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Continuous measurement of entangled qubits
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We have developed Bayesian formalism to describe the process of continuous measurement of entangled
qubits. We start with the case of two qubits and then generalize it to an arbitrary number of qubits.
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The problem of quantum measurement of a qubito-  |2)=|1]), [3)=]|T), and |4)=||]). (The basis for
level system received renewed attention recently in relationthe first qubit is determined by its interaction with the
to its importance for quantum computing. The case of suffi-detector, while for the second qubit, the basis is arbityary.
ciently fast(instantaneoysmeasurement can be readily de- The qubits can interact with each other as well as be nonin-
scribed by “orthodox” collapse postulafd], and this is the teracting (the entanglement can be a result of previous
case assumed at present by all quantum algorithms. Howibteraction. The free evolution of qubits is described by
ever, in practice, especially for solid-state qubits, the act ofhe Schrdinger equationdW/dt=(—1/A)Hq¥, where
measurement is not instantaneous. Because of typically loWqp is the Hamiltonian of qubits onlyH,, accounts for
coupling between a solid-state qubit and a detector, it takes @1ergy asymmetries and “tunnelings” within qubits and for
considerable time before the qubit state is completely deinteraction between qubits, but does not include interaction
stroyed by the act of measurement. Correspondingly, becaugéth the detector Correspondingly, in the case without de-
of fundamentally unavoidable noise of the detector, the intector the density-matrix of a double-qubit system evolves
formation about the state of the measured qubit is availabl@sdp/dt=(—1/A)[Hgp,p].
not immediately, but only after some time sufficient to get an  The detector output is characterized by two dc currénts,
acceptably large signal-to-noise ratio. It is important that theand! |, corresponding to two states of the first qubit, and the
time scale of measuremerind collapsg process may be frequency-independent spectral densSyof the detector
comparable to the time scale of “free” qubit evolutiée.g.,  noise. As usua[5] we assume weakly respondiritinear
due to Rabi oscillationsor to the duration of the detector detector|Al|<lo, whereAl=1,—1 andlo=(I;+1,)/2, to
on-off operation sequencéFor example, if the detector is neglect individual electrons passing through the detector and
switched off when signal-to noise ratio is still on the order ofconsider the detector currer(t) as a continuous function of
unity, the measurement is only partially complejed. time. For the same purpose we assume that the time scale

So, for practical needs we should be able to describe the/l, (wheree is the electron chargeés much shorter than
measurement of a solid-state qubit as a continuous processther time scales in the problefdue to collapse, dephasing,
The formalism suitable to describe a continuous measureand free evolution of qubiis
ment of anensembleof qubits has been developed two de- Let us start with the simplest case when qubits are “fro-
cades agq?2] (for its use in quantum computing problems zen,” [17] Hy,=0 (so all the evolution is due to the mea-
see, e.g., Ref.3]). In contrast, the formalism describing the surement only, the initial state of qubits is pure, and the
process of measurement ofsingle qubit have been pre- detector is idea(for example, quantum point contact at low
sented only recentlf4—6] and is still in the stage of active temperature is an ideal detec{dl, as well as single-electron
development(In fact, it can be considered as a direct con-transistor well inside the cotunneling rang®8]). We can
tinuation of the well-developed field of selective or condi- always represent the initial pure state#is=«a|7)®(a;|1)
tional quantum measurements — see, e.g., Réfsl2 and  +by|]))+B|[)®(a,|1)+b|[])), where the states of the
references in Ref[5]). This formalism is called Bayesian second qubit are normalizeh;|+|b;|?=|a,|?+|b,|?=1,
(because of the essential role of the Bayes forfit®)) and ~ and consequentlya|?+|B|>=1. Since the detector is not
combines advantages of the “orthodox” approddj (the  coupled to the second qubit, the evolution due to measure-
ability to treat single quantum systejnand the Leggett's ment affects only the factore and 8, which can be calcu-
approacH 2] (the ability to treat continuous measurement

The Bayesian approach has been applied so far only to the P TP YAU TP E s
continuous measurement of a single qupit=6,14—16 In i i
this paper we apply it to derive the equations describing i qubit 1 qubit 2 i
continuous measurement of entangled qubits. L______t______________________IZS{)__:

Let us consider first the case of two entangled qubits, one
of which is continuously measured by a detectbig. 1).
As a main example, we consider qubits made of double
guantum dots while the detector is a quantum point contact
[realizations based on single-electron transistors and super- F|G. 1. Schematic of two entangled qubits, one of which is
conducting quantum interference devi¢€QUIDS are also  continuously measured by a detector. The noisy detector oLgfut
possible — see Ref5]]. Let us denote four basis vectors is used to monitor the evolution of the double-qubit density-matrix
characterizing the state of two qubits d4)=|11),  p(1).

