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Section A: Proof of the “collapse recipe”

In this section we prove the “collapse recipe”, which
states that in the absence of phase backaction, the multi-
time correlator

K`1`2...`N (t1, t2, ...tN ) ≡
〈
I`N (tN )... I`2(t2) I`1(t1)

〉
(1)

can be calculated by replacing the actual continuous mea-
surement with projective measurement of operators σ`k
at time moments tk (k = 1, 2, ... N , t1 < t2 < ... < tN ),
while the qubit evolution at t 6= tk is replaced with the
ensemble-averaged evolution. In the proof we show that
the value of the correlator K obtained in this way coin-
cides with the value obtained from the quantum Bayesian
formalism, in which the qubit evolution is described by
the stochastic equation (in Itô interpretation)

ṙ = Λens(r − rst) +

Nd∑
`=1

n` − (n`r) r
√
τ`

ξ`(t), (2)

where r is the vector of Bloch-sphere components, ρ =
11/2 +rσ/2, the output signal of the `th detector contin-
uously measuring the qubit operator σ` = n`σ is

I`(t) = n`r(t) +
√
τ` ξ`(t), (3)

τ` is the corresponding measurement (collapse) time
(the quantum efficiency η` is not important for corre-
lators), and ξ`(t) are the uncorrelated white noises with
〈ξ`(t) ξ`′(t′)〉 = δ``′δ(t − t′). The Markovian ensemble-
averaged evolution of the qubit state is given by Eq. (2)
without the noise term,

ṙens = Λens(rens − rst). (4)

The evolution is assumed to start with some initial state
rin at time tin ≤ t1. All parameters of the measure-
ment and evolution (Λens, rst, n`, τ`, η`) can be time-
dependent.

We will first prove the collapse recipe in a simple way
and then will prove it in another, more formal way.

1. Simple proof

The simple proof of the collapse recipe closely follows
the proof for two-time correlators in Refs. [1] and [2].

Understanding of this proof is easier after understanding
of proofs in Refs. [1] and [2].

The proof uses linearity of quantum mechanics. In
particular, from the linearity, the correlator (1) can de-
pend on the initial state rin only linearly, K = vrin +C,
where the vector v and the number C can depend on
all parameters for the correlator, but do not depend on
rin. The linearity is better seen by introducing 4-vectors
for unnormalized density matrices, r̃ = (u, x, y, z) for
ρ = (u11 +xσx + yσy + zσz)/2; then K = ṽr̃in with some
4-vector ṽ, which does not depend on r̃in. Note that
quantum evolution is linear for 4-vectors r̃, but is not
necessarily linear for 3-vectors r. The evolution, which
is linear for 3-vectors r, is called unital.

The correlator (1) is the average over the ensemble
of quantum trajectories, starting with initial state rin

at time tin. Let us discretize time into small but still
non-zero timesteps ∆t, so that the noises ξ`(t) are not

infinitely large (|ξ`| ∼ 1/
√

∆t). Since the values of the
output signals I`(t) at t 6= tk do not affect the correla-
tor K, we can pretend that during these timesteps the
signals I`(t) are not available to any observer, and there-
fore the qubit evolution is equivalent [3] to ensemble-
averaged evolution given by Eq. (4). Thus, we need to
take into account the full Bayesian evolution (2) only
during timesteps tk. Moreover, since at time tk only the
output from `kth detector affects the correlator, in Eq.
(2) we can neglect all the terms in the sum except for
` = `k. Integrating Eq. (2) over the timestep ∆t around
tk, we obtain the “Bayesian kick”

∆rk ≡ ∆r(tk) =
n`k − (n`krk) rk√

τ`k
ξ`k(tk) ∆t, (5)

where rk ≡ r(tk) and |ξ`k | ∼ 1/
√

∆t. With ∆t→ 0, this
information-induced kick becomes infinitesimally small,
so its effect on further evolution is infinitesimally small.
However, its contribution to the correlator (1) is signif-
icant, since the signal I`k(tk) in the correlator contains
the term

