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Strong squeezing and robust entanglement in cavity electromechanics
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We investigate nonlinear effects in an electromechanical system consisting of a superconducting charge qubit
coupled to a transmission line resonator and a nanomechanical oscillator, which in turn is coupled to another
transmission line resonator. The nonlinearities induced by the superconducting qubit and the optomechanical
coupling play an important role in creating optomechanical entanglement as well as the squeezing of the
transmitted microwave field. We show that strong squeezing of the microwave field and robust optomechanical
entanglement can be achieved in the presence of moderate thermal decoherence of the mechanical mode. We also
discuss the effect of the coupling of the superconducting qubit to the nanomechanical oscillator on the bistability
behavior of the mean photon number.
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I. INTRODUCTION

Cavity optomechanics, where the electromagnetic mode of
the cavity is coupled to the mechanical motion via radiation
pressure force, has attracted a great deal of renewed interest
in recent years [1]. Such coupling of macroscopic objects
with the cavity field could be used to directly investigate the
limitation of the quantum-based measurements and quantum
information protocols [2–4]. Furthermore, optomechanical
coupling is a promising approach to create and manipulate
quantum states of macroscopic systems. Many quantum
and nonlinear effects have been theoretically investigated.
Examples include squeezing of the transmitted field [5–7],
entanglement between the cavity mode and the mechanical
oscillator [8–10], optical bistability [7,11–14], and side band
ground-state cooling [15,16], among others. In particular, the
squeezing of the transmitted field and the optomechanical
entanglement strongly rely on the nonlinearity induced by
the optomechanical interaction, which couples the position
of the oscillator to the intensity of the cavity mode. Recently,
relatively strong optomechanical squeezing has been realized
experimentally by exploiting the quantum nature of the me-
chanical interaction between the cavity mode and a membrane
mechanical oscillator embedded in an optical cavity [17].

On the other hand, demonstrations of ground-state cooling,
manipulation, and detection of mechanical states at the
quantum level require strong coupling, where the rate of
energy exchange between the mechanical oscillator and the
cavity field exceeds the rate of dissipation of energy from
either system. Although the control and measurement of a
single microwave phonon has already been demonstrated [15],
the phonon states appeared to be short lived. However, for
practical applications mechanical states should survive longer
than the operation time. This unwanted property is due to the
fact that mechanical resonators’ performance degrades as the
fundamental frequency increases [18].

In order to observe the quantum mechanical effects in
cavity optomechanics, one needs to reach the strong-coupling
regime and overcome the thermal decoherence. This has been
exceedingly difficult to experimentally demonstrate in cavity
optomechanics schemes. An alternative approach to realize
strong coupling is to use electromechanical systems, where

the mechanical motion is coupled to superconducting circuits
embedded in transmission line resonators [16,19–26]. Teuful
et al. [16] have recently realized strong coupling and quantum
enabled regimes using electromechanical systems composed
of low-loss superconducting circuits. These systems fulfill the
requirements for experimentally observing and controlling the
theoretically predicted quantum effects [7–14]. In this regard,
much attention has been paid to exploiting experimentally
accessible electromechanical systems [19–26].

In this work, we investigate the squeezing and the op-
tomechanical entanglement in an electromechanical system
in which a superconducting charge qubit is coupled to a trans-
mission line microwave resonator and a movable membrane,
simulating the mechanical motion. The membrane is also
capacitively coupled to a second transmission line resonator
(see Fig. 1). In the strong dispersive limit, the coupling
of the superconducting qubit with the resonator and the
nanomechanical oscillator gives rise to an effective nonlinear
coupling between the resonator and the nanomechanical
oscillator. In effect, there are two types of nonlinearities
in our system: the nonlinear interaction between the first
resonator and the nanomechanical oscillator mediated by the
superconducting qubit, and the nonlinear interaction induced
by the optomechanical coupling between the nanomechanical
oscillator and the second microwave resonator. We find that the
presence of the superconducting qubit-induced nonlinearity
increases the pump power required to observe the bistable
behavior of the mean photon number in the second resonator.
We show that the combined effect of these nonlinearities leads
to strong squeezing of the transmitted field in the presence
of thermal fluctuations. The squeezing is controllable by
changing the microwave drive pump power. Using logarithmic
negativity as an entanglement measure, we also show that
the mechanical motion is entangled with the second resonator
mode in the steady state. The generated entanglement is shown
to be robust against thermal decoherence.

