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Two-qubit decoherence mechanisms revealed via quantum process tomography
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We analyze the quantum process tomography (QPT) in the presence of decoherence, focusing on distin-
guishing local and nonlocal decoherence mechanisms for a two-partite system from experimental QPT data. In
particular, we consider the JiISWAP gate realized with superconducting phase qubits and calculate the QPT
matrix y in the presence of several local and nonlocal decoherence processes. We determine specific patterns
of these decoherence processes, which can be used for a fast identification of the main decoherence mecha-

nisms from an experimental y matrix.
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I. INTRODUCTION

Quantum information processing is presently a focus of
significant interest since it shows a promise to perform vari-
ous computational and communication tasks which are diffi-
cult or impossible to perform by classical means [1]. A stan-
dard scheme of quantum information processing involves a
sequence of unitary operations (gates) on single qubits or
pairs of qubits. Due to coupling to environment, the
quantum-processor evolution suffers from decoherence,
which introduces errors into quantum information process-
ing. Effects of decoherence on the desired quantum evolution
can be characterized by a variety of methods jointly called
quantum process tomography (QPT), such as the standard
QPT [1-3], ancilla-assisted process tomography (AAPT)
[4-7], and direct characterization of quantum dynamics
[8.9]. The standard QPT is simplest of the above methods in
the sense that it can be performed with initial states being
product states and local measurements of the final states.

In recent years the QPT has been demonstrated experi-
mentally in optics [7,10-16], NMR [17-19], for ions in traps
[20,21], and for solid-state qubits [22-25]. One-qubit
[7,11,16,22-24], two-qubit [10,12-15,19,20,25], and three-
qubit [18,21] systems have been studied. Experiments on the
QPT involving more than one qubit usually use the standard
QPT. The QPT experiments with the superconducting phase
qubits [23-25], which are of the most interest for us here,
have been also based on the standard QPT. In the present
paper we also use the standard QPT.

The QPT provides a very rich (complete) information on
the performance of a quantum circuit. For N qubits the QPT
matrix y [1] is generally characterized by 16" real param-
eters; this number reduces to 16V —4Y parameters if we limit
ourselves by trace-preserving processes. Only 4¥—1 of these
parameters correspond to a unitary evolution, while the rest
of them are due to decoherence. The problem of converting
experimental QPT data into a characterization of decoher-
ence processes is of significant theoretical interest [26-31].
However, there is still no good understanding of the relation
between the y matrix elements and the decoherence
parameters, except for the case of one qubit. Recently,
estimation of one-qubit decoherence parameters by a
QPT method was discussed in Ref. [30] for a specific
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decoherence model. In practice, decoherence models are
often not known in advance, especially for systems contain-
ing more than one qubit. An additional complication is that
often two or more unknown mechanisms simultaneously
cause decoherence. In the present paper, we consider an ap-
proach to identify the decoherence models from the form of
the y matrix provided by an experiment. For that, we start
with physically reasonable models of decoherence and ana-
lyze corresponding patterns in the y matrix. If these patterns
are sufficiently specific, then the main decoherence mecha-
nisms can be identified from an experimental y matrix di-
rectly, without a complicated numerical analysis. As a par-
ticular example we consider the \iSWAP gate made of
superconducting phase qubits [32-34] and calculate the y
matrix in the presence of several local and nonlocal decoher-
ence mechanisms, which can be anticipated for this system.
We show that the patterns of significant elements of the x
matrix are quite different for different decoherence mecha-
nisms that makes their identification relatively simple, even
when two or more decoherence mechanisms simultaneously
affect the system.

The paper is organized as follows. In Sec. II A we review
the standard QPT for a generic system (with some formulas
discussed in the Appendix) and then in Sec. I B we modify
this formalism to make it more convenient for the application
to a bipartite system. Section III is devoted to a brief discus-
sion of the Markovian decoherence and calculation of its
contribution into the y matrix. In Sec. IV we introduce quan-
titative characteristics of the decoherence nonlocality, which
can be obtained from experimental QPT data. Section V is
the major part of our paper, in which we analyze the two-
qubit ViSWAP gate made of superconducting phase qubits. We
start with the discussion in Sec. V A of an ideal ViSWAP gate,
then in Sec. V B we discuss several applicable models of
local and nonlocal decoherence. In Sec. V C these models
are used for the calculation of the y matrix of the trivial
(identity) two-qubit gate, then in Sec. V D the y matrix of
the \iSWAP gate is calculated for the same decoherence mod-
els (it happens to have significant similarities with the iden-
tity gate case), and these results are discussed in Sec. V E. In
Sec. V F we analyze effects of decoherence on the y matrix
in the case of coupled but strongly detuned qubits. Section
VI is the brief conclusion.

©2009 The American Physical Society
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II. QPT BASICS

A. QPT for a generic system

According to quantum mechanics, a closed system under-
goes a unitary evolution determined by the system Hamil-
tonian. However, usually quantum systems are coupled to
environment, i.e., they are open. The evolution of an open
quantum system is described [1,35] by a completely positive
linear map £ (a quantum operation): if the initial density
matrix of the system and environment at time =0 is a prod-
uct state, p’® p%, and full evolution is described by Hamil-
tonian Hgg, then at time ¢ the reduced density matrix of the
system only is

d-1

p=L[p"], pij= > Lij P (M
Kk I=0

where d is the dimension of the Hilbert space of the system,
and the superoperator £ has elements

cor| =i e =i E
L= 2 (i’ e Mse k)i’ |e™Mse ™11y pp, - (2)
Ry

with i,j,k,l denoting orthonormal basis states of the system
and i’ ,k",l’ denoting the environment basis states.

Besides the four-index quantity L;; y, it is convenient to
introduce [26,36] the d*> X d* matrix £ with the same com-
ponents, but indexed in a different way as follows:

L vy = Lij s (3)

where we use the notation
(ij)=di+], (4)
so that (ij)=0,1,...,d>~1 (notice mnemonic rule that the

d-nary representation of the number (ij) is “ij”"). Now Eq. (1)
can be recast as

p=Lp’, (5)

in which p is a column vector obtained by placing the rows
of p one after another and then transposing the result, p;

=Pij-
The standard QPT [1,3] is based on a different but equiva-
lent description of a quantum operation

a1
p=L[p"1= 2 XuEurE}, (6)
m,n=0
where E, are linearly independent operators (in

d-dimensional Hilbert space) and x is a d*> X d* Hermitian
positive-semidefinite matrix, which fully characterizes the
quantum operation. A quantum operation should not increase
the trace of the density matrix that leads to the condition
[1,12]

-1

2 XmEEn=1, ()

m,n=0

where [ is the (d-dimensional) identity operator. (For opera-
tors the inequality A =B means that B—A is a positive op-
erator.) For trace-preserving operations, Eq. (7) becomes an
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equality, while trace-decreasing operations correspond to
situations when the system leaves its Hilbert space or we
consider a measurement with a particular result.

The QPT matrix y can be obtained from experimental
data in two steps: first by calculating the matrix £ and then
converting it into the y matrix. To obtain £ one needs to
prepare d” linearly independent initial states pg (chosen out
of experimental convenience), perform the evolution, and
measure the resulting states p, using the quantum state to-
mography [1,37]. Using Eq. (5), we can write R=LR,,
v&ghere R and R, are d*> X d” matrices constructed from p, and
p, as

Riipnn= ()i (Ro)iijn = (Pg)l‘j, (8)

so that the nth column of R is p,, and similarly for R,.
Therefore, the matrix £ can be obtained [2] as

L =RR;', )

where the existence of Ral is ensured by the linear indepen-
dence of the states p..

