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Bacon-Shor code with continuous measurement of noncommuting operators
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We analyze the operation of a four-qubit Bacon-Shor code with simultaneous continuous measurement of
noncommuting gauge operators. The error syndrome in this case is monitored via time-averaged cross-correlators
of the output signals. We find the logical error rate for several models of decoherence, and also find the
termination rate for this quantum error detecting code. The code operation is comparable to that based on
projective measurements when the collapse time scale due to continuous measurements is an order of magnitude
less than the time period between the projective measurements. An advantage of the continuous-measurement
implementation is the absence of time dependence in the code operation, with passive continuous monitoring of
the error syndrome.
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I. INTRODUCTION

Quantum error correction (QEC) is a necessary procedure
in a practical quantum computer operation [1–4]. Besides
standard stabilizer codes [3], much attention has been recently
given to surface codes [5–7] because of their relatively high
fault-tolerant threshold without the need of concatenation,
and also because the measured operators involve only four
neighboring qubits. Significant attention has also been paid
recently to Bacon-Shor codes [8–10], where measured oper-
ators involve only two qubits, which simplifies implementa-
tion [11]. There has been a significant experimental progress
toward practical QEC [11–17], including experiments with
superconducting qubits [18–23].

While most of the QEC codes are based on repetitive
projective measurement of multiqubit operators, continuous
QEC has also been analyzed theoretically [24–32]. The general
idea in most of these proposals is to monitor multiqubit
operators continuously and apply a continuously changing
feedback Hamiltonian to the qubits. It is expected that such
continuous error correction can outperform traditional QEC;
however, there are significant challenges, including compu-
tationally expensive tracking of the state and the fact that the
feedback Hamiltonian necessarily contains fluctuations caused
by the output noise of continuous detectors. Therefore, while
continuous quantum feedback [33,34] is already available for
superconducting qubits [35,36], it is still unclear in which
manner it can be useful for practical QEC.

A natural way of employing continuous measurement in
stabilizer codes is using it only for continuous monitoring of
the error syndrome, while error correction is still applied in
a traditional discrete way after the syndrome indicates that
a certain error has occurred (the actual error correction can
be postponed until the end of the procedure, after tracked
accumulation of several errors [10,28,37]; performance com-
parison with the continuous feedback is still an important
subject). This manner of operation can also be applied to
surface codes [7], in principle, since all measured operators
commute with each other. However, it is not immediately
clear if continuous measurement can or cannot be used in the
Bacon-Shor codes, which necessarily need measurement of
noncommuting two-qubit operators [38]. This is the question,

which we analyze in this paper for the simplest four-qubit
Bacon-Shor code.

Simultaneous measurement of noncommuting observables
has been discussed long ago [39–48]; however, a theory
for the qubit evolution due to continuous noncommuting
measurements has been developed relatively recently [49],
and the first such experiment with a superconducting qubit
has been realized only in the past year [50]. Note that in
this experiment the physical qubit was under constant Rabi
rotation, so that simultaneous measurement of noncommut-
ing observables was realized for an effective qubit in the
rotating frame. There are no experiments yet on simulta-
neous continuous measurement of noncommuting two-qubit
operators; however, qubit entanglement due to continuous
measurement of two-qubit operators [51] has already been
well demonstrated with superconducting qubits in various
setups [52–54]. In this paper, we assume simultaneous con-
tinuous measurement of noncommuting two-qubit operators
without discussing possible experimental ways of realizing
such a measurement (which may rely on the rotating frame as in
Ref. [50]).

The main question of this paper is whether and how contin-
uous measurement can be used in the operation of the Bacon-
Shor code, which by construction relies on noncommuting
two-qubit operators. We will consider the simplest Bacon-Shor
code, which contains four qubits and needs measurement of
four (gauge) operators: X1X2, X3X4, Z1Z3, and Z2Z4 (out
of six pairs of these operators, four are noncommuting). The
standard operation cycle of this code consists of two steps:
simultaneous projective measurement of commuting operator
pairs X1X2 and X3X4, and then the second pair Z1Z3 and
Z2Z4. In contrast, in our case all four operators are measured
at the same time continuously. The error syndrome in this
case is monitored using time-averaged cross-correlators of
the noisy output signals, so that an error is indicated by
crossing a certain threshold. It is interesting that the evolution
analysis is similar to the analysis of continuous noncommuting
measurement of a single qubit [49,50,55]. Our main result is
that the operation of the four-qubit Bacon-Shor code with
continuous measurement is indeed possible and similar to
the standard operation with projective measurement. The
advantage, however, is an absence of time dependence in the
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procedure, with a passive steady-state monitoring of the error
syndrome.

Note that the considered four-qubit Bacon-Shor code is a
quantum error detecting code, while the smallest Bacon-Shor
code for error correction contains nine qubits (not considered
here). Therefore, so far our results are valid only for quantum
error detection. While we anticipate that the QEC results for
the nine-qubit (and higher) Bacon-Shor codes with continuous
measurement are similar to the results presented here, this will
require a separate analysis.

An operation of a usual quantum error detecting or correct-
ing code (we consider only quantum memory for one logical
qubit) assumes encoding a logical qubit into several physical
qubits, keeping it for a relatively long time in the presence of
decoherence, and then decoding it back into a logical qubit.
We do not consider fault-tolerant schemes in which logical
operations are applied without decoding. For simplicity,
encoding and decoding are assumed to be perfect, so that we
can focus on storage of quantum information only. In QEC,
the decoded logical qubit should always be “handed back”;
however, an error detecting code has also an option of not
returning the logical qubit: the procedure is terminated when
an error is detected since it cannot be corrected. Therefore,
while the main performance characteristic for a QEC code is
the probability of a logical error or the corresponding logical
error rate, a quantum error detecting code is characterized
by two main parameters. The first parameter is the success
probability (probability that the procedure is not terminated)
or the corresponding success probability decay rate [37] (the
rate of detected errors). For brevity, we will call this rate
the termination rate. The second parameter for a quantum
error detecting code is the logical error probability (or the
corresponding rate) conditioned on the absence of detected
errors [37]. We will use the terminology of logical error rate,
often omitting the word “conditional.” The termination rate
is usually larger than the rate of errors in physical qubits
(because the code is supposed to terminate operation when
an error occurs), and it can be significantly larger due to “false
alarms,” when an error is indicated even though it actually did
not occur. In this paper, we calculate the logical error rate and
the termination rate for the four-qubit Bacon-Shor code with
continuous measurement and compare them with those for the
conventional code operation with projective measurements.

The paper is organized in the following way. In Sec. II
we consider the conventional four-qubit Bacon-Shor code
operated with projective measurements. We start with a
discussion of the protocol (Sec. II A) and its operation without
errors (Sec. II B), then discuss classification of single- and
two-qubit errors (Sec. II C), and then calculate the logical
error rates and the termination rate for several models of
decoherence (Sec. II D). The four-qubit Bacon-Shor code
with continuous measurements is analyzed in Sec. III. We
start with an overview of the mathematical approach and
results (Sec. III A). Then, in more detail we analyze the
evolution due to continuous measurement for a general state
(Sec. III B), without errors (Sec. III C), and within error
subspaces (Sec. III D). The mapping due to single-qubit errors
is discussed in Sec. III E, followed by calculation of logical
error rates in Sec. III F. The false alarm rate and response time
are analyzed in Sec. III H. Numerical results of Monte Carlo

FIG. 1. The four-qubit Bacon-Shor code contains four physical
qubits (shown by circles) and is based on measurement of four
operators (dashed lines): X1X2, X3X4, Z1Z3, and Z2Z4, called gauge
operators. In the conventional code operation they are measured in
two steps, thus separating noncommuting pairs (Fig. 2), while in this
paper we also analyze the case when all four operators are measured
at the same time continuously.

simulations are presented in Sec. III I. Comparison between
the operations with projective and continuous measurements
is discussed in Sec. III J. Section IV gives the conclusions.

II. FOUR-QUBIT BACON-SHOR CODE WITH
PROJECTIVE MEASUREMENTS

A. System, protocol, and code space

The four-qubit Bacon-Shor code contains four physical
qubits, labeled 1–4 in Fig. 1, and its conventional operation is
based on projective measurement of four two-qubit operators
(gauge generators [8,9]), for which we will interchangeably
use the following notations:

X1X2 = X12 = G1, X3X4 = X34 = G2,

Z1Z3 = Z13 = G3, Z2Z4 = Z24 = G4,
(1)

where X = σx and Z = σz are the Pauli matrices (similarly
Y = σy) and indices of the Pauli operators indicate qubit
numbering. Since the operators in the first and second
lines of Eq. (1) do not commute with each other, they are
measured sequentially. We will consider the version of the
protocol shown in Fig. 2, in which each cycle of the protocol
consists of two time steps. The first time step of duration
�t ends with instantaneous projective measurement of the
operators Z13 and Z24, and the second time step of the same
duration �t ends with measurement of operators X12 and X34.

FIG. 2. One cycle of the code operation with projective measure-
ment of gauge operators: at step 1 the operators Z1Z3 and Z2Z4 are
measured instantaneously, and at step 2 the operators X1X2 and X3X4

are measured (also instantaneously). The duration of each time step
is �t , so the cycle duration is 2�t . In the absence of errors, product
of two measurement results (±1) at each step is +1.
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(In principle, duration of one of the time steps can be almost
zero, but we use �t for both of them, as more realis-
tic for an experiment.) Note that [X12,X34] = [Z13,Z24] =
0 and {X12,Z13} = {X12,Z24} = {X34,Z13} = {X34,Z24} = 0,
where [·,·] denotes commutator and {·,·} denotes anticommu-
tator (these anticommutators are zero because the pairs contain
exactly one common qubit). Also note that each of the four
Pauli operators (1) has eigenvalues ±1, which correspond to
the measurement results.

The group generated by the measured gauge operators Gk

[Eq. (1), k = 1,2,3,4] has an Abelian subgroup (stabilizer),
whose every element also commutes with every Gk , with
generators

Xall = X1X2X3X4 = X12X34,

Zall = Z1Z2Z3Z4 = Z13Z24. (2)

These operators have eigenvalues ±1, corresponding to par-
ities of measurement results of X- and Z-type operators in
Eq. (1). The step-1 measurements (Fig. 2) project a 16-
dimensional four-qubit state onto a 4-dimensional subspace
belonging to one of the two 8-dimensional eigenspaces of
Zall, while the step-2 measurements similarly collapse the
state into eigenspaces of Xall. Since [Gk,Xall] = [Gk,Zall] =
[Xall,Zall] = 0 and measurement of an operator Gk collapses
four-qubit state with the projection operator (1 ± Gk)/2
(± corresponds to the measurement result), an eigenstate of op-
erators Xall and Zall remains an eigenstate with the same eigen-
value after Gk measurement (even though it changes the state).
Therefore, after one cycle of the procedure (Fig. 2), any initial
state is collapsed into one of four eigenspaces of operators Xall

and Zall, and then remains in this eigenspace forever in the
absence of decoherence. As already mentioned, operators Xall

and Zall are called the stabilizer generators of the code, while
the measured operators Gk are called gauge generators [8,9].

Different eigenvalues of operators Xall and Zall divide
16-dimensional Hilbert space of four qubits into four or-
thogonal 4-dimensional subspaces. As usual, we choose the
code space Q0 (“good” subspace) as the eigenspace with
eigenvalues Xall = +1 and Zall = +1 (we use this short though
nonrigorous notation for eigenvalues). For any state in the code
space, the product of outcomes of X12 and X34 measurements
is +1, and the product of Z13 and Z24 outcomes is also +1. The
subspace with eigenvalues Xall = −1 and Zall = +1 is denoted
as QZ (this notation refers to the Z error in a physical qubit, as
discussed below). For any state inQZ , the product of outcomes
of X12 and X34 measurements is −1, while for Z13 and Z24

the product is still +1. Similarly, QX denotes the subspace
with eigenvalues Xall = +1 and Zall = −1, and subspace QY

has eigenvalues Xall = −1 and Zall = −1. The subspaces QX,
QY , and QZ are the “error” subspaces; the product of −1 for
measurement outcomes at any step indicates an error.

Let us introduce the following orthonormal basis for the
four-dimensional code space Q0:

|φ1〉 = (|0000〉 + |1111〉)/
√

2, (3)

|φ2〉 = (|1100〉 + |0011〉)/
√

2, (4)

|φ3〉 = (|1010〉 + |0101〉)/
√

2, (5)

|φ4〉 = (|0110〉 + |1001〉)/
√

2. (6)

It is easy to see that Zall = +1 for all these vectors since the
number of ones (and zeros) in each component is even. To
check that Xall = +1, we see that for each |φj 〉 (j = 1–4) the
two components in the superposition are complementary to
each other, and the relative sign between the components is
positive. The subspace QZ is spanned by the basis {Z1|φj 〉}
(equivalently, Z2, Z3, or Z4 could be used, but we use Z1).
Similarly, the subspace QX is spanned by {X1|φj 〉} and QY is
spanned by {Y1|φj 〉}.

The initial state (encoded logical qubit) is always in the
subspace Q0, and without decoherence it would remain in
Q0 forever, so that the measurement outcomes at each step
are either “++” or “−−,” with the product of +1 always.
The outcomes “+−” or “−+” (with the product of −1)
indicate an error. Since the four-qubit Bacon-Shor code is
only an error detecting code, it cannot correct the error, and
the procedure is terminated immediately after the product of
−1 is obtained. Only in the case when the product of +1 was
obtained for all measurement steps during M � 1 cycles (total
operation duration of T = 2M�t), the quantum information
is considered as preserved and decoded back into a logical
qubit to be “handed back.”

B. Operation without errors

The code space Q0 is four dimensional, but it is used
to encode only one (two-dimensional) logical qubit. This is
the usual feature of the subsystem codes [10]. It is easy
to see why additional dimensionality is needed in our case.
After step-1 measurement, the four-qubit state can either
contain a superposition of basis vectors |φ1〉 and |φ3〉 from
Eqs. (3)–(6) (if the measurement outcome is “++”) or a
superposition of |φ2〉 and |φ4〉 (if the measurement outcome
is “−−”), but not a superposition of all four basis vectors.
Moreover, if the outcome “++” is obtained, then one cycle
later (with noncommuting step-2 measurement in-between)
the outcome will be “++” or “−−” with equal probabilities.
This additional degree of freedom (gauge) consumes two
additional dimensions.