II. MODEL AND HAMILTONIAN

The electromechanical system considered here is schemat-
ically depicted in Fig. 1. A superconducting transmission

1050-2947/2014/89(1)/013841(8) 013841-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.013841


EYOB A. SETE AND HICHEM ELEUCH PHYSICAL REVIEW A 89, 013841 (2014)

Cg

Cq
x Vq

Vg

rf

TLR2

TLR1

FIG. 1. (Color online) Schematics of our model. A Cooper-pair
box, consisting of two Josephson junctions, is coupled to a super-
conducting transmission line resonator (TLR1) and nanomechanical
oscillator. In general, the interaction between the qubit (the Cooper-
pair box) and the nanomechanical oscillator is nonlinear, which
depends on the variable capacitor, Cq . A second superconducting
transmission line resonator (TLR2) is capacitively coupled to the
nanomechanical oscillator. The radio frequency (rf) source produces
a microwave field, which populates the second resonator TLR2 via a
small capacitance.

line resonator (TLR1) is placed close to the Cooper-pair box,
which is coupled to a large superconducting reservoir via two
identical Josephson junctions of capacitance CJ and Josephson
energy EJ . This effectively forms a superconducting quantum
interface device (SQUID) and is also a basic configuration
for superconducting charge qubit [23]. The state of the
qubit can be controlled by the gate voltage Vg through
a gate capacitance Cg. The qubit is further coupled to a
nanomechanical oscillator via capacitance Cq that depends
on the position x of the membrane (the green line in Fig. 1)
from the equilibrium position. Since the amplitude is close
to the zero point fluctuation xzpf , the first-order correction to
the displacement is enough to describe the capacitance. We
introduce a dimensionless position operator as x = x/xzpf ,
which can be expressed in terms of the annihilation and
creation operators as x = b + b†. Thus, the Hamiltonian of
the nanomechanical oscillator of frequency �ωm is given by
�ωm(b†b + 1/2) (in our analysis we drop the constant term
�ωm/2). If the distance between the membrane and the other
arm of the capacitor is d at x = 0, then the corresponding
capacitance is C(0)

q = εmS/d, where S is the surface area
of the electrode and εm is the permittivity of free space.
At the displacement d − x the capacitance reads Cq(x) =
C(0)

q /(1 − x/d) � C(0)
q + C(1)x, where C(1)

q = xzpfC
(0)
q /d. To

create a tunable coupling between the microwave resonator
and the circuit elements, a gate voltage Vq is applied.

The Hamiltonian that describes the interaction of the
qubit with the resonator TLR1 and the nanomechanical
oscillator, in the rotating wave approximation, is given by [23]

(we take � = 1)

H1 = − 1
2ωqσz + gc(c†σ− + cσ+) + gb(b†2σ− + b2σ+), (1)

where ωq is the transition frequency of the qubit, gb and gc are
the microwave resonator-qubit and nanomechanical oscillator-
qubit couplings, respectively. The qubit operators are defined
by σz = |e〉〈e| − |g〉〈g|,σ+ = (σ−)† = |e〉〈g| with |g〉 and |e〉
representing the ground and the excited states of the qubit; b

and c are the annihilation operators of the mechanical mode
and the first resonator (TLR1) mode.

Furthermore, the nanomechanical oscillator is coupled to
the second transmission line resonator (TLR2), which is
externally driven by a microwave field of frequency ωd. This
coupling is described by the Hamiltonian

H2 = gaa
†a(b† + b) + iε(a†e−iωdt − aeiωdt ), (2)

where a the annihilation operator for the resonator TLR2

mode; ga is the resonator-mechanical mode coupling constant,
ε = √

2κaP/�ωa is the amplitude of the microwave drive of
TLR2 with P being the corresponding power, κa the resonator
damping rate, and ωa the resonator frequency. The free
energies of the mechanical oscillator and the two resonators
read

H0 = ωmb†b + ωaa
†a + ωcc

†c, (3)

where ωm is the mechanical oscillator frequency and ωc is the
frequency of TLR1.

Next, we apply the unitary transformation that effectively
eliminates the degrees of freedom of the qubit [in fact
the transformation diagonalizes the interaction part of the
Hamiltonian (1)]. This can be achieved by applying a unitary
transformation defined by

H = U (H0 + H1 + H2)U †,

where

U = exp

[
gc

�qc

(cσ+ − c†σ−) + gb

�qm

(b2σ+ − b†2σ−)

]
,

in which �qc = ωq − ωc and �qm = ωq − 2ωm. In the disper-

sive limit, �qm,�qc �
√

g2
b + g2

c , the transformation yields
an approximate Hamiltonian

H ≈ ωaa
†a + ωmb†b + ωcc

†c + α(b†2c + c†b2)σz

+ gaa
†a(b† + b) + iε(a†e−iωdt − aeiωdt ), (4)

where α = gbgc(�qc + �qm)/2�qm�qc is an effective nonlin-
ear coupling between the nanomechanical oscillator and the
resonator TLR1. If the qubit is adiabatically kept in the ground
state, the effective Hamiltonian reduces to

