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We consider continuous quantum measurement of a superconducting qubit in the circuit QED setup with a
moderate bandwidth of the measurement resonator, i.e., when the “bad-cavity” limit is not applicable. The goal is
a simple description of the quantum evolution due to measurement, i.e., the measurement backaction. Extending
the quantum Bayesian approach previously developed for the bad-cavity regime, we show that the evolution
equations remain the same, but now they should be applied to the entangled qubit-resonator state, instead of
the qubit state alone. The derivation uses only elementary quantum mechanics and basic properties of coherent
states, thus being accessible to nonexperts.
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I. INTRODUCTION

The problem of instantaneous wave-function collapse
(reduction) due to measurement [1] has been a stumbling block
for many physicists since the creation of quantum mechanics.
The unavoidable “spookiness” [2] of the quantum collapse is
related to the impossibility of finding a traditional physical
mechanism responsible for the collapse. Mathematically,
the spookiness can be expressed via violation of the Bell
inequalities [3]. Even though this violation [4] is common
knowledge nowadays, the mechanism and interpretation of
the collapse remain debatable [5].

A natural approach to understanding the physics of the
wave-function reduction is through analysis of the gradual
evolution at a shorter time scale, i.e., “inside” the collapse.
A few decades ago there was an idea that such an evolution
can be fully described by decoherence. However, nowadays
it is becoming common knowledge that gradual collapse of
individual quantum systems is governed by a continuous
flow of information during the measurement, thus showing
essentially the same spookiness as the textbook collapse. This
understanding was significantly influenced by experiments
with superconducting qubits in the past decade [6–14], which
demonstrated the actual evolution inside the collapse.

There are many approaches to the theoretical description
of the evolution inside the collapse, i.e., the description of
partial or continuous quantum measurement. In spite of very
different mathematical treatments, many of these approaches
are essentially equivalent. Probably the most well-known ap-
proach is based on positive operator-valued measure (POVM)
and Kraus operators [15–17]. Let us also mention quantum
trajectories [18–22], quantum filtering [23,24], Monte Carlo
wave-function approach [25], quantum state diffusion [26],
restricted path integral [27,28], quantum Bayesian formal-
ism [29,30] (see also [28] and Chap. 2.2 of [31]), and many
other approaches, e.g., [32–37]. Among these approaches, one
of the simplest formalisms is the quantum Bayesian formalism,
which is based only on elementary quantum mechanics and
common sense.

For solid-state systems, the gradual collapse due to con-
tinuous measurement was first described using the quantum
Bayesian formalism [29,30,38] and soon after that was also
described by the quantum trajectory approach [39,40]. From
the late 1990s to mid-2000s the analysis was mainly focused

on the continuous measurement of a charge qubit by a
quantum point contact (QPC) or a single-electron transistor
(SET) [29,30,38–45]. The next considered system was based
on a partially or continuously measured superconducting phase
qubit [6,7,46–49]; the first experimental demonstration of a
partial collapse [6] and uncollapsing [7] was realized with this
system. After the development of circuit QED qubit measure-
ment [50,51] and the transmon [52], much attention was paid
to this system since it experimentally allowed truly continuous
quantum measurement of qubits [8–14]. In this measurement
setup the qubit state affects the frequency of a coupled
resonator, which in turn is probed by an applied microwave
in the homodyne way. For the circuit QED measurement of
a qubit the quantum trajectory approach was developed in
Ref. [22] and the quantum Bayesian approach was introduced
in Ref. [53]. In particular, the quantum Bayesian theory was
used in several circuit QED experiments on quantum feedback
and quantum trajectories [9,11,14,55], and several experiments
used the quantum trajectory theory [12,54,55].

While the description of the qubit evolution in the process
of circuit QED measurement is generally similar to that for
measurement by QPC or SET, there is one considerable
difference. The measurement by a QPC or SET is of the
broadband type, while the circuit QED measurement is
narrowband. Correspondingly, instead of one output signal
I (t) in the QPC-SET case, there are, in general, two output
signals in the circuit QED case, since a narrowband signal
can be represented as I (t) cos(ωt) + Q(t) sin(ωt), where ω

is the carrier frequency. The existence of two signals (two
quadratures) leads to the importance of the question of which
amplifier is used in the process of measurement. In the case of
a phase-sensitive amplifier, only one quadrature is amplified,
and therefore only one signal [say, I (t)] is available. This
makes the phase-sensitive case similar to the measurement
by QPC or SET (however, it is still important exactly which
quadrature is amplified). For the case of a phase-preserving
amplifier, both output signals I (t) and Q(t) are available (and
both are noisier than in the phase-sensitive case [56–58]); this
makes the description of qubit evolution significantly different
from that for the QPC-SET case.

An advantage of the quantum Bayesian formalism in
comparison with the quantum trajectory formalism is its
simplicity, so that it does not require special theoretical
training and can be used by nonexperts. This simplicity is
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due to a transparent physical meaning, which directly relates
the quantum backaction to the information acquired during
measurement. In Ref. [53] the quantum Bayesian formalism
for the circuit QED measurement of a qubit was developed
for the so-called “bad-cavity” limit, in which the damping
(bandwidth) κ of the measurement resonator is much larger
than the rate of qubit collapse (quantum backaction) due to
measurement. In this limit the qubit is practically unentangled
with the resonator and experiences two kinds of backaction due
to measurement. The “spooky” backaction (which can also
be called “quantum,” “informational,” or “nonunitary” [53])
moves the qubit state along the meridians of the Bloch sphere
and is directly related to the continuous information on the
qubit state (|0〉 or |1〉) obtained during the measurement. This
backaction does not have a physical mechanism, similarly to
the Einstein-Podolsky-Rosen-Bell example [2,3]. The other
type, the “phase” backaction (called “realistic,” “classical,”
or “unitary” backaction in [53]) has a physical mechanism:
fluctuation of the (ac Stark-shifted) qubit frequency due to
a fluctuating number of photons in the resonator. The phase
backaction moves the qubit state along the parallels of the
Bloch sphere. In spite of the clear physical mechanism, the
phase backaction also has some spookiness; for example,
it is possible to choose the qubit movement along the
parallels or meridians afterwards, by choosing the amplified
microwave quadrature [53] (this prediction has been confirmed
experimentally [11]).

In the present paper we extend the quantum Bayesian
formalism to the case when the bad-cavity limit is not
applicable. As we will see, in this case the evolution equations
remain practically the same as in the bad-cavity regime [53];
however, now they should be applied to the entangled qubit-
resonator system. In the derivation we will assume that
the qubit evolves only due to measurement; in particular,
we assume no Rabi oscillations. The Rabi oscillations can
be added later phenomenologically; however, such addition
is not really correct if the Rabi frequency is comparable
to or larger than the resonator damping κ . In this respect
the theory discussed here has the same limitation as the
“polaron frame approximation” usually used in the quantum
trajectory approach [22] (see also [59,60]). Actually, our
theory is equivalent to the quantum trajectory theory with this
approximation. However, the evolution equations are formally
different and have a simple and intuitive physical meaning.
We expect that our approach may have advantage over the
quantum trajectory theory in numerical simulations, similar
to the QPC-SET case. (In the latter case, the reason for the
numerical advantage was that the quantum trajectory equation
is essentially the lowest-order approximation in the time step,
while the quantum Bayesian evolution is the exact solution in
the absence of Rabi oscillations, and this permits using larger
time steps even in the presence of Rabi oscillations.)

Our derivation will be based on elementary quantum
mechanics. We will also need some basic facts related to
coherent states; for completeness, they are discussed in
Appendix A. The paper is mainly addressed to nonexperts in
continuous quantum measurement and nonexperts in quantum
optics; this is why we include brief discussion of facts well
known to experts and focus on simple logic. We hope that
our derivation is accessible at the advanced-undergraduate

level. While we discuss the circuit QED measurement of
one qubit, it is straightforward to extend the discussion to
the measurement of several qubits, including entanglement by
measurement [54,55].

The paper is organized in the following way. In Sec. II
we discuss the system and the model. In Sec. III we review
the results of Ref. [53] for the bad-cavity regime of circuit
QED measurement. The main section of this paper is Sec. IV,
in which we derive the quantum Bayesian formalism for
circuit QED measurement with a moderate bandwidth. We first
introduce a natural idea of “history tail”, which consists of the
microwave field emitted by the measurement resonator and
thus carries information about the resonator state at previous
time moments (Sec. IV A). Then we develop the Bayesian
formalism by applying a natural measurement procedure to
pieces of the history tail of short duration �t (Sec. IV C).
The textbook collapse due to this measurement leads to the
evolution of the entangled qubit-resonator state. We first
derive the results for phase-sensitive measurement (Sec. IV F)
and then for phase-preserving measurement (Sec. IV G). The
obtained evolution equations for short �t are also converted
into the differential form (Sec. IV H) and integrated for an
arbitrary long duration (Sec. IV I). We conclude in Sec. V.
Appendix A reviews basic facts related to coherent states. In
Appendix B we derive the formulas for the phase backaction in
the bad-cavity regime via a simple language based on vacuum
noise.

II. SYSTEM AND MODEL

We consider a superconducting qubit (transmon) measured
in the circuit QED setup (Fig. 1). The idea of the measure-
ment [50,51] is based on the dispersive coupling of the qubit
with a microwave resonator, whose frequency slightly changes
depending on whether the qubit is in the state |0〉 or |1〉 (both are
the eigenstates of qubit energy). This frequency shift affects the
phase and amplitude of a probing microwave, which is trans-
mitted through or reflected from the resonator (theoretically,
there is no significant difference between the transmission
and reflection configurations; however, in practice it is often
better to use reflection). The outgoing microwave is amplified,
and then the GHz-range signal is downconverted by mixing it
with the original microwave tone, so that the low-frequency
(�100-MHz) output of the IQ mixer provides information
about the qubit state. The rate of the information acquisition

resonator
qubit

microwave
generator

amp-
lifier

IQ mixer

I(t)

Q(t)

d r 

FIG. 1. Schematic of the circuit QED setup. Microwave field of
frequency ωd is transmitted through (or reflected from) the resonator,
whose frequency slightly changes, ωr ± χ , depending on the qubit
state. After amplification, the microwave is sent to the IQ mixer,
which produces two quadrature signals: I (t) and Q(t). In the case of
a phase-sensitive amplifier we define I (t) as the signal corresponding
to the amplified quadrature, while for a phase-preserving amplifier
we define I (t) as the quadrature carrying information about the qubit
state.
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is limited by the output noise, which is mainly determined by
the first amplifying stage (preamplifier). In recent years nearly
quantum-limited superconducting parametric amplifiers [61–
64] became the standard preamplifiers, replacing formerly
used cryogenic high-electron-mobility transistors (HEMTs),
which have a much higher noise level.

The Hamiltonian of the qubit interacting with the resonator
in the dispersive approximation [50] is

Hq&r/� = (ωq/2)σz + ωra
†a + χa†aσz, (1)

where ωq is the (effective) qubit frequency, ωr is the (effective)
resonator frequency, χ is the dispersive coupling, a† and a

are the creation and annihilation operators for the resonator
(so that n = a†a is the number of photons in the resonator),
and the Pauli operator σz = |1〉〈1| − |0〉〈0| acts on the qubit
state in the energy basis |1〉 and |0〉. As we see from this
Hamiltonian, the resonator frequency increases by 2χ when
the qubit state changes from |0〉 to |1〉; conversely, the qubit
frequency increases by 2χ per each additional photon in the
resonator (ac Stark shift). The typical value of |χ | is crudely
1 MHz, while the qubit and resonator frequencies are typically
between 4 and 9 GHz, with the detuning |�| of crudely 1 GHz,
where � = ωq − ωr.

The microwave drive of the resonator can be described by
the standard additional Hamiltonian

Hd/� = ε(t)e−iωdt a† + ε∗(t)eiωdt a, (2)

where ωd is the drive frequency and ε(t) is the prop-
erly normalized drive amplitude. [This form is the rotating
wave approximation (RWA) of the physical Hamiltonian
Re[ε(t)e−iωdt ](a + a†).] We do not consider the case when
the resonator is driven by a squeezed microwave or a squeezed
vacuum. We assume that the field in the resonator decays
with the rate κ/2 (so that the energy decays with the rate κ)
due to coupling with transmission lines and possibly due to
other mechanisms of decay (at zero temperature). For the
ensemble-averaged evolution, the effect of damping with rate
κ can be described via the standard Lindblad term in the master
equation; however, we will not use it, since we are interested
in evolution of an individual quantum system rather than an
ensemble.

Note that the derivation of the dispersive Hamiltonian (1)
for a transmon is somewhat involved (see, e.g., Ref. [52] and
Appendix of Ref. [65]) because at least three transmon levels
should be taken into account to find the coupling χ (four levels
are needed for the lowest-order dependence of χ on n). The
small-n value of the coupling χ can be approximated [65] as

χ = ωr

ωq

g2δq

�(� − δq)
, (3)

where g is the coupling in Jaynes-Cummings Hamiltonian
and δq = ωq − ωq,12 is the transmon anharmonicity (ωq,12 is
the transition frequency between transmon levels |1〉 and |2〉).
With increasing n the value of χ changes (as well as ωr),
and a better description of the evolution should be based on
the eigenlevels of the transmon-resonator system, rather than
bare levels [66]. In the present paper we do not take these
complications into account and use the simple Hamiltonian (1);
however, there is a natural way to include these effects

into our formalism phenomenologically. One more subtlety
is that the resonator damping κ leads to the qubit energy
relaxation [67,68] via the Purcell effect, which we do not
take into account. However, in many present-day experiments
this effect is suppressed by a Purcell filter [65,69,70], so
description by the simple Hamiltonian (1) again becomes a
good approximation.

In this paper we will be using the rotating frame, based
on the drive frequency ωd for the resonator and the frequency
ωq for the qubit. This essentially means that instead of fast-
oscillating coefficients in the laboratory-frame wave function
c0,n(t)|0,n〉 + c1,n(t)|1,n〉 (here n is the number of photons
in the resonator), we implicitly operate with slower-varying
coefficients c0,n(t)e−iωqt/2eiωdnt and c1,n(t)eiωqt/2eiωdnt . Equiv-
alently, we can change the Hamiltonian (1) and (2) to the
rotating-frame Hamiltonian

Hrot/� = (ωr − ωd)a†a + χa†aσz + εa† + ε∗a. (4)

Note that in Appendix A we use tilde signs for the rotating-
frame variables, which are omitted in the main text.