Let us encode the logical qubit

|ψ〉L = α |0〉L + β |1〉L = |α,β〉L (7)

so that after step-1 measurement (Z13 and Z24), one of the
following entangled four-qubit states can be obtained:

|z+〉 = α |φ1〉 + β |φ3〉, (8)

|z−〉 = α |φ2〉 + β |φ4〉, (9)

where |z+〉 corresponds to the outcome “++” and |z−〉
corresponds to “−−.” Then, after step-2 measurement (X13

and X24) the two possible collapsed states are

|x+〉 = α
|φ1〉 + |φ2〉√

2
+ β

|φ3〉 + |φ4〉√
2

, (10)

|x−〉 = α
|φ1〉 − |φ2〉√

2
+ β

|φ3〉 − |φ4〉√
2

, (11)

with |x+〉 corresponding to the outcome “++” and |x−〉
corresponding to “−−.” Then, after step-1 measurement the
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FIG. 3. Encoding circuit, which produces the state |z+〉 from the
state |ψ〉L|0〉|0〉|0〉. Decoding can be done by running the same circuit
backwards after step-1 measurement with the outcome “++.”

produced state is again given either by Eq. (8) or (9), and the
cycle repeats forever (assuming the absence of decoherence).

An encoding operation can be realized using a unitary,
transforming the four-qubit state |ψ〉L|0〉|0〉|0〉 into |z+〉. For
example, this can be done with the encoding unitary (Fig. 3)

Uenc = CNOT21 CNOT13 CNOT24 CNOT23 H2, (12)

|z+〉 = Uenc (|ψ〉L|0〉|0〉|0〉), (13)

where indices are the qubit numbers, for CNOTij the first
index is the control (the second is the target), and H denotes
Hadamard. Eventual decoding can be done, for example, by
applying the reversed unitary transformation U

†
enc after step-1

measurement with the outcome “++,”, while for the outcome
“−−” we at first additionally apply operation X1X2, which
transforms |z−〉 into |z+〉.

Note that the states |z+〉 and |z−〉 are orthogonal to each
other (as well as the states |x+〉 and |x−〉) and

|x±〉 = |z+〉 ± |z−〉√
2

, |z±〉 = |x+〉 ± |x−〉√
2

. (14)

Therefore, all these four states belong to a two-dimensional
subspace (so-called gauge qubit), and the four-dimensional
subspace Q0 consists of such two-dimensional subspaces,
which are different for different logical qubit states (orthogonal
to each other if logical qubit states are orthogonal).

C. Error classification

While the actual physical source of errors is a gradual
decoherence, it is possible to think about it in terms of (possibly
correlated) discrete X, Y , and Z errors randomly applied
to the physical qubits [4,56]. For simplicity, we assume no
correlation, and we also assume sufficiently small error rate,
so that single-qubit errors are dominating, the two-qubit errors
are next in the hierarchy, and so on. A two-qubit error is
realized when two independent errors occur in different qubits
within the same time step �t (or sometimes within 2�t);
the rate of these errors will be discussed later, while in this
section we essentially assume two errors occurring at the
same time. We do not consider three-qubit errors because
they are much less probable than two-qubit errors, and the
important characteristics of the code are mainly determined
by single- and two-qubit errors. Note that we consider errors
in the quantum channel setting, which assumes that projective
measurements are ideal [57].

Details of the error classification are given in the Appendix.
Here, we only briefly discuss the results.

There are 12 possible single-qubit errors: Xi , Yi , and Zi ,
with i = 1–4 labeling physical qubits. All these 12 types of
errors are detectable by the code since the operator Xi (with
any i) applied to a state within the subspace Q0, moves it to
the subspace QX, the operators Zi move a state from Q0 to
QZ , and the errors Yi move a state to QY . The error syndromes
are the following: (i) Xi errors produce negative parity of
outcomes (“+−” or “−+”) at step-1 measurements, while
producing usual positive parity (“++” or “−−”) at step-2
measurements, (ii) Zi errors produce positive parity at step-1
measurements and negative parity at step-2 measurements,
(iii) Yi errors produce negative parities for both step-1 and
step-2 measurements.

There are 54 two-qubit error combinations, which can be
classified in the following way:

Harmless: X1X2, X3X4, Z1Z3, Z2Z4, (15)

Logical X error: X1X3, X1X4, X2X3, X2X4, Y1Y3,Y2Y4,

(16)

Logical Y error: Y1Y4, Y2Y3, (17)

Logical Z error: Z1Z2, Z3Z4, Z2Z3, Z1Z4, Y1Y2, Y3Y4,

(18)

Detectable: XiYj , XiZj , YiZj , i �= j. (19)

More details are given in the Appendix.

D. Termination and logical error rates

In this section, we consider several models of decoherence
and calculate the termination and the logical error rates for the
four-qubit Bacon-Shor code with projective measurements.

1. Uncorrelated Markovian errors

Let us consider first the usual model of errors, which
assumes random Markovian errors of X, Y , and Z types in
each qubit, without correlations between the qubits. The rates
of these 12 single-qubit errors may be all different and are
denoted as �

(X)
i , �

(Y )
i , and �

(Z)
i , with index i denoting the

qubit. We assume �
(X,Y,Z)
i �t � 1, so that single-qubit errors

are dominating, followed by two-qubit errors, and so on.
Note that physical decoherence produces mixed states,

characterized by density matrices, while in this model an
initially pure state remains pure, so it is sufficient to operate
with wave functions for any given sequence of discrete
errors. The averaging over these sequences, however, produces
mixed states, corresponding to actual decoherence, so that the
approach of discrete errors is essentially unraveling of physical
decoherence. In general, if decoherence can be described as an
evolution of the density matrix ρ with the standard Lindblad
form, involving single-qubit error operators Ei (E denotes a
type of the process)

ρ̇ =
∑
i,E

�
(E)
i L[Ei]ρ, (20)

L[A]ρ ≡ AρA† − 1

2
(A†Aρ + ρA†A), (21)
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then it can be replaced (unraveled) with the following “jump
or no-jump” evolution (see, e.g., [58,59]). The “jumps” with
Kraus operators Ei are randomly applied with the rates
�

(E)
i Tr(E†

i Eiρ) (the state is normalized after each jump), while
the “no-jump” evolution (essentially the quantum Bayesian
update) for a short time δt is described by the Kraus operator
1 − ∑

i,E �
(E)
i δt E

†
i Ei/2 (the state requires normalization after

the no-jump evolution as well). For the model considered in
this section, E = X, Y , and Z, i.e., the error operators are of
the Pauli-matrix type. In this case E

†
i Ei = 1; therefore, the

jump rates do not depend on the state and are equal to �
(E)
i ,

while the no-jump evolution is trivial, so that we do not need
to consider it explicitly.

Any single-qubit error is detected at the next or second-next
measurement step and the procedure is terminated, unless
another single-qubit error occurs before the detection and
returns the state into subspace Q0 (leading to a nondetectable
two-qubit error). Neglecting the nondetectable two-qubit (and
higher-order) errors, the termination rate γterm is the sum of all
single-qubit error rates

γterm =
∑

i

[
�

(X)
i + �

(Y )
i + �

(Z)
i

]
. (22)

Note that the nondetectable two-qubit errors slightly decrease
the termination rate, with the relative correction to Eq. (22) on
the order of γterm�t � 1. The probability that the procedure
is not terminated until the end of the operation of duration T

is the “success” (“survival”) probability

Psuccess = exp(−γtermT ). (23)

If two errors occur sufficiently close in time and the second
error returns the state back to the subspace Q0, then the
procedure does not detect any error. However, as discussed in
the Appendix, it is possible that the state changes significantly,
so that the logical qubit acquires X, Y , or Z error. To find the
rate of logical X errors, we use the combinations in Eq. (16)
and notice that a combination XiXj will not be detected if both
errors occur within the same cycle 2�t between neighboring
step-1 measurements (Z13 and Z24). The corresponding rate
is then 2�t �i�j . The YiYj combinations in Eq. (16) will be
undetected only if both errors occur within the half-cycle �t

between the neighboring measurements. The corresponding
rate is �t �i�j . Summing over all scenarios, we obtain the
rate of logical X error,

γX = �t
[
2
(
�

(X)
1 + �

(X)
2

)(
�

(X)
3 + �

(X)
4

)
+�

(Y )
1 �

(Y )
3 + �

(Y )
2 �

(Y )
4

]
. (24)

Similarly, for logical Y error we use combinations in Eq. (17)
and obtain the rate

γY = �t
[
�

(Y )
1 �

(Y )
4 + �

(Y )
2 �

(Y )
3

]
. (25)

For the rate of logical Z error, we use Eq. (18) and obtain

γZ = �t
[
2
(
�

(Z)
1 + �

(Z)
3

)(
�

(Z)
2 + �

(Z)
4

)
+�

(Y )
1 �

(Y )
2 + �

(Y )
3 �

(Y )
4

]
. (26)

If all single-qubit rates are equal, �
(X)
i = �

(Y )
i = �

(Z)
i = �d/3

(depolarizing channel [56]), then,

γX = γZ = 10
9 �2

d�t, γY = 2
9 �2

d�t. (27)

Let us introduce the total logical error rate (conditioned on no
errors detected [37])

γL = γX + γY + γZ. (28)

For the depolarizing channel with �
(X)
i = �

(Y )
i = �

(Z)
i =

�d/3, we have

γL = 22
9 �2

d �t, (29)

which is much smaller than the error rate �d without encoding
if �d�t � 1.

Note that the logical error rates are proportional to the time
�t between the measurements (while γterm does not depend on
�t). This is as it should be expected for a code with the logical
errors caused by two-qubit errors. The operation of the code
improves with smaller �t , whose choice therefore should be
based on technical (experimental) limitations.

2. Pure dephasing

The results of the previous section can be readily applied
to analyze the effects of pure dephasing of physical qubits.
Let us denote the rate of pure dephasing of ith qubit as
�ϕ,i and assume no other sources of decoherence. Effect
of pure dephasing is equivalent to random Z jumps with
the rate �

(Z)
i = �ϕ,i/2 (e.g., [59]). Therefore, we can use

Eqs. (22)–(26) to obtain the termination and logical error rates

γterm =
∑

i

�ϕ,i/2, (30)

γX = 0, γY = 0, (31)

γZ = �t (�ϕ,1 + �ϕ,3)(�ϕ,2 + �ϕ,4)/2. (32)

In particular, in the case of equal dephasing in all four
qubits, �ϕ,i = �ϕ , we obtain the total logical error rate (with
no detected errors)

γL = γZ = 2 �2
ϕ �t, (33)

which can be compared with the logical error rate �ϕ/2 without
encoding.

3. Energy relaxation

Now, let us discuss the model of zero-temperature energy
relaxation (amplitude damping), |1〉 → |0〉, relevant to super-
conducting qubits. We assume uncorrelated energy relaxation
of ith qubit with the rate μi ≡ 1/T1,i � (�t)−1.

This decoherence can be unraveled as “jump or no-jump”
process (e.g., [58,59]), consisting of random “jumps” caused
by application of lowering Kraus operators σ−,i with the rates
μiTr(σ+,iσ−,iρ) and “no-jump” evolution with Kraus operator
1 − ∑

i(μi δt/2) σ+,iσ−,i for an infinitesimal duration δt with
no jumps. Here, σ−,j = σ

†
+,j = (Xj + ıYj )/2 (this definition

assumes the state |0〉 to be at the top and |1〉 at the bottom of
a spinor), and instead of the four-qubit density matrix ρ, we
can think in terms of a wave function. Note that σ+,iσ−,i =
(1 − Zi)/2.

032317-5



ATALAYA, BAHRAMI, PRYADKO, AND KOROTKOV PHYSICAL REVIEW A 95, 032317 (2017)

Let us start with jump processes (as discussed later, the no-
jump processes do not affect the termination and logical error
rates). Since the states (8)–(11) contain equal superpositions
of |0〉 and |1〉 for each qubit, the “jump” rate in ith qubit is
μi/2. A single-qubit jump is necessarily detected since the
resulting state is a superposition of states in subspaces QX and
QY . Therefore, the termination rate is

γterm =
∑

i

μi/2, (34)

independently of the logical state.
A logical error may occur when two jumps in different

qubits occur within the same half-cycle �t or in the neighbor-
ing half-cycles. If the jumps in qubits i and j occur within the
same �t , then a legitimate wave function (8)–(11) is multiplied
by (Xi + ıYi)(Xj + ıYj )/4 (squared norm is proportional to
probability). Since the combinations XiYj are detectable, we
are left with (XiXj − YiYj )/4, which lead to logical errors,
as discussed in Sec. II C. We need to be careful in applying
Eqs. (15)–(18) to these combinations because of superposition
of states produced by (XiXj − YiYj )/4 and therefore possible
interference effects. However, for most of the qubit pairs there
is no interference because XiXj and YiYj produce states in
different subspaces corresponding to different logical states
(see Appendix). Only for the qubit pair 1 and 3 (and comple-
mentary pair 2 and 4) the states may interfere: combinations
X1X3 and Y1Y3 both produce logical X error. By applying
(X1X3 − Y1Y3)/4 to the states |z±〉, we find transformations
|z+〉 → (2/4)|z+〉α↔β , |z−〉 → 0, so the interference occurs,
but its effect disappears after averaging over states |z±〉.
Similarly, this operator produces transformations |x+〉 →
(
√

2/4)|z+〉α↔β , |x−〉 → (
√

2/4)|z+〉α↔β , which correspond
to the same probabilities, as without interference. Thus, inter-
ference between terms XiXj and YiYj in producing logical
errors is not important, and we can simply use Eqs. (15)–(18)
to calculate probabilities of logical errors. For example, for
qubits 1 and 2, the probability to have two jumps within
�t is (μ1�t/2)(μ2�t/2), and this produces logical Z error
with probability 1/4 and no error (harmless combination)
with probability 1/4 (with probability 1/2 the error will be
detected). This produces a rate μ1μ2�t/16 of logical Z error.
As another example, for qubits 1 and 3, the probability of two
jumps within �t is (μ1�t/2)(μ3�t/2), leading to logical X

error with probability 2/4, thus producing the rate μ1μ3�t/8.
Calculation of rates for other qubit pairs is similar.

If the jumps in qubits i and j occur in neighboring half-
cycles �t separated by step-1 measurements (Z13 and Z24),
then the error will necessarily be detected. However, if the
half-cycles are separated by step-2 measurements (X12 and
X34), then in the case of no error detected, the term XiXj/4
survives and may lead to logical X error. We need to add these
logical error rates to the rates due to both jumps occurring
within the same �t . Thus, we obtain the following rates of the
logical errors:

γX = �t

16
(3μ1μ3 + 2μ1μ4 + 3μ2μ4 + 2μ2μ3), (35)

γY = �t

16
(μ1μ4 + μ2μ3), (36)

γZ = �t

16
(μ1μ2 + μ3μ4). (37)

Note that these rates coincide with the results (24)–(26)
if we use �

(X)
i = �

(Y )
i = μi/4 and �

(Z)
i = 0. This similarity

follows from unimportance of the discussed above interference
between the effects of the terms XiXj/4 and YiYj/4. However,
the superposition XiXj/4 − YiYj/4 produces nonzero off-
diagonal elements of the quantum process (tomography) ma-
trix χ [4,60] for the logical qubit. In particular, the relaxation
jumps in qubits 1 and 2 (or 3 and 4) within the same �t

contribute to both Z error and harmless process, thus leading
to the contribution χIZ/T = (1/16)(μ1μ2 + μ3μ4)�t , where
T is the total duration of the process and we define χ as
the conditional process matrix, selecting only the realizations
with no detected errors. Other qubit pairs do not contribute
to the off-diagonal elements of χ after averaging over states
|z±〉 and |x±〉 [it is easier to analyze these contributions by
using considered later approach of Eq. (65) and Fig. 4 and
averaging over the gauge qubit state]. Note that by definition
χXX/T = γX, χYY /T = γY , and χZZ/T = γZ (neglecting
“initial decoherence” [61]).