√
τ`k ξ`k(tk) [see Eq. (3)], so the effect of the

Bayesian kick (5) is proportional to the product

√
τ`k ξ`k(tk)∆rk = [n`k − (n`krk) rk] ξ2

`k
(tk) ∆t, (6)

which is non-zero since on average ξ2
`k

(tk) ∆t = 1.
Let us prove that we can apply the collapse recipe to

the measurement at time tk in the correlator (1). This



2

means that the value of the correlator would not change if
we replace the actual signal I`k(tk) in Eq. (1) by I`k(tk) =
±1 with probabilities

p±k =
1± n`krk

2
, (7)

and correspondingly greatly increase the Bayesian kick by
starting the further evolution with the state r(tk + 0) =
±n`k (i.e., the corresponding eigenstate of the measured
operator σ`k). In the proof we assume fixed (though ar-
bitrary) values for all previous measurements I`k′ (tk′<k),
so that rk is fixed. Then the N -time correlator (1) re-
duces to a product of I`1(t1) I`2(t2) ... I`k−1

(tk−1) and the
remaining (N+1−k)-time correlator. Therefore, this cor-
relator depends linearly on rk (better to say, on 4-vector
r̃k – see discussion above).

Let us separate the correlator (1) [with fixed

I`k′ (tk′<k)] into two terms, K = K
(1)
k + K

(2)
k , which

correspond to the two terms in Eq. (3) at time tk, i.e.,

K
(1)
k = 〈I`N (tN )...I`k+1

(tk+1)〉n`krk I`k−1
...I`1(t1) and

K
(2)
k = 〈I`N (tN )...I`k+1

(tk+1)
√
τ`k ξ`k(tk)〉 I`k−1

...I`1(t1).

Because of the quantum linearity, the value of K
(1)
k will

not change if we replace n`krk with I`k = +1 and
start the further evolution with the unnormalized den-
sity matrix ρ+

1 (tk + 0) = (n`krk) ρ(tk) = (n`krk) 11/2 +
(n`krk)(rkσ/2). Note that we need to multiply all el-
ements of ρ by n`krk; this is why the normalization
changes, Tr(ρ+

1 ) = n`krk. This is necessary because for
non-zero stationary state rst, the evolution (4) of the
Bloch-sphere components is non-linear, even though the
evolution of the density matrix ρ is linear.

The same linearity-based idea for K
(2)
k needs to take

into account the Bayesian kick (5). It is easy to see that

K
(2)
k will not change if we replace

√
τ`k ξ`k(tk) with I`k =

+1 and start the further evolution with ρ+
2 (tk + 0) =

[n`k − (n`krk) rk]σ/2 – see Eq. (6). Note the zero trace
of ρ+

2 ; this is because the Bayesian kick does not change
the trace.

Adding the contributions from K
(1)
k and K

(2)
k and us-

ing the linearity, we see that the correlator K will not
change if we replace I`k with I`k = +1 and start the fur-
ther evolution with ρ+(tk + 0) = ρ+

1 (tk + 0) + ρ+
2 (tk +

0) = (n`krk) 11/2 + n`kσ/2. Using the linearity again,
we see that K will also not change if we replace I`k
with I`k = −1 and start the further evolution with
ρ−(tk+0) = −ρ+(tk+0) = −(n`krk) 11/2−n`kσ/2. The
value of K will also not change if we use one of these two
replacements probabilistically. Note that ρ±(tk+0) differ
from the normalized eigenstates 11/2±n`kσ/2 of the mea-
sured operator σ`k only by (±n`krk−1) 11/2. If we choose
the replacements I`k = ±1 with probabilities given by
Eq. (7), then the effect of this difference will be cancelled
on average since

∑
±±(±n`krk − 1)(1 ± n`krk) = 0.

Therefore, the value of K does not change if we start
the further evolution with the states 11/2±n`kσ/2, as if
after the standard projective measurement of σ`k .

Thus, we have proven that we can apply the col-
lapse recipe to the measurement at time tk, assum-
ing fixed measurement results for the previous measure-
ments. Since the values of the previous measurement
results are arbitrary, the assumption of fixed results is
not needed. Finally, since the collapse recipe can be ap-
plied separately to measurement at any time moment tk
in the correlator (1), it can be applied to all of them. This
completes the proof of the collapse recipe for multi-time
correlators (1).

