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We consider multitime correlators for output signals from linear detectors, continuously measuring several
qubit observables at the same time. Using the quantum Bayesian formalism, we show that for unital (symmetric)
evolution in the absence of phase backaction, an N -time correlator can be expressed as a product of two-time
correlators when N is even. For odd N , there is a similar factorization, which also includes a single-time average.
Theoretical predictions agree well with experimental results for two detectors, which simultaneously measure
noncommuting qubit observables.
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Introduction. Partial and continuous quantum measure-
ments (CQMs) have recently attracted significant attention
within the quantum information community. They have been
discussed theoretically for a long time [1–11], and renewed
interest has been motivated by the rapid progress with super-
conducting qubits, which are currently the main experimental
system for realization of CQMs [12–18]. The main contribu-
tion from the theory and experiments on CQMs to fundamental
aspects of quantum physics is a clear understanding of quantum
evolution in the process of the state collapse due to measure-
ment. Besides that, we now understand quantum dynamics in
some peculiar processes such as uncollapse [19,20] and simul-
taneous measurement of noncommuting observables [21,22].
There is also a growing interest in the use of CQMs for quantum
computing applications, such as quantum feedback [14,17,23–
26], rapid state purification [27], entanglement by continuous
measurement [28–30], and quantum error correction [31,32].

A recent experiment [22] opened a way to experimental
verification of theoretical predictions related to simultaneous
measurement of noncommuting observables. In particular,
two-time correlators for the output signals from two detectors
measuring two observables of a qubit, have been calculated in
Ref. [33], and the theoretical results showed a good agreement
with experimental data. Similarly, the theoretical results for
two-time state correlators have been compared with experi-
ment in Ref. [34].

In this work we again consider temporal correlations
for signals from linear detectors, simultaneously measuring
noncommuting observables of a qubit. However, now the
number of detectors and observables is arbitrary, observables
can change in time, and we extend the previous analysis of
two-time correlators [33,35,36] to multitime correlators, thus
fully describing statistics of the output signals. Our analysis
also extends the recent result [37] for correlations between
sequential infinitesimally weak measurements in the absence
of evolution.

Let us consider a qubit, which is weakly coupled to Nd

linear detectors, measuring simultaneously and continuously
an arbitrary set of qubit observables σ� ≡ n�σ , where � =
1,2, . . . ,Nd, the unit vector n� = (nx,�,ny,�,nz,�) is the �th

measurement axis direction on the Bloch sphere, and σ =
(σx,σy,σz) is the vector of Pauli matrices. For the output
signals I�(t) from the detectors, the multitime correlators of
interest are

K�1�2···�N
(t1,t2,...,tN ) ≡ 〈

I�N
(tN ) · · · I�2 (t2)I�1 (t1)

〉
, (1)

where averaging is over the ensemble of realizations, we
assume that the time arguments are ordered as t1 < t2 < · · · <

tN , and N can be smaller, equal, or larger than Nd. As we
show in this Rapid Communication, for unital evolution (with
symmetry between qubit states |0〉 and |1〉) in the absence of
phase backaction from measurement, the N -time correlator
(1) has a quite simple form. Rather surprisingly, for even
N it factorizes into a product of N/2 sequential two-time
correlators, so that the qubit evolution between tN−2k and
tN−2k+1 does not affect the correlator (1). For odd N , there is a
similar product, which also includes the average signal at the
earliest time, 〈I�1 (t1)〉. In this Rapid Communication we also
compare the theoretical predictions with experimental data for
a two-detector configuration similar to Ref. [22].

Our results are useful for parameter estimation via cor-
relators (see [33]) and noise characterization as a tool for
diagnosing sources of fluctuations in multiqubit systems, with
multiobservable correlators probing the dynamics within the
whole Hilbert space. Our results are also useful for analysis of
error syndromes in quantum error correction codes based on
continuous measurements. In particular, the theory presented
here has been implicitly used (without any discussion or
formulas) in Ref. [32] for error analysis in the four-qubit
Bacon-Shor code operated with continuous measurements; the
parity operators for that code correspond to noncommuting
observables of the gauge qubit.