Calculation of the y matrix from L is the easiest when the
operators E, used in definition (6) form the “by-element”
basis

F(ij>= |l><l s (10)
which we will call the “elementary basis” F,. This is because
Eq. (1) can be rewritten in a form similar to Eq. (6) as

d*-1
p= 2 JuF.0°F}, (11)

m,n=0

where d% X d*> matrix J contains the same elements as £, but
in a different order,

Jijaay = L (12)

Therefore, for the elementary basis, E,=F,, we obtain y=J,
so that the y matrix consists of reordered elements of L.
Explicitly, this reordering is the following: (1) each row of £
is converted into a d X d matrix by sequentially placing the
strings of d elements below each other and (2) these matrices
are placed from left to right, with a new row of matrices
starting after each d steps. (Another reordering of the matrix
elements of L is also often used in the literature [4,38—42]:
the operator C, which is related to J as Jy;;u=Cinar [43]-
Operators C and J are called Choi or Jamiolkowski opera-
tors. Both C and J are Hermitian and positive definite.)

To obtain y matrix for a general operator basis E,, let us
construct the d? X d? matrix E, whose nth column contains
all elements of the dXd matrix E,, so that E;,=(E,);.
Then, E,,=Efln2=_01FmEmn and hence Fn=2f:_01Em(E‘l)mn,
where E~! exists because of the linear independence of E,. In
this way from Eq. (11) we obtain

x=E"J(E"). (13)

This expression simplifies in an important special case of
mutually orthogonal operators E,, which satisfy equation
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Tr(E'E,) = d&,,, (14)

where §,,, is the Kronecker symbol and the convenient nor-
malization factor d allows us to include the unity operator
into the set E, (as well as products of Pauli matrices for
multiqubit systems). Generalization to a different normaliza-
tion is trivial—see below. In this special case (E'E),,
:Ei}JOE?ij>n§<ij>,,,=Tr(EZEm)=d5nm, i.e., E'E=dI (in other
words, E/\d is a unitary matrix), and therefore Eq. (13)
becomes

x=d’E'JE. (15)

In case (14) the calculation of the trace of the both sides of
Eq. (7) results in the inequality

Try=1, (16)

which becomes the equality for a trace-preserving map.

An important example of the orthogonal unitary-operator
basis E, [satisfying Eq. (14)] for a system of N qubits is the
so-called Pauli basis, which consists of tensor products of N
operators from the set {/,X,Y,Z}, where X,Y,Z are the Pauli
operators. The modified Pauli basis with ¥ — —iY is also used
in the literature, for example, in the QPT analysis for one and
two qubits in Refs. [1,3].

Notice that if in Eq. (14) the normalization factor d is
replaced with an arbitrary number Q, then in Eq. (15) the
factor d~? is replaced with Q7 and Eq. (16) becomes
Tr x=d/Q. In particular, Q=1 for the orthonormal basis F,
introduced by Eq. (10); in this case E=I, and therefore Eq.
(15) reduces to the previous result y=J.

Several useful formulas for the y matrix are discussed in
the Appendix. Notice that the QPT calculation procedure dis-
cussed above is slightly different and simpler than in Refs.
[1,3]; in particular, it involves an inversion of a d> X d> ma-
trix [Eq. (9)] instead of a pseudoinverse calculation for a
d* X d* matrix.

At the end of this subsection let us briefly discuss the idea
of the AAPT [4-7], even though we will not use it in this
paper. To perform the AAPT on a d-level system S, one
needs a similar d-level ancillary system S&’. The compound
system is prepared in the maximally entangled state
|Dy=d-"2=4 i), then the quantum operation £ is applied to
the system S only, and then the resulting density matrix of
the compound system is measured by the quantum state to-
mography. It is easy to see that the resulting density matrix is
(LRT)[|PNP|]=d"'J, where T is the identity map. In this
way the matrix J is obtained directly and may later be con-
verted into the y matrix, as discussed above. In principle,
other initial states can be also used for the AAPT, however
the maximally entangled state |®) is the optimal one [6].

B. QPT for a bipartite system

Now, let us consider a bipartite system S consisting of
subsystems S| and S, with the Hilbert-space dimensions d,
and d,, respectively. Then the dimension of the Hilbert space
of S is d=d,d,, and as the basis we can use the states
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iy =linli2) = i) (17)

constructed out of orthonormal basis states in two sub-
systems. We enumerate the states using slightly generalized
notation (4), so that j=(j,j,)=d5j; +,.

As discussed in the previous subsection, the y matrix can
be calculated by performing the quantum operation on d”
initial states pg. It is often convenient to use the product
states, p?nm):pﬁ,'l)@pff; (where (n,n,)=dsn,+n,) with lin-
early independent sets of states for each subsystem. In this
case the calculation of the matrix £ via Eq. (9) may be
simplified; however, this requires some modification [43]
of Eq. (9). The reason is that the matrix R, does not coincide
with the Kronecker product Rgl)@)Rgz), as may be naively
expected, but requires an additional permutation of rows.
As the result, it is easier to calculate first the matrix

L’:R[(R(()l))‘1®(R62))‘1], and then obtain L by
permutation of columns, L,’n<il j1i2j2>:£m<i]i2jl j,» Where the

four-number notation in indices is the natural generalization
of notation (4) <i1j]l.2j2>=l'1d1d§+jld§+l.2d2+j2 and
(hisjijoy=irdids+indidy+ jida+ .

In particular, for a two-qubit system with the initial states
chosen as products of the states [1-3] pS,l):pS,z)E /A
with ) =0), _ [=[1),  |)=(|0)+[1)/v2,  and
[¢3)=(|0)+i|1))/2, we obtain

I = (1+0D/2 (-1+0)/2
0 —(14+9/2 (1402
0 1 1
0 i —1i

(Rgl))—l _ (R(()Z))—l _

S O = O

(18)

As discussed in the previous subsection, the calculation of

the y matrix is the easiest when for the operator basis E, we

choose the elementary basis (10). Then, x=J, where J is

given by Eq. (12). However, for a bipartite system it is con-

venient to use the product of operator bases for each sub-
system,

Euy=Ey) ® EY, (19)

1)
and the product of the elementary bases for each subsystem
is not the elementary basis (10) because of the different
enumeration. Therefore, to simplify formulas for a
bipartite system, we have to somewhat modify the formulas
for the generic system. In particular, for the product
F f}f@Fff; of the elementary bases (10), we get x=J, where
ki) Gy ish) = iy oMk (The relation between J

and J is J<i1k|izk2></1l|/212>=J<i152’<1k2></1f2’112>’)
For basis (19) which uses arbitrary orthogonal subsystem
bases E;l) and Eff), satisfying equations

Te(EV'EV) = d,68,,, To(EPE?)=d,6,,. (20)

the x matrix can be expressed via J as
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y=d2(EVT @ EONJED @ E?), (21)

which is similar to Eq. (15) [a straightforward application of
Eq. (15) would not have the desired Kronecker-product
form]. Notice that if subsystem bases satisfy the orthogonal-
ity condition (20), then the compound basis (19) satisfies the
orthogonality condition (14) with the normalization factor
d=d,d,. Therefore, Eq. (16) remains valid, so that for a
trace-preserving operation Tr y=1. In particular, for a two-
qubit system and the Pauli basis we have

d=4, EV=E?= (22)

_— 0 O =
S = = O
|

III. MARKOVIAN DECOHERENCE
A. General formalism

An important special case of a general quantum evolution
is the Markovian evolution

p=Mlp], (23)

where (M [p])ij:E‘,fjioM ij.kiPx and the superoperator M is the
generator of a quantum Markovian semigroup [35]. The four-
index representation of M can be converted into a d*X d?
matrix M with M ;jy=M,;  [similar to Eq. (3)], and then

L= (24)

It is often convenient to separate the evolution generator
M=L,,+L into the coherent part L.,,p=—(i/h)[H,p], with
H being the Hamiltonian of the system, and the generator L
of the incoherent evolution (decoherence). In the matrix form
we have

M=Ly+L, (Leop)ju=i(H0u—Hydy). (25)

In the present paper we are interested in effects of decoher-
ence, and therefore we assume that the Hamiltonian H is
known. Given the matrix £, which can be measured as dis-
cussed in Sec. II, the matrix M can in principle be extracted
by solving Eq. (24) (although the extraction procedure in-
volves some subtleties) [22,26,29]. Then L can be obtained
from Eq. (25).