Now, let us discuss effect of the no-jump evolu-
tion, corresponding to the Kraus operator 1 − δt

∑
i μi(1 −

Zi)/4 for infinitesimal δt . The product of these operators
within the cycle time 2�t between step-2 measurements
(X12 and X34), produces the Kraus operator (to second
order) 1 − (�t/2)

∑
i μi(1 − Zi) + (�t/2)2 ∑

i<j μiμj (1 −
Zi)(1 − Zj ) + (�t)2/8

∑
i μ

2
i (1 − Zi)2. Hence, the step-2

measurements will detect Z error with probability (in the
leading order) (�t/2)2(

∑
i μi)2, which is proportional to

(�t)2 and therefore can be neglected in calculation of the
termination rate (34). When no error is detected, the state
self-corrects by eliminating terms Zi from the Kraus oper-
ator; however, the product terms ZiZj are not eliminated,
they accumulate for the whole duration T of the process
as (T �t/8)

∑
i<j μiμjZiZj . This leads to logical Z error

[see Eq. (18)] with probability T 2(�t/8)2(μ1μ2 + μ3μ4)2 [the
terms with combinations μ1μ4 and μ2μ3 do not contribute
because of averaging over the gauge qubit states, as can be
understood by using Eq. (65) and Fig. 4]. This is a “coherent”
error [59], which scales as T 2 with time and therefore cannot
be characterized by a rate. However, it is easy to check
that for a typical duration of the code operation T ∼ μ−1

i ,
this error is still much smaller than the errors accumulated
with the rates (35)–(37). Therefore, the logical errors due to
no-jump process can be neglected. We can also check that
combinations of no-jump terms Zi with single-jump operators
(Xj + ıYj )/2 always produce detectable errors and therefore
do not contribute to logical errors.

Even though logical errors due to no-jump evolution can
be neglected, the coherent Z error produces the contribution
χIZ/T = (�t/8)(μ1μ2 + μ3μ4) to off-diagonal element of
the logical quantum process matrix χ . Combining it with the
discussed above contribution from the double-jump processes,
we obtain (assuming no detected errors)

χIZ = χZI = 3
16 (μ1μ2 + μ3μ4) T �t = 3χZZ. (38)

We have checked numerically Eqs. (35)–(38) and found
a very good agreement. In numerical calculations, we used
Lindblad-form evolution of the four-qubit density matrix
due to energy relaxation of qubits and also used projectors
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onto the corresponding subspaces to simulate step-1 and
step-2 measurements with results “++” or “−−.” The two
projectors were added incoherently to take into account
both measurement results; for a step-1 measurement we
used projector ρafter = �G34

++ ρbefore�
G34
++ + �G34

−− ρbefore�
G34
−− ,

where �G34
++ = (1 + G3)(1 + G4)/4, �G34

−− = (1 − G3)(1 −
G4)/4, while ρbefore and ρafter are the density matrices
before and after a step-1 measurement. Similar procedure
with projectors �G12

++ = (1 + G1)(1 + G2)/4 and �G12
−− =

(1 − G1)(1 − G2)/4 was used for a step-2 measurement. The
process matrix χ as a function of the number of cycles was
calculated using four initial logic states. We checked that the
survival (success) probability is practically the same for all
initial states [also checking the probability decay rate (34)]
and then normalized the trace-nonpreserving χ to find the
process matrix conditioned on the absence of detected errors.
We checked that the diagonal elements χXX, χYY , and χZZ

of the trace-preserving χ are given by the rates (35)–(37)
multiplied by the total duration T of the process, and the
only nonzero off-diagonal element is given by Eq. (38). In
a similar way we numerically analyzed the case of pure
dephasing; we checked Eqs. (30)–(32) and also checked the
absence of nonzero off-diagonal elements of the process
matrix χ .

III. FOUR-QUBIT BACON-SHOR CODE WITH
CONTINUOUS MEASUREMENTS

Now let us consider the four-qubit Bacon-Shor code, in
which the sequential projective measurement of four gauge
operators Gk (Fig. 2) is replaced with their simultaneous
continuous measurement. We will first discuss the approach
to this problem and results qualitatively, and then present the
detailed analysis.

A. Overview

Each measured gauge operator Gk [Eq. (1)] has eigenvalues
±1, which divide the 16-dimensional Hilbert space into two
8-dimensional subspaces, so that the measurement of Gk

distinguishes these two subspaces. In this sense, continuous
measurement of Gk is similar to continuous measurement
of a qubit (two subspaces instead of two states), and we
can use many previously obtained results for continuous
measurement of a qubit. We will mainly use the quantum
Bayesian formalism [62–64], which is essentially equivalent
to the theory of quantum trajectories [65–67].

Using this formalism, we will show that in the absence of
errors, continuous measurement of four gauge operators Gk

leads to the four-qubit state evolution

|ψ(t)〉 = a(t) |z+〉 + b(t) |z−〉, (39)

where a(t) and b(t) are (in general complex) numbers with
condition |a|2 + |b|2 = 1, and states |z±〉 are given by Eqs. (8)
and (9). Thus, continuous measurement of the gauge operators
causes evolution of the “gauge qubit” |a,b〉g, while not
disturbing the logical qubit |α,β〉L, which determines the
basis states |z±〉. The typical time scale of the gauge qubit
evolution is comparable to the collapse time scale τm (so-called
“measurement time” [63]), corresponding to Gk measurements
(τ−1

m characterizes measurement strength, and we assume

equal strength for all four measurement channels). Note that
strictly speaking the result (39) is valid only when ideal
(quantum-limited) detectors are used for Gk measurement,
while for nonideal detectors the state should instead be
described as an evolving density matrix of the gauge qubit.
However, with a logical trick discussed later, it is still possible
to use wave functions to understand the code operation, while
quantitative analysis can be done either using wave functions
or density matrices.

In the two-dimensional subspace spanned by |z+〉 and
|z−〉, measurement of the operator G3 = Z13 is simply
Z measurement of the effective (gauge) qubit, for which |0〉g =
|z+〉 and |1〉g = |z−〉. Similarly, measurement of G4 = Z24 is
also a Z measurement of the same gauge qubit. In contrast,
measurement of G1 = X12 (or G2 = X34) measures X com-
ponent of the gauge qubit (39). Thus, simultaneous continuous
measurement of four operators Gk is simply a continuous
measurement of Z and X components of the gauge qubit (two
Z measurements and two X measurements). The theory of
such simultaneous X and Z measurement of a qubit has been
developed in Ref. [49], and it was experimentally realized
in Ref. [50]. In particular, in the absence of phase back-action
from measurement and for equal strength of all measurements,
the state (39) evolves as in the standard diffusion along the
great circle of the Bloch sphere with real a and b.

Note that sequential projective measurement of gauge
operators Gk leads to state jumps between |z±〉 and |x±〉
[see Eq. (14)], while continuous measurement of Gk replaces
jumps with continuous evolution; otherwise the state evolution
in both cases is similar. However, an important difference is
that in the projective case the measurement results are ±1,
i.e., discrete, while continuous measurement of operators
Gk produces four noisy signals: IX12(t), IX34(t), IZ13(t),
and IZ24(t) (here the subscripts indicate the measured
operators). The positive parity of the projective measurement
results X12X34 = +1 and Z13Z24 = +1 in this case is
replaced with positive cross-correlators for the noisy signals:
〈IX12(t) IX34(t)〉 = +1 and 〈IZ13(t) IZ24(t)〉 = +1. Thus,
analysis of the Bacon-Shor code operation with continuous
measurements significantly relies on the results for signal
correlators in continuous qubit measurement [55,68,69].

A single-qubit error Xi moves the four-qubit state from
the subspace Q0 to the orthogonal subspace QX (see
Sec. II A). Any state in this subspace has negative Z

correlator, 〈IZ13(t) IZ24(t)〉 = −1, while X correlator is still
positive, 〈IX12(t) IX34(t)〉 = +1. Similarly, a Zi error moves
the state from Q0 to QZ , for which 〈IX12(t) IX34(t)〉 = −1
and 〈IZ13(t) IZ24(t)〉 = +1, and finally a Yi error moves to
the subspace QY , in which both correlators are negative,
〈IX12(t) IX34(t)〉 = 〈IZ13(t) IZ24(t)〉 = −1. Thus, the cross-
correlators for the output signals allow us to detect errors.
Unfortunately, the products of noisy signals are very noisy, and
therefore monitoring of a cross-correlator in real time is not
easy. We will construct approximate cross-correlators C12(t)
and C34(t) via double integration in time of the corresponding
pairs of the output signals [the indices here correspond to num-
bering of operators Gk , see Eqs. (80)–(83) for exact definition].
The integration kernel will be characterized by two time scales:
parameter τc for the integration over time difference in the two
channels and much longer parameter Tc for integration over
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subspace Q 0 Q X QY Q Z

X1,
X2(XG)

Z1,
Z3 (ZG)

Z2,
Z4 (ZG)

Y1

Y3 (-ZG)

Y2 (-XG)

| , L

| , L

|- , L

| ,- L

XL

XLZL

ZL

X1

X3

Z4

Z1

basis | j X1| j Y1| j Z1| j

X3,
X4(XG)

Y4 
(-XGZG)

FIG. 4. State evolution and errors with continuous measurement.
Thick-line circle illustrates diffusive evolution of the legitimate state
[Eq. (39)] within two-dimensional subspace of the gauge qubit due
to measurement. The 12 single-qubit errors move the legitimate state
to eight other two-dimensional subspaces in QX, QY , and QZ with
the mapping described by Eq. (65) (see operators written inside the
circles, the corresponding gauge qubit operations are in parentheses).
If the second error occurs before the first error is detected (i.e., within
the response time TR), it may move the state back to Q0, so that
both errors remain undetected (dotted line separates Q0 from error
subspaces). Depending on a combination of the two errors, the logical
qubit |α,β〉L may be affected by logical errors XL, YL, or ZL. The
solid-line arrows illustrate a scenario of errors X1 and X3, leading to
logical error XL; the dashed-line arrows correspond to errors Z4 and
Z1, leading to ZL.

the mean time. The parameter τc can be optimized, while the
parameter Tc affects a tradeoff between the noisiness of the
approximate correlators (C12 and C34) and their average time
of response TR to jumps of the actual correlators from +1 to
−1. A short Tc makes C12 and C34 too noisy and therefore
they will often cross zero or another threshold, erroneously
indicating an error (false alarm). On the other hand, a long Tc

makes C12 and C34 too slow, so that they report an error with
a long delay TR after it actually occurred, thus increasing the
probability of logical error, as discussed below.

A logical error may occur when the second single-qubit
error moves the four-qubit state back to the subspace Q0

before the approximate cross-correlators C12 and C34 report
an error. An example of evolution leading to a logical error
is illustrated by solid-line arrows in Fig. 4; another example
is illustrated by dashed-line arrows. The thick-line circle
illustrates evolution of the gauge qubit within the code space
Q0 [see Eq. (39)]. An error Xi in ith qubit occurring at time t1
instantaneously moves the state to the subspace QX, and the
state then continues to evolve due to measurement (errors X3

or X4 lead to evolution within a two-dimensional subspace,
which is different from the subspace after errors X1 or X2).
Similarly, errors Yi would move the state from Q0 to QY ,
and Zi errors move from Q0 to QZ , with generally different
two-dimensional subspaces for different i. (Figure 4 will be
discussed in more detail later.) Even though the states in error
subspaces QX,Y,Z are distinguishable from legitimate states in
Q0 via cross-correlators, the error will be reported only after
(on average) the response time TR. Therefore, if the second
error occurs at time t2 within the range t1 < t2 < t1 + TR and

moves the state back to Q0, then both errors will likely remain
undetected. (Various combinations of the two errors at times
t1 and t2 lead to various logical errors, which correspond to the
classification in Sec. II C.)

As a result, the rate of logical errors is proportional to the
response time TR, leading to formulas somewhat similar to
Eqs. (24)–(26) for the projective case, with �t replaced by TR.
We will see that TR is comparable to the correlator integration
time Tc, which is typically chosen an order of magnitude
larger than the collapse time scale τm. Thus, the operation
characteristics of the Bacon-Shor code with continuous and
projective measurements are generally similar to each other
when τm is comparable to 10−1�t .

Encoding of the logical qubit can still be done using the
gate operations Uenc in Eq. (12) and Fig. 3, producing the state
|z+〉. For the decoding, we can stop continuous measurement
of X12 and X34, so that after several τm we have essentially
measured Z13 and Z24 projectively, and after that the decoding
is the same as for the projective-measurement case (applying
either U

†
enc or U

†
encX1X2).

In the following sections, we present derivations and
quantitative results for what was discussed in this overview.

B. General evolution due to measurement

It is easy to understand physics of evolution due to
continuous measurement using the quantum Bayesian ap-
proach [62,63,70]. For simplicity, let us start with measuring
only one gauge operator Gk by an ideal (quantum-limited)
detector and use the wave-function language. An arbitrary
four-qubit wave function at time t can be represented as

|ψ(t)〉 = c+|ψ+〉 + c−|ψ−〉, (40)

where |ψ±〉 are the normalized components belonging to the
subspaces with eigenvalues ±1 (i.e., Gk|ψ±〉 = ±|ψ±〉), and
c± are complex coefficients |c+|2 + |c−|2 = 1. The (inverse)
measurement strength can be characterized by time τk needed
to distinguish the states in the two subspaces with signal-
to-noise ratio of 1 (the standard though misleading name
for τk is “measurement time”; we will also use notation τm

when all measurements have equal strength). The detector
(one-channel) output Ik(t) is assumed to contain white noise
(Markovian case), and we also assume that the state evolves
only due to (quantum nondemolition) measurement of Gk .
Then, the normalized output signal Īk averaged over time δt

between t and t + δt obviously has the probability distribution
consisting of two Gaussians

P (Īk) = |c+|2P+(Īk) + |c−|2P−(Īk), (41)

P±(Īk) = 1√
2πD

exp[−(Īk ∓ 1)2/2D], D = τk

δt
, (42)

Īk = 1

δt

∫ t+δt

t

Ik(t ′) dt ′. (43)

Note that the Gaussians are centered at ±1, which are the
average signals (eigenvalues) for states |ψ±〉, and the variance
D decreases with a longer averaging time δt .