Note that instead of using the collapse recipe and work-
ing with normalized states, we can also calculate the
correlator using the described above procedure based on
unnormalized states. In this case at each moment tk,
we replace I`k(tk) with I`k = +1 and start the further
evolution with ρ+(tk + 0) = (n`krk)uk 11/2 + n`kσ/2,
where uk = Tr[ρ(tk)] accounts for possibly unnormal-
ized state ρ before tk. Since this procedure can be ap-
plied for all N moments tk and then the product of all
I`k is 1, the value of the correlator is simply the norm
of the state after the last time moment tN . There-
fore this new “one-path recipe” for calculating the N -
time correlator (1) is the following. Start with the ini-
tial (normalized) state r̃in at the initial time tin and
propagate it using the ensemble-averaged evolution (4)
(which does not change the norm), also adding the “state
jumps” (which change the norm) at time moments tk as
ρ(tk + 0) = (n`krk)uk 11/2 + n`kσ/2. Then the norm of
the resulting state ρ(tN +0) is the value of the correlator.

This one-path recipe can be easily generalized to ar-
bitrary measurement operators in an arbitrary system.
For a continuous measurement of an arbitrary Hermi-
tian observable A, the quantum Bayesian evolution due
to informational backaction (in the absence of a unitary
backaction) is (the derivation is simple, the result is the
same as in the Quantum Trajectory theory [4])

ρ̇ =
AρA− (A2ρ+ ρA2)/2

2ηS
+
Aρ+ ρA− 2ρTr(Aρ)√

2S
ξ(t),

(8)

where ξ(t) is the normalized white noise, 〈ξ(t) ξ(t′)〉 =
δ(t − t′), extracted from the normalized detector signal,

I(t) = Tr(Aρ) +
√
S/2 ξ(t), S is the single-sided spectral

density of the detector signal noise, and η is the quan-
tum efficiency (so that the fraction η of the noise S is
“quantum-limited”). Since the first term in Eq. (8) is ob-
viously the ensemble-averaged (Lindblad) evolution, the
evolution due to measurement of several (generally non-
commuting) observables A` in the presence of additional
unitary evolution and decoherence (but still without uni-
tary backaction from measurement) is

ρ̇ = L[ρ] +
∑

`

A`ρ+ ρA` − 2ρTr(A`ρ)√
2S`

ξ`(t), (9)

where I`(t) = Tr(A`ρ) +
√
S`/2 ξ`(t), 〈ξ`(t) ξ`′(t′)〉 =

δ``′ δ(t − t′), and L[ρ] is the ensemble-averaged Lindb-
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dad evolution, with the contribution from measurement
Lm[ρ] =

∑
`[A`ρA` − (A2

`ρ + ρA2
`)/2]/(2η`S`). Follow-

ing the same idea as described above, for each time mo-
ment tk in the correlator (1), we can remove I`k(tk)
from the correlator K, separating it into two parts, K =

K
(1)
k + K

(2)
k , so that for K

(1)
k the (unnormalized) state

jumps from ρk = ρ(tk) to ρ1(tk+0) = Tr(A`kρk) ρk, while

for K
(2)
k the “Bayesian kick” changes ρk into ρ2(tk+0) =

(A`kρk + ρkA`k)/2− Tr(A`kρk) ρk – see Eq. (9). There-
fore, we can remove I`k(tk) from the correlator (1), re-
placing it with the state jump

ρ(tk + 0) = (A`kρk + ρkA`k)/2. (10)

Thus, the one-path recipe for the N -time correlator (1)
in the general case is

K`1`2...`N (t1, t2, ...tN ) = Tr
[
MtN E(tN |tN−1)MtN−1

...

Mt2 E(t2|t1)Mt1 E(t1|tin) ρin

]
, (11)

where E(t|t′) is the trace-preserving ensemble-averaged
evolution (operation) from time t′ to t due to Lindblad
term ρ̇ = L[ρ], while Mtkρ = (A`kρ + ρA`k)/2 is the
trace-changing operation, related to measurement (with-
out unitary backaction) of the operator A`k at time tk. If
a unitary backaction of the form

∑
`−i[B`, ρ] ξ`(t)/

√
2S`

is added into Eq. (9) (B` are Hermitian), with the contri-
bution to the ensemble-averaged evolution absorbed by
L[p], then the additional Bayesian kick produces an extra
term in Eq. (10): Mtkρ = (A`kρ+ ρA`k)/2− i[B`k , ρ]/2.
The one-path recipe is similar to the result of a recent
paper [5] by Tilloy. Note the similarity of Eq. (11) to the
quantum regression formula.