H ≈ ωaa
†a + ωmb†b + ωcc

†c − α(b†2c + c†b2)

+ gaa
†a(b† + b) + iε(a†e−iωdt − aeiωdt ). (5)

Note that if there is strong thermal excitation which promotes
the qubit to the excited state, then as follows from (5) the
sign of the coupling strength obviously change from −α to α.
The effective nonlinear coupling between the resonator TLR1

and the mechanical mode does not have the same form as the
usual optomechanical coupling (e.g., the coupling between
TLR2 and the mechanical mode). This is because the former
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is mediated by a qubit, while the latter is a direct intensity-
dependent coupling.

A. Quantum Langevin equations

The dynamics of our system can be described by the
quantum Langevin equations that take into account the loss
of microwave photons from each resonator and the damping
of the mechanical motion due to the membrane’s thermal bath.
In a frame rotating with the microwave drive frequency ωd, the
nonlinear quantum Langevin equations read

ȧ = −
(

i�a + κa

2

)
a − igaa(b† + b) + ε + √

κaain, (6)

ḃ = −
(

iωm + γb

2

)
b − igaa

†a − 2iαcb† + √
γmbin, (7)

ċ = −
(

iωc + κc

2

)
c + iαb2 + √

κccin, (8)

where �a = ωa − ωd, and κc and γm are, respectively, the
damping rates for the first resonator TLR1 and mechanical
oscillator. We assume that the resonator’s thermal baths and
that of the mechanical bath are Markovian and hence the
noise operators ain,bin, and cin satisfy the following correlation
functions:

〈A†
in(ω)Ain(ω′)〉 = 2πnAδ(ω + ω′), (9)

〈Ain(ω)A†
in(ω′)〉 = 2π (nA + 1)δ(ω + ω′), (10)

with n−1
A = exp(�ωA/kBTA) − 1, where kB is the Boltzmann

constant and A = a,b,c, and the noise operators have zero-
mean values, 〈ain〉 = 〈bin〉 = 〈cin〉 = 0.

B. Optical bistability in resonator photon number

It is well known that for strong enough pump power and
in the red-detuned (ωd − ωa < 0) regime, an optomechanical
coupling gives rise to optical bistability. Here we investigate
the effect of the nonlinearity induced by the superconducting
qubit on the bistable behavior. Solving the expectation values
of Eqs. (6)–(8) in the steady state we obtain

〈a〉 = ε

i�f + κa/2
, (11)

〈b〉 = −iga|〈a〉|2
iωm + γm/2

− i
2α〈c〉〈b†〉

iωm + γm/2
, (12)

〈c〉 = i
α〈b〉2

iωc + κc/2
, (13)

where �f = �a + ga(〈b〉 + 〈b†〉) is an effective detuning for
second resonator. Combining these equations, we obtain the
coupled equations for the mean photon number Ia = |〈a〉|2 in
the second resonator and the mean phonon number Ib = |〈b〉|2

as

Ia

[(
�a − F (Ib)

2g2
aωmIa

ω2
m + (γm/2)2

)2

+
(

κa

2

)2
]

= |ε|2, (14)

I 2
a = Ib

[
(1 + Ibβ1)2 + I 2

b β2
2

]2[
ω2

m + (γm/2)2
]2/

g2
a[

ωm(1 + Ibβ1) + γm

2 Ibβ2
]2 + [

γm

2 (1 + Ibβ1) − ωmIbβ2
]2

(15)

where

F (Ib) = 1 + Ibβ1 + γm

2ωm
Ibβ2

(1 + Ibβ1)2 + I 2
b β2

2

, (16)

β1 = 2α2(ωmωc − γmκc/4)[
ω2

m + (γm/2)2
][

ω2
c + (κc/2)2

] , (17)

β2 = α2(ωmκc + ωcγm)[
ω2

m + (γm/2)2
][

ω2
c + (κc/2)2

] . (18)