The simplest model of the evolution due to measurement
with a particular result Īk includes only the quantum Bayesian
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update (purely quantum or “informational” back-action [64])

|ψ(t + δt)〉 =
√

P+(Īk) c+|ψ+〉 +
√

P−(Īk) c−|ψ−〉
Norm

, (44)

which is consistent with the classical Bayes rule for probabil-
ities (see derivation in [62]).

A somewhat extended model [63,64] also includes “classi-
cal” phase back-action

|ψ(t + δt)〉 = {exp[−i(KkĪk + εk) δt]
√

P−(Īk) c−|ψ−〉

+
√

P+(Īk) c+|ψ+〉}/Norm, (45)

where coefficient Kk characterizes the phase back-action
proportional to the output signal, and εk is the effective
energy shift between the subspaces due to measurement.
The phase back-action, for example, is important in phase-
sensitive circuit QED measurement [64,71] when a nonoptimal
quadrature is amplified.

While Eqs. (41)–(45) describe the main physics of the
continuous measurement of Gk operators (in the Markovian
case), we often need to apply a few additional technical
steps [62,63]. First, we can easily convert Eqs. (41)–(45)
into the language of density matrix, viewing it as a mixture
of wave functions. Second, we generalize these equations to
a nonideal detector [72] by adding a classical noise at the
output and a noise causing decoherence between the subspaces
(with a possible correlation between them). Averaging over
these noises (which cannot be separately monitored by an
observer) leads to decoherence. Third, we can convert the
description (41)–(45) with finite δt into a differential form
(infinitesimal δt). Note that for measurement of only one
operator (with no other evolution), δt can be arbitrarily long;
however, when we simultaneously measure noncommuting
observables, δt should be short, so that the state change due to
other evolution within δt can be neglected.

For infinitesimal δt , Eqs. (41) and (42) can be replaced with
the single Gaussian with shifted center

P (Īk) = (2πD)−1/2 exp{−[Īk − Tr(Gkρ)]2/2D}, (46)

and therefore the output signal Ik(t) can be written as

Ik(t) = Tr[Gkρ(t)] + √
τk ξk(t), (47)

where ρ(t) is the four-qubit density matrix and ξk(t) is the
white noise with correlator

〈ξk(t) ξk′(t ′)〉 = δkk′δ(t − t ′), (48)

i.e., integral of ξk is the Wiener process, and there is no
correlation between noises in different detectors. Note that
Eq. (47) remains valid for a nonideal detector because τk is
defined via the total noise (this is the distinguishability time
for an observer).

When converting the evolution equations (44) or (45)
into the differential form, it is necessary to pay atten-
tion to the definition of the derivative [63] since we
are dealing with noise, and equations are nonlinear. The
most widely used definitions are [73] ḟ (t) = lim�t→0[f (t +
�t/2) − f (t − �t/2)]/�t (so-called Stratonovich form) and
ḟ (t) = lim�t→0[f (t + �t) − f (t)]/�t (so-called Itô form).
The Stratonovich form is more physically intuitive since it

preserves the usual calculus; the Itô form modifies the usual
calculus (requiring Itô calculus), but makes averaging easy.

In this way from Eq. (45) we can derive the following
evolution equation in the Itô form:

ρ̇ = i

2
(Kk

√
τk ξk + εk)[Gk,ρ] + �k

2
(GkρGk − ρ)

+ ξk

2
√

τk

(Gkρ + ρGk − 2ρ Tr[Gkρ]), (49)

where the noise ξk(t) is the same as in Eq. (47), the
measured observable is Hermitian, G

†
k = Gk , with G

†
kGk = 1

(if G
†
kGk �= 1, then the last term on the first line should be

replaced with the Lindblad form), and the effective ensemble
dephasing �k satisfies inequality [63] �k � 1/2τk + K2

kτk/2
(the notation �k should not be confused with the previous
notation �

(X,Y,Z)
i for the error rates). Note that Eq. (49) can also

be derived using the theory of quantum trajectories [65–67].
When several (noncommuting) gauge operators Gk are

continuously measured at the same time, the density matrix
evolution (49) due to each measurement should be simply
added up [49] (this relates to the fact that infinitesimal
evolutions essentially commute with each other). Also adding
the Lindblad evolution (20) described by error operators Ei ,
we obtain the overall evolution (in the Itô form)

ρ̇ =
∑

k

[
i

2
(Kk

√
τk ξk + εk)[Gk,ρ] + �k

2
(GkρGk − ρ)

+ ξk

2
√

τk

(Gkρ + ρGk − 2ρ Tr[Gkρ])

]

+
∑
i,E

�
(E)
i L[Ei]ρ. (50)

The quantum efficiency of each detector can be defined in
two ways [63,72]:

ηk = 1

2�kτk

, η̃k = 1 + K2
kτ

2
k

2�kτk

, ηk � η̃k � 1. (51)

The first definition relates ensemble decoherence with the rate
of distinguishing the subspaces, while the second definition
compares ensemble decoherence with its information-related
part, including the phase back-action.

If all detectors are ideal in the sense η̃k = 1, then the
evolution (50) can also be described with a wave function
(if initial state is pure and decoherence L[Ei] is unraveled in
the “jump or no-jump” way), i.e., the measurement evolution
description (45) with small δt is fully sufficient. When
detectors are nonideal, sometimes it is also possible to work
with wave functions, which greatly simplify analysis, in the
following way. A nonideal detector can be thought of as
an ideal detector with an uncorrelated extra noise at the
output [72], so that Eq. (47) contains an extra (classical) noise
term, while Eq. (50) is governed only by the quantum part of
the noise, with τk corresponding to the ideal part of the detector.
Separation of the output noise into the quantum and classical
parts is not possible for an observer, but we may pretend that it
is possible for a “Super Observer”, who, therefore, can monitor
the wave-function evolution. Thus, we can use predictions for
ideal detectors, while remembering about extra noise at the
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output. This logical trick (which is somewhat similar to the idea
of evolution unraveling) will be quite useful in our analysis.

For numerical simulations in full 16-dimensional Hilbert
space, it is sufficient to use evolution equation (50) and
Eq. (47) for the output signal (in practice, instead of working
with Wiener processes, it is usually better to use explicit
quantum Bayesian procedure [62]). However, these Monte
Carlo simulations are numerically expensive and also not quite
suitable to obtain analytical results. For analytics it is easier
to discuss separate evolutions in the four subspaces Q0,X,Y,Z ,
with jumps between them caused by single-qubit errors. This
is what we will do next.

C. Evolution without errors

Let us prepare initial encoded state |z+〉 [Eq. (8)] and
start continuous measurement of four gauge operators Gk ,
assuming no evolution due to environment (only due to
measurement). First, let us show that the four-qubit state
remains within the subspace spanned by |z+〉 and |z−〉. This
can be shown using either Eq. (45) or (50). For the proof
using Eq. (50), note that all operators Gk applied to |z+〉 or
|z−〉 produce states within the subspace spanned by |z±〉.
Therefore, if the four-qubit state ρ is within the subspace
generated by |z±〉 (i.e., spanned by |z+〉〈z+|, |z−〉〈z−|,
|z+〉〈z−|, and |z−〉〈z+|), then the right-hand side of Eq. (50)
is also within this subspace, so that the state remains in this
subspace during the evolution due to measurement.

It is also instructive to use Eq. (45) assuming ideal detectors
and show explicitly that the evolving state is described by
the wave function (39) (additional output noise of nonideal
detectors can be added later). For measurement of operator
G3 = Z13 or G4 = Z24 and quantum state |ψ〉 = a |z+〉 +
b |z−〉 [Eq. (39)], the eigenvectors |ψ±〉 in Eq. (40) are simply
|z±〉. Then, the evolution (45) changes coefficients a and b,
still preserving the form (39). For measurement of operator
G1 = X12 or G2 = X34, the eigenvectors |ψ±〉 in Eq. (40)
are |x±〉, which are linear combinations of |z±〉 [Eq. (14)].
Therefore, the evolution (45) still keeps the state within the
two-dimensional subspace (39). So, measurement of all gauge
operators only changes the gauge qubit |a,b〉g in Eq. (39),
while not affecting the logical qubit |α,β〉L, which defines
the basis |z±〉. Detector nonideality leads to an imperfect
knowledge of a and b for an observer (while they are perfectly
known to the “Super Observer”), therefore, for an observer the
gauge qubit states (39) are mixed, producing density matrix
ρg for the gauge qubit, while the logical qubit |α,β〉L is not
disturbed.

It is easy to see that within the gauge qubit subspace
spanned by |z+〉 and |z−〉, continuous measurement of G3

and G4 is the usual Z measurement of the gauge qubit,
while G1 and G2 correspond to continuous X measurement
of the gauge qubit. Therefore, we have simultaneous X and
Z measurement of a qubit, which was described theoretically
in Ref. [49] and realized experimentally in Ref. [50]. Using
results of [49] and adding the phase back-action, from Eq. (50)
we obtain the following explicit equations for the evolution of
the Bloch-sphere components of the gauge qubit density matrix

ρg = (1 + xgσx + ygσy + zgσz)/2 (in Itô form):

ẋg = (
1 − x2

g

)( ξ1√
τ1

+ ξ2√
τ2

)
+ (K3τ3yg − xgzg)

ξ3√
τ3

+ (K4τ4yg − xgzg)
ξ4√
τ4

− (�3 + �4)xg + (ε3 + ε4)yg,

(52)

ẏg = (K1τ1zg − xgyg)
ξ1√
τ1

+ (K2τ2zg − xgyg)
ξ2√
τ2

− (K3τ3xg + ygzg)
ξ3√
τ3

− (K4τ4xg + ygzg)
ξ4√
τ4

− (�1 + �2 + �3 + �4)yg − (ε3 + ε4)xg + (ε1 + ε2)zg,

(53)

żg = (
1 − z2

g

)( ξ3√
τ3

+ ξ4√
τ4

)
− (K1τ1yg + xgzg)

ξ1√
τ1

− (K2τ2yg + xgzg)
ξ2√
τ2

− (�1 + �2)zg − (ε1 + ε2)yg,

(54)

while the measurement output signals are

I1 = IX12 = xg + √
τ1 ξ1, I2 = IX34 = xg + √

τ2 ξ2, (55)

I3 = IZ13 = zg + √
τ3 ξ3, I4 = IZ24 = zg + √

τ4 ξ4. (56)

Note that in deriving Eqs. (52)–(56) we assumed that the
four-qubit state is fully in the subspace Q0, and in the basis of
four vectors |φj 〉 [Eqs. (3)–(6)] the density matrix is a direct
product of the logical and gauge qubit states, i.e.,

ρQ = ρL ⊗ ρg =
(

1+zL
2 × ρg

xL−iyL

2 × ρg

xL+iyL

2 × ρg
1−zL

2 × ρg

)
4×4

, (57)

where xL,yL,zL are components of the logical qubit state
ρL. The measurement does not affect the logical qubit state
ẋL = ẏL = żL = 0.

We will mostly consider the special case when there is
no phase back-action and all four measurements have equal
measurement strength and corresponding ensemble dephasing:

τk = τm, �k = �m, Kk = 0, εk = 0, k = 1, . . . ,4.

(58)
In this case, the evolution equations (52)–(54) simplify

ẋg = (
1 − x2

g

) ξ1 + ξ2√
τm

− xgzg

ξ3 + ξ4√
τm

− 2�mxg, (59)

ẏg = −xgyg

ξ1 + ξ2√
τm

− ygzg

ξ3 + ξ4√
τm

− 4�myg, (60)

żg = (
1 − z2

g

) ξ3 + ξ4√
τm

− xgzg

ξ1 + ξ2√
τm

− 2�mzg. (61)

We see that the component yg exponentially decreases towards
zero on the time scale of (4�m)−1, while in the xz plane the
evolution is isotropic (this can be seen by considering linear
combinations of xg and zg). In particular, in the ideal case
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when �m = 1/2τm and the initial state is |z+〉, the evolution
can be described by a simple uniform diffusion of the wave
function (39) along the great circle of the Bloch sphere [49,50],
so that coefficients a(t) and b(t) in Eq. (39) are real. In a
nonideal case �m > 1/2τm, the evolution can still be viewed
in this way for the “Super Observer”, as discussed above.

For nonequal strength of four measurements, evolution of
the gauge qubit state is the diffusion with the state-dependent
diffusion coefficient and also the drift along the Bloch sphere.
In the presence of phase back-action, the coefficients a and
b in Eq. (39) are necessarily complex, so the whole Bloch
sphere is involved in evolution. This complicates the analysis,
but general picture remains the same: measurement causes
continuous evolution of the gauge qubit, without disturbing
the logical qubit.

D. Measurement evolution within error subspaces

Suppose the error X1 has occurred. Immediately after this
error, the four-qubit state still has the form (57) with the same
gauge and logical qubit states, but with the basis vectors |φj 〉
[Eqs. (3)–(6)] replaced with X1|φj 〉. In other words, the 4 × 4
matrix (57) moves to the different block of the full 16 × 16
matrix. After that, the continuous measurement of gauge
operators Gk again leads to an evolution of the gauge qubit
state without affecting the logical qubit. The only difference
compared with the previous section is that in the basis
of vectors X1|φj 〉, the operator G3 = Z13 has the opposite
eigenvalue, Z13(X1|φj 〉) = −(X1|φj 〉), while eigenvalues for
other three gauge operators are still +1. This means that G3

now measures the gauge qubit along −Z axis instead of Z

axis.
Therefore, evolution equations (52)–(56) should be

changed within the error subspace QX, in particular, now
Tr[G3ρ] = −zg . If we write the output signal I3(t) as I3 =
−zg + √

τ3 ξ3 instead of Eq. (56), then we also need to replace
ξ3 with −ξ3 in Eqs. (52)–(54). However, it is easier to flip the
sign in the definition of ξ3, so that

I3 = IZ13 = −(zg + √
τ3 ξ3), (62)

then the evolution equations (52)–(54) do not change. This
mapping can be interpreted as being due to the transformation
X1G3X1 = −G3 (somewhat similar to the Heisenberg picture,
in which the error mapping ρ → EiρEi is instead applied to
the measured operators).

Thus, for a four-qubit state in the error subspace QX (still
assuming a direct product of the gauge and logical qubit states),
the dynamics due to continuous measurement is the same as in
the subspace Q0, except Eq. (62) for the signal I3(t) replaces
Eq. (56).