The one-path recipe (11) based on unnormalized states
can be reduced to the physically transparent collapse
recipe (based on physical states) only when B` = 0
and A2

` are positive numbers, i.e., scaled unity opera-
tors. (In the general case, it is still possible to gener-
alize the collapse recipe to work with normalized, but
unphysical states; however, then the physical meaning
becomes obscure.) In particular, the collapse recipe is
fully applicable for continuous measurement of multi-
qubit Pauli operators in an arbitrary system of qubits,
because then A2

` = 11. One can see this by noticing
that Eq. (10) in this case can be written as ρ(tk + 0) =∑
±±Tr[ρkΠ±`k ]

(
Π±`kρkΠ±`k
Tr[ρkΠ±`k ]

)
, where Π±`k is the projec-

tion operator corresponding to the eigenvalue ±1 of A`k .
This form corresponds to the result ±1 of the projective
measurement of A`k , with probability Tr[ρkΠ±`k ] and with
the density matrix inside the parenthesis being the nor-
malized state after the projective multi-qubit collapse.

Completing the brief digression into the general case,
we remind that the main purpose of this section is the
proof of the collapse recipe for the case of a single qubit,
considered in this paper.

2. Alternative proof

Now let us prove the collapse recipe for the single-qubit
case in a different, more formal way. In this derivation
we will also obtain the correlator factorization result for
unital evolution, Eq. (11) of the main text.

In addition to the correlator K given by Eq. (1), let us
introduce the vector-valued correlator

K`1...`N (t1, ... tN ) ≡
〈
r(tN ) I`N−1

(tN−1) · · · I`1(t1)
〉
.

(12)

Note that in this notation for K, the last subscript `N
is not needed, but we keep it to remind us that K is
an average product of N terms. We will usually assume
t1 < t2 < ... < tN (as for the correlator K), but at some
point in the derivation we will need the time moment tN
to cross tN−1. The correlator K can be easily obtained
from K as

K`1...`N (t1, ... tN ) = n`NK`1...`N (t1, ... tN ), (13)

since the noise contribution
√
τ`N ξ`N (tN ) to the output

signal I`N (tN ) [see Eq. (3)] is not correlated with past
qubit states.

Let us separate K into two terms, K = K(1) +K(2),
which correspond to the two terms in Eq. (3) for the
signal I`N−1

(tN−1),

K
(1)
`1...`N

(t1, ... tN ) ≡
〈
r(tN )

[
n`N−1

r(tN−1)
]

× I`N−2
(tN−2) · · · I`1(t1)

〉
, (14)

K
(2)
`1...`N

(t1, ... tN ) ≡
〈
r(tN )

[√
τ`N−1

ξ`N−1
(tN−1)

]
× I`N−2

(tN−2) · · · I`1(t1)
〉
. (15)

The derivative of K(1) over the last time moment tN can
be obtained from Eq. (2),

∂tNK
(1)
`1...`N

(t1, ...tN ) = Λens(tN )
(
K

(1)
`1...`N

(t1, ...tN )

− rst(tN )K`1...`N−1
(t1, ...tN−1)

)
, (16)

where we included possible dependence of Λens and rst

on time. The initial condition at tN = tN−1 + 0 is

K
(1)
`1...`N

(t1, ... tN−1, tN−1 + 0) =
〈
r(tN−1)

×
(
n`N−1

r(tN−1)
)
I`N−2

(tN−2) · · · I`1(t1)
〉
. (17)

The time derivative of K(2) over tN can also be obtained
from Eq. (2), which gives

∂tNK
(2)
`1...`N

(t1, ... tN ) = Λens(tN )K
(2)
`1...`N

(t1, ... tN )

+
〈[
n`N−1

− r(tN−1)
(
n`N−1

r(tN−1)
)]

× I`N−2
(tN−2) · · · I`1(t1)

〉
δ(tN − tN−1). (18)

Note that K(2) = 0 for tN < tN−1 because of causality,
so the second term in Eq. (18) sets the initial condition
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at tN = tN−1 + 0, caused by the Bayesian kick. Also
note that at tN > tN−1, the evolution of K(2) is linear
(due to Λens); it does not have the inhomogeneous term
containing rst as for the evolution of K(1) in Eq. (16).