We immediately see from Eq. (14) that in the absence
of the superconducting circuit, which amounts to setting
α = 0 in (17) and (18), the factor F that appears in (14)
becomes, F (Ib) = 1. The resulting equation reproduces the
cubic equation for the mean photon number Ia as in the
standard optomechanical coupling [7], which is known to
exhibit bistable behavior. In general, for electromechanical
system considered here, F (Ib) < 1 (for typical experimental
parameters [16]), thus yielding the same form of the cubic
equation for Ia . In Fig. 2, we plot the mean photon number Ia

as a function of the pump power in the presence and absence of
the superconducting qubit. Figure 2(a) shows, in the presence
of the qubit (α 	= 0), the bistability behavior only appears when
the microwave resonator is pumped at nW range. For example,
for the parameters used in Fig. 2(a), the lower tuning point is
obtained at P ≈ 28 nW. The hysteresis then follows the arrow
and jumps to the upper branch. Then scanning the pump power
towards zero, one obtains the other turning point at very low
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FIG. 2. (Color online) Bistability behavior for mean photon
number in the second resonator Ia (a) in the presence of the
nonlinear coupling α 	= 0 [F (Ib) < 1], and (b) in the absence of
the nonlinear coupling α = 0[F (Ib) = 1]. The parameters used
are: frequencies ωm/2π = 10 MHz, ωa/2π = 7.5 GHz, ωc/2π =
2.5 GHz, ωq/2π = 3 GHz, ωd/2π = 7 GHz, couplings ga/π =
460 Hz,gb/2π = 2 MHz, gc/2π = 30 MHz, and damping rates
κa/2π = 105 Hz, γm/2π = 50 Hz, and κc/2π = 105 Hz.
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FIG. 3. (Color online) Bistability behavior for mean photon
number in the second resonator Ia (blue solid curve) and mean
phonon number Ib (red dashed curve) as a function of the pump power
in the presence of the superconduting qubit (α 	= 0,F (Ib) < 1). All
parameters are the same as in Fig. 2.

pump power P = 0.02 pW. On the other hand, in the absence
of the superconducting qubit [see Fig. 2(b)], the pump power
required to achieve the bistable behavior reduces to the pW
range, with the lower turning point appearing at P = 0.26 pW.
Therefore, when the nanomechanical oscillator is coupled to
the superconducting qubit, a relatively high power is required
to observe a bistable behavior.

Furthermore, according to Eq. (15), since α/ωm 
 1(βi ≈
0), the mean photon number Ia is related to the phonon
number via I 2

a = Ib[ω2
m + (γm/2)2]/g2

a , indicating that the
phonon number also exhibits bistability. Figure 3 compares the
bistable behavior for both Ia and Ib. As can be seen from this
figure, the bistability occurs at the same power range; however,
their corresponding photon and phonon numbers are different
by four orders of magnitude. Note that, as expected, all the
bistable behaviors are observed in the red-detuned regime,
�a = ωa − ωd > 0. From application viewpoint, the bistable
behavior can used as a fast optical switching.

C. Fluctuations about the classical mean value

The quantum Langevin equations [Eqs. (6)–(8)] can be
solved analytically by adopting a linearization scheme [27,28]
in which the operators are expressed as the sum of their mean
values plus fluctuations, that is, a = 〈a〉 + δa, b = 〈b〉 + δb,
and c = 〈c〉 + δc. The equations for fluctuation operators then
read

δȧ = −
(

i�f + κa

2

)
δa − iga〈a〉(δb + δb†) + √

κaain, (19)

δḃ = −
(

iωm + γm

2

)
δb − iga(〈a†〉δa + 〈a〉δa†)

− 2iα[〈c〉δb† + 〈b†〉δc] + √
γmbin, (20)

δċ = −
(

iωc + κc

2

)
δc + 2iα〈b〉δb + √

κccin. (21)

The solutions to these equations can easily be obtained in
frequency domain. To this end, writing the Fourier transform

of Eqs. (19)–(21) and their complex conjugates, we get

AU = N , (22)

where

A =

⎛
⎜⎜⎜⎜⎜⎝

η+ 0 G G 0 0
0 η− G∗ G∗ 0 0

−G∗ G v+ C B∗ 0
G∗ −G C∗ v− 0 B
0 0 B 0 u+ 0
0 0 0 B∗ 0 u−

⎞
⎟⎟⎟⎟⎟⎠ , (23)

U = (δa,δa†,δb,δb†,δc,δc†)T and N = (
√

κaain,
√

κaa
†
in,√

γmbin,
√

γmb
†
in,

√
κccin,

√
κcc

†
in)T with η± = κa/2 + i(ω ±

�f), v± = γm/2 + i(ω ± ωm), and u± = κc/2 + i(ω ± ωc),
G = iga〈a〉,B = −2iα〈b〉,C = 2iα〈c〉.

