannot even in princip
be derived dynamically by the deterministic Schro¨dinger
equation because of the intrinsic randomness of the meas
ment result. In other words, the measurement process ca
be described by the Schro¨dinger equation alone because th
equation is designed for closed systems while a quan
object under measurement is always an open system~even
including the detector!, since the measurement information
output to the outside world.~The incompatibility between
quantum mechanics and ‘‘macrorealism’’ has been d
cussed, e.g., in Ref. 83.!

Following the orthodox~Copenhagen! interpretation, we
can regard collapse not as a real physical process but ra
as a convenient formal tool to get correct experimental p
dictions. In my opinion this tool is still irreplaceable~if we
leave aside the many-worlds interpretations84,85! for the com-
plete description of the quantum realm.~Of course, in many
cases the collapse postulate is not necessary as, for exa
for the description of decoherence due to interaction with
environment—this problem has been solved with great s
cess by the conventional approach.!

Bayesian equations predict several quite counterintui
results. For example, even for a qubit with an infinite barr
between localized states,H50, the continuous measureme
by an ideal detector leads to a gradual ‘‘flow’’ of the wav
function between the states~for an initially coherent qubit!.
The interpretation of this effect is rather difficult if we tre
the wave function as objective reality; in contrast, there is
problem with the orthodox interpretation. Most important

t,
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experimental observation of such effects in solid-state qu
is coming into the reach of present-day technology. Th
experiments would be extremely important not only for b
ter understanding of the foundations of quantum theory,
could be also useful in the context of quantum computin
H
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of freedom the collapse by the pointer would disturb the int
action between qubit and detector; in particular, sufficiently f
quent collapse could lead to quantum Zeno freezing of the
tector state. For example, for a finite-transparency quan
point contact the ‘‘attempt frequency’’eV/\ is always compa-
rable to the typical frequencyI /e of electron passage. As a con
sequence, a readout frequent and strong enough to observe
vidual electrons, Dtk&e/I , would necessarily disturb the
measurement process.

76The small shift of the detector operating point for two localiz
qubit states can affect the energy«, which therefore should be
defined self-consistently.
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