Solving Eqs. (16)–(18), we findK(1) andK(2) for tN >
tN−1, starting with the value (17) ofK(1) at tN = tN−1+
0,

K
(1)
`1...`N

(t1, ... tN ) = P(tN |tN−1)K
(1)
`1...`N

(t1, ... tN−1 + 0)

+ Pst(tN |tN−1)K`1...`N−1
(t1, ... tN−1), (19)

K
(2)
`1...`N

(t1, ... tN ) = −P(tN |tN−1)K
(1)
`1...`N

(t1, ... tN−1 + 0)

+ P(tN |tN−1)n`N−1
K`1...`N−2

(t1, ... tN−2), (20)

where P(t|t′) is the 3×3 propagator matrix for the homo-
geneous part of the ensemble-averaged evolution (4), so
that ∂tP(t|t′) = Λens(t)P(t|t′) for t > t′ and P(t|t) = 11,
while Pst(t|t′) is the contribution from the inhomoge-
neous part,

Pst(t|t′) = −
∫ t

t′
P(t|t′′) Λens(t

′′) rst(t
′′) dt′′. (21)

From Eqs. (19)–(21) and (13)–(15) we find the re-
cursive formula, which relates the N -time correlator
K`1...`N (t1, ... tN ) with (N − 1)-time correlator and (N −
2)-time correlator (for N > 2)

K`1...`N (t1, ... tN ) = n`N P(tN |tN−1)n`N−1

×K`1...`N−2
(t1, ... tN−2)

+ n`NPst(tN |tN−1)K`1...`N−1
(t1, ... tN−1). (22)

Note that for N = 2, the only difference in the deriva-
tion is that the product I`N−2

(tN−2) · · · I`1(t1) in Eq. (18)
should be replaced with 1. As a consequence, the (N−2)-
time correlator in Eqs. (20) and (22) should be replaced
with 1. Therefore, Eq. (22) is also valid for N = 2 if we
define the 0-time correlator as being equal to 1.

Thus, the recursive relation (22) is sufficient to derive
explicit formulas for N -time correlators, if we comple-
ment it with the correlator for N = 1, which is simple,

K`1(t1) = n`1r(t1). (23)

Now let us show that the N -time correlators obtained
via Eqs. (22) and (23) coincide with the correlators ob-
tained using the collapse recipe. Since for N = 1 the
collapse recipe obviously gives Eq. (23), we only need to
prove that the recursive relation (22) also follows from
the collapse recipe (with the correlator for N = 0 defined
as 1). Note that applicability of the collapse recipe to
the two-time correlator was proven in Ref. [2].

Let us rewrite Eq. (7) of the main text (following from
the collapse recipe, as indicated by the superscript below)
in the form

Kcoll
`1...`N (t1, ... tN ) =

∑2N

{I`k=±1}
I`N

×
1 + I`Nn`Nrens

(
tN
∣∣I`N−1

n`N−1
, tN−1

)
2

×
∏N−1

k=2

[
I`kp

(
I`k , tk

∣∣I`k−1
, tk−1

)]
× I`1p(I`1 , t1), (24)

where

rens

(
tN
∣∣I`N−1

n`N−1
, tN−1

)
= I`N−1

P(tN |tN−1)n`N−1

+ Pst(tN |tN−1), (25)

is the solution of the ensemble-averaged evolution (4)
with the initial condition I`N−1

n`N−1
at time tN−1. Note

that the last line of Eq. (24) summed over all combina-
tions of I`k = ±1 except summation over I`N , is the
(N − 1)-time correlator Kcoll

`1...`N−1
(t1, ... tN−1).