A similar reasoning shows that after an error Z1, the
dynamics due to measurement in the subspace QZ in the basis
Z1|φj 〉 is still described by Eqs. (52)–(56), except now

I1 = IX12 = −(xg + √
τ1 ξ1). (63)

Finally, after an error Y1, the dynamics in the subspace QY in
the basis Y1|φj 〉 is still described by Eqs. (52)–(56) with the
change for both I1 and I3,

I1 = −(xg + √
τ1 ξ1), I3 = −(zg + √

τ3 ξ3). (64)

Note that we intentionally considered only errors in the first
qubit (X1, Y1, Z1) because we use the 16-dimensional Hilbert
space basis consisting of |φj 〉, X1|φj 〉, Y1|φj 〉, and Z1|φj 〉. The
mapping between the states due to errors in other qubits will
be considered next, while the evolution in the error subspaces
due to measurement after these errors is the same as already
discussed.

E. Mapping between subspaces due to single-qubit errors

As discussed above, an error X1 occurring at time t by
definition does not change the logical and gauge qubit states
ρg(t + 0) = ρg(t − 0), ρL(t + 0) = ρL(t − 0), and only moves
the four-qubit state from Q0 to QX. To analyze the effect of the
error X2 (instead of X1), we compare it with the effect of X1.
It is easy to see that X2 acting on the basis |φj 〉 produces the
same states as X1 with additional exchange: |φ1〉 ↔ |φ2〉 and
|φ3〉 ↔ |φ4〉. Therefore, X2 acting on a state (39) produces the
same state as X1, but with exchanged gauge qubit coefficients,
a ↔ b. Consequently, for a more general initial state (57), the
application of X2 produces the same state as application of X1

and additional X operator for the gauge qubit state, which we
denote as XG.

Thus, we associate effect of error X2 (acting on a state
within Q0) with the error X1 and gauge-qubit operation XG.
In a similar way, we find that X3 acts on the basis |φj 〉 as
X1 with additional exchange |φ1〉 ↔ |φ3〉 and |φ2〉 ↔ |φ4〉,
therefore acting on the state (39) as X1 with exchange α ↔ β.
Thus, effect of error X3 is the same as for the error X1 and
logical-qubit X operation, which we denote as XL. Similarly,
we find that X4 is equivalent to X1 with additional operations
XGXL on both gauge and logical qubits.

Similarly, we can find the effect of the errors Zi comparing
them with Z1, and effect of the errors Yi in comparison with
Y1. The result is the following correspondence:

X2 ↔ X1 × XG, X3 ↔ X1 × XL, X4 ↔ X1 × XGXL,

Z2 ↔ Z1 × ZL, Z3 ↔ Z1 × ZG, Z4 ↔ Z1 × ZGZL,

Y2 ↔ Y1 × (−XGZL), Y3 ↔ Y1 × (−ZGXL),

Y4 ↔ Y1 × (−XGZGXLZL). (65)

This mapping is illustrated in Fig. 4. Note that if a state
of the direct-product form (57) is returned from an error
subspace to Q0 by another single-qubit error, then the same
correspondence applies, as can be easily shown using relations
Xi = X1XiX1, Yi = Y1YiY1, and Zi = Z1ZiZ1.

F. Logical two-qubit errors

1. Uncorrelated Markovian errors

We can now discuss the mechanism of logical errors,
using the model of uncorrelated Markovian single-qubit errors
introduced in Sec. II D 1. As an example, let us assume that the
first single-qubit error in the procedure is X1 and it occurs at
time t1 (this error is indicated by the upper solid-line arrow in
Fig. 4). The state evolution between t = 0 (preparation of the
state |z+〉) and t1 is evolution of the gauge qubit (illustrated
by the thick-line circle in Fig. 4), without change of the logical
qubit state. The error X1 moves the state from Q0 to QX

without change of the logical and gauge qubit states, and
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after that the gauge qubit continues to evolve (not affecting
the logical qubit). Monitoring of time-integrated correlators
constructed from the output signals Ik(t) (discussed later) is
supposed to report that the error has occurred; however, it takes
some time to find this out, so that the error is reported (on
average) at time t = t1 + TR, where the average response time
TR will be calculated later. If another single-qubit error, for
example X3, occurs at time t2 within the interval [t1,t1 + TR]
and moves the state back to Q0, then the error will (most
likely) not be reported since after t2 the correlators are normal
again. The state is returned to Q0, but it is not returned to
the proper two-dimensional subspace (see Fig. 4) because X3

error applied XL operation to the logical qubit, as follows from
Eq. (65) (two X1 errors cancel out each other, and there is also
an unimportant gauge qubit evolution between t1 and t2). Thus,
a logical X error is produced [note the X1X3 combination in
Eq. (16)].

To analyze the effect of different combinations of single-
qubit errors, we can use the correspondence relations (65). The
Xi error moves the legitimate state to one of two subspaces in
QX, either with or without XL operation (see two circles in the
second column in Fig. 4), while possible application of XG is
not important. Similarly, Zi error moves the legitimate state
to QZ either with or without ZL (two circles in Fig. 4) while
possible XG operation is not important. The errors Yi move
the state from Q0 to four different subspaces [see Eq. (65) and
Fig. 4]. If the second error (occurring at t2) does not bring
the state to Q0, then an error will be detected; therefore, we
are interested only in error combinations returning the state
back to Q0. There are harmless combinations (i.e., X1X1,
X1X2, etc.), which do not produce logical errors, and there
are combinations producing three types of logical errors (see
four circles in the left column in Fig. 4). The logical errors
illustrated in Fig. 4 are X error due to X1 and X3 (solid-line
arrows) and also Z error due to Z4 and Z1 (dashed-line arrows).
Since the evolution of the gauge qubit due to single-qubit errors
and due to measurement between t1 and t2 is not important
for us, the logical error combinations obtained from Eq. (65)
are the same as those discussed in Sec. II C. Note that the
combinations of two errors occurring in the same qubit are
either harmless or detectable.

The rates of logical X, Y , and Z errors can be obtained by
calculating the probability of the second error occurring within
the response time TR after the first error, and summing over
the error combinations. It is important that in our discussed
later construction of averaged correlators, the response time
TR is the same for detecting states in all error subspaces (QX,
QY , QZ). In this case, the calculation of logical error rates
(assuming no detected errors) gives

γX = 2TR
[(

�
(X)
1 + �

(X)
2

)(
�

(X)
3 + �

(X)
4

)
+�

(Y )
1 �

(Y )
3 + �

(Y )
2 �

(Y )
4

]
, (66)

γY = 2TR
[
�

(Y )
1 �

(Y )
4 + �

(Y )
2 �

(Y )
3

]
, (67)

γZ = 2TR
[(

�
(Z)
1 + �

(Z)
3

)(
�

(Z)
2 + �

(Z)
4

)
+�

(Y )
1 �

(Y )
2 + �

(Y )
3 �

(Y )
4

]
, (68)

where �
(X)
i , �

(Y )
i , �

(Z)
i are the rates of single-qubit errors (see

Sec. II D 1) and the factor of 2 is due to different sequences
of the two errors. In general, the response times may be
different for different error subspaces (TR,X, TR,Y , TR,Z); in
this case each product of error rates in Eqs. (66)–(68) should
be multiplied by the corresponding response time.

In particular, for the depolarizing channel with �
(X)
i =

�
(Y )
i = �

(Z)
i = �d/3 we have

γX = γZ = 4
3 �2

dTR, γY = 4
9 �2

dTR, (69)

so that the total logical error rate (with no detected errors) is

γL = 28
9 �2

dTR. (70)

Note that Eqs. (66)–(70) are similar to the results (24)–
(29) for projective measurements if the half-cycle time �t is
replaced with the response time TR. The similarity is not exact
because of different “effective response times” for Yi errors
compared with Xi and Zi errors in the projective case, while
in the continuous case all response times are the same.

2. Pure dephasing

Following the logic used in Sec. II D 2, we can apply
Eqs. (66)–(68) to the case of pure dephasing of physical qubits
with rates �ϕ,i by using the correspondence �

(Z)
i = �ϕ,i/2.

This gives the logical error rates

γX = 0, γY = 0, (71)

γZ = TR (�ϕ,1 + �ϕ,3)(�ϕ,2 + �ϕ,4)/2, (72)

in the case when no errors are detected by the procedure. For
equal dephasing in all qubits, �ϕ,i = �ϕ , we have

γL = γZ = 2�2
ϕTR, (73)

which corresponds to Eq. (33) with �t replaced with TR.

3. Energy relaxation

Following the logic of Sec. II D 3, let us analyze the effect
of energy relaxation in the physical qubits at zero temperature
(amplitude damping) with rates μi ≡ 1/T1,i . The “no-jump”
evolution with the Kraus operator 1 − ∑

i(μi δt/2) σ+,iσ−,i =
1 − δt

∑
i μi(1 − Zi)/4 for a short duration δt produces

detectable Zi errors with the rate on the order of μ2
i / �m, where

�m is the dephasing due to measurement. These errors can be
neglected in comparison with “jump” errors since we assume
μi � �m. With no detected Zi errors, measurement process
self-corrects the state disturbed by the “no-jump” evolution.
Therefore, in the leading order we can completely neglect the
“no-jump” evolution (see discussion in Sec. II D 3).

The “jumps” (energy relaxation events) due to operators
σ−,j = (Xi + ıYi)/2 with rates μiTr(σ+,iσ−,iρ) lead to de-
tectable errors, unless the second energy relaxation event
occurs within the response time TR, leading to a logical error.
The state evolution between the jumps can be described by
general equation (50), but it cannot be easily described by
Eqs. (52)–(54) because these equations assume a direct product
of gauge and logic qubits within only one error subspace,
while the operator (Xi + ıYi)/2 produces a superposition
between subspaces QX and QY . Most importantly, since
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measurement distinguishes between these subspaces, the state
will be gradually collapsed into one of them within the time
scale comparable to τm. Therefore, coherence between the two
subspaces necessarily decays with a time constant comparable
to τm (one more reason for the decay of ensemble-averaged
coherence is the difference between the gauge qubit evolutions
within the two subspaces for the same output signal). Since the
time difference between the two relaxation events is typically
comparable to TR and since in our case (as will be discussed
later) TR is an order of magnitude larger than τm, we can neglect
coherence between the subspaces.

After neglecting coherence between the subspaces, the
calculation of the logical error rates is simple: the logical
errors are due to independent two-qubit errors XjXi and YjYi ,
occurring within TR. Using the probability rate μi/2 of the
first jump in ith qubit, probability μjTR/2 of the second jump
in j th qubit within time TR, and probability 1/4 each for the
combinations XjXi and YjYi , we obtain the logical error rates

γX = TR

8
[(μ1 + μ2)(μ3 + μ4) + μ1μ3 + μ2μ4], (74)

γY = TR

8
(μ1μ4 + μ2μ3), (75)

γZ = TR

8
[μ1μ2 + μ3μ4], (76)

where the error combinations come from Eqs. (16)–(18) or
from Eq. (65). Note that in Eq. (74) we show the products
μ1μ3 and μ2μ4 twice to emphasize similarity with Eq. (66).

The corresponding total logical error rate (with no detected
errors) is

γL = TR

8
[2(μ1 + μ2)(μ3 + μ4) + μ1μ2 + μ3μ4]. (77)

G. Cross-correlators

We have found the rate of logical errors for a given response
time TR, but we have not calculated TR yet. We have also
not calculated the termination rate. Moreover, we have not
yet discussed quantitatively how we can monitor the error
syndrome.

As discussed in Sec. III A, the general idea is that in the
subspaceQ0 and for the direct-product state (57), the operators
G1 = X12 and G2 = X34 both measure X component of
the gauge qubit; therefore, the corresponding noisy outputs
I1(t) and I2(t) should be positively correlated. Similarly, for
a state within Q0 the outputs I3(t) = IZ13(t) and I4(t) =
IZ24(t) are also positively correlated. However, for a direct-
product state within subspace QX, the operator G3 = Z13

measures the gauge qubit along axis −Z, while G4 = Z24

measures it along Z axis; therefore, the noisy outputs I3(t)
and I4(t) should be negatively correlated. Similarly, within
QZ the outputs I1(t) and I2(t) should be negatively correlated,
while within QY both pairs of the output signals should be
negatively correlated. By monitoring the cross-correlations,
we can determine the subspace, i.e., obtain the error syndrome.
[The condition (57) is actually not necessary for distinguishing
these subspaces.]

It is important to note that even though withinQ0 the output
signals I1 and I2 are given by Eq. (55) with the common term

xg , their same-time correlator is 〈I1(t) I2(t + 0)〉 = 1 [68], and
not the naively expected value x2

g . This is because the output
noise ξ1 affects the state due to quantum back-action [the
first term in Eq. (52)], leading to 〈√τ1 ξ1(t) xg(t + 0)〉 = 1 −
x2

g(t) [68], so that sum of the two terms in the correlator is
always 1. Similarly, all positive correlators (at the same time
t) are +1 and all negative correlators are −1. For nonequal
times, the correlators 〈Ik(t1) Ik′(t2)〉 for the corresponding pairs
decrease with increasing |t1 − t2| exponentially with the time
scale of the gauge qubit evolution. In particular, in the uniform
case (58), from Eqs. (59)–(61) and (55)–(56) we find

〈I1(t1) I2(t2)〉 = 〈I3(t1) I4(t2)〉 = exp(−2�m|t1 − t2|). (78)

This formula can be easily derived in the same way as in
Ref. [68] by noticing from Eqs. (59)–(61) that the ensemble-
averaged evolution of the gauge qubit is

ẋg = −2�mxg, ẏg = −4�myg, żg = −2�mzg, (79)

so that the X correlator 〈I1(t1) I2(t2)〉 and the Z correlator
〈I3(t1) I4(t2)〉 should both decay in time with the rate 2�m.

In the error subspaces, the positive cross-correlators have
the same value exp(−2�m|t1 − t2|), while the negative cross-
correlators are − exp(−2�m|t1 − t2|). The cross-correlators for
signals measuring orthogonal components of the gauge qubit
vanish in all the subspaces 〈I1(t1) I3(t2)〉 = 〈I1(t1) I4(t2)〉 =
〈I2(t1) I3(t2)〉 = 〈I2(t1) I4(t2)〉 = 0.

The correlators in Eq. (78) assume ensemble averaging,
while we need to monitor the error syndrome in real time from
a single realization. The main problem is that the product of
noisy outputs is very noisy, so we necessarily need to smoothen
out the monitored correlators by time averaging. For that we
use a double integration with the bilinear form

Ckk̄(t) =
∫∫ t

−∞
K(t − t1,t − t2) Ik(t1)Ik̄(t2) dt1dt2, (80)

where notation kk̄ means the channel pairs 12 or 34 and the
integration kernel K is symmetric. Instead of the general
form (80), it is better to think in terms of integration over
the time difference |t2 − t1| and the mean time (t1 + t2)/2.
Obviously, the integral over |t2 − t1| should be limited to
the range |t2 − t1| � �−1

m , where the correlator (78) is still
significant (so that we do not pick up unnecessary noise). The
integration over (t1 + t2)/2 should be sufficiently long so that
the result is not too noisy, but on the other hand a very long
integration makes the response time TR too long.