The solution for the fluctuation operator δa of the second
resonator field has the form

δa(ω) = ξ1ain + ξ2a
†
in + ξ3bin + ξ4b

†
in + ξ5cin + ξ6c

†
in. (24)

The explicit expression for the coefficients ξi are given in
the Appendix. Similarly, the expressions for δb(ω) and δc(ω)
can be obtained from (23). In the following, we use (24) to
analyze the squeezing of the transmitted microwave field from
the second resonator.

III. SQUEEZING SPECTRUM

It was shown that the optomechanical coupling can lead
to squeezing of the nanomechanical motion, which can be
inferred from the measurement of the squeezing of the
transmitted microwave field [5,6,28]. Here we investigate the
squeezing properties of the transmitted microwave field in
the presence of the nonlinearity induced by superconducting
qubit [represented by the effective coupling α in Eq. (5)] as
well as the nonlinearity due to the optomechanical coupling
[represented by coupling ga in Eq. (5)]. The stationary
squeezing spectrum of the transmitted field is given by

S(ω) =
∫ ∞

−∞
dτ

〈
δXout

φ (t + τ )δXout
φ (t)

〉
sse

iωτ

= 〈
δXout

φ (ω)δXout
φ (ω)

〉
, (25)

where δXout
φ = eiφδaout + e−iφδa

†
out with aout = √

κaδa − ain

being the input-output relation [29] and φ the measurement
phase angle determined by the local oscillator. The squeezing
spectrum can be put in the form

S(ω) = 1 + Cout
a†a + e−2iφCout

aa + e2iφCout
a†a† , (26)

where 〈δaout(ω)δaout(ω′)〉 = 2πCout
aa (ω)δ(ω + ω′) and

〈δaout(ω)†δaout(ω′)〉 = 2πCout
a†a

(ω)δ(ω + ω′). The degree of
squeezing depends on the direction of the measurement of the
quadratures, thus can be optimized over the phase angle φ.
Using the angle that optimizes the squeezing [30], we obtain

S
(±)
opt (ω) = 1 + 2Cout

a†a(ω) ± 2
∣∣Cout

aa (ω)
∣∣. (27)

S
(−)
opt corresponds to the spectrum of the squeezed quadrature,

while S
(+)
opt represents the spectrum of the unsqueezed quadra-

ture. Using the solution (24) and the correlation properties of
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the noise forces (9) and (10), the spectrum of the squeezed
quadrature takes the form

S
(−)
opt (ω) = 1 + 2Cout

a†a(ω) − 2
∣∣Cout

aa (ω)
∣∣, (28)

where

Cout
a†a(ω) = κa[naξ1(ω)ξ ∗

1 (−ω) + (na + 1)ξ2(ω)ξ ∗
2 (−ω)

+ nbξ3(ω)ξ ∗
3 (−ω) + (nb + 1)ξ4(ω)ξ ∗

4 (−ω)

+ ncξ5(ω)ξ ∗
5 (−ω) + (nc + 1)ξ6(ω)ξ ∗

6 (−ω)]

− 2
√

κana[ξ1(ω) + ξ ∗
1 (−ω)] + na, (29)

Cout
aa (ω) = κa[naξ1(ω)ξ ∗

2 (−ω) + (na + 1)ξ ∗
1 (−ω)ξ2(ω)

+ nbξ3(ω)ξ ∗
4 (−ω) + (nb + 1)ξ ∗

3 (−ω)ξ4(ω)

+ ncξ5(ω)ξ ∗
6 (−ω) + (nc + 1)ξ ∗

5 (−ω)ξ6(ω)]

−√
κa[naξ

∗
2 (−ω) + (na + 1)ξ2(ω)]. (30)

Based on the definition of the quadrature δXout
ϕ , the microwave

field is squeezed when the value of the squeezing spectrum is
below the standard quantum limit, S

(−)
opt (ω) = 1.

In Fig. 4, we plot the squeezing spectrum of the microwave
field as a function of the temperature Ta of the second
resonator thermal bath. As can be seen from this figure,
the microwave field exhibits squeezing with the degree of
squeezing strongly relying on the thermal bath temperature,
Ta . Obviously, the amount of squeezing degrades as the
thermal temperature increases and it ultimately disappears
when the bath temperature reaches Ta ≈ 600 mK for the
parameters used in Fig. 4. We also found that the degree of
squeezing is less sensitive to the first resonator thermal bath
temperature Tc. This is because the second resonator is not
directly coupled to the first resonator thermal bath, though it is
indirectly coupled via the nanomechanical oscillator through
a low-loss capacitor. The other interesting aspect is that the
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FIG. 4. (Color online) Plots of the squeezing spectrum of the
transmitted microwave field [Eq. (28)] for drive pump power P =
8 μW, for drive frequency ωd/2π = 7.4999 GHz, for membrane’s
bath temperature Tb = 50 mK, for bath temperature of the first
resonator, Tc = 2 K, and for various bath temperatures of the second
resonator: (a) Ta = 150 mK (solid green curve), (b) Tb = 250 mK
(dashed red curve), and (c) Tb = 350 mK (dot-dashed black curve).
The horizontal solid line represents the standard quantum limit
[S(−)