Our goal in this paper is to find (in a simple way)
the evolution of the qubit-resonator state in the process of
measurement. For that we assume that the qubit evolves only
due to measurement, so we explicitly assume the absence
of a Rabi drive applied to the qubit and absence of qubit
energy relaxation. Since the Hamiltonian (1) is of the quantum
nondemolition (QND) type [32], then if the initial qubit state is
|0〉, it will remain |0〉 during the whole measurement process.
Similarly, the initial qubit state |1〉 will remain |1〉. In these
two simple cases, evolution of the resonator state is decoupled
from the qubit, but the effective resonator frequency ωr ± χ

depends on the qubit state (the upper sign is for the qubit state
|1〉). Then the classical evolution of the resonator field α(t)
can be described in the standard RWA way as [71]

α̇± = −i(ωr ± χ − ωd)α± − κ

2
α± − iε, (5)

where the rotating frame is based on the drive frequency
ωd. The quantum evolution is described by exactly the same
equation [71], with the classical field state replaced by the
coherent state |α±(t)〉 (see Appendix A). Note that |α|2 = n̄

is the average number of photons in the resonator. Besides
the notation α±, we will interchangeably use a notation that
explicitly shows the corresponding qubit state,

α1 ≡ α+, α0 ≡ α−. (6)

From Eq. (5), we see that the resonator field depends on the
qubit state. In particular, the steady state is

α±,st = −iε

i(ωr ± χ − ωd) + κ/2
. (7)

(It is easy to see that these complex numbers always belong
to the circle in the complex plane, which is centered at −iε/κ

and passes through the origin.)
The outgoing field F in the transmission and reflection

configurations (Fig. 2) can be described as [71]

Ftrans = √
κoutα, Frefl = √

κoutα + iε√
κout

, (8)
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FIG. 2. Comparison between (a) transmission and (b) reflection
configurations. The incoming drive field Ad is mostly reflected, but
its small part enters the resonator, contributing to the field change
as α̇ = √

κinAd in the transmission case and α̇ = √
κoutAd in the

reflection case. For the resonator field, |α|2 is the average number
of photons, while for the propagating fields, |F |2 and |Ad|2 are the
average numbers of photons per second.

where κout is the resonator damping due to coupling with the
outgoing transmission line (κout � κ), and in this normaliza-
tion |F |2 is the average number of propagating photons per
second. (Note that the phase of F can be chosen arbitrarily;
in our choice the coefficient between F and α is real and
positive.) By combining Eqs. (7) and (8) it is easy to see
that in the case κout ≈ κ the reflection configuration operates
with smaller fields for the same response (and therefore larger
phase response) than the transmission configuration, and in
this sense it is preferable from the practical point of view.
However, for our purposes in this paper the two configurations
are equivalent (the well-defined difference iε/

√
κout can

theoretically be simply subtracted). We will implicitly assume
the transmission configuration (without loss of generality),
while all the results are applicable to both the transmission
and reflection configurations.

The outgoing microwave field F is then amplified (either
in a phase-preserving or a phase-sensitive way) and sent to the
IQ mixer (Fig. 1). A phase-sensitive amplifier amplifies only
a certain phase (quadrature) φa of the microwave field and
deamplifies the π/2-shifted phase (orthogonal quadrature).
For the complex number F this means amplification of only
a certain direction on the complex plane along eiφa . For a
faster qubit measurement, the obvious choice is to amplify
the quadrature that connects the complex numbers α0 and
α1, corresponding to qubit states |0〉 and |1〉. We will consider
amplification of an arbitrary quadrature, including this optimal
case. The IQ mixer produces two low-frequency signals, which
correspond to the real and imaginary parts of an amplified F ;
however, it is easy to rotate the axes of the complex plane
by using the linear combinations of the two outputs. Since
only one quadrature is amplified by a phase-sensitive detector,
there is no information in the mixer output corresponding
to the orthogonal quadrature. Therefore, the phase-sensitive
amplifier essentially produces only one output signal after the
mixer, which we will call I (t). Note that the amplified phase φa

can, in principle, vary in time; then we also vary the quadrature,
corresponding to I (t).

A phase-preserving amplifier equally amplifies any quadra-
ture, so both outputs of the IQ mixer are important. (Note that
usual nonparametric amplifiers, including HEMT, are phase
preserving.) In this case we will call I (t) the linear combination

of the outputs corresponding to the quadrature connecting α0

and α1, so that I (t) carries information about the measured
qubit state |0〉 or |1〉. The output signal for the orthogonal
quadrature will be called Q(t); it does not carry information
about the qubit state, but will still be important for producing
phase backaction. Since α0(t) and α1(t) evolve before reaching
steady values, we will correspondingly vary the quadratures
corresponding to I (t) and Q(t).

The main reason why phase-sensitive amplifiers are often
preferred for the qubit measurement is that their quantum
limitation for the output noise is twice smaller than that for
phase-preserving amplifiers [56–58]. The output noise of a
phase-sensitive amplifier should exceed the “half quantum,”
which exactly corresponds to the width of the ground state
of the oscillator, representing the amplified field (so that
the energy is �ωd/2). In other words, this is the amplified
vacuum noise of the coherent state of the field, and the ideal
phase-sensitive amplifier does not add its own noise (the output
noise can be smaller if a squeezed state is amplified). The
output noise power of a phase-preserving amplifier is at least
two half quanta: One comes from the amplified vacuum noise,
and one more is added by the amplifier [56–58].

As discussed above, the dynamics of the system is very
simple when the qubit is either in the state |0〉 or |1〉 during
the whole measurement process. The goal of this paper is
to describe the evolution when the initial qubit state is a
superposition c0|0〉 + c1|1〉 or, more generally, an arbitrary
density matrix ρ(0).

III. BAD-CAVITY LIMIT

In this section we review results of Ref. [53] for the
bad-cavity limit, which assumes κ � , where  is the
qubit ensemble dephasing rate due to measurement, discussed
below. In this case we can neglect transient evolution of
the resonator state, and there is practically no entanglement
between the qubit and the measurement resonator, because
the two steady states (7) are very close to each other,
|α1,st − α0,st| 	 1. Therefore, the evolution of the qubit state
can be considered by itself. It is assumed that parameters of
the measurement setup (κ , ε, etc.) do not change in time. We
review here the bad-cavity limit mainly for later comparison
with the more general case κ ∼ ; the derivation in the next
section does not rely on results discussed in this section.

Ensemble dephasing rate of the qubit in the bad-cavity
regime is [72]

 = 2χ Im(α∗
1,stα0,st) = κ

2
|α1,st − α0,st|2. (9)

We see that the condition κ �  is equivalent to |α1,st −
α0,st| 	 1. In the case when |χ | 	 κ , the ensemble dephas-
ing [50,72] can be expressed as [see Eq. (7)]

 = 8χ2n̄

κ

1

1 + [2(ωr − ωd)/κ]2
, (10)

and the ac Stark shift contribution δωq to the effective qubit
frequency ωq + δωq is [50,72]

δωq = 2χn̄. (11)
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If |χ | is comparable to κ (but still  	 κ), then Eqs. (10)
and (11) should be modified (see Sec. IV B), but the Bayesian
formalism reviewed in this section does not change.

A. Phase-sensitive amplifier

Evolution of the qubit density matrix ρ(t) due to measure-
ment of an arbitrary duration τ can be described by simple
equations [53],

ρ11(t + τ )

ρ00(t + τ )
= ρ11(t)

ρ00(t)
exp

[
Ĩm(τ )�I

D

]
, (12)

ρ10(t + τ )

ρ10(t)
=

√
ρ11(t + τ )ρ00(t + τ )√

ρ11(t)ρ00(t)

× exp[−iKĨm(τ )τ ]e−γ τ e−iδωqτ , (13)

where

Ĩm(τ ) = Im(τ ) − I0 + I1

2
, Im(τ ) = 1

τ

∫ t+τ

t

I (t ′)dt ′, (14)

so that Im is the measured output signal I (t) averaged over the
time interval [t,t + τ ], while for Ĩm we also subtract the mean
value (I0 + I1)/2, with I0 and I1 being the average output
signals, corresponding to the qubit states |0〉 and |1〉. The
measurement response is

�I = I1 − I0 = �Imax cos φd, (15)

φd = φa − arg(α1,st − α0,st), (16)

where φd is the phase difference between the amplified quadra-
ture φa and the optimal quadrature φopt = arg(α1,st − α0,st),
which gives the largest response �Imax. The variance of Ĩm(τ )
due to the amplifier noise is

D = SI

2τ
= (�I )2τm

4τ
, (17)

where SI is the single-sided spectral density of the noise
[for different definitions of the spectral density, Eq. (17)
should be changed correspondingly] and τm is the so-called
“measurement time”: the time needed to distinguish the states
|0〉 and |1〉 with the signal-to-noise ratio of 1. The phase
backaction depends on the coefficient K , which equals

K = �Imax

SI

sin φd = �Imax

2Dτ
sin φd. (18)

The dephasing rate γ is due to nonideality of the measurement,

γ =  − (�Imax)2

4SI

=  − (�Imax)2

8Dτ
, (19)

where  is the qubit ensemble dephasing [see Eqs. (9)
and (10)]. The quantum efficiency of the measurement process
can be introduced in two different ways,

η = 1 − γ


= (�Imax)2

8Dτ
= ηampηcol, η̃ = η cos2 φd, (20)

where η (0 � η � 1) takes into account quantum efficiency
ηamp of the phase-sensitive amplifier and efficiency ηcol of
the microwave signal collection, while η̃ also includes the
effect of choosing a nonoptimal quadrature for amplification.

Here ηcol = κcol/κ is the ratio of the microwave energy
reaching amplifier to the total energy loss by the resonator,
so that κcol/κout describes the loss in the transmission line
before reaching the amplifier. The amplifier efficiency ηamp =
SI,q.l./SI is the ratio between the output noise SI,q.l. of an ideal
quantum-limited amplification chain to the actual output noise
SI . The last term in Eq. (13) is due to the ac Stark shift δωq

given by Eq. (11) (note that in Ref. [53] the rotating frame was
already accounting for this term and the equation was written
for the conjugate variable ρ01). Note that ρ00 + ρ11 = 1 and
therefore ρ00 = (1 + ρ11/ρ00)−1.

Equations (12)–(14) can be used to find the qubit evolution
in an experiment by using experimental output signal record
I (t); in numerical simulations Ĩm(τ ) can be picked randomly
from the probability density distribution

P (Ĩm) = ρ00(t)P (Ĩm|0) + ρ11(t)P (Ĩm|1), (21)

P (Ĩm|j ) = 1√
2πD

exp

{
− [Ĩm + (−1)j (�I/2)]2

2D

}
, (22)

where j = 0,1 and P (Ĩm|j ) is the standard Gaussian distri-
bution in the case when the qubit is in the state |j 〉. For an
infinitesimally small averaging time τ , this is equivalent to
using

I (t) = I0 + I1

2
+ �I

2
[ρ11(t) − ρ00(t)] + ξI (t), SξI

= SI ,

(23)

where ξI (t) is the white noise with spectral density SI .
The qubit evolution equations (12) and (13) have a very

simple physical meaning. The evolution (12) of the diagonal
matrix elements of the density matrix is the classical Bayesian
update for the probabilities,

ρjj (t + τ ) = ρjj (t)P (Ĩm|j )

Norm
, (24)

where P (Ĩm|j ) is the likelihood, given by Eq. (22). Note
that another form of Eq. (12) in terms of the noncentered
measurement result Im is

ρ11(t + τ )

ρ00(t + τ )
= ρ11(t) exp[−(Im − I1)2/2D]

ρ00(t) exp[−(Im − I0)2/2D]
. (25)

The evolution (13) of the off-diagonal matrix element contains
the natural term due to change of the diagonal elements
(conservation of relative purity), the phase backaction term,
decoherence due to nonideality, and contribution from the ac
Stark shift. The phase backaction has a natural mechanism:
When measuring a nonoptimal quadrature, φd �= 0, the output
signal gives us information about the fluctuating number of
photons in the resonator and therefore the fluctuating ac Stark
shift. The factor K in Eq. (13) is the coefficient characterizing
this linear relation between the ac Stark shift and output signal
fluctuations.

The evolution equations (12) and (13) have been derived in
Ref. [53] in the following way. The Bayesian evolution (12)
of the diagonal matrix elements was essentially postulated
from the necessary correspondence between the classical and
quantum evolution. This follows from common sense as much
as the standard collapse postulate in quantum mechanics.
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For the off-diagonal elements, the logic of the derivation
(sketched below) was essentially the same as in the first
derivation [29] for measurement by a QPC. Using the general
inequality |ρ10| � √

ρ11ρ00 and evolution (12) for the diagonal
elements, it is easy to derive inequality for the ensemble
dephasing,  � (�I )2/4SI . In the quantum-limited case [in
this case |�α| = 1 is resolved with signal-to-noise ratio of
1 after time 1/κ , and therefore SI = Smin = (�Imax)2κ[1 +
4(ωr − ωd)2/κ2]/(32χ2n̄)] and for φd = 0, the lower bound
of this inequality for  coincides with the actual value (10).
Therefore, in this case the evolution of ρ10 should be precisely
the first term in Eq. (13) and possibly a result-independent
phase (which is naturally associated with the qubit frequency
shift in the last term); otherwise, the ensemble dephasing
would be larger than in Eq. (10). Thus, in the ideal case
Eqs. (12) and (13) have been derived logically by comparing
unavoidable evolution due to acquired information with the
ensemble dephasing.

In the nonoptimal case (φd �= 0), the derivation in Ref. [53]
took into account the phase backaction by explicitly analyzing
the information on the fluctuating photon number in the
resonator provided by the measurement result Ĩm. In this way
Eq. (18) for the correlation factor K was obtained, leading
to the term with K in Eq. (13). Finally, the term e−γ τ in
Eq. (13) was obtained by averaging over the extra noise from a
nonideal amplifier [73] and averaging over the signal that was
lost due to imperfect microwave collection. This is how the
qubit evolution equations (12) and (13) have been obtained in
Ref. [53].

Actually, the derivation for the phase backaction coefficient
K in Ref. [53] was presented only for the case of resonant
microwave frequency, ωd = ωr. In Appendix B we show the
derivation, which is still valid in the case of a significant
detuning, |ωd − ωr| � κ . This derivation is based on an
analysis of the effect of vacuum noise entering the resonator
from the transmission line. In this analysis the vacuum noise
is treated essentially classically, consistent with the Poisson
statistics n̄ ± √

n̄ for the photon number.
Note that averaging of the evolution equations (12) and (13)

over random Ĩm with the probability distribution (21) produces
ensemble-averaged equations

ρjj (t + τ ) = ρjj (t), (26)

ρ10(t + τ ) = ρ10(t)e−τ e−iδωqτ , (27)

in which there is no dependence on the measured phase φd (as
required by causality) because

(�I )2

4SI

+ K2SI

4
= (�Imax)2

4SI

=  − γ. (28)

Let us briefly discuss the role of the “weak-response”
condition |χ | 	 κ in the formalism reviewed in this section.
In the case of not too small a number of photons in the
resonator, n̄ � 1, this inequality follows from the bad-cavity
condition |α1,st − α0,st| 	 1, and therefore is not needed as
an additional condition. However, for n̄0,1 	 1 it is possible
to have |α1,st − α0,st| 	 1 even when |χ | � κ . In this case
the Bayesian formalism (12)–(22) is still applicable, but
the ensemble dephasing  and ac Stark shift δωq are not
necessarily given by Eqs. (10) and (11), in particular, because

n̄0 and n̄1 may be significantly different, |n̄1 − n̄0| ∼ n̄1 + n̄0.
The formulas for  and δωq in this case are given in Ref. [72]
and also derived in Sec. IV B [ is given by Eq. (9), while δωq

is given by Eq. (61)].
Note that the Bayesian evolution equations (12) and (13)

are exactly the same as for the continuous qubit measurement
by QPC or SET [29,30,38]. However, the dependence (15)
and (18) of the response �I and phase backaction coefficient
K on the measured quadrature φd is a specific feature of the
circuit QED (or cavity QED) setup.