We have considered two such constructions for the moni-
tored time-integrated correlators

Cr
kk̄

(t) = 1

T r
c

∫ t

t−T r
c

C̃kk̄(t ′) dt ′, (81)

Ce
kk̄

(t) = 1

T e
c

∫ t

−∞
C̃kk̄(t ′) e−(t−t ′)/T e

c dt ′, (82)

C̃kk̄(t) = 1

2τc

∫ t

−∞
[Ik(t)Ik̄(t ′) + Ik(t ′)Ik̄(t)]

× e−(t−t ′)/τc dt ′, (83)

so that the first (inner) integration (83) is always exponential
with the time constant τc (comparable to �−1

m ), while the
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second (outer) integration is either with the rectangular kernel
of duration T r

c or exponential with the time constant T e
c

(the time constants T r,e
c are at least an order of magnitude

longer than �−1
m ). As will be seen later, the integration with

exponential weight (82) provides a better operation of the
code than integration with the rectangular weight (81) for
typical parameters; however, asymptotically the rectangular
integration is better.

From now on, we always assume the case without phase
back-action and with equal parameters (τm, �m) for all four
measurement channels [Eq. (58)], while the quantum effi-
ciency η = (2�mτm)−1 is arbitrary. (It is still rather simple to
consider different measurement parameters although formulas
become much longer; however, taking into account phase
back-action significantly complicates the analysis.) Using
Eq. (78), it is easy to find average values for C̃kk̄(t) in the
subspace Q0:

〈C̃12(t)〉 = 〈C̃34(t)〉 = 〈C̃kk̄(t)〉 = 1

1 + 2�mτc
. (84)

In the error subspaces this result for cross-correlators is
replaced with ±1/(1 + 2�mτc), depending on the subspace
and pair correlation in the same way as discussed above. The
average values for Cr

kk̄
(t) and Ce

kk̄
(t) are the same as for C̃kk̄(t).

To calculate the noise of C
r,e
kk̄

(t), we first calculate the time-
correlation function for C̃kk̄(t). Using the two-time correlators
as in Eq. (78), four-time correlators [74]

〈Ik(t1) Ik̄(t2) Ik(t3) Ik̄(t4)〉 = e2�m(t1−t2)e2�m(t3−t4) (85)

for t1 < t2 < t3 < t4, and singularities 〈Ik(t) Ik(t ′)〉 = τmδ(t −
t ′) at t ≈ t ′, after some algebra we obtain

〈C̃kk̄(t1) C̃kk̄(t2)〉 − 〈C̃kk̄(t)〉2

=e−(2�m+1/τc)|t1−t2|
[

2�mτc

(1 + 2�mτc)2
+ τm

4τc
+ τm

2τc

1

1 + 2�mτc

]

+ τm

2
δ(t1 − t2)

(
τm

2τc
+ 1

1 + 2�mτc

)
. (86)

We see that this correlator decays exponentially with the time
constant (2�m + 1/τc)−1. If the second integration in Eqs. (81)
and (82) is over a much longer period, T r,e

c � (2�m)−1, then
the fluctuating part of C̃kk̄(t) can be approximately replaced
with white noise, which has the same spectral density as the
low-frequency spectral density of C̃kk̄(t). Therefore, we can
use approximation

C̃kk̄(t) ≈ 〈C̃kk̄〉 + A ξ̃c(t), (87)

where the white noise ξ̃c(t) satisfies Eq. (48) and

A2 =
∫ ∞

−∞
[〈C̃kk̄(0) C̃kk̄(t)〉 − 〈C̃kk̄〉2] dt (88)

= τ 2
m

4τc
+ 2τm(1 + �mτc)

(1 + 2�mτc)2
+ 4�mτ 2

c

(1 + 2�mτc)3
. (89)

This approximation significantly simplifies analysis of
noise properties of the monitored integrated correlators C

r,e
kk̄

(t).
Note, however, that we neglected possible non-Gaussian
contribution to the noise of C̃kk̄ . As will be discussed in
Sec. III I, numerical simulation shows that the non-Gaussian

contribution to the noise slightly changes the obtained below
results for the false alarm rate.

Within the approximations (87)–(89), we see that indepen-
dently of the integration kernel of C

r,e
kk̄

, we can optimize the
signal-to-noise ratio of C̃kk̄ by minimizing the ratio A2/〈C̃kk̄〉2

over τc. This leads to the following equation for the optimal
value τc,opt:

8ηs3(s + 2) + 4s2(1 + s)2 + η−1(s4 + 2s3 − 2s − 1) = 0,

(90)

where s = 2�mτc,opt. Substituting this optimal value into
Eqs. (84) and (89), we find the optimized 〈C̃kk̄〉 and A in
Eq. (87).

In particular, in the case of ideal detectors, η = 1, the
optimal value is τc,opt = 0.342/2�m = 0.342 τm, correspond-
ing to the average signal 〈C̃kk̄〉 = 0.745 and noise power
A2 = 2.13 τm. In the case when η = 0.5, we obtain τc,opt =
0.494/2�m = 0.247 τm, 〈C̃kk̄〉 = 0.670, and A2 = 2.20 τm.

H. False alarm rate and response time

Having optimized τc, let us now discuss the behavior of the
monitored integrated cross-correlators C

r,e
kk̄

(t). Their average
values within the subspaceQ0 do not depend on the integration
time T r,e

c , 〈
Cr

kk̄

〉 = 〈
Ce

kk̄

〉 = 〈C̃kk̄〉, (91)

while after a single-qubit error moves the state to an error
subspace, the average value for one or both monitored pairs
(12 and 34) flips its sign. This error can be detected by
observing that the value of a cross-correlator becomes smaller
than normal. The most natural criterion for the error detection
is crossing of a certain threshold

C
r,e
kk̄

(t) < (1 − �)〈C̃kk̄〉. (92)

The symmetric threshold corresponds to � = 1; however, in
principle any value within the range 0 < � < 2 can be used
for the threshold.

Even without the actual error, the monitored correlator
C

r,e
kk̄

(t) can become smaller than the threshold (1 − �)〈C̃kk̄〉
due to a big fluctuation. This will be interpreted as an error, and
the algorithm will terminate. This will increase the termination
rate γterm by the rate γf al of such “false alarms” in each
monitored correlator; for example, in the model of independent
single-qubit errors (Sec. III F 1) the termination rate will be

γterm = 2γf al +
∑

i

[
�

(X)
i + �

(Y )
i + �

(Z)
i

]
, (93)

where the second term is the rate of actual single-qubit errors
and the false alarm rate is doubled because of two monitored
correlators with equal and independent noises. Let us now
calculate the false alarm rate γf al for one monitored correlator.

It is easy to find the probability distribution P (C) for
the correlators C

r,e
kk̄

(t) (within Q0) using the white-noise
approximation (87):

P (C) = 1√
2πD

r,e
c

e−(C−〈C〉)2/2Dr,e
c , (94)

Dr
c = A2

T r
c

, De
c = A2

2T e
c

, (95)
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where for brevity we omitted unnecessary subscripts and
superscripts and used 〈C〉 = 〈C̃〉. The variance Dr

c or De
c of

the Gaussian distribution has been calculated as the integral
of the variances within the shapes (81) or (82). The false
alarm rate should be proportional to the probability of being
beyond the threshold 〈C〉 − C > �〈C〉; however, finding the
correct prefactor (“attempt frequency”) is not too easy. For that
we use the “first-passage” approach [75,76] and analyze the
Fokker-Planck equation for the quasistationary first-passage
probability distribution Pfp(C), which has a condition that the
threshold has not yet been past and, therefore,

Pfp[(1 − �)〈C〉] = 0. (96)

The first-passage calculations for exponential integra-
tion (82) are relatively easy because the stochastic process
Ce(t) is Markovian. It can be characterized by the drift
velocity (〈C〉 − Ce)/T e

c and effective diffusion coefficient
(1/2)(A/T e

c )2. By equating constant probability current (flux)
with the first-passage rate γf al, we write the differential
equation

〈C〉 − C

T e
c

Pfp(C) − 1

2

(
A

/
T e

c

)2 dPfp(C)

dC
= −γf al (97)

and solve it approximately in the vicinity of the threshold,
C ≈ (1 − �)〈C〉, using the boundary condition (96) and also
the condition that Pfp(C) should become practically equal to
P (C) from Eq. (94) away from the threshold. In this way, we
find the result

γf al = � 〈C〉
A

√
πT e

c

e−�2〈C〉2T e
c /A2

(98)

for the false alarm rate in the case of exponentially integrated
monitored correlator (82).

The case (81) of the rectangular integration of the correlator
is more complicated because the stochastic process Cr(t) is not
Markovian. However, neglecting non-Markovian effects, for
the quasistationary distribution Pfp(C) we can still introduce
effective drift velocity (〈C〉 − Cr)/T r

c and effective diffusion
coefficient (A/T r

c )2, assuming a big fluctuation 〈C〉 − Cr �√
Dr

c. Then, in the same way as above we obtain the false alarm
rate

γf al = � 〈C〉
A

√
2πT r

c

e−�2〈C〉2T r
c /2A2

. (99)

Since we had to neglect non-Markovian effects in the deriva-
tion, we are not fully sure that the prefactor in Eq. (99)
is correct; however, numerical simulation confirmed it with
the accuracy better than 20%. Note that using the results
of the previous section for the optimization over τc, for
η = 1 we find 〈C〉2/A2 = 0.261 τ−1

m and for η = 0.5 we have
〈C〉2/A2 = 0.203 τ−1

m .
In a good quantum error detecting code, the rate γf al of

false alarms should be less than the rate of actual errors, so
that the termination rate (93) is not significantly increased. (In
a quantum error correcting code, γf al should be even less than
the rate of logical errors since it contributes to logical errors.)
Therefore, the exponent in Eqs. (98) and (99) should be rather
large, very crudely

�2〈C〉2T e
c /A2 � �2〈C〉2T r

c /2A2 � 10–20. (100)

Increase of the integration time T e
c (or T r

c ) decreases the false
alarm rate; however, this increases the response time TR (and
therefore the rate of logical errors), creating a tradeoff between
these characteristics of the code operation.

Let us find TR in the simplest way, neglecting the noise.
Then, we simply assume that in Eqs. (81) and (82) a
nonstochastic signal C̃(t) switches from the constant value
〈C̃〉 to −〈C̃〉 at a time moment t1 due to a single-qubit error.
By finding the time at which Cr,e(t) crosses the threshold
(1 − �)〈C̃〉 and equating it to t1 + TR, we find TR. Thus,
obtained response times for the rectangular and the exponential
integrations are, respectively,

T r
R = �

2
T r

c , T e
R = T e

c ln
2

2 − �
. (101)

Since we neglected the noise in finding TR, this result becomes
inaccurate when � is close to 0 or 2 by � 3

√
D

r,e
c /〈C〉 [so that

the randomness in the distribution (94) becomes important].

Rectangular vs exponential integration

Let us compare performance of the rectangular and expo-
nential integrations for the monitored correlator to find out
which one is better. As seen from Eqs. (98) and (99), the
false alarm rates in both cases (for the same threshold) are
practically equal if T r

c = 2T e
c (a factor of 2 difference in

the prefactor is not very important). Using this relation in
Eq. (101), we obtain

T e
R ≈ T r

R
1

�
ln

2

2 − �
(102)

for the same γf al. As we see, for the symmetric threshold,
� = 1, the response time for the exponential integration
is shorter, T e

R = 0.69 T r
R. Therefore, exponential integration

in the monitored correlator is better than the rectangular
integration, providing 31% smaller logical error rate for the
same false alarm rate. However, the rectangular integration
becomes better than the exponential one for higher thresholds
� > 1.6; in this case T r

R < T e
R.

Even though the symmetric threshold � = 1 seems most
natural, the choice of � is rather arbitrary. Let us consider
first the integration (82) with exponential kernel and vary
�, while simultaneously changing the integration time scale
T e

c to keep the response time T e
R constant. Substituting the

corresponding value [Eq. (101)] T e
c = T e

R/ ln[2/(2 − �)] into
Eq. (98), we find that the false alarm rate γf al is proportional
to exp{−�2T e

R〈C〉2A−2/ ln[2/(2 − �)]}. Neglecting � depen-
dence in the prefactor, we see that the minimal γf al is achieved
when ln[2/(2 − �)] = �/[2(2 − �)], i.e., at �e

opt = 1.43.
Thus, the optimal threshold is not symmetric, and at this
optimal � the false alarm rate is

γf al = 0.90 〈C〉
A

√
T e

R

e−1.63 T e
R〈C〉2/A2

, �e
opt = 1.43. (103)

In particular, in the cases η = 1 and 0.5 this gives

γf al = 0.46
(
T e

Rτm
)−1/2

e−0.425 T e
R/τm , η = 1, (104)

γf al = 0.41
(
T e

Rτm
)−1/2

e−0.331 T e
R/τm , η = 0.5. (105)
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As an example, for a desired false alarm rate γf al = 10−5τ−1
m ,

we need response time T r
R = 21.7 τm for η = 1 and T e

R =
27.2 τm for η = 0.5.

However, if the symmetric threshold is chosen, then by
using T e

c = T e
R/ ln 2 for the exponential-kernel integration,

from Eq. (98) we obtain

γf al = 〈C〉/A√
πT e

R/ ln 2
e−(〈C〉2/A2) T e

R/ ln 2, � = 1. (106)

For η = 1 and 0.5 this gives

γf al = 0.24
(
T e

Rτm
)−1/2

e−0.376 T e
R/τm , η = 1, (107)

γf al = 0.21
(
T e

Rτm
)−1/2

e−0.293 T e
R/τm , η = 0.5. (108)

Then, the desired rate γf al = 10−5τ−1
m corresponds to the

response time T e
R = 22.6 τm for η = 1 and T e

R = 28.3 τm for
η = 0.5. As we see, the difference in the response time
compared with the above case of optimal � is rather minor.

Now, let us consider optimization of � in the case of
rectangular integration (81). Substituting T r

c from Eq. (101)
into (99), we see that the false alarm rate γf al is proportional
to exp(−�T r

R〈C〉2/A2), so that it is beneficial to increase
� to its maximum possible value of � = 2. In this case,
the exponential factor exp(−2T r

R〈C〉2/A2) is significantly
smaller than in Eq. (103) for the exponential integration
for the same response time. Thus, it seems that for the
rectangular integration the optimal threshold is � = 2, and the
performance is better than with the exponential integration.