opt (ω) = 1], below which indicates squeezing. All other parameters
are the same as in Fig. 2.
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FIG. 5. (Color online) Plots of the squeezing spectrum vs the
microwave drive pump power P (μW) for the bath temperature
of the first resonator Tc = 2 K, the membrane’s bath temperature,
Tb = 10 mK, and for different values of the bath temperature Ta of
the second resonator: (a) Ta = 250 mK (dot-dashed black curve), (b)
Ta = 150 mK (dashed red curve), and (c) Ta = 50 mK (solid green
curve). All other parameters are the same as in Fig. 2.

spectrum shows double dips for strong enough pump power
indicating that the optomechanical interaction reached the
strong-coupling regime, a requirement to observe quantum
mechanical effects. It is worth mentioning that to make sure
that the squeezing is determined in the stable regime, the
microwave drive frequency ωd is deliberately chosen close
to resonance frequency of the second resonator ωa .

The other important external parameter that can be used
to control the degree of the squeezing is the strength of
the microwave drive. The dependence of the squeezing on
the drive pump power is illustrated in Fig. 5. When the
microwave drive frequency is close to the resonator frequency,
that is, when �a/2π = 0.1 MHz, the squeezing gradually
develops as the pump power is increased to the range of
few μW. Further increase in the pump power leads to an
optimum squeezing that can possibly be achieved for a given
set of temperatures of the thermal baths. For example, for
Ta = 10 mK,Tb = 10 mK, and Tc = 2 K, the maximum
squeezing is ≈ 97% below the standard quantum limit at a
pump power P ≈ 10 μW. However, when the pump power
is increased beyond P ≈ 10 mW, the degree of squeezing
sharply decrease and becomes strongly dependent on Ta . The
other interesting aspect is that although the bath temperature
Ta is increased to 250 mK, there exists an optimum power for
which the squeezing is still the maximum achievable. Even
though the overall squeezing is due to both nonlinearities
induced by the effective coupling between the first resonator
and the nanomechanical oscillator and the optomechanical
coupling, the enhancement of the squeezing with pump power
is mainly due to the optomechanical coupling. This is because
the pump power directly affects the intensity in the second
resonator (TLR2), which in turn increases the strength of the
optomechanical coupling.

Fixing the power (P = 10 mW) at which the squeezing
is maximum, it is important to understand the interplay
between the bath temperatures Ta and Tb in determining
the degree of squeezing of the microwave field. Figure 6
shows that the squeezing persists up to Ta ≈ 2 K. While
the degree of squeezing is weakly dependent on the thermal
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FIG. 6. (Color online) Plots of the squeezing spectrum (in the
logarithmic scale) vs the bath temperature of the second resonator Ta

for a pump power P = 10 μW, for the bath temperature Tc = 2 K
of the first resonator, and for different values of the membrane’s bath
temperature, Tb = 1 K (dotted blue curve), Tb = 0.25 K (dot-dashed
black curve), Tb = 0.05 K (dashed red curve), Tb = 0.01 K (solid
green curve). All other parameters are the same as in Fig. 2.

bath temperature Tb of the nanomechanical oscillator when
Ta > 0.1 K, the squeezing decreases with increasing Tb for
Ta < 0.1 K. Therefore, a strong and robust squeezing can be
achieved by tuning the pump power close to P = 10 μW while
keeping the bath temperatures Ta,Tb within � 1 K range.

IV. OPTOMECHANICAL ENTANGLEMENT

It has been shown that the optomechanical coupling
gives rise to entanglement between the resonator field and
mechanical motion [8–10]. Here we analyze the robustness of
the optomechanical entanglement against thermal decoherence
in the presence of the two different nonlinearities discussed
earlier. We also analyze how the degree entanglement depends
on the drive pump power and the detuning �a . In order
to investigate the optomechanical entanglement, it is more
convenient to use the quadrature operators defined by

Xa = 1√
2

(δa + δa†), Ya = 1√
2i

(δa − δa†), (31)

Xb = 1√
2

(δb + δb†), Yb = 1√
2i

(δb − δb†), (32)