The term 1 in the second line of Eq. (24) can be re-
moved because of summation over I`N = ±1. After re-
moving 1, we see that I`N in the first and second lines
cancel each other since I2

`N
= 1. Therefore, Eq. (24) can

be rewritten as

Kcoll
`1...`N (t1, ... tN ) =

∑2N−1

{I`k=±1}
n`N

×
[
I`N−1

P(tN |tN−1)n`N−1
+ Pst(tN |tN−1)

]
×
∏N−1

k=2

[
I`kp

(
I`k , tk

∣∣I`k−1
, tk−1

)]
× I`1p(I`1 , t1), (26)

where there is already no summation over the last
output I`N , and we used Eq. (25) for rens. Let
us separate Kcoll into two terms, corresponding to
contributions from the two terms in the second line
of Eq. (26). The second term (containing Pst) is
n`NPst(tN |tN−1)Kcoll

`1...`N−1
(t1, ... tN−1), thus coinciding

with the third line of Eq. (22). In the remaining first

term, let us substitute the product
∏N−1
k=2 with prod-

uct
∏N−2
k=2 multiplied by the corresponding factor for

k = N − 1, and then use relations I2
`N−1

= 1 and∑
I`N−1

=±1 p(I`N−1
, tN−1|I`N−2

, tN−2) = 1. This gives

us n`NP(tN |tN−1)n`N−1
Kcoll
`1...`N−2

(t1, ... tN−2), which is

the first term in Eq. (22). Thus, we have obtained the
same recursive relation (22) for Kcoll. Therefore, we
have proven that the collapse recipe gives the same re-
sult for N -time correlators as the calculation based on
the stochastic evolution equation (2).

Note that the recursive relation (22) can be used di-
rectly to derive the main result of the paper: factoriza-
tion of the N -time correlator in the case of unital evolu-
tion, Eq. (11) of the main text. Since rst = 0 for unital
evolution, from Eq. (21) we obtain Pst = 0, so the re-
cursive formula (22) relates the N -time correlator only
with the (N − 2)-time correlator. It is easy to see that
the coefficient n`NP(tN |tN−1)n`N−1

is the two-time cor-
relator K`N−1`N (tN−1, tN ), as also follows from Eq. (22)
for N = 2, since K = 1 for N = 0. Thus, for unital
evolution, the N -time correlator is a product of two-time
correlator for the two latest time moments and the re-
maining (N − 2)-time correlator. This gives Eq. (11) of
the main text.
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Section B: Experimental multi-time correlators

Our theoretical results for the correlators have been
checked against experimental data from the experiment,
in which a physical qubit (transmon), embedded into a
3D Al cavity, is subject to relatively fast Rabi oscillations
with frequency ΩR/2π = 40 MHz. The physical qubit
is dispersively coupled to the two lowest cavity modes;
each of them is off-resonantly driven with two sideband
tones at frequencies ωr,i ± Ωrf (where Ωrf ≈ ΩR), with a
relative phase δi. Here i = z, ϕ labels the cavity mode
that performs continuous measurement of the observable
σi of the effective (rotating frame) qubit, and ωr,i is the
frequency of the corresponding cavity mode. Details of
the measurement technique are discussed in Ref. [6] (see
also Ref. [2]).

The measured effective qubit is defined in the frame,
which rotates with frequency Ωrf with respect to the lab-
oratory frame of the physical qubit. The measurement
axes on the Bloch sphere of the effective qubit are de-
termined by the relative phases δi of the sideband tones,
with position of the effective z axis defined arbitrarily
within the xz plane of the physical qubit rotations. We
choose one of the measurements to be exactly the σz
measurement; the other measurement direction is shifted
by an angle ϕ, thus corresponding to the observable
σϕ ≡ σz cosϕ + σx sinϕ. In the experiment ϕ = nπ/10
with integer n = 0, 1, 2, ... 10. The effective qubit is ini-
tialized at t = 0 in the middle between the measurement
axes, i.e., at the states r±0 = ±{sin(ϕ/2), 0, cos(ϕ/2)}.
Approximately 200,000 readout trajectories are recorded
for each angle ϕ, with approximately 100,000 trajectories
for each initial state (we use only trajectories, selected by
heralding the ground state at the start of a run and check-
ing that transmon is still within the two-level subspace
after the run [2]).