The quantum Bayesian formalism. A simultaneous contin-
uous measurement of the qubit observables σ� produces the
normalized output signals [11,21,38]

I�(t) = Tr[σ�ρ(t)] + √
τ� ξ�(t) = n�r(t) + √

τ� ξ�(t), (2)

where the Bloch vector r = (x,y,z) for the qubit density
matrix ρ is defined via parametrization ρ = (1 + xσx + yσy +
zσz)/2 and τ� denotes the measurement (collapse) time
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needed for the informational signal-to-noise ratio of 1 for the
�th-measurement channel. We use the Markovian quantum
Bayesian theory (assuming the “bad cavity limit”), so the
noises ξ�(t) are assumed to be white, Gaussian, and uncor-
related, with two-time correlators

〈ξ�(t) ξ�′(t ′)〉 = δ��′δ(t − t ′). (3)

We also assume that the quantum backaction due to mea-
surement is only of the informational type, so that there is
no phase backaction [38]; in a circuit QED experiment this
requires that the optimal microwave quadrature is amplified
by a phase-sensitive amplifier. Then the quantum Bayesian
equation for the qubit state evolution (in Itô interpretation) is
[10,21,38]

ṙ = �ens(r − rst) +
Nd∑
�=1

n� − (n�r) r√
τ�

ξ�(t), (4)

where the second term depends on the noisy outputs I�(t),
while the first term describes ensemble-averaged evolution,
characterized by a 3 × 3 matrix �ens and quasistationary state
rst (�ens, rst, n�, and τ� can all be time dependent). Note that

ṙens = �ens(rens − rst) (5)

is the most general form of a linear Markovian evolution
of the ensemble-averaged qubit state rens = 〈r〉, which di-
rectly corresponds to the Lindblad-form equation [39] ρ̇ens =
−(i/h̄)[Hq,ρens] + L[ρens], where qubit Hamiltonian Hq de-
scribes Rabi oscillations, while L accounts for environmen-
tal decoherence and measurement-induced ensemble dephas-
ing. In particular, the measurement contributes Lm[ρ] =∑

� 	�[σ�ρσ� − ρ]/2, where 	� = 1/2η�τ� and η� is the quan-
tum efficiency of the �th detector [21,38].

An important special case is unital evolution, for which
rst = 0, so that a fully mixed qubit state, rens = 0, does
not evolve. Unital evolution essentially means the symmetry
between the qubit states |0〉 and |1〉. In experiments with
superconducting qubits this symmetry is usually broken by
energy relaxation; however, there is an approximate symmetry
if Rabi oscillations are much faster than energy relaxation. In
particular, in the experiment [22] on simultaneous measure-
ment of noncommuting observables and for the data used in
this Rapid Communication, the evolution of the effective qubit
is practically unital [33]. Let us denote the solution of Eq. (5)
as rens(t |r0,t0), where r0 is an initial condition at time t0. For
unital evolution

rens(t | − r0,t0) = −rens(t |r0,t0). (6)

If phase backaction is included, then we need to add into
Eq. (4) the term

∑
� τ

−1/2
� K�(n� × r) ξ�(t), where the coeffi-

cient K� parametrizes the relative strength of phase backaction
[38] (K� = tan φ�, where φ� is the angle between the amplified
and optimal quadratures). The ensemble dephasing rate is then
	� = (1 + K2

�)/2η�τ�. However, as mentioned above, in this
Rapid Communication we assume K� = 0.

Collapse recipe. As shown in Sec. A of the Supplemental
Material [40], in the absence of phase backaction (K� = 0,
unitality is not needed), the qubit evolution (4) leads to
the following simple recipe for calculation of the multitime
correlators (1). The correct result can be obtained by replacing

actual continuous measurement with projective measurement
of operators σ�k

at time moments tk (k = 1,2, . . . , N ), while
the qubit evolution at t �= tk is replaced with the ensemble-
averaged evolution. This “collapse recipe” was proven in
Ref. [35] for Nd = 1 and N = 2, and also in Ref. [33] for
N = Nd = 2. In Sec. A of the Supplemental Material we prove
it for arbitrary N and Nd.

