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Abstract. We show that the correlations in stochastic outputs of time-
distributed weak measurements can be used to study the dynamics of an
individual quantum object, with a proof-of-principle setup based on small
Faraday rotation caused by a single spin in a quantum dot. In particular, the
third-order correlation can reveal the ‘true’ spin decoherence, which would
otherwise be concealed by the inhomogeneous broadening effect in the second-
order correlations. The viability of such approaches lies in the fact that (i) in
weak measurement the state collapse that would disturb the system dynamics
occurs at a very low probability and (ii) a shot of measurement projecting the
quantum object to a known basis state serves as a starter or stopper of the
evolution without pumping or coherently controlling the system as otherwise
required in conventional spin echo.

The standard von Neumann quantum measurement may be generalized from two aspects. One
involves measurements distributed in time [1, 2], continuously or in a discrete sequence, as in
the interesting Zeno [1] and anti-Zeno effects [3]. Time-distributed measurements intrinsically
interfere with the evolution of the quantum object [2]. Another generalization involves weak
measurement in which the probability of distinguishing the state of a quantum object by a
single shot of measurement is much smaller than one [4]–[8]. On the one hand, the weak
measurement has very low information yield rate; on the other hand, it only rarely disturbs the
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Figure 1. A proof-of-principle setup for weak measurement of a single spin in a
quantum dot by Faraday rotation.

dynamics of a quantum object by state collapse. As a combination of the two generalizations,
time-distributed weak measurements have been used to steer the quantum state evolution [9].
In this paper, we show that the statistical analysis of time-distributed weak measurements
may be used to study the dynamics of a quantum object [8]. The outputs of time-distributed
measurements bear the stochastic nature of quantum measurements, so the standard noise
analysis in quantum optics [10] would be a natural method to be applied. Notwithstanding
that, we should emphasize that the stochastic output of time-distributed weak measurement
is not the noise in the system but an intrinsic quantum mechanical phenomenon. Revealing
quantum dynamics by correlations of time-distributed weak measurements is complementary to
the fundamental dissipation–fluctuation theorem, which relates correlations of thermal noises to
the linear response of a system [11]–[14].

To demonstrate the basic idea, we consider the monitoring of coherent Larmor precession
and decoherence of a single spin in a quantum dot, which is relevant to exploiting the spin
coherence in quantum technologies such as quantum computing [15]–[18]. The difficulty of
studying the spin decoherence lies in the fact that the ‘true’ decoherence due to quantum
entanglement with environments is often concealed by the rapid ‘phenomenological’ dephasing
caused by inhomogeneous broadening in ensemble measurements (e.g. in a typical GaAs
quantum dot, the spin decoherence time is ∼10−6 s, but the inhomogeneous broadening
dephasing time is ∼10−9 s [16]–[21]). Note that many single-spin experiments are still ensemble
experiments with temporal repetition of measurements. To resolve the spin decoherence
excluding the inhomogeneous broadening effect, spin echo [16, 19], [21]–[23] and mode locking
of spin frequency [18] have been invoked. In this paper, we will show that the spin dynamics can
be revealed in correlations of the stochastic outputs of sequential weak probes. In particular, the
third-order correlation singles out the ‘true’ spin decoherence. Unlike conventional spin echo,
the present method involves no explicit pump or control of the spin but uses the state collapse
as the starter or stopper of the spin precession.

We design a proof-of-principle setup (see figure 1) based on Faraday rotation, which has
been used in experiments for spin measurements [18, 20, 21, 24, 25]. The probe consists of
a sequence of linearly polarized laser pulses evenly spaced in delay time τ . After interaction
with a single spin (in a quantum dot, e.g.), light polarization is rotated by θ or −θ for the spin
state parallel or anti-parallel to the light propagation direction (z-axis). The Faraday rotation
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angle θ by a single electron spin is usually very small (∼10−6 rad in a quantum dot [24, 25]),
so the two polarization states of light corresponding to the two different spin states are almost
identical. Thus the detection of light polarization is a weak measurement of the spin, as long
as the number of photons per pulse is not too large (see the discussions following equation (3)
for details). Light polarization is detected by filtering through a polarized beam splitter (PBS)
that is aligned to let light with polarization rotated by θ fully pass through and light with
orthogonal polarization be fully reflected. The light with Faraday rotation angle −θ is reflected
with probability sin2(2θ). For small θ , the average number of reflected photons is much less
than one, so in most cases a single-photon detector set at the reflection arm would be idle
with no clicks and one cannot tell which state the spin could be in. The clicks of the detector
form a stochastic sequence. Correlations in the sequence will be analyzed to study the spin
dynamics, such as precession under a transverse magnetic field and decoherence. This proof-of-
principle setup, being conceptually simple and adapted from existing experiments, is of course
not the only possible implementation. For example, one can use continuous-wave probes instead
of pulse sequences, interferometer measurement of the polarization instead of PBS filtering,
polarization-selective absorption instead of Faraday rotation, and so on.