B. Phase-preserving amplifier

As was discussed in Sec. II, in the case of a phase-preserving
amplifier we choose I (t) to be the output signal, corresponding
to the optimal quadrature φopt = arg(α1,st − α0,st), while the
output Q(t) corresponds to the orthogonal quadrature φopt +
π/2. Therefore, φd = 0 for I (t) and φd = π/2 for Q(t).

The qubit state evolution due to a phase-preserving
measurement for an arbitrary duration τ is described by
equations [53]

ρ11(t + τ )

ρ00(t + τ )
= ρ11(t)

ρ00(t)
exp

[
Ĩm(τ )�I

D

]
, (29)

ρ10(t + τ )

ρ10(t)
=

√
ρ11(t + τ )ρ00(t + τ )√

ρ11(t)ρ00(t)

× exp[−iKQ̃m(τ )τ ]e−γ τ e−iδωqτ , (30)

which have exactly the same form as Eqs. (12) and (13), except
Ĩm(τ ) in Eq. (13) is replaced with Q̃m(τ ) in Eq. (30). The
measurement result Ĩm(τ ) is given by Eq. (14), and similarly,

Q̃m(τ ) = 1

τ

∫ t+τ

t

Q(t ′)dt ′ − Q0, (31)

with equal average values, Q1 = Q0, for the two qubit states.
Since I (t) and Q(t) are equally amplified, the variances of
Ĩm(τ ) and Q̃m(τ ) due to amplifier noise are both equal to

D = SI

2τ
, SQ = SI . (32)

The phase backaction is now caused by Q̃m(τ ), and the
coefficient K is the same as in Eq. (18) for φd = π/2,

K = �I

SI

= �I

2Dτ
, �I = I1 − I0. (33)

The dephasing rate γ due to nonideality is

γ =  − 2
(�I )2

4SI

=  − (�I )2

4Dτ
, (34)

where ensemble dephasing  is still given by Eqs. (9) and (10)
(it cannot depend on the detector because of causality), and
the extra factor of 2 is related to equal contributions due to
fluctuations of I (t) and Q(t). The quantum efficiency can again
be defined in two different ways,

η = 1 − γ


= ηampηcol, η̃ = η

2
= η̃ampηcol, (35)

where η (0 � η � 1) compares the measurement with the ideal
phase-preserving case, while η̃ and η̃amp compare the operation
using only I (t) channel with the ideal phase-sensitive case
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(η̃ � η̃amp � 1/2 because of twice larger noise in an ideal
phase-preserving amplifier).

Equations (29) and (30) describe the qubit evolution when
the signals I (t) and Q(t) are obtained from an experiment,
while in numerical simulations Ĩm(τ ) can be generated using
Eqs. (21) and (22), while Q̃m(τ ) can be picked from the
Gaussian probability distribution

P (Q̃m) = 1√
2πD

exp

[
−Q̃2

m

2D

]
. (36)

For infinitesimally small τ , the signal I (t) can also be
generated using Eq. (23), and for Q(t) we can use

Q(t) = Q0 + ξQ(t), SξQ
= SQ = SI , (37)

with equal spectral densities, SξQ
= SξI

, of uncorrelated noise
in I (t) and Q(t) channels.

Equations (29) and (30) have been derived in Ref. [53]
in three different ways, leading to the same result. In the
first derivation, Eq. (29) has been again postulated from
the necessary correspondence with classical evolution of
probability, and the phase backaction coefficient K in Eq. (33)
has been calculated from information on fluctuation of photon
number, provided by Q(t). This gives the inequality  �
2(�I )2/4SI , whose lower bound in the ideal case coincides
with the actual value (10). Thus, in the ideal case Eqs. (29)
and (30) can be derived logically, while the nonideal case
(η < 1) can be analyzed by averaging over the extra noise of
the amplifier (ηamp < 1) and over information contained in the
lost fraction of the microwave signal (ηcol < 1).

In the second derivation [53], Eqs. (29) and (30) have been
obtained from Eqs. (12) and (13) by considering a phase-
preserving amplifier as a phase-sensitive amplifier with rapidly
rotating amplified phase φa, so that the difference φd from the
optimal phase is also changing. Then averaging the evolution in
Eqs. (12) and (13) over the period of phase rotation, we obtain
Eqs. (29) and (30). Finally, the third derivation in Ref. [53]
has been based on considering a phase-preserving amplifier
as two phase-sensitive amplifiers, which amplify orthogonal
quadratures in two microwave channels, obtained from the
microwave signal by using a symmetric beam splitter. Then
using Eqs. (12) and (13) for each channel, we again obtain
Eqs. (29) and (30).

Note that since in the bad-cavity regime the qubit is
practically not entangled with the measurement resonator, it
is easy to include the qubit evolution due to Rabi oscillations,
energy relaxation, etc. (this extra evolution should be much
slower than κ , but can be slower than, comparable to, or faster
than ). For that we need to take the derivative of the evolution
equations (12) and (13) for the phase-sensitive case or Eqs. (29)
and (30) for the phase-preserving case and simply add the
terms due to other mechanisms of evolution (this is equivalent
to interleaving the both types of evolution). As always [30,74],
in taking the derivative it is important to specify whether the
Itô or Stratonovich definition of the derivative is used.

IV. MODERATE BANDWIDTH

Now let us discuss the main subject of this paper: the
Bayesian formalism for continuous qubit measurement in the
circuit QED setup (Fig. 1) in the case when the bad-cavity limit

is not applicable. Therefore, we now assume that the resonator
damping rate κ is comparable to the speed of the qubit
evolution due to measurement backaction, which can be
characterized by the qubit ensemble dephasing . In this case
there is significant entanglement between the qubit and the
resonator, so we should consider the evolution of the combined
qubit-resonator system. Also, since the typical measurement
time is comparable to κ−1, our formalism should focus on
the transient evolution. The parameters of the measurement
setup (ε, φa, κ , etc.) are allowed to change in time (this change
should be much slower than ωd for RWA to be valid, but can
be comparable to or even faster than κ).

In general, this problem is rather complicated, but we use a
simplifying assumption: We assume that the qubit evolution is
only due to measurement; i.e., there are no Rabi oscillations,
qubit energy relaxation, etc. In practice, this means that the
frequency of Rabi oscillations and rate of energy relaxation
should be much smaller than κ (then the extra evolution can
be added phenomenologically, as discussed in the previous
section).

We will assume that the initial state of the qubit-resonator
system is unentangled, and the resonator starts in a coherent
state |αin〉,

|ψ(0)〉 = (c0|0〉 + c1|1〉) ⊗ |αin〉, (38)

where |c0|2 + |c1|2 = 1 and, for example, |αin〉 is vacuum.
Generalization to a mixed initial state,

ρq&r(0) = ρq,in ⊗ |αin〉〈αin|, (39)

or a slightly more general state [see Eq. (95) below] will
be straightforward. In the analysis we will use the rotating
frame, corresponding to the Hamiltonian (4). We will first
discuss a simple general point of view, which describes the
evolution due to measurement, then derive equations for the
ensemble-averaged evolution, and then discuss the evolution
during an individual realization of the measurement process.
Until Sec. IV F we will assume the ideal case, in particular
κout = κ; see Fig. 2(a), in which we need to assume κin 	 κout.

A. Idea of a “history tail”

Suppose the initial state of the qubit is |0〉. Since the
measurement is of the QND type and the qubit does not evolve
by itself, it will remain in the state |0〉, and since the resonator
is initially in a coherent state, its state will remain to be an
(evolving) coherent state (see Appendix A). Therefore, the
qubit-resonator system will evolve in the rotating frame as

|ψ(t)〉 = |0〉e−iϕ0(t)|α0(t)〉, (40)

where the coherent-state amplitude α0(t) and the overall
phase ϕ0(t) evolve according to Eqs. (A24) and (A25) with
the resonator frequency ωr − χ and drive (rotating frame)
frequency ωd,

α̇0 = −i(ωr − χ − ωd)α0 − κ

2
α0 − iε, (41)

ϕ̇0 = Re(ε∗α0). (42)

Here the drive amplitude ε can be time dependent and the
damping κ can, in general, be also time dependent. Note that
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FIG. 3. Illustration of the history-tail idea. Since the qubit does
not evolve by itself, we can think in terms of superposition [Eq. (46)]
of two evolutions of the resonator state [|α0(t)〉 and |α1(t)〉], which
leave the “history record” in the form of propagating field, leaked
from the resonator. We call this propagating field a history tail. The
quantum Bayesian formalism developed in this paper is based on
measuring small pieces of the history tail in the textbook way. The
corresponding state collapse leads to change of the coefficients in the
superposition, which is the evolution due to measurement.

the evolution (42) of the overall phase is often not considered in
textbooks, but for us it is very important. Derivation of Eq. (42)
from the Schrödinger equation with the Hamiltonian (4) is very
simple.

Now let us consider a larger physical system, which
includes the field leaking from the resonator to the transmission
line (actually, we also necessarily need to consider the
incoming field from the transmission line, but we assume that
it is always vacuum). This larger system keeps a record of
the previous evolution in a form of a “flying away tail” (a
propagating microwave), which we will call a “history tail”
(Fig. 3). Let us divide this tail into sufficiently short pieces of
duration �t (�t 	 κ−1); each of them will also be a coherent
state, as follows from the property 2.6 discussed in Appendix A
for a beam splitter (in our case a leaking “mirror” at the end of
the resonator). The mth piece of the history tail (counting back
in time) will be |α0(t − m�t)

√
κ�t〉, which is the resonator

state at time t − m�t , passed through the beam splitter with
transmission amplitude

√
κ�t [this value follows from the

energy conservation,
√

1 − e−κ�t ≈ √
κ�t]. Therefore, the

wave function, including the history tail is

|�(t)〉 = e−iϕ0(t)|0〉|α0(t)〉
∏
m

|α0(t − m�t)
√

κ�t〉. (43)

If κ depends on time, then the factor
√

κ�t in this equation
should be replaced with

√
κ(t − m�t)�t . Note that the

coherent states in the tail are unentangled with each other
and with the resonator state (see property 2.6 in Appendix A).
Also note that the number of terms in the direct product (43)
increases with time; this seems unphysical, but it is only a
matter of notation; we can keep the number of terms constant
by adding vacuum states of the pieces of field incoming from
the transmission line.

If the qubit is initially in the state |1〉, then it remains in
|1〉, so that the wave function of the system including the
history tail is given by Eq. (43), with |0〉 replaced with |1〉,
α0 replaced with α1, and ϕ0 replaced with ϕ1, where α1(t)
and ϕ1(t) evolve according to Eqs. (A24) and (A25) with the
resonator frequency ωr + χ ,

α̇1 = −i(ωr + χ − ωd)α1 − κ

2
α1 − iε, (44)

ϕ̇1 = Re(ε∗α1). (45)

Now let us make a simple but very important logical step
in the derivation. Since the qubit does not evolve by itself, we
can consider two evolutions at the same time: for the qubit
in the state |0〉 and in the state |1〉, so that the coefficients in
the initial superposition (38) do not change in time (Fig. 3).
This follows from the general linearity of quantum mechanics
and somewhat resembles the “many worlds” interpretation.
Therefore, for the initial state (38) of the qubit-resonator
system we obtain the wave-function evolution (including the
flying away history tail)

|�(t)〉 = c0e
−iϕ0(t)|0〉|α0(t)〉

∏
m

|α0(t − m�t)
√

κ�t〉

+ c1e
−iϕ1(t)|1〉|α1(t)〉

∏
m

|α1(t − m�t)
√

κ�t〉,

(46)

where c0 and c1 are constant in time, while α0, ϕ0, α1, and
ϕ1 evolve according to Eqs. (41), (42), (44), and (45), starting
with α0(0) = α1(0) = αin and ϕ0(0) = ϕ1(0) = 0.

The approach to qubit measurement via the wave-function
evolution in Eq. (46) is physically transparent and quite
powerful. In particular, it will easily allow us to describe
evolution of the qubit-resonator system in the process of
measurement by applying the textbook collapse postulate to
measurement of the tail pieces (Fig. 3). However, let us first
discuss the ensemble-averaged evolution.

B. Ensemble-averaged evolution

If the result of the tail measurement is not taken into
account, we need to average the quantum state over all
possible measurement results, which is equivalent to tracing
the state (46) over the tail. This leads to a density operator in the
qubit-resonator Hilbert space, ρq&r = ρ

q&r
00 + ρ

q&r
11 + ρ

q&r
01 +

ρ
q&r
10 , in which the parts diagonal in the qubit subspace are

ρ
q&r
00 (t) = |c0|2|0〉〈0| ⊗ |α0(t)〉〈α0(t)|, (47)

ρ
q&r
11 (t) = |c1|2|1〉〈1| ⊗ |α1(t)〉〈α1(t)|, (48)

while the off-diagonal parts contain the inner product of the
tails for the two different evolutions,

ρ
q&r
10 (t) = c1c

∗
0e

−i[ϕ1(t)−ϕ0(t)]|1〉〈0| ⊗ |α1(t)〉〈α0(t)|
×

∏
m

〈α0(t − m�t)
√

κ�t |α1(t − m�t)
√

κ�t〉,

(49)

and similarly for ρ
q&r
01 = (ρq&r

10 )†. The inner product for each
time piece �t is given by Eq. (A9) in Appendix A, so that we
find

ρ
q&r
10 (t) = c1c

∗
0e

−i[ϕ1(t)−ϕ0(t)]|1〉〈0| ⊗ |α1(t)〉〈α0(t)|

× exp

[
−

∫ t

0

κ

2
|α1(t ′) − α0(t ′)|2dt ′

]

× exp

{
−i

∫ t

0
κIm[α∗

1 (t ′)α0(t ′)]dt ′
}
. (50)
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In this equation the second line obviously describes
dephasing with the rate

d(t) = κ

2
|α1(t) − α0(t)|2, (51)

which is directly related to distinguishability of the field emit-
ted into the transmission line and therefore to the information
that can, in principle, be obtained from measurement. The
third line in Eq. (50) is the changing phase factor which can
be ascribed to the shift of the qubit frequency in the process of
measurement,

δωq,1(t) = κIm[α∗
1 (t)α0(t)]. (52)

However, a similar frequency shift comes from the term
e−i[ϕ1(t)−ϕ0(t)] in Eq. (50); using Eqs. (42) and (45), we obtain
the corresponding value

δωq,2(t) = Re{ε∗(t)[α1(t) − α0(t)]}, (53)

so that the total frequency shift of the qubit (which can be
called the ac Stark shift) is

δωq,s = δωq,1 + δωq,2. (54)

Thus, the ensemble-averaged evolution of the qubit-resonator
state can be described (neglecting the overall phase) by the
wave function

|ψ(t)〉 = c0|0〉|α0(t)〉 + e−i
∫ t

0 δωq,s(t ′)dt ′c1|1〉|α1(t)〉, (55)

subjected to dephasing d(t) between the two components.
If we also want to trace the state over the resonator, then we

have an additional inner product 〈α0(t)|α1(t)〉, which changes
the dephasing rate (51) by

�(t) = d

dt

[
1

2
|α1(t) − α0(t)|2

]
(56)

(this change can be positive or negative) and introduces
additional contribution to the qubit frequency shift,

δωq,3(t) = d

dt
Im[α∗

1 (t)α0(t)], (57)

as follows from Eq. (A9). The qubit-only density matrix
elements then become

ρ
q
00(t) = |c0|2, ρ

q
11(t) = |c1|2, (58)

ρ
q
10(t) = c1c

∗
0 exp

{
−

∫ t

0
[d(t ′) + �(t ′)]dt ′

}

× exp

{
− i

∫ t

0
[δωq,s(t

′) + δωq,3(t ′)]dt ′
}
. (59)

[Note that ρ
q
ij are numbers, while ρ

q&r
ij in Eqs. (47)–(50) are

operators.] Using Eqs. (41) and (44), it is easy to show that

d(t) + �(t) = 2χ Im[α∗
1 (t)α0(t)], (60)

δωq,s(t) + δωq,3(t) = 2χRe[α∗
1 (t)α0(t)], (61)

which coincide with the results of Refs. [22,72] for the qubit
dephasing and ac Stark shift.