Following the QPT description (6), it is convenient to
introduce a d*> X d*> matrix \ defined by the equation

a1

m,n=0
with the same operator basis E,. The matrix A\ is Hermitian
and for a trace-preserving map has

Tr A =0. (27)

The matrix A is a counterpart of the y matrix and has
many similar properties [43]. In particular, for a bipartite
system and for a product basis E, satisfying Egs. (19) and
(20), the matrix X is given by an equation similar to Eq. (21),
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A=d(EV @ EPNWEY @ EY), (28)

where V<i|’<1izkz>(fllljzlz>=L<i|izj1fz><k|kzl|l%>' Notice that A=v for
the elementary product basis F Slll) ®F n22)'

B. Weak decoherence

The decoherence should be relatively weak for a practical
quantum information processing. In this case (for a suffi-
ciently short time #) one can expand £ up to the first order in
L and obtain in the interaction representation

13
crt=rly J dr e Lo eLeon™, (29)
0

where L£'=1 is the d*-dimensional identity matrix and the
interaction representation describes the evolution of
pim(t) - eth/ﬁp(t)e_th/ﬁ.

Further simplification is possible for a very short time or
when the secular approximation [44] is applicable [43]. Then
the time-dependent factors in the integrand in Eq. (29) can be
omitted, yielding £"=L'+Lt and

X" =X+, (30)

where X' is the process matrix for the identity map (see
the Appendix). Unfortunately, the secular approximation is
usually applicable only when the subsystems (qubits or qu-
dits) are uncoupled and there are no external fields, so that in
the situations typical for quantum information processing
(quantum gates) the simple Eq. (30) is not applicable. Notice
that the conversion between the Schrodinger and the inter-
action representations for the y matrix is (see the Appen-
dix) x=Vx"V', where V is a unitary matrix with
V,m=Tr(Ele ™" E )/ d for the orthogonal basis E,, satisfying
Eq. (14).

IV. CHARACTERISTICS OF NONLOCAL DECOHERENCE

QPT provides a wealth of information: there are d* inde-
pendent real parameters in the matrix y (or d*—d? for a trace-
preserving quantum operation), and the number of these pa-
rameters increases exponentially with the number of
subsystems. However, the number of independent parameters
for a multipartite system decreases drastically for local (in-
dependent) decoherence of the subsystems. In this section we
discuss local decoherence of a bipartite system (generaliza-
tion to a multipartite system [43] is rather straightforward).

A. Uncoupled subsystems

Let us start with assuming uncoupled subsystems, so that
unitary evolution is local. If also decoherence is local, it is
easy to show that for the product basis (19) the y matrix is
the Kronecker product of the corresponding y matrices for
the subsystems,

xme=xM e x?. (31)

In this case the number of independent parameters is
ﬁX:d‘l‘+d‘2‘. (or. ﬁ)'(:d‘l‘+d‘2‘—d%—d§ in the trace—preservipg
case), which is much less than for a general y matrix:
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nxzd‘ltdg (or n)’(zd?dé—d%d%). There is roughly a square-root
decrease of complexity (Nth root decrease for an N-partite
system). In particular, for a two-qubit system 77,=32 and
i1, =24 versus n,=256 and n;=240.

In an experiment it is generally not known in advance
whether decoherence is local or not. Therefore, a quite im-
portant information can be obtained by checking whether or
not a given y matrix has the product form (31) or, more
generally, by quantifying the accuracy of the product-form
approximation.

Let us define the reduced y matrices for subsystems as

=Tox ¥7=Tr x (32)
2
(in more detail, )"({Wil)nl=Ei22_=10x<m1m2><nlm2> and similarly for

%?) and introduce
x=x"ex?. (33)

A process matrix y is factorizable if and only if y=). For
X=X in a trace-preserving case when Tr y("=Tr y®=Tr y
=1, the matrices ¥V and y'? in Eq. (31) necessarily coincide
with ¥V and ¥®.

If x# X, we can introduce a dimensionless parameter ey,
characterizing nonlocality of the decoherence,

: (34)

ent = Trlx = XI/Trlx = Xigeal

where X;qea 18 the process matrix for the ideal coherent op-
eration, which would occur in the absence of decoherence,
and the absolute value of a matrix A is defined as
|A|=VATA, so that TrA| is the so-called “trace norm” of A.
Since decoherence yields a deviation of x from Xigeq, the
reasoning behind definition (34) is comparison of matrices
X— Xideal a0d X— Xigear @and characterization of their relative
difference. For ey, <1, factorization (33) is still a good ap-
proximation, while for ey ~ 1 the decoherence is signifi-
cantly nonlocal. Notice that definition (34) is meaningful
only in the absence of Hamiltonian coupling between the
subsystems.

B. Coupled subsystems

In the case of Markovian evolution, the nonlocality of
decoherence can be checked even in the presence of a cou-
pling between the subsystems. We assume that the coupling
is included into the (known) Hamiltonian H and that the
generator of the incoherent evolution L [and hence the matrix
\; see Eq. (26)] can be extracted from experimental data. For
the case of local decoherence the generators L") and L® of
the subsystems decoherence contribute to L as [43]

_r( (2)
Li ikt ) = L<i1j1><k111>5i2k25/212 + L<i21'2><k212>5"1k1 51111 ’
(35)
and there is a simple relation
A=AV @ Y@+ Ve \@), (36)

where x'") and y/® are the identity-map process matrices for
the subsystems.
Similar to the discussion above, we can introduce reduced

matrices X(1>=Tr2 A and X(2)=Tr1 N\ and their combination
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K= @ 0 1 ) g RO, (37)

Also similarly, it can be shown [43] that a given matrix \ has
the local decoherence form (36) if and only if A=N\. In such
a case \1:2=\12), assuming trace-preserving operation with

Tr AD=Tr \®=Tr A\=0. When \ # ): the nonlocality of de-
coherence can be characterized by the dimensionless param-
eter

ey = Tr|\ = N|/Tr|\]. (38)

Note that the nonlocality parameters €y, and €y are in-
variant under a change of the bases ESLI’ZI)\I, which preserves
orthogonality [Eq. (20)]. Analysis [43] shows that € =~ ex
when decoherence is weak, the subsystems are uncoupled for
coherent evolution, and either there is also no coherent evo-
lution of the subsystems or the secular approximation holds.

V. EFFECTS OF DECOHERENCE MECHANISMS
ON TWO-QUBIT iSWAP GATE

Even for only two qubits, the number of decoherence pa-
rameters in the y matrix is quite big: in a trace-preserving
case we have d*—2d*+1=225 parameters. This corresponds
to the number of generally possible decoherence processes.
Obviously, the interpretation of experimental y matrix data
in such a case is quite difficult. However, instead of consid-
ering all general decoherence processes, it is meaningful to
consider only physically reasonable mechanisms. Then by
identifying specific features of these mechanisms in the x
matrix and comparing with experimental data, it is possible
to find the magnitudes of various decoherence processes.

In this section we consider the \iSWAP gate made of su-
perconducting phase qubits [33,34] and calculate the y ma-
trix assuming several plausible models of decoherence. We
focus on identification of specific features of the y matrix,
which may serve as an evidence for a particular mechanism.
In particular, we emphasize distinguishing local and nonlocal
decoherence mechanisms.