detector —»
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lated using the single-qubit Bayesian reql (the overall (8) has an obvious interpretation as the conservation of the
wave function phase is of course not imporjant “degree of purity” similar to the one-qubit cagé].
Besides the derivation of Eq$6)—(8) using one-qubit

a(r) P.(7) vz n Bayesian resultas abovg they can also be obtainduh the
a(0) 2 N 2 case of pure statgslirectly using the “quantum Bayes theo-
| (O] (1) +[BO)]*Py(7) rem” [20], which says that the classical Bayes formpi18]
(7) P (1) 12 is applicable not only to the probabilities described by the
P = U7 (2)  diagonal matrix elementshat is obvious because of the cor-
BO) | |a(0)|?P,(7)+|B(0)|?P (1) respondence principlebut also applicable to the wave func-

_ N tion amplitudes. Besides that, Eq6)—(8) can be easily de-
where P,(7) and P|(7) characterize the conditional prob- rived “microscopically” in the case of a low-transparency
abilities (for the first qubit in| 1) and| | ) state$ of getting @  quantum point contact at zero temperature. In this case, solv-
particular realization of the detector outda®] I(t), ing the Schrdinger equation for the qubits coupled to the
detectorn(for the model see Reff21] and[5]) one can obtain

the following Bloch equationg21] for the density matrif{){}

1 — 5 which contains index corresponding to the number of elec-
P (r)=(2mD) "exd —(I(7)—1))7/2D], @ trons passed through the detector:

P.(r)=(2mD) Y2exd — (I(7)—1,)/2D], 3

T(T)ET_lfT|(t)dt, D=S/2r. ) dpfydt=—(1;/e)pl;+ (11 /e)pls ", (11)
0
dpiydt=—(1 /e)pis+ (1, /e)ps *, 12
In the language of double-qubit density matrix the evolution psd (1 /€)psst (11 /e)pss 12
described by Eq91) and(2) can be rewritten as d}i’l‘zldtz —(|T/e)7322+(|¢/9)5251: (13)
p11(7)  paAT)  p1AT) P.(7) ~ - -
P 920 pid0) P (Do P O dpisdt=—(lo/elpist (il feypis ™, (19
p33(7) . pas7) _ p34(7) _ P (7) (7) d;24/dt: = 0/9)7)24"'( VIl l/e);&;l' (19

B B - + ’ . ~ .
p3d0) pad0) pad0)  piPy(7)Fp P (7) The equations for other components f are similar and
p17)  p1d7)  pad7)  poulT) can be obtained by the substitutionsy,— p3,, p33— pia.

p13(0) B p14(0) B p23(0) B p24(0) ‘523_);341 523_);231 and;23_>5r2]4' SO|Ving these equations
and collapsing the numberat time 7 (measuring the charge

_ [Pi(7)P(7)]" ® passed through the detector and obtaining, for example,
piPi(m)+p P (7)’ chargeme),
where p;=p11(0)+p25(0) and p;=p3z3(0)+ pas(0) corre- ?){}(T-i- 0)= 8pmpij(7+0), (16)
spond to initial probabilities to find the first qubit jm) and
[|) states. pM(7—0)
If the initial statep(0) is not pure, its evolution can be pij(7+0)= Jm— (17)
calculated in the following way. Let us represgif0) as Zypii( 7—0)
one reproduces Eq6)—(8).
p(0)="2, ps(0)ps(0), 9 Now let us take into account finite detector idealieffi-
S ciency), n<1, where in the one-qubit cas¢5] 7%
_ 2 . . w: . . ey
wherepy is the classical probability of a pure stds, ps is =(Al)“/4SI" is the ratio of the “information acquisition

its density matrix, and the sum is over a necessary number &gte” [22] (A|)2/4S and the ensemble dephasing rdte
pure states(Of course, such representation is not unique inoimilar to the derivation of Ref4], let us consider first the
general) To calculatep(r) we can apply the “double Bayes” cafe of a de’;ector with neglected outpmhlch is equivalent
procedure: classical Bayes theorem to obtain probabilitiel® “Pure environment). Then, averaging Eqs6)—(8) over
ps(7), the probability distributiorp,P,(7)+p P (7) of I1(7) [see
Egs. (3)—(5)], we get the following: the right-hand side of
_ Ps(0)[ps,1Pi(7)+ps P (7)] Egs.(6) and(7) becomes unitfwhich means thap,1, pss,
Ps(7)= S PO pr P.(D) +pr PL(D] P12, P3s, pas, andps, do not change on averageavhile the
right-hand side of Eq(8) is replaced by exp-(Al)%/4S]
and the quantum Bayesian reslHigs. (6)—(8)] to calculate  (which means thap,3, p14, p23, andp,, decay on average
eachpg(7). It is easy to show that the resulting evolution of with the rate (A1)?/4S). Similar to the one-qubit case, we
p(7)=2sps(7)ps(7) satisfies Eqs(6)—(8), which therefore can regard a nonideal detector as two detectors “in parallel”
are valid for arbitrary mixed states as well. Notice that Eq.[23], neglecting the output of the second detector. In this