Note that the results (51) and (60) for the dephasing rate
coincide in the steady state (because then � = 0), but they are
different during the transient evolution. The rate (51) reflects

the information loss due to emitted field, while the rate (60)
also includes the effect from changing entanglement between
the qubit and the resonator. Similarly, the results (54) and (61)
for the ac Stark shift coincide in the steady state (then δωq,3 =
0), but differ during transients. Equation (54) is applicable to
the entangled qubit-resonator state, while Eq. (61) assumes
tracing over the resonator state.

Also note that all these results for the dephasing rate and
ac Stark shift are applicable only in the case of a nonevolving
qubit (i.e., when the evolution is only due to measurement).
Therefore, they are applicable to the Ramsey sequence (with
short pulses), but, strictly speaking, not applicable to Rabi
oscillations, spectroscopic measurement of the ac Stark shift,
etc. For the echo sequence our results are not applicable
directly, but the exact results can still be easily obtained using
the same derivation (assuming sufficiently short pulses applied
to the qubit).

In the bad-cavity limit we can neglect the transients and use
the steady-state values α1,st and α0,st. If additionally |χ | 	 κ ,
then Eqs. (60) and (61) reduce to Eqs. (10) and (11). If |χ | � κ ,
then for the qubit dephasing and ac Stark shift in Sec. III we
need to use steady-state versions of Eqs. (60) and (61) or,
equivalently, Eqs. (51) and (54).

C. Main idea for the state update

To describe an individual measurement realization with a
random result and evolution depending on this result, we will
measure the pieces of the history tail in Eq. (46); see Fig. 3.
Note that each piece can be measured in a different way, so the
measurement properties can be changing in time. Moreover,
in general, the sequence of measurement of the pieces can
also be arbitrary (e.g., in a “delayed-choice” experiment). We
are interested in describing homodyne measurement with a
phase-sensitive or phase-preserving amplifier.

Let us start with describing an ideal (with perfect quantum
efficiency) phase-sensitive homodyne measurement. We will
use the following physical model to describe such a measure-
ment.

(1) A large coherent-state field αp (|αp| � 1) from a pump
is added to the piece of the tail.

(2) The number of photons n is measured in the resulting
state.

(3) For a particular random n obtained in this measure-
ment, the wave function is collapsed in the standard textbook
way.

This procedure describes well the optical homodyne mea-
surement (note that the photon number does not actually
need to be resolved with single-photon precision since the
fluctuations are significant). It is also similar to what is
done experimentally in a phase-sensitive superconducting
parametric amplifier. For example, in Refs. [9,63] the phase-
sensitive parametric amplifier works by adding a pump
microwave to the microwave leaked from the resonator using
a directional coupler (a microwave analog of a beam splitter).
Then the resulting microwave is sent to a nonlinear oscillator,
whose frequency depends on the oscillation amplitude. This
frequency change is then sensed via the corresponding phase
change at the mixer. Thus, we measure the power of the
pump with added signal, i.e., within the time interval �t we
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essentially measure the corresponding number of photons n

(again, single-photon precision in measuring n is not needed).
In a more complicated case of sideband pumping (double
pumping) of the parametric amplifier [11,14,55], the added
resonant pump wave is modulated in amplitude; however, the
general principle remains practically the same. The case of a
parametric pumping at the doubled frequency is different, but
it is still practically equivalent to the measurement described
by our model.

Note that in order to add the field αp, we need a beam splitter
(directional coupler) which almost fully passes the signal, so
the applied pump field should be much larger than the already
large field αp. Also note that a small part of the signal in
this case will be lost, so that perfect quantum efficiency is
impossible. However, we will not consider these details and
will also not consider ways to go around these problems (e.g.,
by using a balanced homodyne detection).

It is rather simple to analyze the measurement using our
model. For describing measurement of the mth piece of the
tail, let us rewrite Eq. (46) as

|�〉 = c0|ψ0〉|α0,t〉 + c1|ψ1〉|α1,t〉, (62)

|αj,t〉 = |αj (t − m�t)
√

κ�t〉, j = 0,1, (63)

|ψj 〉 = e−iϕj |j 〉|αj 〉
∏
k �=m

|αj (t − k�t)
√

κ�t〉, (64)

where |αj,t〉 is the measured mth piece of the tail, while
remaining terms in Eq. (46) are denoted as the normalized
wave functions |ψj 〉. [Actually, if we measure each piece
of the tail immediately as it emerges, then it is sufficient to
consider |ψj 〉 = e−iϕj |j 〉|αj 〉, which contain only the qubit
and resonator states and do not contain unmeasured pieces
of the tail. However, with Eqs. (62)–(64) we can, in general,
consider a delayed-choice version of the measurement.]

After the first step in the procedure (addition of
the pump field αp), the tail pieces |αj,t〉 become |αp +
αj,t〉 exp[−iIm(α∗

pαj,t)] [see Eq. (A11) for displacement by

operator D̂(αp)]; therefore, the state (62) becomes

|�〉 = c0|ψ0〉e−iIm(α∗
pα0,t)|αp + α0,t〉

+ c1|ψ1〉e−iIm(α∗
p α1,t)|αp + α1,t〉. (65)

At the second step of our procedure we need to measure
the number of photons n in the pump-plus-piece-of-tail part
of the state (65). The probability distribution for obtaining a
particular n is

P (n) = |c0|2e−|αp+α0,t|2 |αp + α0,t|2n/n!

+ |c1|2e−|αp+α1,t|2 |αp + α1,t|2n/n!, (66)

as follows from Eqs. (65) and (A7). This distribution is
normalized,

∑
n P (n) = 1, because |c0|2 + |c1|2 = 1.

The third step of the procedure is the orthodox collapse
of the state (65) onto the particular (random) measurement
result n. This means that instead of the states |αp + α0,t〉 in
Eq. (65), we pick only the amplitude corresponding to |n〉 and
then renormalize the wave function (65), so that it becomes

[see Eq. (A4)]

|�̃〉 = (c̃0|ψ0〉 + c̃1|ψ1〉)|n〉, (67)

c̃j = cj e
−iIm(α∗

pαj,t)e− 1
2 |αp+αj,t|2 (αp + αj,t)n

Norm
, (68)

where the normalization Norm ensures that |c̃0|2 + |c̃1|2 = 1.
Note that the the overall phase of |�̃〉 is not important.

As we see, the “quantum backaction” due to the collapse
changes the amplitudes of the premeasured state (62): c0 →
c̃0 and c1 → c̃1. This is the main idea for the description of
the evolution due to measurement in the quantum Bayesian
formalism. The procedure can be applied to measurement of
other pieces of the history tail in the same way.

D. Gaussian approximation

Let us transform Eqs. (66) and (68) into a more useful
form, using the assumption of a large pump amplitude,
|αp| � 1 and |αp| � |αj,t|. In this case we can use the
Gaussian approximation for the coherent states |αp + αj,t〉 [see
Eq. (A4)],

|αp + αj,t〉 ≈
∞∑

n=0

√
exp[−(n − n̄j )2/2σ 2]√

2πσ 2

× exp[inarg(αp + αj,t)]|n〉, (69)

n̄j = |αp|2 + 2Re(α∗
pαj,t) + |αj,t|2

≈ |αp|2 + 2Re(α∗
pαj,t), (70)

σ = |αp| � 1, (71)

where n̄j is the average number of photons for the state |αp +
αj,t〉 (we can neglect the last term |αj,t|2 for n̄j since |αj,t| 	
|αp|) and σ = √

n̄ is the standard deviation. Note that we
use the same σ for both states because |n̄1 − n̄0| 	 n̄j . Also
note that for exact normalization of the Gaussian state (69) at
finite |αp| the denominator

√
2πσ 2 should be slightly changed;

however, this is not important for the derivation.
The probability distribution (66) for measuring n photons

in this case becomes

P (n) = |c0|2e−(n−n̄0)2/2σ 2

√
2πσ 2

+ |c1|2e−(n−n̄1)2/2σ 2

√
2πσ 2

, (72)

and the updated amplitudes c̃0 and c̃1 given by Eq. (68) become

c̃j = cj e
−iIm(α∗

p αj,t)e−(n−n̄j )2/4σ 2
einarg(αp+αj,t)

Norm
. (73)

We see that if the measurement result n is closer to n̄0 than to
n̄1, then the amplitude c̃0 increases (by absolute value) in this
update. This is the expected feature of the quantum Bayesian
formalism: If the measurement result is more consistent with
the qubit state |0〉, then the amplitude of this state increases.

To simplify the phase factor in Eq. (73), let us write
einarg(αp+αj,t) as einarg(αp)einarg(1+αj,t/αp), and then expand arg(1 +
αj,t/αp) to the second order, so that

einarg(αp+αj,t) = einarg(αp)einIm(αj,t/αp)[1−Re(αj,t/αp)] (74)
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(we need the second order because αj,t ∝ √
�t and we wish to

keep the terms linear in �t). The j -independent phase factor
einarg(αp) can be ignored as an overall phase. In the remaining
phase in Eq. (74) let us represent n as n = n̄c + (n − n̄c) with
the center point

n̄c ≡ (n̄0 + n̄1)/2. (75)

From Eq. (70), neglecting the term |αj,t|2, we find n̄c = |αp|2 +
Re[α∗

p (α0,t + α1,t)].
If n = n̄c, then the phase in Eq. (73) (neglecting the over-

all phase) is −Im(α∗
pαj,t) + n̄cIm(αj,t/αp)[1 − Re(αj,t/αp)],

which can be written (neglecting the terms of order α−1
p )

as Im(αj,t/αp)Re[(α0,t + α1,t − αj,t)α∗
p ]. Moving the phase

difference to j = 1 (i.e., considering the phase for j = 0 as an
unimportant overall phase), we find that the phase evolution
in Eq. (73) can be described by multiplying c1 by e−iIm(α∗

1,tα0,t).
This is exactly what we would expect from the phase of the
inner product 〈α0,t|α1,t〉, and it is fully consistent with the
result (52) for the ac Stark shift contribution. Thus, for n = n̄c

the phase shift produced by the collapse is the same as the
ensemble-averaged phase shift.

When n �= n̄c, there is an additional phase factor
ei(n−n̄c)Im(αj,t/αp) in Eqs. (73) and (74) [we now use 1 −
Re(αj,t/αp) ≈ 1, neglecting a phase correction of order α−1

p ].
Moving the phase difference to j = 1, we find that c1 should
be additionally multiplied by e−i(n−n̄c)Im[(α0,t−α1,t)/αp].

Thus, the evolution due to measurement [see Eqs. (62), (67),
and (73)] can be described as

c̃0 = c0 exp[−(n − n̄0)2/4σ 2]

Norm
, (76)

c̃1 = c1 exp[−(n − n̄1)2/4σ 2]

Norm
e−i�ϕ, (77)

Norm =
√ ∑

j=0,1

|cj |2 exp[−(n − n̄j )2/2σ 2], (78)

�ϕ = −n − n̄c

σ

√
κ�tIm{[α1(tm) − α0(tm)]e−iφa}

+ κ�tIm[α∗
1 (tm)α0(tm)], (79)

φa = φp = arg(αp), (80)

where tm = t − m�t is the time moment when the measured
piece of the history tail leaked from the resonator, and φa is the
phase of the pump, which determines the amplified quadrature.
We emphasize that the measured piece becomes unentangled
with the rest of the wave function [see Eq. (67)] and therefore
can be disregarded when the measurement of the next piece is
analyzed.

Note that the pump phase φa affects the response [see
Eq. (70)]

n̄1 − n̄0 = 2σ
√

κ�tRe{[α1(tm) − α0(tm)]e−iφa} (81)

and also affects the phase shift �ϕ in Eq. (79). Thus, the choice
of the measured quadrature affects evolution of the system (as
in the bad-cavity case [53]). However, it is simple to show
that the state update (76)–(79) averaged over the measurement
result (72) does not depend on the choice of φa.

E. Continuous phase-sensitive measurement

The formalism developed in Secs. IV C and IV D allows
us to consider measurement of the history-tail pieces in an
arbitrary sequence and thus to describe various delayed-choice
experiments. However, usually this is not needed, and we can
assume measurement of the pieces as soon as they leak from the
resonator. In this case it is sufficient to describe the system by
an entangled qubit-resonator wave function (we still consider
an ideal case),

|ψ(t)〉 = c0(t)|0〉|α0(t)〉 + c1(t)|1〉|α1(t)〉, (82)

with the coefficients c0(t) and c1(t) evolving in time due to
measurement. Then the evolution equations are essentially
the same as Eqs. (76)–(79), but now there is no delay in
measurement, and we have included the phase factors e−iϕ0

and e−iϕ1 in Eq. (46) into the coefficients c0 and c1 in
Eq. (82) [actually, we include the phase difference e−i(ϕ1−ϕ0)

into c1, neglecting the overall phase e−iϕ0 ]. Also, instead of
the measured number of photons n, let us introduce the output
signal Im = n/�t . Similarly, I0 = n̄0/�t and I1 = n̄1/�t are
the corresponding average values, and D = (σ/�t)2 is the
variance of Im. Then Eqs. (76)–(79) can be rewritten as

c0(t + �t) = c0(t) exp[−(Im − I0)2/4D]

Norm
, (83)

c1(t + �t) = c1(t) exp[−(Im − I1)2/4D]

Norm
e−i�ϕ, (84)

Norm =
√ ∑

j=0,1

|cj (t)|2 exp[−(Im − Ij )2/2D], (85)

�ϕ = −Im − (I0 + I1)/2√
D

√
κ�tIm[(α1 − α0)e−iφa ]

+ δωq,s�t, (86)

where the qubit ac Stark shift δωq,s due to leaking field is given
by Eqs. (52)–(54).

Note that Eqs. (83)–(86) do not change if we multiply Im, I0,
I1, and

√
D by an arbitrary factor. Therefore, we can consider

them just as experimental output signals (in arbitrary units),
so that

Im = 1

�t

∫ t+�t

t

I (t ′)dt ′ (87)

for a continuous measurement output I (t), and the variance D

is related to the single-sided spectral density SI of the output
signal as

D = SI

2�t
. (88)

Now let us introduce the angle difference φd between the
amplified quadrature along αp and the “information-carrying”
quadrature along α1 − α0,

φd = φa − arg[α1(t) − α0(t)], (89)

and also introduce the maximum response �Imax > 0, which
would correspond to φd = 0, so that

�I = I1 − I0 = �Imax cos(φd). (90)
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Then we can write the factor
√

κ�tIm[(α1 − α0)e−iφa ] in
Eq. (86) as − sin(φd)�Imax/(2

√
D).