We shall derive from the quantum optics description of spin–light interaction a weak
measurement theory in the formalism of positive operator value measure (POVM) [1, 26].
Consider a laser pulse in a coherent state |α, H〉 ≡ eαa†

H −h.c.
|0〉 (where a†

H/V creates a photon
with linear polarization H or V ) and a spin in an arbitrary superposition C+|+〉 + C−|−〉 in the
basis quantized along the z-axis; the initial spin-photon state is

|ψ〉 = (C+|+〉 + C−|−〉)⊗ |α, H〉. (1)

After interaction, the state becomes an entangled one as

|ψ ′
〉 = C+|+〉 ⊗ |α,+θ〉 + C−|−〉 ⊗ |α,−θ〉, (2)

where |α,±θ〉 ≡ eαa†
±θ−h.c.

|0〉 (with a±θ ≡ aH cosθ ± aV sinθ ) is a photon coherent state
with polarization rotated by ±θ . How much the spin is measured is determined by the
distinguishability between the two polarization states

D ≡ 1 − |〈α,+θ |α,−θ〉|2 = 1 − exp(−4|α|
2 sin2 θ). (3)

When the average number of photons N̄ = |α|
2
� 1 and the Faraday rotation angle θ is not

too small, the two coherent states are almost orthogonal and D→ 1; thus detection of the
light polarization provides a von Neumann projective measurement of the spin. For a single
spin in a quantum dot, the Faraday rotation angle θ is usually very small. For example, in
a GaAs fluctuation quantum dot [24], |θ | ∼ 10−5 rad for light tuned 1 meV below the optical
resonance with a focus spot area ∼10µm2. The number of photons in a 10 ps pulse with power
10 mW is N̄ ∼ 0.5 × 106. In this case, D ∼= 4N̄θ 2

∼ 2 × 10−4
� 1, the spin states are almost

indistinguishable by the photon polarization states. After interaction with the spin, the laser
pulse is subject to PBS filtering, which transforms the spin-photon state to be

|ψ ′′
〉 = C+|+〉 ⊗ |α〉t ⊗ |0〉r + C−|−〉 ⊗ |α cos(2θ)〉t ⊗ |α sin(2θ)〉r, (4)

where |β〉t/r denotes a coherent state of the transmitted/reflected mode with amplitude β.
Separating the vacuum state |0〉r from the reflected mode and keeping terms up to a relative

New Journal of Physics 12 (2010) 013018 (http://www.njp.org/)

http://www.njp.org/


4

error O(θ 2), we write the state as

|ψ ′′
〉 =

(
C+|+〉 +

√
1 −DC−|−〉

)
⊗ |α〉t ⊗ |0〉r +

√
DC−|−〉 ⊗ |α〉t ⊗ |α sin(2θ)〉′

r , (5)

where |α sin(2θ)〉′

r denotes the (normalized) state of the reflected mode but with the vacuum
component dropped. With a probability P1 = D |C−|

2
� 1, an ideal detector at the reflection

arm will detect a photon click and the spin state is known at |−〉, while in most cases
(with probability P0 = 1 − P1), the detector will be idle and the spin state becomes C+|+〉 +
√

1 −DC−|−〉 (up to a normalization factor), which is almost undisturbed by the measurement
since the overlap between the state before the measurement and the state after the measurement
is (|C+|

2 +
√

1 −D|C−|
2)/

√
1 − |C−|2D = 1 − O(D2). In POVM formalism [1, 26], Kraus

operators for the click and no-click cases are, respectively,

M̂1 =
√
D|−〉〈−| and M̂0 =

√
1 −D|−〉〈−| + |+〉〈+|, (6)

which determine the (non-normalized) post-measurement state M̂0/1|ψ〉 and the probability
P0/1 = 〈ψ |M̂†

0/1 M̂0/1|ψ〉.
Between two subsequent shots of measurement, spin precession under a transverse

magnetic field (along the x-direction) is described by

Û = exp
(
−iσ̂ xωτ/2

)
, (7)

where σ̂ x is the Pauli matrix along the x-direction and ω is the Larmor frequency. Coupled to
the environment and subject to dynamically fluctuating local fields, spin precession is always
accompanied by decoherence. For simplicity, we consider an exponential coherence decay
characterized by a decoherence time T2. In the quantum trajectory picture [5, 10], decoherence
can be understood as a result of continuous measurement by the environment along the
x-axis, for which the Kraus operators for quantum jumps with and without phase flip are,
respectively [26],

Ê1 =
√
γ /2σ̂ x and Ê0 =

√
1 − γ /2 Î , (8)

where γ ≡ 1 − exp(−τ/T2)∼= τ/T2 is the coherence lost between two subsequent measure-
ments. For a spin state described by a density operator ρ̂, the decoherence within τ leads the
state to Ê [ρ̂] ≡ Ê0ρ̂ Ê†

0 + Ê1ρ̂ Ê†
1.