Xc = 1√
2

(δc + δc†), Yc = 1√
2i

(δc − δc†). (33)

The equations of motion for these quadrature operators can be
put in a matrix form

u̇(t) = Ru(t) + f (t), (34)

where

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−κa/2 �f −2gaηb 0 0 0
�f −κa/2 −2gaμa 0 0 0
0 0 −γm/2 + 2αμc ωm − 2αηc −2αμb 2αηb

−2gaηa −2gaμa −(ωm + 2αηc) −(γm/2 + 2αμc) −2αηb −2αμb

0 0 −2αμb −2αηb −κc/2 ωc

0 0 2αηb −2αμb −ωc −κc/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, u =

⎛
⎜⎜⎜⎜⎜⎝

δXa

δYa

δXb

δYb

δXc

δYc

⎞
⎟⎟⎟⎟⎟⎠ , f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√
κaX

in
a√

κaY
in
a√

γmXin
b√

γmY in
b√

κcX
in
c√

κcY
in
c

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(35)

where ηL = 1
2 (〈L〉 + 〈L†〉), μL = 1

2i
(〈L〉 − 〈L†〉) and Xin

L =
(δLin + δL

†
in)/

√
2, Y in

L = i(δL†
in − δLin)/

√
2, where L =

a,b,c.
In this work, we are interested in the steady-state op-

tomechanical entanglement. It is then sufficient to focus
on the subspace spanned by the second resonator and
mechanical mode (the upper left 4 × 4 matrix in R). To
study the stationary optomechanical entanglement, one needs
to find a stable solution for Eq. (34), so that it reaches
a unique steady state independent of the initial condition.
Since we have assumed the quantum noises ain,bin and cin

to be zero-mean Gaussian noises and the corresponding
equations for fluctuations (δa,δb, and δc) are linearized, the
quantum steady state for fluctuations is simply a zero-mean
Gaussian state, which is fully characterized by 4 × 4 corre-
lation matrix Vij = [〈ui(∞)uj (∞) + uj (∞)ui(∞)〉]/2. The
solution to Eq. (34), u(t) = M(t)u(0) + ∫ t

0 dt ′M(t ′)f (t − t ′),
where M(t) = exp(Rt), is stable and reaches steady state when
all of the eigenvalues of R have negative real parts so that
M(∞) = 0. The stability condition can be derived by applying
the Routh-Hurwitz criterion [31]. For all results presented

in this paper, the stability conditions are satisfied. When the
system is stable one easily get

Vij =
∑
lm

∫ ∞

0
dt ′

∫ ∞

0
dt ′′Mil(t

′)Mjm�lm(t ′ − t ′′), (36)

where the stationary noise correlation matrix is given by �lm =
〈[fl(t)fm(t ′′) + fm(t ′′)fl(t)]〉/2,where fi is the ith element of
the column vector f . Since all noise correlations are assumed
to be Markovian (δ correlated) and all components of f (t) are
uncorrelated, the noise correlation matrix takes a simple form
�lm(t ′ − t ′′) = Dlmδ(t ′ − t ′′), where

D = Diag[κa(2na + 1)/2,κa(2nb + 1)/2,γm(2nb + 1)/2,

γm(2nb + 1)/2,κc(2nc + 1)/2,κc(2nc + 1)/2] (37)

is the diagonal matrix. As a result, Eq. (36) becomes
V = ∫ ∞

0 dt ′M(t ′)DM(t ′)T. When the stability conditions are
satisfied, i.e., M(∞) = 0, one readily obtains an equation for
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the steady-state correlation matrix

RV + VRT = −D. (38)

Equation (38) is a linear equation (also known as Lyapunov
equation) for V and can be solved in straightforward manner.
However, the solution for our system is rather lengthy and will
not be presented here. We instead solve (38) numerically to
analyze the optomechanical entanglement.

In order to analyze the optomechanical entanglement, we
employ the logarithmic negativity EN , a quantity which has
been proposed as a measure of bipartite entanglement [32].
For continuous variables, EN is defined as

EN = max[0, − ln 2χ ], (39)

where χ = 2−1/2[σ − √
σ 2 − 4detV]1/2 is the lowest simplis-

tic eigenvalue of the partial transpose of the 4 × 4 correlation
matrix V with σ = detVA + detVB − 2 detVAB . Here VA

and VB represent the second resonator field and mechanical
mode, respectively, while VAB describes the optomechanical
correlation. These matrices are elements of the 2 × 2 block
form of the correlation matrix

V ≡
(
VA VAB

VT
AB VB

)
. (40)

Any two modes are said to be entangled when the logarithmic
negativity EN is positive.