Also counting the measurement signal from the central
point (I0 + I1)/2,

Ĩm = Im − I0 + I1

2
, (91)

we can rewrite evolution equations (83)–(86) as

c0(t + �t) = c0(t)e−Ĩm cos(φd)�Imax/4D

Norm
, (92)

c1(t + �t) = c1(t)eĨm cos(φd)�Imax/4D

Norm
e−i�ϕ, (93)

�ϕ = Ĩm sin(φd)�Imax

2D
+ δωq,s�t, (94)

where Norm ensures |c0(t + �t)|2 + |c1(t + �t)|2 = 1.
Note that for short �t the variance D of the noisy signal Ĩm

is much larger than (�Imax)2, and then |Ĩm�Imax| 	 D, so that
the change of c0 and c1 is small. However, from the structure
of Eqs. (92)–(94) it is easy to see that they remain valid for
an arbitrary long �t if �Imax, φd, δωq,s, and noise SI do not
change with time. Therefore, the practical upper limit for the
time step �t (e.g., in numerical simulations) is determined by
transients, which change the resonator states α0(t) and α1(t),
and by possible changes of the amplified quadrature phase φa.

F. Phase-sensitive measurement with imperfect
quantum efficiency

So far we considered an ideal phase-sensitive measurement,
so that the evolution description using a wave function
was sufficient. To describe a measurement with imperfect
efficiency, we need to use the language of density matrices (we
still assume that the qubit evolves only due to measurement).
Then, instead of Eq. (82), the evolution of the entangled
qubit-resonator system is described by the density operator

ρq&r(t) =
∑

j,j ′=0,1

ρjj ′ (t)|j 〉〈j ′| ⊗ |αj (t)〉〈αj ′(t)|, (95)

where α0(t) and α1(t) are given by Eqs. (41) and (44). We em-
phasize that the matrix elements ρjj ′ (t) describe the entangled
qubit-resonator state, not only the qubit state. (Note that using
the form (95) for the qubit-resonator state is equivalent to the
polaron-frame approximation used in the theory of quantum
trajectories [22].) In the ideal case the evolution of the matrix
elements ρjj ′ can be obtained by converting Eqs. (92)–(94)
into the language of density matrices,

ρ11(t + �t)

ρ00(t + �t)
= ρ11(t)

ρ00(t)
exp[Ĩm cos(φd)�Imax/D], (96)

ρ10(t + �t)

ρ10(t)
=

√
ρ11(t + �t)ρ00(t + �t)√

ρ11(t)ρ00(t)
e−i�ϕ, (97)

where the phase shift �ϕ is still given by Eq. (94). Another,
more intuitive way to describe the evolution of the diagonal
elements is by using the uncentered signal Im as in Eq. (83):

ρjj (t + �t) = ρjj (t) exp[−(Im − Ij )2/2D]

Norm
. (98)

Note that these evolution equations for ρjj ′ are exactly
the same as Eqs. (12) and (13) of the quantum Bayesian
formalism in the bad-cavity limit, except the ac Stark shift
δωq is now δωq,s, dephasing is so far absent (γ = 0), and,
most importantly, Eqs. (96) and (97) describe the entangled
qubit-resonator state (95) and are capable of describing
transient evolution. During transients there is significant time
dependence in α0(t) and α1(t), which also leads to time
dependence in �Imax(t), the quadrature phase difference φd(t),
the response I1 − I0 = cos(φd)�Imax, and the middle point
(I1 + I0)/2. Therefore, during transients the time step �t in
Eqs. (96) and (97) should be much smaller than κ−1, in contrast
to arbitrary τ in Eqs. (12) and (13).

Imperfect quantum efficiency η of the measurement (0 �
η � 1), similar to the case discussed in Sec. III A, mainly
originates from two mechanisms: imperfect collection effi-
ciency and imperfect amplifier efficiency. First, a fraction of
the field leaked from the resonator is lost before reaching the
amplifier. Second, the amplifier produces more output noise
than the quantum limitation. Therefore, we can define the total
quantum efficiency η as

η = ηcolηamp, ηcol = κcol

κ
, ηamp = SI,q.l.

SI

, (99)

where κcol/κ is the ratio of the “collected” microwave
energy, which reaches amplifier, to the total energy lost by
the resonator (κcol/κ = κout/κ × κcol/κout), and SI,q.l. is the
spectral density of the output noise if a quantum-limited
phase-sensitive amplifier were used instead of the actual
amplifier, which produces a larger noise SI . Let us now discuss
the effects produced by imperfect ηcol and ηamp.

An imperfect collection efficiency ηcol can be modeled by
adding an asymmetric beam splitter on the path of the leaked
field, which splits each piece of the history-tail into two pieces,
|αj,t〉 → |√ηcolαj,t〉 ⊗ |√1 − ηcolαj,t〉, so that the first piece is
measured, while the second one remains unmeasured. Since
no information can be obtained from the unmeasured piece,
we need to trace over it, as in the calculation of the ensemble-
averaged evolution, while for the measured piece we use the
same procedure as above. The tracing over the unmeasured
piece does not change the diagonal matrix elements in
Eq. (95); therefore, the total change of ρ00 and ρ11 is still
given by Eq. (96). Note, however, that imperfect collection
efficiency reduces the response, �Imax = √

ηcol�Imax,ideal, and
changes the central point, (I0 + I1)/2, while the variance D

(determined by the amplifier noise) remains unchanged.
For the off-diagonal matrix element ρ10, the

tracing over the unmeasured piece |√1 − ηcolαj,t〉
produces the factor 〈√1 − ηcolα0,t|

√
1 − ηcolα1,t〉 =

e−(1−ηcol)d(t)�te−i(1−ηcol)δωq,s�t [see Eqs. (49)–(54) in
Sec. IV B], while the measured piece gives the evolution
described by Eq. (97), with δωq,s in Eq. (94) multiplied by ηcol.
Therefore, the total evolution of ρ10 is described by Eq. (97)
with the extra factor e−(1−ηcol)d(t)�t , while the phase �ϕ is
still given by Eq. (94) [note again that �Imax and (I0 + I1)/2
are affected by ηcol, but still correspond to the experimentally
measured values]. Thus, the only effect of an imperfect
collection efficiency ηcol on the system evolution (96) and
(97) is the extra factor e−(1−ηcol)d(t)�t in Eq. (97), where d is
given by Eq. (51).
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Imperfect quantum efficiency ηamp of the amplifier produces
additional noise at the output, so that the response �Imax and
the middle point (I0 + I1)/2 do not change, while the variance
D given by Eq. (88) increases because of the increased noise
spectral density SI . To take into account the extra noise, for a
given measured output value Ĩm, we need to guess what was the
“actual” value Ĩm,a (the probability distribution is given by the
classical Bayesian analysis), then apply the evolution (96) and
(97) using the value Ĩm,a, and then average over all possible
values of Ĩm,a. This is exactly what was done in Ref. [73]
for a qubit measurement by QPC or SET. Since the evolution
equations (96), (97), and (94) have exactly the same form
as what was considered in Ref. [73], we can simply use the
obtained result: The evolution is still given by Eqs. (96), (97),
and (94) with two changes. First, the variance D is the
actual (increased) variance; second, there is an extra dephasing
factor in Eq. (97), which can be found from comparison with
ensemble-averaged evolution.

Even though the formal derivation of this result is rather
lengthy [73], it is easy to understand it. The evolution of
the diagonal elements of the density matrix is the evolution
of probabilities, and therefore must obey the classical Bayes
formula, which directly gives Eq. (96). The extra dephasing
in Eq. (97) comes from uncertainty of ρii and the phase �ϕ

due to uncertainty of the unknown “actual” value Ĩm,a. The
reduced proportionality factor between �ϕ and the (centered)
measurement result Ĩm in Eq. (94) due to increased value
of D can be understood from the fact that for uncorrelated
Gaussian-distributed zero-mean random numbers x1 and x2,
the averaging of x1 for a fixed sum x1 + x2 gives the smaller
value, 〈x1〉 = (x1 + x2)var(x1)/[var(x1) + var(x2)].

Thus, combining both imperfection mechanisms of the
quantum efficiency η, we can describe the evolution of the
qubit-resonator system (95), measured using a phase-sensitive
amplifier. The resulting equations are very similar to Eqs. (12)
and (13) for the bad-cavity case,

ρ11(t + �t)

ρ00(t + �t)
= ρ11(t)

ρ00(t)
exp

[
Ĩm�I

D

]
, (100)

ρ10(t + �t)

ρ10(t)
=

√
ρ11(t + �t)ρ00(t + �t)√

ρ11(t)ρ00(t)

× exp(−iKĨm�t)e−γ�te−iδωq,s�t , (101)

where

Ĩm = 1

�t

∫ t+�t

t

I (t ′)dt ′ − I0 + I1

2
, (102)

�I = I1 − I0 = �Imax cos φd, (103)

K = �Imax sin φd

2D�t
= �Imax sin φd

SI

, (104)

γ = d − (�Imax)2/4SI = (1 − η)d, (105)

d = (κ/2)|α1(t) − α0(t)|2, (106)

δωq,s = 2χRe(α∗
1α0) − d

dt
Im(α∗

1α0), (107)

and we repeated several previous formulas here for conve-
nience. Note that most parameters in these equations depend
on time during transients, and therefore the time step �t

should be sufficiently small. Recall that SI is the single-sided
spectral density of the output noise and D = SI /(2�t) is the
corresponding noise variance of Ĩm. Equations (100)–(107) are
the main result of this paper.

If instead of using experimental output signal I (t) we want
to simulate the process, we can pick Ĩm from the probability
distribution

P (Ĩm) = ρ00(t)
exp[−(Ĩm + �I/2)2/2D]√

2πD

+ ρ11(t)
exp[−(Ĩm − �I/2)2/2D]√

2πD
. (108)

For an infinitesimally small �t this is equivalent to using

I (t) = I0 + I1

2
+ �I

2
[ρ11(t) − ρ00(t)] + ξI (t), (109)

where ξI (t) is a white noise with spectral density SI .
It is easy to check that averaging of ρjj ′(t + �t) given by

Eqs. (100) and (101) over Ĩm with probability distribution (108)
produces the expected ensemble-averaged equations

ρ00(t + �t) = ρ00(t), ρ11(t + �t) = ρ11(t), (110)

ρ10(t + �t) = ρ10(t)e−d�te−iδωq,s�t . (111)

Similar to what was mentioned in Sec. III B, the averaging
over the fluctuating phase −KĨm�t in Eq. (101) produces
an ensemble dephasing rate K2SI /4, while the averaging of
the first term in Eq. (101) produces an ensemble dephasing
rate (�I )2/4SI . Both dephasing rates depend on the amplified
quadrature via the angle φd, but their sum, (�Imax)2/4SI , does
not depend on φd.

If there is extra (not measurement-related) dephasing rate
γint of the qubit-resonator system, e.g., due to intrinsic pure
dephasing of the qubit, then it can be easily included into
Eq. (101) by adding the factor e−γint�t . Alternatively, we can
include γint into the ensemble-averaged dephasing, d →  =
d + γint, so that evolution equations (100) and (101) remain
unchanged, but now γ =  − (�Imax)2/4SI . In this case the
overall quantum efficiency includes the extra dephasing, η =
ηcolηampηint, with ηint = d/(d + γint) [53].

Note that for the evolution equations discussed in this
section the initial state should not necessarily be pure, so
Eq. (38) for the initial state can be replaced with Eq. (39).
Moreover, it is sufficient to have an initial state of the form (95);
the only necessary condition is that each qubit state |j 〉
corresponds to a certain coherent state |αj (0)〉.

G. Phase-preserving amplifier

So far we have considered the measurement using a phase-
sensitive amplifier. In this section we use the results of the
previous section to describe the case when a phase-preserving
amplifier is used. We will do it in two ways, which give the
same result.

First, let us model the measurement using a phase-
preserving amplifier in the following way. Let us pass
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each piece of the history tail through a symmetric beam
splitter, |αj,t〉 → |αj,t/

√
2〉 ⊗ |αj,t/

√
2〉, amplify orthogonal

quadratures in these two parts, measure as discussed in
Sec. IV C, and output the results for both quadratures. From
the structure of Eqs. (100)–(108) it is easy to see that it
does not matter how these two orthogonal quadratures are
chosen if the amplification conditions in both channels are the
same (the same D and �Imax, which also means the same
quantum efficiency). Note that for both channels we should
simultaneously use either the first or the second Gaussian in
Eq. (108), though no correlation is needed in the infinitesimal
limit (109). It is natural to choose one quadrature (we call it
I ) along the informational direction α1(t) − α0(t), while the
other quadrature (we call it Q) is shifted by π/2, so that φd = 0
for the I quadrature and φd = π/2 for the Q quadrature. Thus,
the directions of the I and Q quadratures are changing in
time, but they are practically constant during the time step �t .
Note that if D for both quadratures is kept the same as for
a phase-sensitive amplifier, then the response �I is a factor√

2 smaller than �Imax for the phase-sensitive case (because
of the beam splitter). Equivalently, if �I is kept the same
as in the phase-sensitive case (e.g., by an additional classical
amplification by the factor

√
2), then D for both quadratures is

twice larger than for the phase-sensitive case (in the ideal case
this corresponds to the fact that the noise of a phase-preserving
amplifier is twice as large as for a phase-sensitive amplifier).

Therefore, for the phase-preserving case we can simply use
Eqs. (100)–(108) twice, for the optimal quadrature (φd = 0)
and for the orthogonal quadrature (φd = π/2), assuming the
same output noise, SI = SQ, for both output quadratures I (t)
and Q(t). The I quadrature has the maximum response, �I =
I1 − I0 = �Imax, while the Q quadrature has no response,
Q1 = Q0. Thus, after the time step �t the density matrix (95)
of the qubit-resonator system changes as

ρ11(t + �t)

ρ00(t + �t)
= ρ11(t)

ρ00(t)
exp

[
Ĩm�I

D

]
, (112)

ρ10(t + �t)

ρ10(t)
=

√
ρ11(t + �t)ρ00(t + �t)√

ρ11(t)ρ00(t)

× exp(−iQ̃m�I/2D)e−γ�te−iδωq,s�t , (113)

where Ĩm is given by Eq. (102), while

Q̃m = 1

�t

∫ t+�t

t

Q(t ′)dt ′ − Q0, (114)

γ = d − 2
(�I )2

4SI

= d − (�I )2

4D�t
, (115)

D = SI /(2�t) = SQ/(2�t), (116)

the ensemble-averaged dephasing d is given by Eq. (51), and
the ac Stark shift δωq,s is given by Eq. (107) or Eqs. (52)–(54).
An equivalent form for Eq. (112) in terms of the noncentered
signal Im is given by Eq. (98). The factor of 2 in Eq. (115)
appears because averaging over the result in each channel
produces the contribution (�I )2/4SI into the total ensemble
dephasing d.