(10
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way, we obtain the following result for a nonideal detector: |7~~~ TTTTTTTTmTmmm AT

Egs. (6) and (7) remain valid, while Eq.8) should be re- E ! l i
placed by i vy ) v ;

pid7)  pdD  podD  pod?) LA o . ==r0 .

p130)  p14(0)  pox(0)  pos(0) I:d":l
etector
10

PP (D)2
G ETILIC R

FIG. 2. Schematic oN entangled qubits, one of which is con-
tinuously measured by a detector. Bayesian formalism allows us to
wherey=(5"'—1)(Al)%/4S. monitor N-qubit density-matrixo(t), using detector output(t).

Notice that since the second qubit is not coupled to the
detector, the state of the second qubit changes only due to its These equations allow us to monitor the evolution of the
entanglement with the first qubit. In particular, in the case Ofdouble-qubit density matrix if we know the initial stat€0)
no initial entanglemenfwhenp(0) can be represented as a (for example, we have prepared qubits ourselvasd we
direct produc}, the state remains disentangled, the secongnow the detector output(t) from an experimentTo em-
qubit density matrix does not change, and E@—(8) re-  phasize the noisy nature oft) we show this time depen-
duce to the Bayesian result for the first qubit. dence in Eqs(19)—(24) explicitly, while the time depen-

If the qubits are not frozert 4,#0, the evolution due to  gence of the density matrig is not shown explicitly} To
Hgqp should be added to the evolution due to measuremengimyjate the measurement process numerically, we need

sible because the measurement process in the Bayesian fggrmula

malism is assumed to be Markovian that requires, for ex-

ample, the “attempt” frequency of tunneling electrons in the Al

detector to be much larger that the typical frequency of qubit () =lo=—5(p1at p2z— paz—paa) + £(V), (25)
system evolution.In differential form[we use Stratonovich
representation5], so we take the usual derivatives of Egs.

(6), (7), and(18)] we get the following Bayesian equations: where (t) is a zero-correlated“white” ) random process

with zero average and the same spectral density as the detec-

_ - 2A1 tor noise,S;=S. [Equation(25) is derived from the probabil-
p11=T[qu,p]11+p11(p33+ p44)?(|(t)—|0), ity distribution p,P(7)+p P (7) for the average current
(19) I(7) at sufficiently smallr, so that evolution due tbl,, can
be neglected.
i - 2Al The conventional(ensemble-averaggcevolution equa-
p33=T[qu,p]33—p33(pll+ pzz)?ﬂ (t)—1o), tions can be obtained from Eq4.9)—(24) by averaging over

(20 &(t) (it is easier to do using Ttoepresentation — see similar
procedure in Ref[5]). In the resulting equations the terms
_ . 2A| proportzional thI disappear, whiley is'replaged byy'
p12= 7~ [Hqp.plizt prapast P44)?(I(t)—lo), +(A1)?/4S. This result can be also obtained directly, since
ensemble averaging is equivalent to the use of completely
(22) nonideal detectorAl =0, »=0.
_ Al The generalization of Eq$19)—.(25) to the case qf arbj—
b34:7[qu,P]34_P34(P11+ Pzz)?(l(t)—|o), tcrgrr]i/ numberN of entangled qubits, one of which is being
inuously measure(Fig. 2), is pretty obvious. If both
(22)  pasis vectors andj (from the set of 2 basis vectonscor-
respond to the stafé ) of the measured qubit, then the evo-

) —1 Al i i s g ;
P13=7[qu,P]13—P13(P11+ oo pas— p44)§ lution of the matrix elemenp;; is given by the equation
) -1 2Al

X((t)=1o) = ¥p13, (23 pij =7 Hap.plijTpijp . —5- (1O ~10). (26
. —1 Al . .
pMZT[qu,p]M_pM(me Poo— P3z— ,344)E If b(_)th i andj correspond to the state ) of the measured

qubit, then
X(()=1o)—¥p1a- (24)