A. JISWAP gate

The qubit states |0) and |1) of a superconducting phase
qubit [32] are the ground and the first excited states in the
potential well. In this section (except Sec. V F) we assume
that the two qubits are in exact resonance and use the rotat-
ing frame, which zeroes the Hamiltonians of the individual
(uncoupled) qubits. Then the Hamiltonian of the capacitively
coupled qubits in the rotating frame has the form [33,45]

H = (5/2)([01)(10] + |10)(01]), (39)

where S is the coupling strength (we assume that S is
real). The Hamiltonian (39), which can be recast as
H=(hS/4)(X®X+Y®Y), is a special case of the exchange
Hamiltonian, the so called XY Hamiltonian. It was exten-
sively discussed in relation to quantum computation. Estima-
tion of the exchange Hamiltonian by means of the QPT was
discussed in Refs. [30,31].

042103-5



A. G. KOFMAN AND A. N. KOROTKOV

PHYSICAL REVIEW A 80, 042103 (2009)

FIG. 1. (Color online) The process matrix Xjqea for the perfect ViSWAP gate in the Pauli basis. The left and right panels show,

respectively, the real and imaginary parts of the (dimensionless) elements of the y matrix. The numbering 0,1, ..

axes corresponds to I1,IX,1Y ,1Z,X1,XX, ... ,ZZ.

The evolution of the two-qubit system is then described
by the unitary operator

U(t) — e—in/ﬁ
=100)€00] + [11)(11| + cos(S#/2)(|01)(01| +|10){10])
— i sin(S#/2)(|01){10| +[10){01]). (40)

For a noninteger value of tS/2m, gate (40) is an entangling

gate and, therefore, together with one-qubit gates, it is suffi-

cient for quantum computation [46]. In particular, U(m/S)

provides the iSWAP gate [47], while U(7/2S)= U ;swap is

the ViSWAP gate [48]. For phase qubits the operation of the

VISWAP gate has been demonstrated experimentally [33,34].
We use the Pauli basis

E(nlnz)zxn1 ®Xn2’ (41)
where {Xo,Xl,Xz,X3}={I,X,Y,Z}, so that {EO’EI’ ’E]S}
={IQLI®X,IQY,IRZ,X®I,...,ZQ7Z}. Note that

“nny,” is the base-4 representation of (nny), e.g.,
Ey=X,® X, =Y ®X. Operators (41) satisfy the orthogonality
condition (14) with d=4, so that Tr(E}E,,) =48,,,. Any linear
(Kraus) operator K in the two-qubit Hilbert space can be
represented as

15
K=2 kE, (42)

n=0
with kn=Tr(E;K)/ 4. Correspondingly, any quantum opera-

tion of the form p=Kp°K" is described in the Pauli basis by
the process matrix (see the Appendix)

Xonn = Kk (43)

In the Pauli basis, Egs. (40)—(42) (with K=U) yield

., 15 on the two horizontal

U@)={[1+cos(St/2) IR I —isin(St2)( X ®X+Y ®Y)
+[1 =cos(St/2)]1Z ® Z}/2, (44)
and for t=7/2S this becomes
—. —
Uiswar=[C+\2)I@I-iV2(X®X+Y®Y)
+(2-\2)Z® Z])/4. (45)

The process matrices y for gates (44) and (45) can be calcu-
lated using Eq. (43). The process matrix x;qe, for the perfect
VISWAP gate is shown in Fig. 1 (since y is Hermitian, the
shown elements are symmetric about the main diagonal in
the upper panel and antisymmetric in the lower panel). The
nonzero elements of the matrix x;ge, are

—
Xoo=(+2\2)/8,  xi515=(3-212)/8,
Xs55= X10,10= X5,10= X10,5 = X0,15 = X150 = 1/8,

B
X05 = X0,10== X50="— X100=i(N2 + 1)/8,

=
X155= X1510= = X5,15=— X10,15 = i(N\2 = 1)/8.  (46)

An advantage of using the Pauli basis for the y matrix
of VISWAP is that it results in a relatively small number of
nonzero elements (eight real and eight imaginary ones) out
of the total number 256. For comparison, in the elementary
basis {|i;i»){jj»|} the operator U zwap has six terms [see
Eq. (40) with t=7/2S5], resulting in 62=36 nonzero terms in
the x matrix. Notice that conversion of x;4., from the Pauli
basis to the modified Pauli basis (with Y ——iY) would re-
quire sign change of six elements: X100, X105 X10.15 X0.105
Xs.10- and x;s 1 (in general this conversion changes 138 out
of 256 elements of the y matrix: 18 elements change sign, 60
elements are multiplied by i, and 60 elements are multiplied

by —i).
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In the presence of decoherence, the y matrix typically
acquires additional nonzero elements (in comparison with
Xideal)- As shown below, the positions of the most significant
extra elements of y may reveal the main mechanisms respon-
sible for decoherence.

B. Models of decoherence

In this subsection we consider several physically reason-
able decoherence models for two phase qubits (all Markov-
ian and trace preserving), including local decoherence
[49-54], correlated dephasing [55,56], and noisy coupling. In
Refs. [49-56] these models have been mainly used to ana-
lyze two-qubit entanglement and Bell-inequality violation,
while in this paper we focus on their effect on the y matrix of
a quantum gate. Notice that estimation of one-qubit decoher-
ence parameters by the QPT was discussed in Ref. [30].

1. Local decoherence

First, let us consider the model of local decoherence, de-
scribed by the Bloch equations [44] for each qubit, so that in
the rotating frame the density matrix of a separated qubit «
(a=1,2) evolves as

BT == 5 =~ Tl + T

P\ = pleTs?, (47)

where T and T''® are the energy-relaxation rates, so that
T9=(T@+T@)1 is the energy-relaxation time and T is
the dephasing time (the Bloch equations correspond to the
secular approximation for a nondegenerate two-level system
weakly coupled to a bath; I‘,(f)zo for a zero-temperature
bath).

Comparing Eq. (47) with the equation p,=L®p,, we ob-
tain the one-qubit Markovian generators

-T@ 0 0 riw
[w_| © -ury 0 0 )
1 o 0o -yt o |
r@ 0 0 T

while the two-qubit generator L,,. of the local decoherence is
then given by Eq. (35), in which (ijkl)=8i+4j+2k+I (so that
“ijkI” is the binary representation of (ijkl)).

Notice that the model of local decoherence involves
two decoherence mechanisms: energy relaxation and pure
dephasing. Correspondingly, Lo.=Lio gr+Lioc pp. Techni-
cally, this splitting corresponds to representing dephasing
rates as sums of two terms, 1/7%7 =T +T"'?)/24T,, and
then zeroing either I, or I‘ffjﬁ.

2. Correlated dephasing

Now let us consider two models of nonlocal decoherence,
starting with the model of correlated pure dephasing. For a
pair of coupled phase qubits, the correlated dephasing can
result from fluctuations of a common part of the magnetic
field biasing qubits. We consider the system Hamiltonian

PHYSICAL REVIEW A 80, 042103 (2009)

H+Hcp(1), in which H is given by Eq. (39), while the
dephasing contribution is

Hep(1) = 7{8,()|10)(10] + 8,(1)|01)(01]
+[61(0) + SO 11X(11]}, (49)

where &,(1) and &,(¢) are random but partially correlated fre-
quency shifts for the two qubits. In the derivation of Eq. (49)
we neglected noise-induced transitions between the levels,
assuming that the noise intensity at the qubit frequency prac-
tically vanishes.