Using this recipe, in Eq. (1) we have 2N combinations of
discrete outcomes, I�k

= ±1, each of them correspondingly
collapsing the qubit state to the point ±n�k

on the Bloch sphere
(an eigenstate of σ�k

). Each combination contributes the value∏N
k=1 I�k

to the N -time correlator, with the weight equal to
the probability of such combination of outcomes. In this way
we obtain

K�1···�N
(t1, . . . , tN ) =

2N∑
{I�=±1}

p
(
I�N

∣∣I�N−1

)

× p
(
I�N−1

∣∣I�N−2

) · · · p(
I�2

∣∣I�1

)

× p
(
I�1

) N∏
k=1

I�k
, (7)

where p(I�k
|I�k−1 ) ≡ p(I�k

,tk|I�k−1 ,tk−1) is the probability to
obtain projective result I�k

at time tk if at time tk−1 the result
was I�k−1 (for brevity we omit time moments in the notation),
while p(I�1 ) ≡ p(I�1 ,t1) is the probability to obtain projective
result I�1 = ±1 at time t1. It is easy to see that

p
(
I�1

) = 1 + I�1 Tr
[
σ�1ρens(t1)

]
2

= 1 + I�1 n�1 rens(t1)

2
, (8)

where rens(t1) is the qubit state at the time t1. If the qubit
is prepared in a state r in at the time tin < t1, then rens(t1) is
obtained via Eq. (5). Similarly,

p
(
I�k

∣∣I�k−1

) = 1 + I�k
n�k

rens
(
tk

∣∣I�k−1 n�k−1 ,tk−1
)

2
, (9)

where rens(tk|I�k−1 n�k−1 ,tk−1) is the qubit state at time tk
obtained from Eq. (5) with the initial condition r = I�k−1 n�k−1

at the time tk−1. This initial condition is due to collapse of
the qubit state by projective measurement of σ�k−1 at the time
tk−1 with result I�k−1 . Note that while the collapse recipe
is applicable to correlators, it is not applicable to the joint
probability distribution of the continuous output signals I�k

(tk),
for which no formula like Eq. (7) is possible.

Correlator factorization for unital evolution. Using Eqs. (7)
and (9), we can write the N -time correlator as

K�1···�N
(t1, . . . , tN )

=
2N−2∑

{I�=±1}

∑
I�N−1 =±1

I�N−1 n�N
rens

(
tN

∣∣I�N−1 n�N−1 ,tN−1
)

× [
1 + I�N−1 n�N−1 rens

(
tN−1

∣∣I�N−2 n�N−2 ,tN−2
)]/

2

× p
(
I�N−2

∣∣I�N−3

) · · ·p(
I�2

∣∣I�1

)
p
(
I�1

) N−2∏
k=1

I�k
, (10)

where we separated the factors for the latest pair of measure-
ments and already summed over the result I�N

= ±1 of the
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latest measurement. For the summation over I�N−1 = ±1, let us
use the symmetry property (6) of unital evolution, which gives
rens(tN |I�N−1 n�N−1 ,tN−1) = I�N−1 rens(tN |n�N−1 ,tN−1). This can-
cels the factor I�N−1 on the first line of Eq. (10) since I 2

�N−1
= 1,

so summation over I�N−1 only affects the second term in
the third line, which sums to zero. Therefore, the last two
measurements bring only the factor n�N

rens(tN |n�N−1 ,tN−1),
which does not depend on the previous measurement results.
Moreover, for unital evolution, this factor is exactly the two-
time correlator K�N−1�N

(tN−1,tN ), as is easy to see using the
collapse recipe. We emphasize that for unital evolution the
two-time correlators do not depend on the initial state [33].
Thus, for unital evolution we obtain factorization

K�1···�N
(t1, . . . ,tN ) = K�1···�N−2 (t1, . . . , tN−2)

× K�N−1�N
(tN−1,tN ). (11)

Continuing this procedure, we see that for even N the N -time
correlator is a product of two-time correlators,

K�1···�N
(t1, . . . ,tN ) =

N/2∏
i=1

K�2i−1�2i
(t2i−1,t2i), (12)

while for odd N the remaining factor is the average output
signal at t1, which depends on the initial state,

K�1···�N
(t1, . . . ,tN ) = 〈

I�1 (t1)
〉 (N−1)/2∏

i=1

K�2i �2i+1 (t2i ,t2i+1). (13)

The two-time correlators do not depend on the initial state and
can be calculated by integrating Eq. (5) (with rst = 0 for unital
evolution),

K�i�k
(ti ,tk) = n�k

[
exp

(∫ tk

ti

�ens(t) dt

)
n�i

]
, (14)

where the exponential is time ordered. For a time-independent
�ens, the two-time correlator (14) is obviously a function of
the time difference tk − ti , while not depending on ti .

The multitime correlator factorization (12) and (13) in the
case of unital evolution is the main result of this Rapid Com-
munication. Rather surprisingly, the N -time correlator does
not depend on the qubit evolution between neighboring time
moments tN−2i and tN−2i+1; in particular, the time duration
between them is not important. For even N , the correlator also
does not depend on the initial qubit state.