Another way to derive Eqs. (112) and (113) from Eqs. (100)
and (101) is to assume a slightly shifted pump frequency
for a phase-sensitive amplifier, so that the angle φd rotates

sufficiently fast, and for both quadratures I (t) and Q(t) we
collect only the values averaged over φd. Then we have a
natural formation of two quadratures in Eqs. (100) and (101):
Ĩ

ps
m cos(φd) → Ĩ

pp
m and Ĩ

ps
m sin(φd) → Q̃

pp
m , where the super-

scripts indicate the phase-sensitive (ps) or phase-preserving
(pp) case. The variance of the noise in each quadrature
is Dpp = Dps/2 (because cos2 φd = 1/2) and the response
in the information-carrying quadrature is �I pp = �I

ps
max/2

(because the phase-sensitive response �I
ps
max cos φd should be

multiplied by cos φd to project onto the proper quadrature).
Therefore, �I

ps
max/D

ps = �I pp/Dpp, and Eqs. (100) and (101)
directly transform into Eqs. (112) and (113). For the dephasing
we get γ = d − (�I

ps
max)2/4S

ps
I = d − 2 × (�I pp)2/4S

pp
I

since S
pp
I = S

ps
I /2 and �I pp = �I

ps
max/2, thus reproducing

Eq. (115).
In numerical simulations the probability distribution for Ĩm

is still given by Eq. (108), while for Q̃m it is

P (Q̃m) = exp
[−Q̃2

m

/
2D

]
√

2πD
. (117)

For infinitesimal �t these distributions are equivalent to using
Eq. (109) for I (t) and

Q(t) = Q0 + ξQ(t), SξQ
= SQ = SI , (118)

for Q(t), with uncorrelated white noises in the two channels.
Averaging of ρjj ′ (t + �t) in Eqs. (112) and (113) over random
Ĩm and Q̃m using the probability distributions (108) and (117)
produces the ensemble-averaged evolution equations (110)
and (111). The ensemble-averaged evolution should remain
the same as in the phase-sensitive case because of causality.

Similar to Eq. (35), the quantum efficiency for a phase-
preserving measurement can be defined in two ways,

η = 1 − γ /d, η̃ = η/2, (119)

where the first definition is based on the comparison with ideal
phase-preserving measurement, while in the second definition
we compare the information in I channel only with the
ideal phase-sensitive case. We emphasize that monitoring of a
pure quantum state is still possible with a phase-preserving
amplifier if η = 1, in spite of the fundamental limitation
η̃ � 1/2.

H. Differential equations for evolution

We intentionally wrote the evolution equa-
tions (100), (101), (112), and (113) for a finite �t because this
form is more transparent physically, suitable for numerical
simulations, and also unambiguous. The differential form for
an infinitesimal �t is significantly more ambiguous because
it depends on a chosen definition of the derivative (as it should
be for nonlinear stochastic differential equations [74]).

If we define the derivative in the symmetric way
ḟ (t) ≡ lim�t→0[f (t + �t/2) − f (t − �t/2)]/�t (the so-
called Stratonovich form), then the standard calculus rules
apply, and the differential equations for the evolution can
be derived from Eqs. (100), (101), (112), and (113) in a
straightforward way (keeping linear order in �t). Thus, for the
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phase-sensitive measurement we obtain the Stratonovich-form
evolution as (see [38])

ρ̇11 = ρ11ρ00
2 cos φd�Imax

SI

[
I (t) − I0 + I1

2

]
, (120)

ρ̇10 = −(ρ11 − ρ00)
cos φd�Imax

SI

[
I (t) − I0 + I1

2

]

− i
sin φd�Imax

SI

[
I (t) − I0 + I1

2

]
ρ10

− γρ10 − iδωq,sρ10, (121)

γ = d − (�Imax)2/4SI , (122)

I (t) = ρ00(t)I0 + ρ11(t)I1 + ξI (t), SξI
= SI , (123)

where for convenience we repeated equations for γ and I (t).
We emphasize that I0, I1, �Imax, and φd may significantly
depend on time during transients.

For the phase-preserving measurement we similarly obtain
the Stratonovich-form equations

ρ̇11 = ρ11ρ00
2�I

SI

[
I (t) − I0 + I1

2

]
, (124)

ρ̇10 = −(ρ11 − ρ00)
�I

SI

[
I (t) − I0 + I1

2

]

− i
�I

SI

[Q(t) − Q0]ρ10

− γρ10 − iδωq,sρ10, (125)

γ = d − 2 × (�I )2/4SI , (126)

I (t) = ρ00(t)I0 + ρ11(t)I1 + ξI (t), (127)

Q(t) = Q0 + ξQ(t), SξQ
= SξI

= SI . (128)

If we define the derivative in the “forward” way, ḟ (t) ≡
lim�t→0[f (t + �t) − f (t)]/�t (the so-called Itô form), then
the usual calculus rules are no longer correct, and the derivation
of the differential equations from Eqs. (100), (101), (112),
and (113) should retain the second order in �t . Alternatively,
we can use the standard rules of the transformation from
the Stratonovich form into the Itô form [38,74], applied to
Eqs. (120)–(128). The resulting Itô-form equations for the
phase-sensitive measurement are

ρ̇11 = ρ11ρ00
2 cos φd�Imax

SI

[I (t) − (ρ00I0 + ρ11I1)], (129)

ρ̇10 = −(ρ11 − ρ00)
cos φd�Imax

SI

[I (t) − (ρ00I0 + ρ11I1)]

− i
sin φd�Imax

SI

[I (t) − (ρ00I0 + ρ11I1)]ρ10

−dρ10 − iδωq,sρ10, (130)

and the Itô-form equations for the phase-preserving measure-
ment are

ρ̇11 = ρ11ρ00
2�I

SI

[I (t) − (ρ00I0 + ρ11I1)], (131)

ρ̇10 = −(ρ11 − ρ00)
�I

SI

[I (t) − (ρ00I0 + ρ11I1)] − i
�I

SI

× [Q(t) − Q0]ρ10 − dρ10 − iδωq,sρ10, (132)

while I (t) and Q(t) for numerical simulations are still given by
Eqs. (123), (127), and (128). The Itô-form equations (129)–
(132) have two differences compared with the Stratonovich
equations: (i) The combination I (t) − (I0 + I1)/2 is replaced
with the “pure-noise” combination I (t) − (ρ00I0 + ρ11I1) =
ξI (t) and (ii) the dephasing rate γ is replaced with ensemble
dephasing d.

Note that Itô and Stratonovich equations have identical
solutions when the corresponding definitions of the derivative
are used. The drawback of the Itô form is the loss of intuition
based on the standard calculus, because the standard calculus
rules are not valid in the Itô form. However, the advantage
is that the ensemble-averaged equations can be obtained
by simply replacing the noises ξI (t) and ξQ(t) with zero.
The quantum trajectory formalism [18–22] is based on the
Itô form, while the quantum Bayesian formalism [29,30,38]
usually uses the Stratonovich form (some formalisms use both
forms [75]).

We emphasize that while the evolution equations in the
differential form are useful in analytical analysis, for numerical
calculations a relatively large time step �t is often preferable.
For finite time steps, the formalism discussed in Secs. IV F
and IV G is more useful than the differential equations. The use
of noninfinitesimal �t also avoids possible confusion between
Stratonovich and Itô forms.

I. Evolution for an arbitrary duration

Now let us discuss evolution of the qubit-resonator system
for an arbitrarily long duration τ . As in the previous sections,
we assume that the qubit does not evolve due to Rabi
oscillations, energy relaxation, etc. It is not obvious what the
solution of the differential equations discussed in Sec. IV H is.
However, the structure of equations for a small time step �t

derived in Secs. IV F and IV G permits very simple integration
for an arbitrary τ . This simple solution is also expected from
the picture of the history tail in Fig. 3.

1. Phase-sensitive case

The evolution equations (100) and (101) for the qubit-
resonator system (95) can be easily integrated within the time
interval [t,t + τ ],

ρ11(t + τ )

ρ00(t + τ )
= ρ11(t)

ρ00(t)
exp(R‖

m), (133)

ρ10(t + τ )√
ρ11(t + τ )ρ00(t + τ )

= ρ10(t)√
ρ11(t)ρ00(t)

exp
(−iR⊥

m

)

× exp

[
−

∫ t+τ

t

γ (t ′)dt ′−i

∫ t+τ

t

δωq,s(t
′)dt ′

]
, (134)
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where

R‖
m =

∫ t+τ

t

Ĩ (t ′)
2�I (t ′)

SI

dt ′, (135)

R⊥
m =

∫ t+τ

t

Ĩ (t ′)
�Imax(t ′) sin[φd(t ′)]

SI

dt ′, (136)

Ĩ (t ′) = I (t ′) − I0(t ′) + I1(t ′)
2

, (137)

and the time-dependent dephasing γ (t) and ac Stark shift
δωq,s(t) are given by Eqs. (105)–(107). Note that because
parameters are time dependent, there is no simple relation
between the effective measurement results R

‖
m and R⊥

m, which
produce “spooky” and phase backactions. The choice of
notations ‖ and ⊥ relate to quadratures that are parallel or
perpendicular to the informational quadrature.

If we need to generate measurement results numerically,
then R

‖
m can be picked from the probability distribution P (R‖

m),
which consists of two Gaussians, as usual in the Bayesian
formalism,

P (R‖
m) = ρ00(t)P (R‖

0) + ρ11(t)P (R‖
1), (138)

P (R‖
j ) = (2πD

‖
R)−1/2 exp[−(R‖

j − R̄
‖
j )2/2D

‖
R], (139)

R̄
‖
1 = −R̄

‖
0 =

∫ t+τ

t

[�I (t ′)]2

SI

dt ′, D
‖
R = 2R̄

‖
1 . (140)

The validity of this formula can be checked by analyzing a
composition of two evolutions for τ1 and τ2 and by checking
consistency with formulas in Sec. IV F for small τ . From
Eqs. (138)–(140) we see that the qubit will eventually be
collapsed onto the state |0〉 or |1〉 (unless �I = 0), as expected
for a measured qubit with no additional evolution. Note that
Eqs. (138)–(140) for P (R‖

m) can be written in this simple
way because Eq. (133) is essentially the classical Bayes rule.
Unfortunately, R⊥

m cannot be generated in a similar way.
Therefore, we need to numerically generate the whole record
I (t ′).

The output realization I (t ′) within the interval [t,t + τ ]
can be generated by dividing τ into small pieces �t and using
Eq. (108). The probability of a realization I (t ′) will then be

P {I (t ′)} ∝ ρ00(t) exp

{
−

∫ t+τ

t

[I (t ′) − I0(t ′)]2

SI

dt ′
}

+ ρ11(t) exp

{
−

∫ t+τ

t

[I (t ′) − I1(t ′)]2

SI

dt ′
}
,

(141)

with an appropriate overall normalization. Alternatively, the
probability distribution can be obtained by applying Eq. (109),
i.e., taking into account the randomness “locally” instead of
“globally”, which produces

P {I (t ′)} ∝ exp

{
−

∫ t+τ

t

[I (t ′) − Iav(t ′)]2

SI

dt ′
}
, (142)

Iav(t ′) = ρ00(t ′)I0(t ′) + ρ11(t ′)I1(t ′), (143)

where ρ00(t ′) and ρ11(t ′) should be calculated using Eq. (133)
for the previous period [t,t ′] [note that in Eq. (142) we need

to use Iav(t ′ − 0), i.e., the value, which is not yet affected by
I (t ′)]. Even though this gives the same probability distribution,
it is easier to use the global method (141).

2. Phase-preserving case

Integrating Eqs. (112) and (113), we obtain the evolution
during the time interval [t,t + τ ],

ρ11(t + τ )

ρ00(t + τ )
= ρ11(t)

ρ00(t)
exp

(
RI

m

)
, (144)

ρ10(t + τ )√
ρ11(t + τ )ρ00(t + τ )

= ρ10(t)√
ρ11(t)ρ00(t)

exp
(−iRQ

m

)

× exp

[
−

∫ t+τ

t

γ (t ′)dt ′ − i

∫ t+τ

t

δωq,s(t
′)dt ′

]
, (145)

where

RI
m =

∫ t+τ

t

Ĩ (t ′)
2�I (t ′)

SI

dt ′, (146)

RQ
m =

∫ t+τ

t

Q̃(t ′)
�I (t ′)

SI

dt ′, (147)

Q̃(t ′) = Q(t ′) − Q0(t ′), Q1(t ′) = Q0(t ′), (148)

Ĩ (t ′) is given by Eq. (137), γ (t ′) is given by Eq. (115), and
δωq,s(t) is given by Eq. (107).

We emphasize that the outputs I (t) and Q(t) correspond
to the informational and noninformational quadratures, which
change in time. In terms of the “fixed” experimental quadra-
tures I fix(t) and Qfix(t) from the IQ mixer, they are

I (t) = I fix(t) cos[φopt(t)] + Qfix(t) sin[φopt(t)], (149)

Q(t) = Qfix(t) cos[φopt(t)] − I fix(t) sin[φopt(t)], (150)

where φopt(t) = arg[α1(t) − α0(t)] corresponds to the infor-
mational quadrature.

If the measurement results are not taken from an ex-
periment, but have to be generated numerically, then it is
always possible to generate RI

m and RQ
m without explicitly

generating the signals I (t) and Q(t). For RI
m we can still use

Eqs. (138)–(140), just replacing the superscript ‖ with I . The
probability distribution for RQ

m is the zero-mean Gaussian,

P
(
RQ

m

) = (
2πD

Q
R

)−1/2
exp

[−(RQ)2/2D
Q
R

]
, (151)

D
Q
R = DI

R = 2
∫ t+τ

t

[�I (t ′)]2

SI

dt ′. (152)

The probability distribution for a realization of I (t ′) is still
given by Eqs. (141) or (142), while the similar probability
distribution for Q(t ′) is

P {Q(t ′)} ∝ exp

{
−

∫ t+τ

t

[Q(t ′) − Q0(t ′)]2

SI

dt ′
}
. (153)

The evolution equations derived in this paper describe the
evolution of an entangled qubit-resonator state (95). However,
there is an important special case when we can discuss the state
of the qubit alone. If the measurement is of a relatively short
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duration and the microwave drive is switched off after that,
then several decay times κ−1 later (or after the rapid driven
reset procedure [76]) the resonator field is practically vacuum
for both qubit states. In this case our formulas give the resulting
qubit state, unentangled from the resonator state.

V. CONCLUSION

In this paper we have developed a simple quantum Bayesian
formalism for the qubit measurement in the circuit QED setup
with a moderate bandwidth of the measurement resonator,
so that transients are important. The simplification comes
from three assumptions: (i) we assume that the qubit evolves
only due to measurement (in particular, there are no Rabi
oscillations or qubit energy relaxation), (ii) we assume that
the measurement resonator is driven by a classical, i.e.,
coherent, field (in particular, no squeezed fields are applied),
and (iii) the resonator is initially in a coherent state (e.g.,
vacuum). In this case the entangled qubit-resonator state
developing in the process of measurement can be described as
the density operator, Eq. (95), in which each of the two qubit
states corresponds to its own coherent state of the resonator.
Therefore, the entangled qubit-resonator state at any moment
of time is fully characterized by only four numbers, ρ00, ρ11,
ρ10, ρ01, and two field amplitudes of the resonator, α0 and
α1. The field amplitudes evolve according to the classical
equations (41) and (44). The elements of the 2 × 2 matrix ρij

evolve according to Eqs. (100) and (101) if a phase-sensitive
amplifier is used in the measurement or according to Eqs. (112)
and (113) if a phase-preserving amplifier is used. These
evolution equations in differential form (in both Stratonovich
and Itô forms) are presented in Sec. IV H. Integrated equations
for an arbitrary long evolution are presented in Sec. IV I. The
equations depend on parameters that are directly measurable
in an experiment.