Applying the standard method [35,57,58], we obtain the
Markovian master equation for the average density matrix as
follows:

p=-(i/h)[H,p]+ Lcplpl, (50)
0 Fapor Tipez Tipos
Lep[p] = - ['2p10 0 I pi, T'ipis (51)
P FIPZO I'_py, 0 F2P23 '
Fipso Tipsi Tapsn 0

where T.=T1+T,=T, T,=[;(8,0)8,(0))dt (a=1,2),
[=[5(8,(0)5,(1)+ 8,(0)8,(1))dt, and we have assumed

(8,(1))=0. The parameter of common dephasing I is zero
in the case of uncorrelated (local) dephasing, while

[=+2\I'\I', for full correlation or anticorrelation,
so that the dimensionless correlation parameter is

k=L/2\T'\T, (<1 =k=1). In the following subsections we
will mainly focus on the case I')=1",=I"pp. Notice that Eq.
(51) is written in the computational basis |j)=|jj.)
with j={j;j2)=2j,+j, so that j=0,1,2,3 correspond to
J1/2=00,01,10,11. In deriving Egs. (50) and (51) we have
assumed I',7SP <1 and S75P <1, where 7-° is the correla-
tion time of the frequency fluctuations.

In discussion of the QPT it is very easy to get lost with
different bases used in different equations. So we would like
to repeat which bases do we use. In Eq. (51) [as well as
in Eq. (53) below], we consider a two-qubit density
matrix, so this 4 X4 matrix uses the two-qubit basis
{|00),]01),]10),|11)}. Then this equation is converted into
the equation for the 16 X 16 matrix L, which uses the basis of
16 elements of the two-qubit density matrix. The matrix
L=eleon*l) yses the same by-element basis as L. Finally,
the matrix £ is converted into the 16X 16 matrix y, for
which we use the basis of product-Pauli operators. Some-
what differently, in the previous subsection, Eq. (47) uses the
one-qubit basis {|0),|1)} and Eq. (48) uses still one-qubit but
four-dimensional by-element basis. Equation (48) is then
converted into the equation for L, which uses the same 16-
dimensional basis as above, and further procedures coincide.
Notice that the bases discussed in this paragraph have noth-
ing to do with the set of initial states discussed in Sec. II
[e.g., in the paragraph above Eq. (18)], which would be im-
portant in the experimental procedure.
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3. Noisy coupling

The second nonlocal decoherence model we consider is
the model of a noisy coupling. In the case of capacitively
coupled phase qubits, this model corresponds to a fluctuating
coupling capacitance; a more practically important case is
when qubits are coupled via a tunable Josephson circuit,
whose parameters may fluctuate. In the Hamiltonian (39) we
substitute S with S+s(7), assuming (s(7))=0. Then following
the same derivation as in the previous subsection, we obtain
the master equation

p == (l/h)[H,P] + LNC[p]s (52)
where
0 — Pol1 ~ Po2 0
=P —2p11*2pn —2p1+2p0 —pi3
Lyclpl =T
=P 2P12—2py 2p11=2pn  —pn
0 — P31 — P32 0
(53)

and I';=(1/4)[;(s(0)s(¢))dz. In the derivation we have as-
sumed I';7 <1 and S7\C <1, where 7.C is the correlation
time of s(z).

When the discussed above decoherence mechanisms exist
concurrently, the system state obviously evolves as

p=—(i/h)[H,p] + (Lioc + Lcp + Lno)lp]- (54)

By fitting experimental data with this model, it is possible to
find the corresponding best-fit decoherence rates quantita-
tively and determine in this way if a particular decoherence
mechanism is important or not. However, this is a rather
laborious procedure. Another way to find out which decoher-
ence mechanisms are important, is by checking characteristic
features in the y matrix, unique for a given mechanism. We
will identify such features in the following subsections.

C. Effects of decoherence on the identity gate

Before studying the effects of decoherence on the y m
atrix of the ViSWAP gate (that will be done in the next sub-
section), let us consider decoherence for the identity gate,
i.e., for the vanishing two-qubit Hamiltonian. Then £ =el!
with the models for the decoherence generator L discussed
above, and L can be converted into y in the way discussed
in Sec. II B.

We are interested in effects of weak decoherence, corre-
sponding to sufficiently short gate-operation times. In this
case the process matrix for the identity gate can be approxi-
mated [see Egs. (30) and (A8)] as

X= XI+ )\t’ X;Inn = m()‘SnO’ (55)

where \ is determined by Egs. (28) and (22) (we use the
Pauli basis). The matrix N\ is a sum of contributions from
different decoherence mechanisms, which have the following
explicit forms.

For the local energy-relaxation mechanism, the nonzero
matrix elements of A in the Pauli basis are

Noo=—2(T4 + T,

PHYSICAL REVIEW A 80, 042103 (2009)

Mi=An=T?, Ay=hg=T,

Ns=h30=T?, Nop=Aip=T",

Ny==Ap=iT?, Agy=-Ng=iT, (56)

where F(i“)z(rif’) + F,(f’))/ 4 [notice a difference with the no-
tation I~ used in Eq. (51)]. The contribution from the local
pure-dephasing mechanism is a special case of the correlated
dephasing which we discuss next.

For the (correlated) pure dephasing the nonzero matrix
elements of \ are

Noo=— (T +17)/2,

)\33=F2/2, )\12’12=F1/2,

N32=Nia3=—Ngi5=—Nisp=1/4. (57)

The absence of the correlation, l:=0, corresponds to the local
pure dephasing; in this case the third line in Egs. (57) van-
ishes. For the noisy coupling the nonzero elements of A are

7\00 == Fs’ )\55 = )\10,10 = )\5,10 = )\10,5 = )\0,15 = )\15,0 = FJ/Z

(58)

All nonzero elements of y except for x, are induced by
decoherence. Because of the first-order approximation (55),
the most significant additional elements of y are related ap-
proximately linearly to the nonzero elements of A (the
second-order elements of y should be significantly smaller
for a weak dephasing). Now, a very important observation is
that the positions of the nonzero elements of N (excluding
Noo) in Egs. (56)—(58) are different for different decoherence
models, except for N ;5 and \ ;s appearing in both Eqs. (57)
and (58). Therefore, in the case of weak decoherence, one
can identify the considered decoherence mechanisms simply
by the positions of the most significant (first-order) elements
of x. Another important observation is that effects of differ-
ent decoherence parameters on elements of A are easily dis-
tinguishable. In particular, for the local decoherence model

[Egs. (56) and (57) with T'=0], the decoherence in the first
and second qubits is completely separated, affecting different
elements of N. Similarly, for each qubit the pure dephasing is
separated from energy relaxation by affecting different ele-
ments of A, and the temperature for each qubit can be ex-
tracted from the ratio I''?/ I‘i“), which is equal to the ratio of
corresponding elements of N in Eq. (56). The correlation
factor in the pure-dephasing model can be extracted via the
relative height of elements in the second and third lines of
Egs. (57) (two positive elements in the third line should be
used since the negative elements are also involved in the
noisy-coupling model). The clear separation of effects allows
us to estimate the relative values of the decoherence param-
eters simply by the relative values of the corresponding ele-
ments in the y matrix.

Such a simple analysis is possible, to a large extent, be-
cause we use the Pauli basis. The matrix X\ in the Pauli basis
has a relatively small number of nonzero elements. The first
row in Table I shows this number for the considered deco-
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TABLE I. The number of nonzero elements in the matrices \, v,
X, and J for several decoherence models: energy relaxation (ER)
with arbitrary or zero temperature T, local pure dephasing (LPD),
local decoherence (LD) which includes both pure dephasing and
energy relaxation (with 7>0 or T=0), correlated pure dephasing
(CD) with 0<|«| <1, completely correlated or anticorrelated pure
dephasing (CCD) with k= * 1, and noisy coupling (NC). We use
the Pauli basis for the matrices N and y, while in the elementary
basis they would be equal to the matrices v and 7, correspondingly.