Our factorization result may seem similar to Wick’s theorem
in Gaussian field theory [41], indicating a trivial correlation.
However, this is not the case, since in our problem only some
specific pairwise correlators contribute to Eqs. (12) and (13),
while others do not. This is a rather peculiar correlation;
for example, the evolution between time moments tN−2i and
tN−2i+1 obviously affects the joint probability distribution but
cancels out in the correlator.

Note that the factorization result is somewhat similar to
the result of Ref. [37] for sequential infinitesimally weak
measurements with no evolution in between. In contrast, we
show that the factorization holds for continuous measurements
in the presence of an arbitrary unital evolution (but without
phase backaction). If the qubit evolution is not unital, then
the N -time correlator still can be calculated via Eq. (7) using
the collapse recipe. However, the correlator does not factorize.

A recursive relation for the N -time correlator in this case is
presented in the Supplemental Material [40].

Singular contributions at coinciding times. So far we
assumed that all time moments tk in the correlator (1) are
different. If a pair of neighboring time moments, tk and
tk+1, approach each other and they correspond to the same
detector, �k = �k+1, then we also need to add to the correlator
a singular contribution, ∝δ(tk+1 − tk), due to white noise in
this detector [see Eq. (3)]. The additional contribution will
be τ�k

δ(tk+1 − tk) KN−2, where KN−2 denotes the remaining
(N − 2)-time correlator with the coinciding pair excluded.
Similarly, if there are two pairs of coinciding times (time
separated from each other), which involve the same detectors,
�k = �k+1, �i = �i+1, then there will also be a contribution
τ�k

τ�i
δ(tk+1 − tk) δ(ti+1 − ti) KN−4, where KN−4 is the (N −

4)-time correlator without coinciding pairs (if �k �= �i , then the
formula is the same even if these two pairs coincide in time).
These formulas for the singular contributions do not assume
unital evolution. Note that there is no singular contribution
from three coinciding times (with the same detector) because
the noises ξ�(t) are assumed to be Gaussian.

Comparison with experiment. To check our theoretical
results for multitime correlators, we use the data from the
experiment described in detail in Ref. [22] (two-time correla-
tors have been analyzed in Ref. [33]). In this experiment, two
linear detectors measure simultaneously and continuously the
observables σz and σϕ = σz cos ϕ + σx sin ϕ of a nominally
nonevolving qubit, with corresponding normalized output
signals Iz(t) and Iϕ(t). Here ϕ is the angle between the
measurement axes in the Bloch xz plane of the measured
qubit; in the experiment ϕ = nπ/10 with integer n from 0
to 10 (we neglect the small correction �ϕ = 0.036 [33]). As
shown in Ref. [33], the decoherence-caused evolution of the
measured effective qubit is unital even in the presence of energy
relaxation of the physical qubit (because of averaging over
sufficiently fast Rabi oscillations of the physical qubit, creating
the effective rotating-frame qubit). Since in the experiment
a Josephson parametric amplifier operated in phase-sensitive
mode has been used, amplifying the informational (optimal)
quadrature, the phase backaction is nominally absent. There-
fore, all conditions for our factorization result for multitime
correlators, Eqs. (12)–(14), are satisfied in the experiment.

Let us first consider the three-time correlator
Kϕzϕ(�t21,�t32) ≡ ∫ ta+T

ta
dt1 〈Iϕ(t3) Iz(t2) Iϕ(t1)〉/T , where

�t21 = t2 − t1, �t32 = t3 − t2, and additional averaging over
time t1 within the interval [ta,ta + T ] is introduced to reduce
fluctuations of the experimental correlators. For brevity of
notation, we omit dependence of Kϕzϕ on ta and T ; in Fig. 1
we choose ta = 1 μs and T = 0.2 μs. As follows from
(13), Kϕzϕ(�t21,�t32) = Kzϕ(�t32)