The evolution equations for ρij [Eqs. (100), (101),
(112), (113)] have exactly the same form as in the bad-cavity
limit [53] and have a simple physical meaning. We see that the
diagonal elements ρ00 and ρ11 evolve as probabilities; i.e., they
follow the classical Bayes rule, which updates the probabilities
according to the information on the qubit state acquired from
the measurement result. Therefore, this “spooky” backaction
is sensitive to the informational quadrature of the microwave
field. The evolution of ρ10 (and ρ01 = ρ∗

10) necessarily depends
on the evolution of ρ00 and ρ11 (at least because |ρ10|2 �
ρ11ρ00). Besides that, there are three more effects producing
evolution of ρ10: (i) phase backaction, which depends on
the measurement result sensitive to the “noninformational”
quadrature of the microwave field, (ii) dephasing due to
nonideality of the measurement (essentially loss of potential
information), and (iii) ac Stark shift of the qubit frequency.
As discussed in Appendix B, the phase backaction can be
physically interpreted as being due to fluctuations of the ac
Stark shift because of a fluctuating number of photons in the
resonator.

Even though the evolution equations (100), (101), (112),
and (113) are the same as in the bad-cavity regime [53],
the time step �t is no longer arbitrary, since the parameters
entering the equations (response �I , amplified phase dif-
ference φd, ensemble dephasing d, etc.) change during the

transients, and therefore �t should be smaller than the time
scale of this change. We emphasize that in the case of non-
changing parameters these equations are exact for an arbitrary
long �t . This may be beneficial for numerical simulations
in comparison with the quantum trajectory formalism [18,22]
based on a Wiener process, which assumes infinitesimal �t .
In particular, our evolution equations can be easily integrated
for an arbitrarily long duration [Eqs. (133), (134), (144),
and (145)].

We note that the evolution equations in the phase-sensitive
case are also exactly the same as for a qubit measure-
ment by QPC or SET [38], except now we consider a
significantly entangled qubit-resonator state, with classically
evolving resonator fields. The case of a phase-preserving
amplifier is different because there are two output signals,
I (t) and Q(t), instead of only one signal I (t). Nevertheless,
the evolution equations are almost the same, and the only
significant difference is that the phase backaction is governed
by the noninformational quadrature Q(t), while the “spooky”
backaction (evolution of ρ00 and ρ11) is governed by the
informational quadrature I (t).

The derivation in this paper has been based on elementary
quantum mechanics and basic facts related to coherent states.
In general, the idea is similar to the idea of “microscopic”
derivation used in Ref. [30] to describe a qubit measurement
by QPC or SET. We solve exactly the quantum evolution
due to interaction between the qubit and resonator (which
is very simple because the qubit does not evolve by itself
and measurement is of the QND type), and then apply the
textbook collapse postulate to the pieces of microwave field,
leaking from the resonator.

The formalism developed in this paper is equivalent to the
“polaron frame approximation” used in the quantum trajectory
formalism [22], even though our language is significantly
different. We hope that our derivation is physically transparent
and therefore more easily understandable. Also, as mentioned
above, our formalism may have advantages in numerical
calculations.

For an evolving qubit (e.g., due to Rabi oscillations) it
is tempting to simply include additional evolution into the
differential equations for evolution derived in Sec. IV H.
However, this is formally incorrect because in this case the
approach based on coherent states is no longer applicable
(though this is still possible in the bad-cavity limit [53]).
The reason is the following. When the additional evolution
of the qubit is comparable to or faster than κ , the resonator
state |α0(t)〉 or |α1(t)〉 may correspond to the “wrong” qubit
state produced by this evolution. Since for a resonator the
evolution of a superposition of coherent states (a “cat state”)
cannot be easily described with coherent states, the simple
approach based on coherent states fails.

Therefore, for measurement of an evolving qubit the
simple formalism discussed in this paper is not applicable
and should be replaced with a more complicated formalism.
The derivation of the quantum Bayesian formalism for
measurement of an evolving qubit is similar ideologically
(using the measurement of the history tail), but much more
cumbersome technically. The result is equivalent to “full”
quantum trajectory formalism [18,22], but uses an explicit
Fock-space evolution in the Schrödinger picture instead of the
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language of superoperators. We will discuss this formalism in
another paper.

The formalism developed in this paper can be easily
generalized to measurement of a multilevel transmon or
measurement of several qubits, which evolve only due to
measurement. Such a generalization is useful to describe
the process of entanglement of superconducting qubits by
measurement [54,55,79,80]. For N qubits the state of the
system can be described in a way similar to Eq. (95), so
that each of 2N qubit basis states corresponds to particular
coherent states of the resonators, obtained via the classical field
evolution. Therefore, we only need to describe the evolution
of 2N × 2N matrix of coefficients, for which we can easily
use the quantum Bayesian approach to update the coefficients,
depending on the measurement results. This will also be the
subject of a future publication.
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APPENDIX A: COHERENT STATES

In this Appendix we review basic facts related to coherent
states. Most of them are very well known in the quantum optics
community. However, some of these facts [e.g., Eq. (A25)] are
usually not discussed in optical textbooks. In contrast to the
notation used in the main text, in this appendix we will use hat
symbols for operators.

1. Definition of a coherent state

As known from undergraduate quantum mechanics, for an
oscillator with frequency ωr and mass m, the ground state in
the x-representation is

|0〉 = ψgr(x) =
(

mωr

π�

)1/4

exp

(
−mωr

2�
x2

)
. (A1)

If we want to describe the classical state of this oscillator with
coordinate xc and momentum pc (still taking into account the
uncertainty of the ground state), we need to shift the ground-
state wave function by xc, producing ψgr(x − xc), and also
apply the momentum shift by adding the factor eipcx/�. This
produces the so-called “coherent state” |α〉, which is widely
used in optics,

|α〉 ≡ ψgr(x − xc) exp(ipcx/�) exp(−ipcxc/2�), (A2)

α ≡ xc

2σx

+ i
pc

2σp

= xc

√
mωr

2�
+ ipc

1√
2�mωr

, (A3)

where σx = √
�/2mωr and σp = �/2σp = √

�mωr/2 are the
ground-state uncertainties. The normalization by doubled
uncertainties σx and σp in Eq. (A3) as well as the overall
phase factor e−ipcxc/2� in Eq. (A2) are to some extent arbitrary,
but this conventional choice simplifies most of the formulas
discussed below. Note that the phase e−ipcxc/2� is exactly in

between what we would obtain by first shifting x, and then p

[in this case we would obtain ψgr(x − xc)eipcx/�] and, instead,
first shifting p and then x [in this case we would obtain
ψgr(x − xc)eipc(x−xc)/�].

Equation (A2) can be rewritten in a more standard
form [71,81],

|α〉 = e− 1
2 |α|2

∞∑
n=0

αn

√
n!

|n〉 (A4)

= e− 1
2 |α|2

∞∑
n=0

(αâ†)n

n!
|0〉 = e− 1

2 |α|2eαâ† |0〉, (A5)

where â† = (2�mωr)−1/2(−ip̂ + mωrx̂) is the raising (cre-
ation) operator, â†|n〉 = √

n + 1|n + 1〉. The equivalence of
Eqs. (A2) and (A4) can be verified by explicitly checking
that Eq. (A2) satisfies the relations d|α〉/d(Reα) = [−Re(α) +
â†]|α〉 and d|α〉/d(Imα) = [−Im(α) + iâ†]|α〉, which follow
from Eq. (A5). Note a possible confusion between the
notations for the stationary states |n〉 and the coherent state |α〉
(for example, |α〉 with α = 1 is not the first excited level |1〉);
to avoid the confusion, we can use greek letters for coherent
states and roman letters or integer numbers for the stationary
states (Fock states). For the ground state the notations coincide,
|α = 0〉 = |0〉.

If the oscillator state oscillates with frequency ω (for exam-
ple, due to drive with this frequency), xc(t) = xc,amp cos(ωt +
φ0), pc(t) = −mωxc,amp sin(ωt + φ0), then from Eq. (A3) we
find α(t) = e−i(ωt+φ0)xc,amp/2σx . In this case it is useful to
introduce the rotating frame by defining α̃ ≡ eiωtα, so that
α̃ does not change in time. In the general case α̃ changes
with time slowly, while α(t) = e−iωt α̃(t) rapidly oscillates.
The rotating frame frequency ω can be chosen arbitrarily; in the
case with a drive, the most natural choice is the drive frequency
ωd (because then α̃ does not change in the steady state); in the
absence of the drive, a natural choice is the oscillator frequency
ωr. Note that the time dependence for the stationary states is
e−inωrt |n〉 (counting the energy from the ground-state energy),
so for a “nonevolving” oscillator (i.e., evolving only naturally),
from Eq. (A4) we find α(t) = α(0)e−iωrt .

Note that in the main text we always use the rotating frame
based on the drive frequency ωd and omit the tilde sign in
the notation of α in the the rotating frame. In contrast, in this
appendix we explicitly write α̃ for the rotating frame.

So far we considered a textbook mechanical oscillator. If
we consider a microwave resonator, then the role of x and p

is played by properly normalized voltage and current (at some
point in the resonator) or by flux and charge; the effective
mass m can also be appropriately introduced. The formalism
does not change. In quantum optics it is often preferred not
to introduce coordinates and effective mass explicitly and
instead to start with the commutation relation [â,â†] = 1, then
producing Fock states |n〉 from vacuum |0〉 with the creation
operator.

2. Some properties

(1) From Eq. (A4) it is easy to see that

â|α〉 = α|α〉, (A6)
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since â|n〉 = √
n|n − 1〉 for the lowering (annihilation) opera-

tor â = (2�mωr)−1/2(ip̂ + mωrx̂) = (â†)†. The property (A6)
is sometimes used as a definition of the coherent state |α〉.
Note, however, that it does not specify the overall phase and
normalization, while the overall phase is often important in
analysis (when more than one coherent state is involved).
Also note that â†|α〉 does not have a simple formula, though
〈α|â†|α〉 = α∗ from conjugation of 〈α|â|α〉 = α.

(2) From Eq. (A4), the probability to measure n photons in
the state |α〉 is

P (n) = e−|α|2 |α2|n/n!, (A7)

which is the Poissonian distribution with average |α2|. This
proves that the wave function (A4) is normalized and shows
that the mean photon number is

n̄ = |α|2. (A8)

(3) The inner product of two coherent states |α〉 and |β〉 can
be easily calculated using Eq. (A4), giving the result [71,81]

〈α|β〉 = e− 1
2 (|α|2+|β|2)eα∗β = e− 1

2 |α−β|2e−iIm(αβ∗). (A9)

Note that a shift of the coherent states by the same value
changes the inner product, 〈α + γ |β + γ 〉 �= 〈α|β〉, since this
changes the phase factor.

(4) It is useful to introduce the (unitary) displacement
operator D̂ [71,81],

D̂(α) ≡ exp(αâ† − α∗â), D̂(α)|0〉 = |α〉. (A10)

A composition of two displacement operators has a phase
factor [71,81] similar to the phase factor in Eq. (A9),

D̂(α)D̂(β) = D̂(α + β) exp[−iIm(α∗β)], (A11)

as follows from the Baker-Campbell-Hausdorff formula
eÂ+B̂ = e−c/2eÂeB̂ = ec/2eB̂eÂ for [Â,B̂] = c. Also note the
useful relations

D̂†(α)âD̂(α) = â + α, D̂†(α) = D̂(−α), (A12)

D̂(α) = e− 1
2 |α|2eαâ†

e−α∗â . (A13)

(5) Let us introduce the (Hermitian) quadrature operators
x̂q and p̂q as [81]

x̂q = â + â†

2
= x̂

2σx

,

p̂q = â − â†

2i
= p̂

2σp

, (A14)

[x̂q ,p̂q] = i

2
.

Note that the quadrature operators are often defined as
√

2x̂q

and
√

2p̂q ; then their commutator is i; another possible
definition [71] is 2x̂q and 2p̂q ; then the commutator is 2i.
The definition (A14) gives simpler formulas for the average
values for the coherent states,

〈α|x̂q |α〉 = Re(α), 〈α|p̂q |α〉 = Im(α), (A15)

which follow from the relation â = x̂q + ip̂q . The variance in
this case is

〈α|x̂2
q |α〉 − 〈α|x̂q |α〉2 = 〈α|p̂2

q |α〉 − 〈α|p̂q |α〉2 = 1
4 . (A16)

The quadrature operator at an angle φ can be defined as

x̂q(φ) = âe−iφ + â†eiφ

2
= x̂q cos φ + p̂q sin φ. (A17)

(6) An important property of a coherent state is that it splits
into two unentangled coherent states after passing through a
beam splitter, in full analogy with a classical optical wave
or microwave. Actually, so far we defined a coherent state
only for a resonator, and it is not obvious how to introduce
it for a propagating wave. We will not discuss how to do it
rigorously [58,77,78], just implying that a piece of propagating
wave can be described in a way similar to a resonator
description.

There is a rather simple rigorous way to describe trans-
formation of an arbitrary quantum state passing through a
beam splitter (see, e.g., [81,82]). The idea is essentially to
write classical field relations, but for the annihilation operators
(conjugated relations are for the creation operators), then
express the initial state via vacuum and creation operators of
the input arms, and then substitute these input-arms operators
with their expressions via output-arms operators. This gives
the resulting output state.

Applying this procedure to a beam splitter with transmis-
sion and reflection amplitudes (t1,t2,r1,r2) and input state
|α〉 ⊗ |0〉, we obtain the output state |t1α〉 ⊗ |r1α〉, exactly as
we would expect for a classical field. Technically, this follows
from the formula |α〉 = e− 1

2 |α|2eαâ
†
in |0〉 [see Eq. (A5)] and

relation â
†
in = t1â

†
out + r1b̂

†
out, with commuting output-arms

operators â
†
out and b̂

†
out, so that eαâ

†
in = eαt1â

†
outeαr1b̂

†
out . Note that

if we apply coherent fields to both input arms, |α〉 ⊗ |β〉,
then the resulting output state is also an unentangled product
of classically expected coherent states, |t1α + r2β〉 ⊗ |r1α +
t2β〉, without an overall phase.

3. Driven microwave resonator with leakage

We can think about field leakage from a microwave
resonator to a transmission line through a “mirror” (coupler)
as transmission through a beam splitter. Therefore, from the
discussed above property, if the initial state in the resonator is a
coherent state |α〉, then it remains a coherent state |α(t)〉, with
no overall phase and α(t) given by the classical field evolution,

α(t) = α(0)e−iωrt e−κt/2, (A18)

where κ is the energy dissipation rate and ωr is the resonator
frequency.