The ensemble-averaged evolution for the effective qubit
is [2]

ẋ = −Γzx− Γϕ cosϕ (x cosϕ− z sinϕ) + Ω̃z − γx,
(27)

ẏ = −(Γz + Γϕ + T−1
2 ) y, (28)

ż = Γϕ sinϕ (x cosϕ− z sinϕ)− Ω̃x− γz, (29)

where Γz and Γϕ are the measurement-induced dephasing
rates in the corresponding bases of the two measurement
channels, Ω̃R = ΩR−Ωrf is a small residual Rabi oscilla-
tion frequency, γ = (T−1

1 +T−1
2 )/2, and T1 and T2 are the

intrinsic energy relaxation and dephasing times for the
physical qubit. In the experiment Γz ≈ Γϕ ≈ (1.3µs)−1

(denoted Γ in the main text), T1 = 60µs, T2 = 30µs,

and Ω̃R/2π ' 12 kHz.

Experimental three-time correlators are calculated us-
ing the experimental (unnormalized and slightly shifted)

output signals Ĩz(t) and Ĩϕ(t) from the two measurement

channels as

K±ϕzϕ(∆t21,∆t32) =

∫ ta+T

ta

〈 Ĩϕ(t+ ∆t21 + ∆t32)− Ĩoff
ϕ

∆Ĩϕ/2

× Ĩz(t+ ∆t21)− Ĩoff
z

∆Ĩz/2

Ĩϕ(t)− Ĩoff
ϕ

)
∆Ĩϕ/2

〉 dt
T
, (30)

where the time integration over duration T = 0.2µs is
needed to reduce correlator fluctuations, the small con-
stant offsets Ĩoff

z,ϕ are less than 0.2 in magnitude (see [2]

for details), and experimental responses are ∆Ĩz = 4.2

(in Ref. [2] we used 4.0) and ∆Ĩϕ = 4.4. To avoid ini-
tial transients in the data, we use ta = 1µs. The su-
perscipts in the correlators K±ϕzϕ correspond to the ini-

tial states r±0 , the ensemble averaging is over the cor-
responding ∼ 100,000 trajectories. Since theoretically
K−ϕzϕ = −K+

ϕzϕ, in Fig. 1 of the main text we plot the
difference,

Kzϕz(∆t21,∆t32) =
[
K+
zϕz(∆t21,∆t32)

−K−zϕz(∆t21,∆t32)
]
/2. (31)

The experimental four-time correlators plotted in Fig.
2 of the main text are calculated as

Kzϕzϕ(∆t21,∆t32,∆t43) =

∫ ta+T

ta

〈 Ĩϕ(t+ ∆t41)− Ĩoff
ϕ

∆Ĩϕ/2

× Ĩz(t+ ∆t31)− Ĩoff
z

∆Ĩz/2

Ĩϕ(t+ ∆t21)− Ĩoff
ϕ

∆Ĩϕ/2

× Ĩz(t)− Ĩoff
z

∆Ĩz/2

〉 dt
T
, (32)

where ∆t31 = ∆t32 + ∆t21, ∆t41 = ∆t43 + ∆t31, the
averaging is now over all trajectories (starting from both
r+

0 and r−0 ), and we use T = 500µs and ta = 1µs. We
need a larger averaging window T since the four-time
correlators are noisier than the three-time correlators.

The theoretical lines in Figs. 1 and 2 of the main text
are calculated using the two-time correlator Kzϕ(τ) =
Kzϕ(t1, t1 + τ) derived in Ref. [2] (see below); for the
three-time correlator we also need the average 〈Iϕ(t)〉 =
z(t) cosϕ+x(t) sinϕ, which is calculated using Eqs. (27)–
(29) with the initial condition r(0) = r±0 . The two-time
correlator Kzϕ(τ) is calculated analytically as [2]

Kzϕ(τ) =
(Γz + Γϕ) cosϕ+ 2Ω̃R sinϕ

2(Γ+ − Γ−)

(
e−Γ−τ − e−Γ+τ

)
+

cosϕ

2

(
e−Γ−τ + e−Γ+τ

)
, (33)

where

Γ± =
Γz + Γϕ ±

[
Γ2
z + Γ2

ϕ + 2ΓzΓϕ cos(2ϕ)− 4Ω̃2
R

]1/2
2

.

(34)
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