The identity gate is assumed for matrices y and 7.

ER;~y ERy, LPD LDj, LDy, CD CCD NC
Y 13 13 3 15 15 7 7 7
v 32 23 12 32 23 2 10 16
X 64 64 4 64 64 8 8 8
J 36 25 16 36 25 16 16 20

herence models. For comparison, in the elementary operator
basis {|i;i,){j1j»|}, we have N=v [see Eq. (28)], and then the
significantly larger number of nonzero elements is given by
the second row in Table I [the number of nonzero elements
of v equals that of L]. Since Eq. (55) is only an approxima-
tion, the number of nonzero elements of the matrix y is
larger than that for A; it is shown in the third row of Table I

for the Pauli basis. For the elementary basis [then X=~7’ see
Eq. (21)] this number is shown in the fourth row and is
typically significantly larger (except for the models with en-
ergy relaxation). This illustrates the convenience of the Pauli
basis.

The nonlocality parameters ey, and € introduced by
Eqgs. (34) and (38) approximately coincide in the weak-
decoherence case (55); € is time independent, while ey
slowly changes with time. Calculation of €; gives the fol-
lowing results for the considered decoherence models. For

15

(a) 15

PHYSICAL REVIEW A 80, 042103 (2009)

the local decoherence involving both energy relaxation and
pure dephasing, we obtain €{; =0, as should be expected. For
the model of correlated pure dephasing with I';=1I";, the non-
locality parameter € =2|«|/(1+11+ %) depends on the cor-
relation _factor «, so that € ~|«| for |«]<1 and
e{\lL=2\e"2—2~0.83 for k= * 1. Finally, for a noisy coupling
€l =212—-1~1.83. As expected, €, is on the order of 1 for
a strongly nonlocal decoherence.

D. Effects of decoherence on the \iISWAP gate

Now let us consider the effects of decoherence on the x
matrix of the ViSWAP gate. We calculate y via Eq. (21) from
the evolution equation £ =eeoh*P)™25 where L, is given
by Egs. (25) and (39), and 16 X 16 matrix L depends on the
decoherence model (Sec. V B).

In the important case of weak decoherence the first-order
approximation (29) leads to the linear relation between the
decoherence contribution x— Xig.a @nd the decoherence gen-
erator L (the evolution time is fixed). Therefore, since the
decoherence generators for various mechanisms simply add
up [see Eq. (54)], their contributions into the y matrix are
approximately additive for a weak decoherence,

X = Xideal T SXioc + OXcp + OXNe> (59)

and we can consider them separately.

Figures 2—4 discussed below show the numerical results
for the y matrix of the ViSWAP gate in the presence of the
decoherence mechanisms considered in Sec. V B. A compari-
son of Fig. 1 with Figs. 2—4 shows that the effect of deco-
herence on the y matrix is to modify the values of the non-
zero elements of x;q.q and generally to add extra nonzero
elements. Below we identify patterns of extra elements spe-
cific for each considered decoherence mechanism, which al-
low for a fast, although tentative, identification of these
mechanisms. For this purpose it is sufficient to consider only

FIG. 2. (Color online) The process matrix y (in the Pauli basis) for the ViSWAP gate in the presence of local decoherence for
§/2w=20 MHz, T;=90 ns, and T,=60 ns. The matrix elements marked by the long arrows, x3;3=xj212, are the features of
the pure dephasing, while the elements marked by the short arrows (x;;=x2=Xs4=Xss and Xo3=X30=Xo.2=X12,0 in Re x and
X21=—X12=Xs4=—X4g in Im ) are the features of the energy relaxation.
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15

PHYSICAL REVIEW A 80, 042103 (2009)

FIG. 3. (Color online) The y matrix (in the Pauli basis) for the \iSWAP gate in the presence of correlated pure dephasing for
§/2mw=20 MHz, I'pp=(90 ns)~!, and x=0.5. Significant matrix elements shown by the arrows, X3.12=X12,3- indicate significant correlation

of the two-qubit dephasing, |«|~ 1.

the largest extra elements (most significant out of the first-
order in decoherence elements). An important observation
(see below) is that for the considered decoherence models
the positions of the largest extra elements of y coincide with
the positions of elements of A discussed in the previous sub-
section. This makes the analysis of the y matrix for the
VISWAP gate rather similar to the analysis in the absence of
unitary evolution (Sec. V C), except for the noisy-coupling
model for which there are no extra elements in y. Consider
now the effects of decoherence models in more detail.

1. Local decoherence

We focus on parameter values typical for experiments
with the superconducting phase qubits, and therefore assume

15

(a) 15

zero-temperature case (which is a very good approximation
for the experiments [23-25,32-34]). We also assume the
same local decoherence ;)) rameters for both qubits, so that
rP=r?=1/1,, V=1?=T,, and IV =T? =0.

Figure 2 shows the process matrix of the JiSWAP gate in
the presence of local decoherence. For this example we have
chosen the coupling S/277=20 MHz (which is in between
the coupling values of experiments [33,34]) and the decoher-
ence parameters 77=90 ns and 7,=60 ns, which are also
more or less typical for the superconducting phase qubits
(much longer relaxation times have been achieved recently
[59,60]).

The local decoherence includes two mechanisms: energy
relaxation (with the rate 1/7;) and pure dephasing (with the

FIG. 4. (Color online) The y matrix (in the Pauli basis) for the \iSWAP gate in the presence of a noisy coupling for §/27=20 MHz and
I'y=(90 llS)_l. The specific feature of the noisy coupling is the increase in the elements shown by the arrows in comparison with their ideal

value (y2-1)/8.
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rate I'pp=1/T,—1/2T;). As follows from the results pre-
sented below, the relative strength of these two mechanisms
can be easily estimated by inspection of the extra elements of
x (compared to xigea) in Fig. 2. The elements marked by the
long arrows are due to pure dephasing, while the elements
marked by the short arrows are due to the energy relaxation.
By comparing the height of the elements of y marked by the
long and the short arrows, one can crudely estimate the rela-
tive strength of these two mechanisms.

The largest extra elements for the energy-relaxation
model (short arrows in Fig. 2) in the first order in 1/7 are
the following:

T+ 2\6 _ 0.37
X11= X227 X44= X888 = 16T, ST, >

m(2+42) 034
X03= X0,12=X30= X120~ " sm o o

328T, ST,
w22 037 0
X21 = X84=~ X12= ~ Xag =1 16ST, l_ST, .

They are at the same positions as the elements of \ [Eq. (56)]
(the remaining element Ay, is at the location of the main
VISWAP peak, while we consider only extra elements of y
matrix).

We emphasize that the y matrix also contains many other
first order in 1/T, elements (in contrast to the unity-gate case
considered in the previous subsection); however, they hap-
pen to have relatively small absolute values. The largest of
them are imaginary: x46=X4.11=X13.6=X13.11 =im/(16\25T))
=~().14i/ST; this gives eight elements together with the cor-
responding Hermitian conjugated elements. There are also
four elements of magnitude 0.06/S7; and eight elements
with the absolute value 0.02/ST.

The rest of the extra elements of y are of a higher order in
1/S8T;, and therefore much smaller than the first-order ele-
ments for S7,>1. For instance, X33=X12.12=X3.12=X12.3
~(7/64)(ST,)> (we show these elements explicitly be-
cause they are located at the same positions as the most
significant elements for the model of pure dephasing dis-
cussed below).

For the model of local pure dephasing the largest (not all)
first order in I'pp elements are

(377 + Z)FPD s O71FPD
16S S

X33 = X12,12 = , (61)

and they are again at the same positions as the elements of A
in Eq. (57). These elements are shown by the long arrows in
Fig. 2. Since for Fig. 2 we assumed ['pp=1/T}, the height of
these elements is comparable to (approximately twice larger
than) the height of the main extra elements due to the energy
relaxation. The other (much smaller) first order in I'pp ele-
ments are discussed below, combined with the more general
case of correlated pure dephasing, which we consider next.