However, Eq. (101) for T r
R is significantly inaccurate for

� = 2. The reason is the fluctuations of C(t), which are
on the order of ±√

Dr
c = ±A/

√
T r

c [see Eq. (94)]. For the
negative fluctuation, the crossing of the threshold occurs earlier
by ∼√

Dr
c/(2〈C〉/T r

c ), while for the positive fluctuation the
crossing occurs later by ∼T r

c , which is much longer (crudely
by the factor

√
T r

c /τm). This asymmetry significantly increases
the average response time T r

R.
To avoid this problem, let us shift the threshold by two stan-

dard deviations (so that we can neglect the fluctuations), then
� = 2 − 2

√
Dr

c/〈C〉. In this case, from Eqs. (99) and (101)
we obtain approximately

γf al ≈
√

2 〈C〉
A

√
πT r

R

exp

(
−2〈C〉2T r

R

A2
+ 2〈C〉√T r

R

A
− 1

)
.

(109)

For the desired false alarm rate γf al = 10−5τ−1
m , this gives the

response time T r
R = 25.1 τm for η = 1 and T e

R = 31.6 τm for
η = 0.5. Somewhat surprisingly, this response time is longer
than even for the exponential integration with symmetric
threshold [Eq. (106)], in spite of faster decaying main
exponential term in Eq. (109). The reason is that our shift
of the threshold by two standard deviations is quite significant
for these parameters, leading to a significant positive term
within the exponent of Eq. (109).

Therefore, even though asymptotically the rectangular inte-
gration (81) for the monitored correlator (with the threshold �

approaching 2) is better than the exponential integration (82),
for our typical parameters the exponential integration is better.
Moreover, since for the exponential integration there is no big

difference between the results for the optimal � [Eq. (103)] and
for the symmetric threshold [Eq. (106)], and since choosing the
symmetric threshold avoids possible problems with � being
too close to 2, we conclude that the symmetric threshold � = 1
is a good choice.

Note that besides the definition (83) for the signal C̃kk̄(t)
(which is then integrated to give the monitored correlators),
we also considered the definition

C̃kk̄(t) = Ĩk(t) Ĩk̄(t), Ĩk(t) = 1

τc

∫ t

−∞
Ik(t ′) e−(t−t ′)/τcdt ′,

(110)

which still leads to a bilinear form (80) after applying
integration (81) or (82). The definition (110) is more natural
for an experimental realization. It can also be naturally gen-
eralized to the nine-qubit Bacon-Shor code with continuous
measurement, which will be able to operate as a quantum error
correcting code (not only detecting). Even though Eq. (110)
formally contains two integrations in contrast to the single
integration in Eq. (83), the important integration is only
over the time difference between the two channels, while
the integration over the running time is anyway repeated in
forming Ckk̄(t). As a result, the integrated correlator Ckk̄(t) in
Eq. (81) is practically the same when either Eq. (83) or (110)
is used for C̃kk̄ if T r

c � τc (the difference is only near the
edges of the integration, with the relative difference on the
order of τc/T r

c ). For the exponential integration in Eq. (82), the
relative difference for Ckk̄(t) is similarly on the order of τc/T e

c .
Therefore, we can still use Eqs. (84) and (89) for the signal and
low-frequency noise of C̃kk̄(t) defined via Eq. (110), and thus
all results derived in this section remain (approximately) valid.

I. Monte Carlo simulation results

To check the developed above (approximate) theory for
the termination and logical error rates, we have performed
quantum trajectory simulations for the full density matrix ρ(t)
of the four-qubit system. For each time step δt , the density
matrix ρ(t + δt) is obtained from ρ(t) by consecutively ap-
plying the random quantum Bayesian updates, corresponding
to measurements of the gauge operators Gk [70]. Then, to
the resulting density matrix we apply an extra evolution to
account for the environmental decoherence within the same
time step; for that we use the Lindblad equation [see Eqs. (20)
and (21)], obtaining ρ(t + δt) up to second order in δt . In
the simulations we use the orthonormal basis, introduced in
Sec. II A, neglect the phase back-action, and assume ideal
measurements of equal strength �m = 1/2τm for all gauge
operators. The time step is δt = 5 × 10−3 �−1

m .
The time-integrated correlators C12(t) and C34(t) are com-

puted using Eqs. (81)–(83) for each of 104–105 trajectories. For
a given duration T of the process, “good” (no-detected-error)
trajectories are selected by the condition that the correlators
for both channels are above the threshold (1 − �)〈C〉 for
the whole duration T . The results presented below are for
the symmetric case � = 1. The relative number of no-
detected-error trajectories gives (approximately) the success
probability Psuccess(T ); by fitting this numerical dependence to
the exponential decay of Eq. (23), we obtain the termination
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FIG. 5. The false alarm rate γf al as a function of the response time
T

r,e
R (normalization involves the collapse time τm). Numerical results

for the rectangular and exponential correlator integrations are shown
by red squares and blue crosses, respectively. The (upper) red and
(lower) blue dashed lines represent the analytics [Eqs. (99) and (98)].
The solid lines include correction factors in the analytical formulas
(see main text). The inset shows the termination rate γterm as a function
of T

r,e
R (the same horizontal axis as in the main panel) for the case

when qubits 1 and 2 are subject to pure dephasing with �ϕ,1 = �ϕ,2 =
10−3�m (no decoherence in the main panel); the horizontal dashed
line corresponds to single-qubit errors γterm = (�ϕ,1 + �ϕ,2)/2. We
used � = 1, η = 1, and τc = τc,opt.

rate γterm. In particular, in the absence of decoherence, γterm is
twice the false alarm rate γf al per channel.

Figure 5 shows thus calculated false alarm rate γf al as
a function of the response time T

r,e
R [obtained from the

actual integration time T r,e
c via Eq. (101)] for monitoring the

time-integrated correlators with rectangular (red squares) and
exponential (blue crosses) kernels. The red and blue dashed
lines show the analytical formulas (99) and (98), respectively.
The numerical results indicate that the analytical formulas
slightly underestimate the coefficients in the exponents. We
have found that this discrepancy between numerics and
analytics is due to non-Gaussian fluctuations of C

r,e
kk̄

(t) [which
were assumed to be Gaussian in the analytical derivation
because of the approximation (87) for C̃kk̄(t)]. In particular,
for τc = τc,opt and η = 1, we numerically calculated the
third cumulant κ3 = 〈C3〉 − 3〈C2〉〈C〉 + 2〈C〉2 for Cr

kk̄
(t) and

Ce
kk̄

(t), obtaining κ3 ≈ 1.05/(�mT r
c )2 and κ3 ≈ 0.34/(�mT e

c )2

for the cases of rectangular and exponential integrations,
respectively (κ3 = 0 for a Gaussian process). The nonzero
third cumulant leads to the correction factor 1 + 〈C〉κ3/3κ2

2
in the exponent for γf al in Eqs. (99) and (98), where the
second cumulant is κ2 = A2/T r

c and κ2 = A2/2T e
c for these

two cases. This gives the correction factors of 1.23 and 1.30 to
the exponents of Eqs. (99) and (98), respectively (for τc = τc,opt

and η = 1). The red and blue solid lines in Fig. 5 show the
analytical results with account of these corrections, which
agree well with the numerical results. Note that the main
figure shows the false alarm rate γf al calculated in the absence
of decoherence, while the inset shows the termination rate in
the presence of dephasing in qubits 1 and 2 with the rates
�ϕ,1 = �ϕ,2 = 10−3 �m. In this case, for small response times
the termination rate is dominated by false alarms, but for large
response times the termination rate converges to the rate of
single-qubit errors (horizontal dashed line) [see Eq. (93)].

The logical error rates have been calculated numerically
in the following way. First, to extract the logical qubit state

FIG. 6. The rate γZ of the logical Z error as a function of the
response time T e

R for the case when qubits 1 and 2 are subject to pure
dephasing with �ϕ,1 = �ϕ,2 = 10−3�m. The crosses show numerical
results, the solid line is the analytical result (72). The inset shows
the diagonal elements of the process matrix (χXX , χYY , and χZZ)
as functions of time T for T e

R = 20.8τm. The rate γZ is calculated
from the slope of χZZ(T ). We used � = 1, η = 1, τc = τc,opt, and the
exponential kernel for the correlators.

(for no-detected-error trajectories) from the four-qubit density
matrix ρ at each time T , we apply the transformation ρ(T ) →
ρ̃(T ) = �++ρ(T )�++ + �−−ρ(T )�−−, where �++ = (1 +
G3)(1 + G4)/4 and �−− = (1 − G3)(1 − G4)/4 are projec-
tion operators. This transformation corresponds to applying
projective measurements of G3 and G4 at time T in the
decoding procedure and selecting only outcomes with the same
results. Then, the logical qubit state is extracted from the 4 × 4
block of ρ̃(T ), corresponding to the code space Q0, by tracing
out the gauge qubit. The resulting Bloch coordinates of the
logical qubit are given by the equations

xL = 2 Re
〈ρ̃13 + ρ̃24〉

〈Tr ρ̃〉 , yL = −2 Im
〈ρ̃13 + ρ̃24〉

〈Tr ρ̃〉 , (111)

zL = 〈ρ̃11 + ρ̃22 − ρ̃33 − ρ̃44〉
〈Tr ρ̃〉 , (112)

where the indices correspond to the bases (3)–(6) and av-
eraging is over trajectories with no detected errors. From
{xL(T ), yL(T ), zL(T )} for four initial logical states, we cal-
culate the quantum process matrix χ (T ) for the logical qubit
state evolution [4,60]. Then, the logical error rates γX, γY ,
and γZ are extracted from the linear dependence on time T

of the diagonal elements χXX, χYY , and χZZ . Note that we
normalize the process matrix χ → χ/Tr(χ ) after checking
that the success probability does not depend on the initial
logical state.

We have checked our analytical formulas for the logical
error rates (Sec. III F) against the numerical results for the cases
of pure dephasing and energy relaxation (amplitude damping).
For pure dephasing, we have found that Eqs. (71) and (72)
agree well with the numerical results for the logical error rates.
As an example, Fig. 6 shows dependence of the logical Z-error
rate γZ on the response time T e

R [obtained from the exponential
integration time T e

c via Eq. (101)] for the case when the qubits
1 and 2 are subject to dephasing with �ϕ,1 = �ϕ,2 = 10−3�m.
We see that the agreement between the numerics (crosses)
and analytics (line) is quite good. The inset in Fig. 6 shows
time dependence of all three diagonal elements of the process
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FIG. 7. The χ -matrix elements and logical error rate for the case
of qubit energy relaxation (amplitude damping). In panels (a) and (b)
the energy relaxation affects only qubits 1 and 3, μ1 = μ3 = 10−3�m;
in panels (c) and (d) it affects only qubits 1 and 2, μ1 = μ2 = 10−3�m.
Panels (a) and (c) show numerically calculated components of the χ

matrix as functions of time T ; the diagonal elements are depicted by
solid lines. The only nonzero off-diagonal elements are χIZ (real) and
χXY (imaginary) in panel (c), shown by (almost coinciding) dashed
green lines. Panels (b) and (d) show, respectively, the logical error
rates γX and γZ as functions of the response time T e

R . The crosses
represent numerical results and the solid lines represent analytical
formulas (74) and (76). We used � = 1, η = 1, τc = τc,opt, and the
exponential kernel for the correlators.

matrix χ . We see that even though numerical values of χXX

and χYY are not exactly zero (as they should be analytically),
they do not grow with the time T ; their nonzero values are
due to statistical noise in the Monte Carlo simulations. The
numerical off-diagonal elements of the χ matrix are zero (not
shown). Similar results are obtained when other pairs of qubits
are subject to pure dephasing.

Numerical results for the case of energy relaxation in
physical qubits also agree with analytical results (74)–(76);
however, there are minor deviations discussed below. Let us
first assume that only qubits 1 and 3 are subject to energy
relaxation. For this case, we expect only logical X errors
[see Eqs. (74)–(76)]. Indeed, our numerical results shown
in Fig. 7(a) indicate that out of the diagonal elements of
χ (T ), only χXX exhibits linear scaling with time T (nonzero
values of χYY and χZZ are due to inaccuracy of Monte
Carlo simulations), and the off-diagonal elements are zero
(not shown). The extracted logical error rate γX is shown by
crosses in Fig. 7(b) as a function of the response time T e

R (the
exponential integration of the correlators is used for all panels

of Fig. 7). The agreement with the analytical formula (74)
[solid line in Fig. 7(b)] is good. However, the agreement is
not so good for the case of energy relaxation in the qubits 1
and 2, presented in Figs. 7(c) and 7(d). Figure 7(c) indicates
that even though elements χXX and χYY are much smaller
than the main element χZZ , they still increase with time, in
contrast to what is expected from Eqs. (74)–(76). We have also
found several small but nonzero off-diagonal elements, linearly
increasing with time T ; numerical results can be fitted well
by formulas χIZ(T ) = χZI (T ) = T μ1μ2/8�m and χXY (T ) =
−χYX(T ) = −iT μ1μ2/8�m (other off-diagonal elements are
practically zero). Note that these small elements are not
proportional to the response time, in contrast to the main
element χZZ = T T e

Rμ1μ2/8. Figure 7(d) shows the numerical
logical error rate γZ (crosses) extracted from the linear
dependence χZZ(T ). The analytical result given by Eq. (76) is
shown by the solid line. There is apparently a shift between
the numerical and analytical results. We do not know what
is exactly the reason for this discrepancy. For example, it
can be because an error can be detected due to correlator
noise even after the second single-qubit error occurred. It can
also be related to no-jump evolution, which was neglected
in the analytical derivation in Sec. III F 3, which included
only the effects scaling linearly with TR. The numerical results
for the energy relaxation in qubits 1 and 4 are similar to the
results presented in Fig. 7, with dependence γX(T e

R) agreeing
well with analytics similar to Fig. 7(b) and γY (T e

R) showing a
shift from analytics similar to Fig. 7(d). In spite of the minor
deviations, we conclude that numerical results agree with the
(approximate) analytics (74)–(76).

Note that our analytical derivation is based on the picture
of abrupt jumps between the code space and error subspaces
because of single-qubit errors, while in the numerical simu-
lations we use the Lindblad equation to describe continuous
evolution due to decoherence. Nevertheless, in the simulations
we clearly see almost abrupt state transitions between the
subspaces, which are caused by the interplay between the
decoherence, which mixes the subspaces, and measurement,
which gradually collapses the state into only one subspace. The
time scale of the transitions is much shorter than the response
time needed for correlators to report the transition.

J. Comparison with projective measurement case

For a quantum error detecting code, there are two main char-
acteristics of performance: success probability (probability
that no errors have been detected) and probability of a logical
error (assuming that no errors have been detected). Since in
our case the probability of a detected error and probability of
a logical error both linearly depend on time (for a sufficiently
short time), it is more convenient to use the termination rate
[see Eq. (23)] and the logical error rate.