We emphasize that this property is highly unusual for
a quantum system (thus indicating that coherent states are
classical to a significant extent). Dissipation usually leads to
decoherence, so that an initially pure quantum state becomes
a mixed state. In this case we have an exception: A pure state
remains pure during the whole evolution. This makes quantum
analysis very simple for an evolution involving coherent states.
Note that Eq. (A18) is still applicable when the energy loss
rate κ has a contribution from intrinsic energy relaxation (at
zero temperature).
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Now let us for a moment neglect the energy relaxation
and instead consider a classical drive with frequency ωd and
(complex) amplitude ε(t) (in some normalization). This is
usually described by the Hamiltonian

Ĥ = �ωrâ
†â + �εe−iωd t â† + �ε∗eiωd t â, (A19)

which already assumes rotating wave approximation, requiring
|ωd − ωr| 	 ωr and sufficiently slowly changing drive ε(t).
Using this Hamiltonian, we can find the evolution of an arbi-
trary quantum state of the resonator |ψ(t)〉 = ∑

n cn(t)|n〉 via
the Schrödinger equation ċn = −iωrcn − iεe−iωd t

√
ncn−1 −

iε∗eiωd t
√

n + 1cn+1. It is easy to see by solving this equation
that if the initial state is a coherent state, then it remains a
coherent state, though with a nontrivial overall phase ϕ(t),

|ψ(t)〉 = e−iϕ(t)|α(t)〉, (A20)

so that the evolution is described by two equations:

α̇ = −iωrα − iεe−iωdt , (A21)

ϕ̇ = Re(ε∗eiωdtα). (A22)

Now let us combine the drive ε and dissipation κ . Since both
of them keep the state coherent (with an overall phase), their
combination will also keep it coherent (with an overall phase).
Introducing the rotating frame based on the drive frequency,

α̃(t) ≡ eiωdtα(t), (A23)

from Eqs. (A18), (A21), and (A22) we obtain

˙̃α = −i(ωr − ωd)α̃ − κ

2
α̃ − iε, (A24)

ϕ̇ = Re(ε∗α̃). (A25)

Equation (A24) is the standard result for the evolution of a
resonator under the drive and dissipation, while Eq. (A25)
is usually not discussed in quantum optics, even though it is
very important for quantum dynamics involving more than one
coherent state (for example, for measurement of a qubit in the
circuit QED setup).

Note that Eqs. (A24) and (A25) rely on the fact that
for coherent states the dissipation κ does not introduce
decoherence and only brings the term −κα̃/2 into Eq. (A24).
We have derived this fact by considering the problem of
a coherent state passing through a beam splitter. Another
(lengthier) way to prove it is to consider the Lindblad equation
for the density matrix and to show that (surprisingly) a pure
initial state remains pure if initially it was a coherent state. One
of the ways to show it is to separate the Lindblad evolution into
“jump” and “no-jump” scenarios (e.g., [35,83,84]). Then the
jump scenario (application of operator â) brings no evolution
because of Eq. (A6), so all the evolution comes from the no-
jump scenario (essentially the Bayesian update), which keeps
a coherent state coherent, with decreasing α(t). This is why
there is no randomness [84], normally leading to decoherence.
Note that the derivation via the Lindblad equation cannot easily
reproduce important equation (A25), because the overall phase
is lost in the density matrix language.

FIG. 4. Illustration of the effect of vacuum noise. The vacuum
noise v(t) incident from the output side affects the resonator state
α(t) via the coupling κout. Therefore, v(t) contributes to the outgoing
field F twice: due to direct reflection and due to the field leaking from
the resonator later. We mostly consider the case κout ≈ κ , κin 	 κ ,
so that we can neglect the effect of the vacuum noise vadd(t) incident
from the input side, which adds to the drive field Ad = −iε/

√
κin.

(The outgoing field from the input port is not important and not
shown.)

APPENDIX B: DERIVATION OF PHASE BACKACTION
VIA VACUUM NOISE

In this Appendix we derive the results for phase backaction
in the process of qubit measurement using the picture of
vacuum noise, which is incident on the resonator from the
transmission line (Fig. 4). We assume the bad-cavity limit and
phase-sensitive amplification. The vacuum noise is treated in
a simple classical way.

Let us start with assuming for simplicity that the resonator
damping κ is only due to coupling with the transmission
line carrying the outgoing wave, κout = κ; in particular, this
requires κin 	 κout (later this assumption will be removed).
Then the vacuum noise enters the resonator only from the
output line (Fig. 4), and the wave equations for the resonator
field α and the outgoing field F in the rotating frame based on
the drive frequency ωd are

α̇ = −i(ωr − ωd)α − κ

2
α − iε + √

κv(t), (B1)

F = √
κα − v(t), (B2)

where v(t) is the vacuum noise, which is normalized in the
same way as F . In this normalization |α|2 is the average num-
ber of photons in the resonator, while |F |2 is the average
number of propagating photons per second. Note that the
reflection coefficient in Eq. (B2) is −1, while the transmission
through the “mirror” is characterized by the coupling

√
κ [71],

as well as in Eq. (B1). The drive term −iε can also be
written via the properly normalized incoming field Ad as
−iε = √

κinAd. Also note that for the two qubit states we
have slightly different resonator frequencies, ωr → ωr ± χ ;
however, in this appendix we will mostly use notation ωr

for brevity and because the resonator frequency shift is not
important for the phase backaction, which is our focus here.

In quantum optics the vacuum noise is treated as an
operator [31,58,78,85] with correlator 〈v̂(t)v̂†(t ′)〉 = δ(t − t ′),
and Eqs. (B1) and (B2) are written for annihilation operators
in the Heisenberg representation. However, in our simple
derivation we will treat the noise v(t) classically (i.e., as a
complex number) and consider evolution of classical fields
(which corresponds to the Schrödinger picture). It is simple
to see that the photon shot noise is properly reproduced if we
assume that for any quadrature (so that vqu is real)

〈vqu(t)v(t ′)qu〉 = 1
4δ(t − t ′), (B3)
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which is equivalent to

〈v(t)v(t ′)∗〉 = 1
2δ(t − t ′), 〈v(t)v(t ′)〉 = 0, (B4)

if v(t) = vqu1(t) + ivqu2(t) is treated as a complex number,
describing both quadrature components (obviously, 〈v〉 = 0).
For example, this relation can be obtained by considering
a propagating wave F0 + v(t) with constant F0. Then the
fluctuating photon number

∫ t

0 |F0 + v(t ′)|2dt ′ within duration
t should have the same variance 〈| ∫ t

0 2Re[F ∗
0 v(t ′)]dt ′|2〉 as the

mean |F0|2t . Therefore,〈∣∣∣∣
∫ t

0
vqu(t ′)dt ′

∣∣∣∣
2
〉

= t

4
(B5)

for the quadrature vqu along F0, and Eq. (B3) follows
from (B5). Note that Eq. (B3) can be interpreted as following
from the standard operator correlator, using the correspon-
dence vqu = (v̂ + v̂†)/2.

As another check of this noise formalism, let us derive
the correlator for the fluctuating number of photons in
the resonator from Eq. (B3). Using Eq. (B1), we find the
fluctuation

δα(t) =
∫ t

−∞
e−[κ/2+i(ωr−ωd)](t−t ′)√κv(t ′)dt ′, (B6)

due to the noise v(t). For a fixed stationary value αst, this leads
to photon number fluctuation δn = α∗

stδα + αstδα
∗. Then using

Eq. (B6), performing the double integration using Eq. (B4),
and denoting |αst|2 = n̄, we find

〈δn(t)δn(t + τ )〉 = n̄ cos[(ωr − ωd)τ ] exp

(
−κ

2
|τ |

)
, (B7)

which is the standard result for the photon number corre-
lator [58]. Note that the photon number fluctuation decays
with the rate κ/2 instead of naively expected κ . It is also
interesting to note that at time t ′ only the quadrature vqu

along αste
i(ωr−ωd)(t−t ′) with the fluctuations (B3) contributes

to the correlator (B7), while the orthogonal quadrature does
not contribute. It is equally possible to say that the contribution
comes only from the quadrature vqu along αste

i(ωr−ωd)(t+τ−t ′),
while the orthogonal quadrature does not contribute. Also note
that from Eq. (B6) we obtain

〈|δα|2〉 = 1/2, (B8)

corresponding to the variance of 1/4 for any quadrature.
Now let us consider the qubit measurement, assuming the

bad-cavity regime, as in Sec. III. The fluctuation v(t) leads to
the fluctuating ac Stark shift

δωq(t) = 2χδn = 4χRe[α∗
stδα(t)], (B9)

with δα(t) given by Eq. (B6), and to the fluctuating outgoing
field

δF (t) = −v(t) + √
κδα(t). (B10)

By integrating these effects over the time period [t,t + τ ] with
τ � κ−1, so that the exponential dependence in Eq. (B6) has

sufficient time to fully decay, we find∫ t+τ

t

δωq(t ′)dt ′

= 4χRe

[
α∗

st

√
κ

κ/2 + i(ωr − ωd)

∫ t+τ

t

v(t ′)dt ′
]
, (B11)∫ t+τ

t

δF (t ′)dt ′ = κ/2 − i(ωr − ωd)

κ/2 + i(ωr − ωd)

∫ t+τ

t

v(t ′)dt ′.

(B12)

We see that these fluctuating integrals are proportional to
each other. Obviously, the first integral determines the phase
backaction on the qubit state, while the second integral is
related to the measurement result. This is how we can relate
the phase backaction to the measurement result.

Using Eq. (7) for the steady-state values α0,st and α1,st

corresponding to the qubit states |0〉 and |1〉, and assuming
|χ | 	

√
κ2 + 4(ωr − ωd)2, we find

α1,st − α0,st = αst
−2iχ

i(ωr − ωd) + κ/2
, (B13)

and therefore from Eqs. (B11) and (B12) we obtain∫ t+τ

t

δωq(t ′)dt ′

= 2Re

[
− i(α1,st − α0,st)

∗√κ

∫ t+τ

t

δF (t ′)dt ′
]
. (B14)

This relation shows that the phase backaction is determined
by the output quadrature which is orthogonal to the infor-
mational quadrature along α1,st − α0,st. Note that the vacuum
fluctuations v(t), which produce the output fluctuations along
the informational quadrature, do not affect the qubit state, so
the corresponding evolution (12) of the qubit state (diagonal
matrix elements) is only due to ”spooky” backaction and
cannot be explained as an effect of v(t).

Let us first consider an ideal phase-sensitive amplification
of the “orthogonal” (noninformational) quadrature, so that
φd = π/2 [see Eq. (16)]. In this case we need to associate
the output noise with the effect of v(t) fluctuations (no added
noise due to amplifier), and therefore∫ t+τ

t
δFqu(t ′)dt ′√〈[ ∫ t+τ

t
δFqu(t ′)dt ′

]2〉 = Ĩm√
D

, (B15)

where Ĩm is the measurement result [Eq. (14)], D is its variance,
and real δFqu is the fluctuation along the measured quadrature.
Note that in the left-hand side the numerator is for a particular
realization of the noise δFqu, while the denominator assumes
averaging over all noise realizations. Since δFqu(t) should have
the usual vacuum noise statistics, we can use Eq. (B5), which
gives 〈[∫ t+τ

t
δFqu(t ′)dt ′]2〉 = τ/4, and, therefore,∫ t+τ

t

δFqu(t ′)dt ′ = Ĩm√
D

√
τ/4. (B16)

The similar relation for the response is then

√
κ|α1,st − α0,st|τ = �I√

D

√
τ/4. (B17)
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Finally, multiplying Eqs. (B16) and (B17) and noticing that
this product corresponds to the right-hand side of Eq. (B14)
multiplied by τ/2, we obtain

∫ t+τ

t

δωq(t ′)dt ′ = Ĩm�I

2D
, (B18)

which is exactly the result for phase backaction [53] presented
in Sec. III A, when φd = π/2; see Eqs. (13), (17), and (18).
The nonfluctuating part of the ac Stark shift can be simply
added.

If we consider an ideal phase-sensitive amplification of
an arbitrary quadrature, φd �= π/2, then the derivation for the
fluctuating phase shift

∫ t+τ

t
δωq(t ′)dt ′ is similar, except the

amplified quadrature δFqu(t) is no longer along α1,st − α0,st,
and therefore from Eq. (B14) we obtain an extra factor
sin(φd), which appears in Eq. (18) but is absorbed by �I

in Eq. (B18). However, it is not obvious if Ĩm in Eq. (B15)
should be counted from (I0 + I1)/2 or from ρ00I0 + ρ11I1, and
correspondingly if the phase backaction term in Eq. (13) should
be exp(−iKĨmτ ) or exp{−iK[Ĩm − (ρ11 − ρ00)�I/2]τ }. We
can find the answer by requiring that the phase shift due to
the phase backaction term in Eq. (13) is zero on average.
Counterintuitively, the phase shift of the averaged ρ10(t + τ )
in Eq. (13) is zero when the phase backaction term is
exp(−iKĨmτ ), even though 〈exp(−iKĨmτ )〉 obviously has a
nonzero phase if ρ11 �= ρ00. This occurs due to a compensating
effect from the first term in Eq. (13), which contains ρ00 and
ρ11: For example, if ρ11 > ρ00, then a positive Ĩm occurs more
often, but produces smaller |ρ10(t + τ )| than for a negative Ĩm.
(This somewhat counterintuitive compensation is related to the
difference between the Itô and Stratonovich approaches.)

Thus, using the approach of the vacuum noise we derived
the phase backaction term in Eq. (13) in the case of ideal
phase-sensitive measurement. Let us briefly discuss how in
this approach we can take into account nonideality due to
additional resonator damping (e.g., because of coupling to
other transmission lines) and the loss of the microwave signal

before it reaches amplifier (which is still ideal). Then Eqs. (B1)
and (B2) can be replaced with

α̇ = −i(ωr − ωd)α − κ

2
α − iε + √

κoutv(t)

+√
κ − κoutvadd,1(t), (B19)

F =
√

κcol/κout[
√

κoutα − v(t)] +
√

1 − κcol/κoutvadd,2,

(B20)

where
√

κ − κoutvadd,1(t) is the vacuum noise entering the
resonator from other transmission lines, the ratio κcol/κout

characterizes the energy loss between the resonator and
amplifier (which can be modeled via a beam splitter), and
because of this loss (at zero temperature) an additional vacuum
noise vadd,2 contributes to the field F , which reaches the
amplifier. The noises v, vadd,1, and vadd,2 are uncorrelated and
all satisfy Eq. (B4); then the noise of F has the same statistics.
The calculation becomes more complicated, but it still can be
done explicitly. It shows that the correlation (B18) between
the ac Stark shift and the measurement result fluctuations
is reduced by the factor

√
κcol/κ , which is the same factor

as for the reduction of �I . Therefore, Eq. (B18) and the
corresponding Eq. (18) remain valid. Analysis of imperfection
due to a nonideal amplifier can be performed as in Ref. [73];
in this case Eqs. (13) and (18) still remain valid.

Note that even though this approach based on vacuum
noise gives a natural description of the physical mechanism
responsible for the phase backaction, it still cannot explain why
in the ideal case with φd = 0 there are no fluctuations of the
photon number in the resonator. The fact that in the ideal case
only the observed quadrature fluctuates (and the orthogonal
quadrature does not fluctuate) is a “spooky” property of quan-
tum measurement and cannot have a realistic interpretation.

Derivation of the phase backaction coefficient for the
phase-preserving measurement can be done in a similar way.
Alternatively, as discussed in Sec. III B, the results for the
phase-preserving case can be obtained from the results for the
phase-sensitive measurement.
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