. -1 2Al
The equations for remaining components can be obtained pii =7 (Hap.pJii = pij p1 =5~ (1 (D = To). @7
from Eq. (19) by substitution{11}—{22}, from Eq. (20) by
substitution{33}— {44}, and from Eq.(23) by substitutions Finally, if i corresponds to the stat¢) while j corresponds
{13}—{23} and{13}—{24}. to the statd | ), then
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' respondingly, changes significantly the density-matriof

i ' l i the qubits. Then the language of continuous detector current
E vy v v A i is not applicable anymore, and instead of considering aver-
i qb1 le—» qb2 e b » 9bN P! age current (7) we should count the numberof electrons
i e R e A el ' passed through the detector during timeEquation(30) in
Y r : 3 this case does not changexcepty;; =0 since the detector is
| detector I%’ ideal, while the Gaussian distribution in E¢31) should

be replaced by the Poissonian distributior?;(7)
FIG. 3. N entangled qubits, continuously measured by a detec=(n!) “1(1;7/€)" exp(—I;7/€). It is not easy to introduce

tor, coupled to all qubits. nonideality for a detector with finite response. If, however,
we defines in a way[6] similar to optical quantum effi-
) —1 Al ciency as a probability to obseryrot to mis$ each electron
pii =7 [Haw.pLij=pij(p1=p )5 [1(O —Tol = vpjj - tunneled through a detectéunfortunately, this definition is

(28) hardly justified in typical solid-state setypghen we can
keep the exponential term in ERO) and should replace Eq.
In these equationsi, is again the Hamiltonian of qubits (32 by ;= (7'~ 1)(VI;— VI;)/2e.
(without detector while p(t) andp (t) (now time depen- Returning to the case of weak detector response and con-
dend are the sums of the diagonal matrix elementg @, tinuous current, differentiating E¢30) over time, and add-
corresponding to the statgg) and||) of the measured qu- ing the free evolution due tbly,, we finally obtain the fol-
bit. Equation(25) should be generalized as lowing equation:

Al - 1 Lt
|(t)_|o=7[PT(t)—PL(t)]+§(t)- (29 Pij:T[qulp]ij"‘Pijgzk Pkk[(l(t)_ 5 )

Now let us generalize the formalism to the case when the
detector is coupled to all qubi{Fig. 3). Classically, in this
case there are up td'ifferent dc current levels;, corre-
sponding to various combinations of qubit states. Some of
these levels can coincide, for example, if the detector is no
coupled to some qubits or if some qubits are coupled to th
detector equally strong. Applying the quantum Bayes theo-
rem in the case of frozen qubits},,=0, and taking into ()=, pi(D);+£(1). (34)
account finite idealityn of the detector, we obtain the fol- i
lowing equations:

+1,
X (=l + 5

I
I(t)_—)(lj_lk)}_'}’ijpij-

(33

quation(25) in this case is replaced by

Our final generalization is to the case of several detectors,

pii(7)  VPi(7)P;(7) coupled toN qubits. Each detector has its own set of up to 2
pii(0) T S o 0)P(7) exp— i 7), (30 classical current levels. It is important to notice that coupling

of qubits to different detectors can define different sets of
_ 12 T 12 basis vectors. So, generalization of E83) requires us to
Pi(r)=(27D) ex —(1(n) = 1)*/2D], (3Y) sum the terms due ?o measurement ovzr all getectors, choos-
32 ing particular basis for each detector.

In conclusion, we have developed the Bayesian formalism
describing continuous measurement of entangled solid-state
; ) . . qubits. The case of two qubits, one of which is measured by
.(30) IS over all 2! basis vectork (the basis is defined by the a detector is considered in detail and then generalized to an
mteracj‘tlon between the (.j.etecto.r gnd .each q_ukﬁtorr.e— arbitrary case. For nonideal detectors we have assumed the
spondingly, the probability distribution ofl(7) is  apsence of correlation between output and backaction noises,
2ipii(0)P;(7). Notice that the exponent due to nonideality 5o the formalism applicable to nonideal detectors with such
in Eq. (30) disappears for diagonal matrix elements={)  correlation[5] still has to be developed. The results of this
and also if the classical currentsand|; for two different paper{evolution Eqs(19)—(24), (26)—(28), and(33)] can be
configurations coincide. This is because=I; means equal experimentally tested. However, such experiments seem to
coupling of the detector to the stateand]j, so the detector pe still a little beyond the reach of the present-day solid-state
noise cannot destroy the coherence between these StateS.techn()]ogy_ They could be attempted after proposed Baye-

Let us briefly discuss what will happen to E480)—(32)  sjan experiments with a single solid-state qubit, in particular,
if we relax the assumption of weak detector respoike, Bell-type experimenf15].
- Ij|<(l i+1;)/2. As an example, let us again consider a low-
transparency quantum point contact at zero temperature. In The author thanks R. Ruskov for a critical reading of the
the case of moderate or strong response, each electron passednuscript. The work was supported by NSA and ARDA
through the detector brings significant information and, corunder ARO Grant No. DAAD19-01-1-0491.

yii=(n ' =1)(1;=1))%/4s,

Wherel_( 7) andD are defined by Eq5), and the sum in Eq.
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