∫ ta+T

ta
dt1 〈Iϕ(t1)〉/T ,

where the two-time correlator Kzϕ(�t32) and the average
signal 〈Iϕ(t)〉 = z(t) cos ϕ + x(t) sin ϕ can be found using
the results of Ref. [33], using the qubit initial state
r(0) = {sin(ϕ/2),0, cos(ϕ/2)} (see Sec. B of the Supplemental
Material [40]). Note that each measurement channel produces
the measurement-induced ensemble dephasing rate of
	 = (1.3 μs)−1 in the corresponding basis. Our theory
predicts no dependence of Kϕzϕ on �t21. In agreement with
this prediction, the experimental correlators Kϕzϕ shown
by solid lines in Fig. 1(a) for several values of ϕ, do not
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FIG. 1. Comparison between experimental (solid lines) and the-
oretical (dashed lines) three-time correlators for simultaneous mea-
surement of qubit observables σz and σϕ , with ϕ being the angle
between the measurement axes on the Bloch sphere. Upper and lower
panels show the correlator Kϕzϕ(�t21,�t32) as a function of the time
difference �t21 and �t32, respectively (see text). As predicted by
theory, we see practically no dependence on �t21, in contrast to
a significant dependence on �t32. In both measurement channels,
	 = (1.3 μs)−1.

exhibit a significant dependence on �t21. Some deviations
from the theory (dashed lines) at �t21 < 0.5	−1 are probably
due to slowly fluctuating offsets of the output signals. In
contrast, the theory predicts a significant dependence of Kϕzϕ

on �t32, which also agrees with experimental correlators
shown in Fig. 1(b). Note that experimental three-time
correlators are much noisier than the two-time correlators
discussed in Ref. [33], so the ensemble averaging over
200 000 experimental trajectories still produces significant
fluctuations in Fig. 1 (see [40] for details of experimental
signal processing).

Next, let us consider the similar four-time correlator Kzϕzϕ

(�t21,�t32,�t43) ≡ ∫ ta+T

ta
dt1 〈Iϕ(t4) Iz(t3) × Iϕ(t2) Iz(t1)〉/T

with �tij = ti − tj . As follows from Eq. (12),
Kzϕzϕ(�t21,�t32,�t43) = Kzϕ(�t21) Kzϕ(�t43), predicting
that Kzϕzϕ should not depend on the time difference �t32 (it
should also not depend on ta and T ). Figure 2(a) shows the
dependence of the experimental correlators Kzϕzϕ on �t32 for
several values of ϕ, with �t21 = �t43 = 0.15 	−1, ta = 1 μs,
and T = 0.5 μs. Indeed, we see that experimental Kzϕzϕ

fluctuate around the theoretical constant values (horizontal
dashed lines), except for �t32 < 0.5	−1, where the solid lines
deviate up from the theory [probably because of the same
reason as in Fig. 1(a)]. Figure 2(b) shows the same values
of Kzϕzϕ averaged over �t32 (excluding �t32 < 0.5	−1) as a
function of ϕ. We see a good agreement with the theoretical
result (shown by the dashed line), K2

zϕ(�t) = A cos2 ϕ,

FIG. 2. Comparison between experimental and theoretical four-
time correlators. Panels (a) and (c) depict the dependence of the corre-
lator Kzϕzϕ(�t21,�t32,�t43) on �t32 and �t21, respectively (solid lines
for experimental results, dashed lines for theory). Theory predicts
no dependence on �t32. Panel (b) depicts the average (circles) and
standard deviation (error bars) of the experimental correlators shown
in panel (a), averaged over �t32 within the range [0.5/	,2.3/	], for
several values of ϕ. The dashed line in (b) is the theoretical result
0.99 cos2 ϕ.

where A ≈ 0.99 for �t = 0.15	−1. Figure 2(c) depicts the
dependence of the experimental correlator on �t21 (with fixed
�t32 and �t43); we again see a good agreement with the theory.
Similar results have been obtained for the dependence on �t43

(not shown). Note that the four-time correlators in Figs. 2(a)
and 2(c) are even noisier than the three-time correlators in
Fig. 1; in general, higher-order correlators are increasingly
noisier because of multiplication of noise terms.

Conclusion. We have analyzed multitime correlators for
the output signals of linear detectors, continuously measuring
arbitrary observables of a qubit at the same time. We have
shown that an N -time correlator can be expressed as a simple
product of two-time correlators for even N [Eq. (12)], while
for odd N there is also a factor equal to the average signal at
the earliest time [Eq. (13)]. This result requires the absence of
the phase backaction from continuous measurements and also
requires a unital ensemble-averaged evolution. Experimental
results for three-time and four-time correlators show good
agreement with the theory. Our results can be used in parameter
estimation and noise detection protocols in qubit systems,
and also for development and analysis of quantum error
correction codes operating with continuous measurements;
for this purpose a generalization of our theory to multiqubit
systems may be needed.
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