PHYSICAL REVIEW A 80, 042103 (2009)

2. Correlated dephasing

Let us consider the effects of correlated pure dephasing
for I';=I",=T"pp and arbitrary correlation factor k=I"/2I"pp.
Now, y generally contains eight extra elements, all of them
real. These eight elements are also present in the first order in
I'pp/S; however, only four of them are relatively large:

B7+2+ (7m-2)x][pp

X33= X122~ 165
~ (0.71 +0.07x)'pp/S, (62a)
[7=2+QB7+2)x]'pp
X312 X123~ 165
=~ (0.07+0.716)'pp/S, (62b)
while the  other four elements are  much

smaller, X66=X99=—Xs9o=—Xo6~ (7=2)(1 = k) 'pp/ (165)
~0.07(1-x)I'pp/S. Notice that the larger elements (62) are
again at the positions of the elements of A in Eq. (57), and
these positions are all different from those for the energy
relaxation. For a weak correlation, k<1, the elements x; |,
and x5 [see Eq. (62b)] become small, recovering result
(61) for the local dephasing.

Figure 3 shows the y matrix of the ViSWAP gate affected
by the partially correlated dephasing, k=0.5. The two diag-
onal extra elements, y33 and xi, 1,, are at the positions shown
by the long arrows in Fig. 2, and their values are almost
independent of «. In contrast, the off-diagonal elements x3 ;,
and x, 3, marked by the arrows in Fig. 3, strongly depend on
the correlation «, so that their magnitudes are comparable to
the values of x33 and Y 1, only for a significant correlation,
|[k|~1 [see Eq. (62b)]. This clearly suggests the way to
check decoherence due to fluctuating common magnetic field
in an experiment with phase qubits.

The x matrix has especially simple form in the case of the
completely correlated dephasing, =1, so that I'_=0, and
I',=4T'pp in Eq. (51). Then, the exact solution gives the fol-
lowing nonzero elements of y. The elements which are at the
positions of the nonzero elements of y;4., become

S ige igs 7?1
1| —ig, 1 1 —ig_
8| —ig, 1 1 —ig_

vy ig. ig. f-

where m,n=0,5,10,15, f-=2+7,22\2y,, go=\29,% 1,
and y,=¢~™ P25 The extra nonzero matrix elements are

Xmn = , (63)

X33=X3.12= X123 = Xi2.12= (1 — e 2™ P5)/8, (64)

so that all of them are equal [as for the first-order result (62)
with k=1]. Notice that for a partially correlated dephasing
with 0 <« <1 the exact solution gives Xs3=X12.12>> X3.12
=X123>0 (as in Fig. 3).

3. Noisy coupling

In contrast to the previous models, the matrix N for the
noisy-coupling decoherence [Eq. (58)] has nonzero elements
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only at the positions, for which the matrix x;q., 1 also non-
zero. As a result (not quite trivial), the noisy coupling does
not produce extra elements in the y matrix [neither in the
first-order approximation (29) nor in the exact solution]. The
exact solution gives the following nonzero elements of y:

3422y, ih, ih, 1
1 —ih 1 1 —ih_
Xom= o . : . (65)
8 —ih, 1 1 —ih_
1 ih_ ih. 3-2\2y,
where m,n=0,5,10,15, hi=\5%i *y?, and y,=e ™25,

The x matrix for §/27=20 MHz and I';=1/(90 ns) is
shown in Fig. 4.

Despite the noisy coupling does not produce extra ele-
ments in the y matrix, this model also has its unique feature.
Let us consider the imaginary elements xsis, X105 X15.5-
and x;s ;o shown by the arrows in Fig. 4, which all have
the same absolute value /_/8. From the above formula it is
easy to see that this value is larger than the ideal value
(\2-1)/8=0.052 (unless decoherence is very strong,
I';/8>0.77), with the maximum of 0.094 at I';/S=0.22. In
all other considered models the absolute value of these ma-
trix elements decreases in comparison with the ideal case
[see Figs. 1-3 and Eq. (63)], so their increase is a unique
feature of the noisy coupling.

Notice that the absence of this evidence does not exclude
the possibility of noisy coupling since the increase in the
elements marked by the arrows in Fig. 4 may be compen-
sated by the their decrease due to other decoherence mecha-
nisms. Generally, the fast identification of decoherence mod-
els by their unique features should serve only as a
preliminary step, while the accurate quantification of the de-
coherence mechanisms requires a numerical best-fit proce-
dure.

E. Discussion

As observed and discussed above, for the considered de-
coherence models the positions of the largest extra elements
in the y matrix of the \iSWAP gate coincide with the posi-
tions of nonzero elements of \. Moreover, a comparison of
Eqgs. (60) and (62) with Egs. (56) and (57) shows that for the
largest extra elements X, \,,,7,, where 7,=7/2S is the
gate-operation time [this statement is not correct for Eq.
(62b) in the case |«|<<1, but then the elements are small
anyway]. This fact is not trivial and deserves a discussion.

Let us consider an arbitrary two-qubit entangling gate de-
scribed by a Hamiltonian H with a characteristic frequency
S. In the presence of a weak Markovian decoherence L the
first-order approximation (29) gives the evolution map

T

8
L(7,) = eleohs + f

0

LoD Lo 7, (66)

where 7, is the gate-operation time. This matrix can be trans-
formed into y, giving the corresponding separation of terms
X=Xidea+ Ox. For a very short time, so that S§7,<1, the ex-
ponential factors in Eq. (66) are close to 1, and therefore
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OX = \T,, (67)

seemingly explaining the fact observed above. The problem,
however, is that a strongly entangling gate (such as iSWAP)
necessarily operates in the different regime, S7,=1, for
which the approximation (67) is not valid.

We have numerically checked the relative error of ap-
proximation (67) for the ViSWAP gate by calculating the di-
mensionless parameter e=Tr|Sy—\7,|/Tr|y|, introduced
similar to Eq. (34). As expected, we have obtained e~ 1
(e.g., €=0.54 for the energy relaxation), confirming that ap-
proximation (67) is invalid. However, the inaccuracy € hap-
pens to be mainly due to a large number of small nonzero
elements in Sy, while for the largest extra elements (where
Xideal 18 Zero) approximation (67) unexpectedly survives. The
origin of this fact is still a puzzle for us. Nevertheless, the
same useful property may hopefully be also valid for some
other quantum gates and decoherence models.

F. Strongly detuned qubits

In Sec. V C we have calculated the y matrix for the iden-
tity gate, which is realized when the two qubits are un-
coupled. However, in many experimental realizations (e.g.,
for capacitively coupled phase qubits [33,34]) the qubits are
permanently coupled, and effective uncoupling is produced
by strong detuning of the qubits: |Aw|>|S|, where
Aw=w,, | —w,,, is the detuning. In such experiment it is
natural to extract decoherence parameters from the y matri-
ces in both situations: resonant qubits (ViSWAP) and strongly
detuned qubits (that gives a more straightforward access to
decoherence parameters). In this subsection we analyze the y
matrix in the case of strongly detuned qubits.

To deal with detuned qubits we need to introduce a rotat-
ing frame, which rotates with different frequencies for differ-
ent qubits. For this frame it is preferable to use the actual
eigenfrequencies (shifted due to the level repulsion), even
though we still use the basis of uncoupled states (|01), |10),
etc.). This produces the Hamiltonian [which replaces Eq.