In Fig. 7, we plot the logarithmic negativity EN as a
function the thermal bath temperature Tc of the first resonator
while varying the thermal bath temperature Ta of the second
resonator at a fixed drive pump power, P = 1 μW. This
figure shows that the mechanical mode is entangled with the
resonator mode of the second resonator in the steady state.
The entanglement strongly relies on the bath temperatures
Ta and Tc of the first and second resonators, respectively.
In general, the optomechanical entanglement degrades as
the thermal bath temperatures increases. For instance, when
the temperature of the second resonator fixed at 50 mK, the
entanglement survives until the bath temperature Tc of the

Ta mK
50

100

150

200

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.2

0.4

0.6

0.8

Tc K

E N

FIG. 7. (Color online) Plots of the logarithmic negativity EN vs
the temperature of the first resonator thermal bath, Tc for the drive
pump power P = 1 μW, �a/2π = 0.1 MHz and for different values
of the second resonator thermal bath temperature Ta= 50 mK (dotted
blue curve), 100 mK (dot-dashed black curve), 150 mK (dashed red
curve), and 200 mK (solid green curve). All other parameters the
same as in Fig. 2.
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FIG. 8. (Color online) Plots of the logarithmic negativity EN vs
the detuning �a for the thermal bath temperature of the first resonator
Tc = 50 mK and for the thermal bath temperature of the second
resonator Ta= 100 mK and for different values of the microwave
drive pump power P = 0.5 μW (dotted blue curve), 1.0 μW (dashed
red curve), and 2.0 μW (solid green curve). All other parameters as
the same as in Fig. 2.

first resonator reaches about 100 mK. If the temperature Ta

is further increased, the critical temperature Tc above which
the entanglement disappears decreases. Therefore, at constant
pump power, the entanglement can be controlled by tuning the
bath temperatures of the two resonators.

Another system parameter that can be used as an external
knob to control the degree of entanglement is the detuning
�a . Figure 8 illustrates the logarithmic negativity versus the
detuning �a for different values of the pump power. Close to
resonance (�a = 0) and for pump power P � 1.2 μW, there is
no optomechanical entanglement; however, the entanglement
between the nanomechanical oscillator and the resonator field
arises when the detuning is further increased, and reaches
stationary values for �a/2π � ωm/2π = 10 MHz, which is
consistent with the results in the literature [10]. The interesting
aspect of our result is that the entanglement persists for a wide
range of detuning �a , as opposed to the results reported for
systems that only involve the optomechanical coupling [10].

V. CONCLUSION

We analyzed the squeezing and optomechanical entangle-
ment in an electromechanical system in which a superconduct-
ing charge qubit is coupled to a transmission line resonator
and a movable membrane, which in turn is coupled to a
second transmission line resonator. We show that due to the
nonlinearities induced by the optomechanical coupling and
the superconducting qubit, the transmitted microwave field
exhibits strong squeezing. Additionally, we showed that robust
optomechanical entanglement can be achieved for appropriate
choice of the bath temperature of the two resonators. We also
showed that the generated entanglement can be controlled
by tuning the input drive pump power and the detuning of
the drive frequency from the resonator frequency. Merging
of optomechanics with electrical circuits opens avenues for
an alternative way to explore creation and manipulation of
quantum states of microscopic systems.
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APPENDIX: TERMS THAT APPEAR IN EQ. (24)

The coefficients that appear in Eq. (24) are given by

ξ1 =
√

κa

d(ω)
η−[(u−v− − |B|2)(u+v+ − |B|2) − u−u+|C|2]

−
√

κa|G|2
d(ω)

{[(u− − u+)|B|2 + (|B|2

+u−u+[v− − v+ + 2iIm(C)]}, (A1)

ξ2 =
√

κaG
2

d(ω)
{[(u− − u+)|B|2 + u−u+[v− − v+ + 2iIm(C)]},

(A2)

ξ3 =
√

γmGη−
d(ω)

u+(|B|2 + u−C∗ − u−v−), (A3)

ξ4 =
√

γmG

d(ω)
η−u−(|B|2 + u+C∗ − u+v+), (A4)

ξ5 = −
√

κcG

d(ω)
η−B∗(|B|2 + u−C∗ − u−v−), (A5)

ξ6 = −
√

κcG

d(ω)
η−B(|B|2 + u−C − u+v+), (A6)

where

d(ω) = [(u−v− − |B|2)(v+u+ − |B|2) − u−u−|C|2]η−η+

+ |G|2(u−{|B|2 + u+[v− − v+ + 2iIm(C)]}
−u+|B|2)(η− − η+). (A7)
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