To compare operations of the four-qubit Bacon-Shor code
with projective and continuous measurements, let us use
the model of uncorrelated Markovian errors. The rates of
logical X, Y , and Z errors for the projective-measurement
case are given by Eqs. (24)–(26), while for the continuous-
measurement case they are given by Eqs. (66)–(68). In general,
the formulas in the two cases are similar to each other, with the
projective-measurement half-cycle time �t (or �t/2) replaced
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with the response time TR for the continuous measurement.
(Some difference in the formulas is because in the continuous-
measurement mode, the response time TR is the same for any
single-qubit error, while in the projective-measurement mode,
Yi errors are detected on average twice sooner than Xi or Zi

errors.) Since the formulas are slightly different, let us assume
equal rates for errors of all types in all qubits (depolarizing
channel), as in Eqs. (29) and (70). Then, we see that the
ratio of the total logical error rates γL for the projective and
continuous measurements is γL,cont/γL,proj = (14/11) TR/�t .
In particular, for the continuous-measurement correlator inte-
gration (82) with exponential weight and symmetric threshold
� = 1, this ratio of the logical error rates is

γL,cont

γL,proj
= 14 ln 2

11

T e
c

�t
≈ 0.9

T e
c

�t
, (113)

where T e
c is the correlator integration time.

Besides the logical error rates γL, we need to compare
the termination rates γterm. For the projective-measurement
case, γterm is (almost) the sum of single-qubit rates, so for
the depolarizing channel with �

(X)
i = �

(Y )
i = �

(Z)
i = �d/3 it

is γterm = 4�d. In the continuous-measurement case, γterm is
increased by the false alarm rate for each of two monitored
correlators, so using Eq. (98) for the exponential integration
of the correlator with � = 1, we obtain the ratio

γterm,cont

γterm,proj
= 1 + 2

〈C〉/A
4�d

√
πT e

c

e−T e
c 〈C〉2/A2

, (114)

where, as discussed above, 〈C〉2/A2 = 0.26 τ−1
m for ideal

detectors, η = 1, and 〈C〉2/A2 = 0.20 τ−1
m for detectors with

efficiency η = 0.5. Note that as discussed in the previous
section, the exponential suppression of the false alarm rate
is actually about 30% stronger due to non-Gaussian effects
(which improves the operation); however, for simplicity we
neglect this correction here.

Figure 8 shows the ratios of the logical error and termination
rates [Eqs. (113) and (114)] as functions of the correlator

FIG. 8. Tradeoff between the logical error rate and termination
rate for the Bacon-Shor code with continuous measurements. Thick
red line: ratio γL,cont/γL,proj of the logical error rates for continuous and
projective measurements [Eq. (113)], as a function of the correlator
integration time T e

c normalized by the projective-measurement
half-cycle time �t . Thin blue lines: ratio γterm,cont/γterm,proj of the
termination rates for the continuous and projective measurements
[Eq. (114)] for several values of the collapse (“measurement”) time
τm: τm/�t = 1, 0.3, 0.1, and 0.03 (from right to left) and quantum
efficiency η = 1 (solid lines) or η = 0.5 (dashed lines). We assume
�d = 10−4/�t and � = 1.

integration time T e
c for several values of the collapse (“mea-

surement”) time τm for each detector, assuming �d = 10−4/�t

and η = 1 (thin solid lines) or η = 0.5 (thin dashed lines). We
see that if τm = �t , then in order to keep γterm,cont/γterm,proj �
3, we need to choose T e

c /�t � 20, and correspondingly the
logical error rate is also a factor of 20 larger than in the
projective-measurement case. However, if τm = 0.03 �t , then
γterm,cont/γterm,proj ∼ 3 corresponds to γL,cont/γL,proj ∼ 1.

We see that for comparable operations of the code in the
continuous- and projective-measurement cases, we need a
quite strong continuous measurement τm ∼ �t/30 (the non-
Gaussian corrections increase this estimate to ∼�t/20). Even
though this may seem as a disadvantage of using continuous
measurement, actually the same problem is hidden in the
assumption of an instantaneous projective measurement. Since
any measurement in circuit QED architecture for supercon-
ducting qubits is physically continuous, for a “projective”
measurement with infidelity of ∼10−5 we need duration ∼5τm.
In the conventional code with projective measurements, this
duration is assumed to be much shorter than the half-cycle �t .
Therefore, our result of �t ∼ 20 τm is not surprising, and the
same or larger ratio is implicitly assumed in the conventional
code with projective measurements. (Note that the logical qubit
is not protected during experimental “projective” measurement
of two-qubit operators, which includes quantum gates between
the code qubits and ancillary qubits.)

IV. CONCLUSIONS

In this paper, we have analyzed the operation of a four-
qubit Bacon-Shor code, in which projective measurements
of two-qubit operators are replaced with their continuous
measurements. Since these operators do not commute with
each other (except specific pairs of them), there is a nontrivial
question if the code can or cannot operate with simultaneous
continuous measurements. We have shown that such operation
is possible. An advantage of the continuous-measurement
operation is that it requires only a passive steady-state mon-
itoring of error syndromes, in contrast to repeated sequences
of quantum gates between the code qubits and ancillary qubits
(followed by measurement of ancillas) to implement projective
measurements.

Simultaneous measurement of noncommuting qubit opera-
tors [49] is a physically interesting beyond-textbook process,
which became an experimental reality only recently [50]. Our
work shows that it has relevance not only to foundations
of quantum mechanics, but can also be useful for practical
purposes, in this case for quantum error detection and
correction.

The four-qubit Bacon-Shor code encodes one logical qubit,
and the conventional operation involves random discrete
evolution of an additional degree of freedom, the gauge qubit,
due to sequential noncommuting projective measurements.
In the continuous-measurement mode, the evolution of the
gauge qubit becomes continuous, while transitions between
the code space and error subspaces due to single-qubit errors
remain similar to the projective-measurement case. As a result,
the description of logical errors due to two close-in-time
single-qubit errors remains somewhat similar in the continuous
and projective measurement modes.
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In the conventional Bacon-Shor code operation, the er-
ror syndrome is based on products (parity) of projective-
measurement results. In the continuous-measurement mode,
this is replaced by positive or negative signs of the cross-
correlators between the noisy output signals; therefore, the
analysis relies on properties of correlators in continuous qubit
measurements [68,69,74]. Since the cross-correlators of noisy
signals are very noisy, we need to construct time-averaged
correlators; moreover, this averaging should involve at least
two integrations over time. For the (inner) integration over
the time difference in the two measurement channels, we
used exponentially decaying kernel and optimized over its
time constant. For the second (outer) integration over the
running time, we considered two options: rectangular kernel
and exponential kernel. Our results have shown that even
though asymptotically the rectangular kernel is better, in the
moderate range of parameters the exponential kernel is more
natural.

The time constant Tc of the second integration is pro-
portional to the response time TR: the delay between actual
single-qubit error and obtaining an evidence that the error has
occurred (crossing of a certain threshold by the time-averaged
correlator). Since the logical error rate is proportional to TR, we
would wish to decrease Tc. However, this increases the rate of
false alarms, when the error is mistakenly reported because of
a large fluctuation of the time-averaged correlator. Therefore,
there is a tradeoff in the choice of Tc (Fig. 8).

A comparison between the code operations with projective
and continuous measurements shows that they are compa-
rable when the half-cycle duration �t of the projective-
measurement mode is about 20 τm, where the strength of
continuous measurement is characterized by the “collapse”
(“measurement”) time scale τm. Even though this may seem to
indicate that projective-measurement mode is easier to realize
(allowing longer time scales), a comparable (if not larger) ratio
�t/τm is implicitly assumed in the conventional operation
with “instantaneous” projective measurements (when formally
τm = 0). As mentioned above, the advantage of the operation
with continuous measurements is the absence of any time-
dependent protocol (constantly repeated sequence of gates,
ramping up and down measurement pulses, etc.).

Since the four-qubit Bacon-Shor code cannot perform
quantum error correction and provides only quantum error
detection, our results in this paper are formally applicable only
to the quantum error detection with continuous measurement
of noncommuting operators. We anticipate that results for
the nine-qubit Bacon-Shor code [8–10] (which is an error
correcting code) should in general be similar to the results
in this paper; most importantly, we expect that its operation
with continuous measurement is indeed possible. The analysis
can be based on evolution equation (50) with 12 measured
gauge operators and four monitored time-averaged correlators
constructed as three-signal products via Eq. (110). However,
we did not do any calculations for the nine-qubit code, and
this analysis should be done in a separate paper.

While a simultaneous continuous measurement of non-
commuting single-qubit operators has been already demon-
strated [50], simultaneous measurement of noncommuting
two-qubit operators has not been demonstrated, and so far
there is no clear theoretical proposal for such a measurement.

However, continuous quantum measurement of superconduct-
ing qubits is a rapidly developing field [35,36,50,52,53,77,78],
and we hope that the four-qubit Bacon-Shor code with
continuous measurements analyzed in this paper can be
realized experimentally reasonably soon.
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APPENDIX: ERROR CLASSIFICATION IN THE
CONVENTIONAL CASE

In this Appendix, we discuss in more detail the error
classification considered in Sec. II C.

1. Single-qubit errors

There are 12 possible single-qubit errors: Xi , Yi , and Zi ,
with i = 1–4 labeling physical qubits. All these 12 types of
errors are detectable by the code. It is easy to see that operator
Xi (with any i) applied to a state within the subspaceQ0 moves
it to the subspace QX since this flips the sign of the eigenvalue
of Zall (because {Xi,Zi} = 0 and therefore {Xi,Zall} = 0) and
does not affect the eigenvalue of Xall (because [Xi,Xall] = 0).
Similarly, the error Zi (with any i) moves a state from Q0 to
QZ since this flips Xall and does not change Zall. The errors Yi

move a state from Q0 to QY by flipping both Xall and Zall.
Therefore, all single-qubit errors are detectable with the

following error syndromes:
(i) Xi errors produce negative parity of outcomes (“+−” or

“−+”) at step-1 measurements (Z13 and Z24), while producing
usual positive parity (“++” or “−−”) at step-2 measurements
(X12 and X34);

(ii) Zi errors produce positive parity at step-1 measure-
ments and negative parity at step-2 measurements;

(iii) Yi errors produce negative parities for both step-1 and
step-2 measurements.

Recall that without errors both parities are positive.
Since there are only three different error syndromes and

12 possible errors, the errors are not correctable, and the
procedure should terminate when at least one parity of
measured outcomes is negative. Therefore, the termination
rate (success probability decay rate) for this code is the sum
of rates for all single-qubit errors (these errors are dominating,
so we do not need to include two-qubit and higher-order errors
into the termination rate).

From the point of view of the termination rate, the
considered quantum error detecting code is optimal (the
termination rate is approximately equal to actual error rate).
This is in contrast, for example, to the quantum error
detection procedure based on uncollapsing [19,79,80], which
experimentally demonstrated an increase of the qubit lifetime
by a factor of 3 [19], but with a significantly smaller success
rate than dictated by actual errors. As discussed in Sec. III, the
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four-qubit Bacon-Shor code with continuous measurements
may have a significant contribution to the termination rate
from “false alarms”; then, the code becomes nonoptimal in
this sense.

Note that any error operator Xi , Yi , or Zi applied to a state
in the subspace Q0 moves it to one of the error subspaces
(QX, QY , or QZ) and not to a superposition of states from
different subspaces. If another error operator is applied after
that, it also moves the state to one of the subspaces. Therefore,
for any sequence of single-qubit error operators we never have
a superposition of states from different subspaces.

2. Two-qubit errors

There are (4 × 3/2) × 32 = 54 two-qubit error combina-
tions, which can be classified in the following way:

Harmless: X1X2, X3X4, Z1Z3, Z2Z4. (A1)

When these operators are applied to the legitimate states (8)–
(11), the state either does not change (up to an overall phase)
or changes within the gauge qubit subspace. Therefore, the
effect is essentially unnoticeable and fully disappears after the
next measurement. Note that the harmless combinations are
the measured operators (1):

Logical X error: X1X3, X1X4, X2X3, X2X4,

Y1Y3,Y2Y4.
(A2)

For these combinations, the state remains in the code space
Q0 (and, therefore, no error syndrome is produced); however,
the logical qubit |α,β〉L transforms into ±|β,α〉L (the overall
phase ± is not important). It is easy to see that the state remains
in Q0 because the operators (16) commute with Xall and Zall

(since Pauli operators either commute or anticommute with
each other). The transformation |α,β〉L → ±|β,α〉L can be
checked explicitly for the states |z±〉 and |x±〉 [Eqs. (8)–(11)]
by using the following mapping: |φ1〉 ↔ |φ3〉, |φ2〉 ↔ |φ4〉
for X1X3 and X2X4; |φ1〉 ↔ |φ4〉, |φ2〉 ↔ |φ3〉 for X1X4

and X2X3; |φ1〉 ↔ −|φ3〉, |φ2〉 ↔ |φ4〉 for Y1Y3 and Y2Y4

(these mappings may also exchange states |z+〉 ↔ |z−〉 and/or
|x+〉 ↔ |x−〉). Note that the complementary combinations
of operators (X1X3 and X2X4, also X1X4 and X2X3, also
Y1Y3 and Y2Y4) have exactly the same action within Q0, and
therefore it is sufficient to check a property only for one of
the two complementary combinations. The equivalence can
be easily proven by recalling that any state within Q0 is an
eigenstate of Xall, Zall, and Yall = Y1Y2Y3Y4 with eigenvalues
of +1; therefore, complements to Xall, Zall, and Yall are
equivalent:

Logical Y error: Y1Y4, Y2Y3. (A3)

For these combinations the state remains in the code space Q0,
but the logical qubit |α,β〉L transforms into ±|β,−α〉L. This
can be shown in the same way as for the combinations (16),
using the mapping |φ1〉 ↔ −|φ4〉, |φ2〉 ↔ |φ3〉. Note that the
combinations Y1Y4 and Y2Y3 are complementary to each other,
so only one of them needs to be checked:

Logical Z error: Z1Z2, Z3Z4, Z2Z3, Z1Z4,

Y1Y2, Y3Y4.
(A4)

For these combinations, the state remains inQ0, but the logical
qubit |α,β〉L transforms into ±|α,−β〉L. This can be shown via
the mapping |φ1,2〉 ↔ |φ1,2〉, |φ3,4〉 ↔ −|φ3,4〉 for Z1Z2 and
Z3Z4, |φ1,4〉 ↔ |φ1,4〉, |φ2,3〉 ↔ −|φ2,3〉 for Z1Z4 and Z2Z3,
and |φ1〉 ↔ −|φ2〉, |φ3〉 ↔ |φ4〉 for Y1Y2 and Y3Y4.

The remaining 54 − (4 + 6 + 2 + 6) = 36 two-qubit errors
involve different error types and map a state from Q0 into
one of the error subspaces; therefore, these combinations are
detectable:

Detectable: XiYj , XiZj , YiZj , i �= j. (A5)

Note that we do not consider two-error combinations for
the same qubit because they are equivalent to single-qubit
operators and therefore are either harmless (XiXi , YiYi , ZiZi)
or detectable (XiYi , XiZi , YiZi).
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