(39)]

H=#12)Aw-Ad)(|1)X1]|® I-1® [1)1])
+ (hS/2)(e7™¥|01)(10] + 2®|10)01]),  (68)

where A@=\(Aw)>+S%sgn(Aw) is the difference of eigenfre-
quencies (we define it with the same sign as for Aw), and the
first term is due to the level repulsion. We assume a strong
detuning, which means |A®|~|Aw|>|S|; then the first term
in Eq. (68) is small since A@—Aw=S*/2Aw.

For strongly detuned qubits, Eq. (55) for the identity gate
x matrix is somewhat modified, and at sufficiently small time
t the y matrix can be approximated as

X=X+ X +\t, (69)

where x! is for the ideal identity gate, the small correction
Sx° comes from the Hamiltonian (68), and the decoherence \
matrix is also somewhat modified (as discussed below).

The correction 8y oscillates in time with frequency Ad@.
After averaging over these fast oscillations, we get (in the
first order in S) four nonzero terms
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8X0o = OXe0 =~ OXos = — OXoo = IS/4A . (70)
If we do not average over time, then these terms should be
multiplied by (1-cos A@t); also there will be four more
terms with zero average: Jxps= X 10=—X50=—0.0
=iS sin(A@r)/4A®. Notice that 8y is small only in the ro-
tating frame based on the eigenfrequencies. If, for example,
the rotating frame uses the unperturbed qubit frequencies,
then both qubits will be slowly rotating about the z axis of
the Bloch sphere that will eventually produce large terms
X0z OX30- OXo.12> OX12,0- OXi2.3> and 85 5. In an experiment
the choice of the rotating frame corresponds to the choice of
the reference microwave frequencies.

Now let us discuss contributions of the dephasing pro-
cesses to the matrix N\. It can be shown that the contribution
from the energy relaxation in qubits is still given by Eq. (56)
(as for the identity gate); however, the up and down rates
'@ and T'\® for the two qubits (a=1,2) can now be differ-
ent from these rates for the qubits in resonance. The differ-
ence is because these rates are proportional to the Fourier
components of the bath spectral density at the qubit frequen-
cies T @y, 4, and therefore changing qubit frequencies may
noticeably change the rates. For pure dephasing the contri-
bution to the N\ matrix is still given by Eq. (57) (as for the
identity gate) without any changes.

In contrast, the contribution to the N matrix due to the
noisy coupling S+s(#) significantly differs from Eq. (58) for
the identity gate. This comes from a significant change in Eq.
(53) when we take into account the modified Hamiltonian
(68). First, the rate I';=(1/4)[(s(0)s(¢))dr should now be
replaced with I"/=(1/4)[(s(0)s(7))cos(A@r)dz. This would
lead to a negligible change if the correlation time 71:(: of the
noise s(7) is short: 7\°<1/|A&; however I'! <T'; for a long
correlation time: TIC\fC>l/|A6|. The second change in Eq.
(53) is that we should delete the term p,, in the second row
and similarly the term p;, in the third row (this simple
change happens in the secular approximation, I'! <|A@]). As
a result of the changes, the contribution to the A matrix due
to noisy coupling has now the following nonzero elements:

Noo==T5 Nois=Niso=17/2,

)\55 = )\10,10 = 7\5,10 = )\10,5 = )\66 = )\99 = Fs,/4’

)\69=)\96=—F;/4. (71)

Notice four additional positions of nonzero elements in this
matrix compared to the identity gate case (58).

It is important to mention that positions of nonzero ele-
ments of Sy° and nonzero elements of A\ for various decoher-
ence models are still all different (except element Ay,, which
is nonzero even in x/, and elements \g ;5,50 which appear
in both correlated dephasing and noisy coupling). Therefore,
measuring y matrix experimentally for strongly detuned qu-
bits gives an easy way to find main decoherence mechanisms
and quantify their parameters. Notice that measuring y ma-
trix (69) for several times 7 gives a more accurate value for A
by a simple least-squares method and also allows for check-
ing the linearity in time, which essentially checks that deco-
herence is Markovian.
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VI. CONCLUSION

In this paper we have discussed the effects of decoherence
on the quantum process tomography of a quantum gate. In
particular, we have introduced (Sec. IV) dimensionless pa-
rameters obtainable from experimental QPT results, which
characterize nonlocality of decoherence. As an important
practical example (Sec. V), we have analyzed the process
matrix y for the two-qubit ViSWAP gate in the presence of
several local and nonlocal decoherence mechanisms, typical
for superconducting phase qubits. Besides presenting explicit
results for the y matrix in the presence of decoherence (using
the Pauli basis), we have focused on finding specific patterns
for each decoherence model. These patterns may be used for
a fast identification of the most important decoherence
mechanisms in an experiment, that is an alternative to the
laborious procedure of numerical best fitting of experimental
x matrix. Somewhat unexpectedly, we have found that these
patterns for the considered decoherence models are to a large
extent the same for the ViSWAP and identity gates. In future it
is interesting to study whether or not our fast-identification
approach can be applied to other quantum gates and deco-
herence mechanisms.
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APPENDIX: SOME PROPERTIES
OF THE PROCESS MATRIX yx

(1) Let us consider the change in the matrix y under a

linear transformation of the basis {E,} —{E,}. From Eq. (6),
2

using the substitution Eani’:,lzoVn,nE;,, where Vs

the d?>Xd’ transformation matrix (while E, are dXd

d*-1 Oprt s
mn=0XmnErp E,," with

X' =VxVv'. (A1)

If the both bases are orthogonal, so that Tr(E!E,,)=08,,, and
Tr(EE!)=Q'8,,, then V,,=Tr(E,'E,)/Q"; in this case,
VQ'/QV is a unitary matrix.

(2) Let us consider the transformation of the y matrix
under unitary transformations of the initial and final states,
p—p'=UpU' and p°—pj=Uyp’U), where U and
U, are unitary operators. From Eq. (6) we obtain

2
p’:Ei’;lox,,mE;p(’)E,’f, where E/=UE,U}, so the extra evo-
lution of states corresponds to the transformation of the basis
E,. If the operators E, are orthogonal, Tr(EZEm) =Q4,,,, then
also Tr(E!'E!)=0Q86,,, and, as follows from the previous
paragraph,

matrices), we obtain p=2

d*-1
p'= 2 XpwEwpoEL,

m,n=0

(A2)

with x’ given by Eq. (Al), in which V is now a
unitary matrix with the elements V,,=Tr(E/E!)/Q
=Tr(E!UE,,U})/ Q.
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(3) Let us obtain the x matrix for an evolution
p=Kp°K" with an arbitrary linear operator K. The most im-
portant special case is the unitary evolution (then K is uni-
tary); however, in general K is an arbitrary Kraus operator
[1]. Representing K in the operator basis E,, as

d>-1

K= >, k,E,
n=0

(A3)

and comparing the evolution equation with Eq. (6), we ob-
tain
Xmn = kmk:; (A4)

Notice that for the orthogonal basis, Tr(Ej,Em):Qénm, the
coefficients in Eq. (42) can be calculated as

k,=Tr(EIK)/Q. (A5)
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(4) As a simple example, let us consider the process ma-
trix x' for the identity map. In Fhis case Jéik}(m:c’éij)(kl)
= 8,0, and from Eq. (13) we obtain

d-1
_ -1 —1y*
/\/fnn_ 2 (E )m(ii)(E )nQ])
,j=0
For the orthogonal basis, Tr(E E,,)=0Q5,,, from Egs. (A4)
and (A5) with K=1, we find

(A6)

Xpn =0 (T E,)'Tr E,,. (A7)

This equation further simplifies when Tr E, =0 for all n ex-
cept for, say, n=0 (as in the case of the Pauli basis). Then the
basis orthogonality yields Ey=vQ/dl, and Eq. (A7) becomes

X = (d10) 8,08,0. (A8)

For the usual normalization Q=d, it becomes X,I,m= 11000+
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