To study the spin dynamics under sequential measurement, we generalize the POVM
formalism for a sequence of n measurements. To incorporate spin decoherence in density
operator evolution, we define the superoperators for the weak measurement and the free
evolution as M̂0/1[ρ̂] = M̂0/1ρ̂ M̂†

0/1 and Û [ρ̂] = Û ρ̂Û †, in addition to the decoherence

superoperator Ê defined above. For a sequence output X ≡ [x1x2 . . . xn] as a string of binary
numbers, the superoperator,

M̂X = M̂xn Ê Û M̂xn−1 · · · M̂x3Ê Û M̂x2Ê Û M̂x1, (9)

transforms an initial density operator ρ̂ to M̂X [ρ̂] (not normalized) and determines the
probability of the output PX = Tr(M̂X [ρ̂]). With the POVM formalism, the spin state evolution
under sequential measurement and hence the noise correlations discussed below can be readily
evaluated.
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Figure 2. The Monte Carlo simulation (solid oscillating curves) and the
analytical result (envelopes in dashed lines) of the second-order correlation
function, calculated with distinguishability D = 3 × 10−4, Larmor precession
period 2π/ω0 = 3 ns and the interval between two subsequent measurements τ =

0.3 ns. In (a), no decoherence or inhomogeneous broadening is present (T −1
2 =

σ = 0). In (b), T2 = 200 ns but σ = 0. In (c), T2 = 200 ns and σ−1
= 10 ns.

(d) Shows the stochastic output (each line indicating a click event), obtained
in the Monte Carlo simulation of about 7 × 105 shots of measurement during a
real time of about 0.2 ms, with the same condition as in (a).

To illustrate how a real experiment would perform, we have carried out Monte Carlo
simulations of the measurement with the following algorithm: (1) we start from a randomly
chosen state of the spin |ψ〉; (2) the state after a free evolution is Û |ψ〉; (3) then the decoherence
effect is taken into account by applying randomly the Kraus operator Ê0 or Ê1 to the state (with
normalization) with probability 1 − γ /2 or γ /2, respectively; (4) the measurement is done by
randomly applying the Kraus operator M̂0 or M̂1 to the state (with normalization) corresponding
to the output 0 or 1 (no-click or click), with probability P0 or P1 given by the POVM formalism.
Steps (2)–(4) are repeated many times. The output is a random sequence of clicks, as shown in
figure 2(d).

To study the correlation of the stochastic output, we first consider the interval distribution
K (n), defined as the probability of having two clicks separated by n − 1 no-clicks [10],

K (n)≡ Tr(M̂[10n−11][ρ̂])/Tr(M̂1[ρ̂]), (10)

where 0n−1 means a string of n − 1 zeros. By a straightforward calculation,

K (n)≈
D +D2

2
e−nD/2

[
1 + e−nτ/T2 cos

(
nωτ +

D
2

cot
ωτ

2

)]
, (11)

up to O(γD2) and O(nD3), for γ,D� ωτ < π . A successful measurement at the beginning
of an interval projects the spin to the basis state |−〉 along the optical (z) axis. Then, the spin
precesses under the external magnetic field about the x-axis. The interval is terminated by a
second successful measurement among periodic attempts after a time lapse of nτ . The decay
of the oscillation is due to spin decoherence. The overall decay e−nD/2 is due to decreasing the
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probability of unsuccessful measurement with increasing time. The measurement also induces
a little phase shift to the oscillation. Obviously, the smaller the distinguishability D, the less the
spin dynamics is disturbed by the measurement.

In experiments, often the photon coincidence correlation instead of the interval distribution
is measured. The second-order correlation g(2)(nτ) is the probability of having two clicks
separated by n − 1 measurements [10], regardless of the results in between,

g(2)(nτ)=

∑
x1,x2,...,xn−1∈{0,1}

Tr(M̂1x1x2···xn−11[ρ̂])/Tr(M̂1[ρ̂])

= K (n)+
n−1∑
m=1

K (n − m)K (m)+
n−1∑
m=2

m−1∑
l=1

K (n − m)K (m − l)K (l)+ · · · . (12)

By Fourier transformation and summation in the frequency domain,

g(2)(nτ)=
D
2

[
1 + e−n(τ/T2+D/4) cos(nωτ)+ O(D)

]
. (13)

Spin precession, decoherence and measurement-induced decay are all seen in the second-order
correlation function (see figure 2). Note that the overall decay of the interval distribution
manifests itself as a measurement-induced dephasing of the oscillating signal in the correlation
function. The Monte Carlo simulation shows that 1010 shots of measurement would yield a
rather smooth profile of the spin dynamics, which requires a time span of about 3 s for the
parameters used in figure 2.

In addition to the decoherence due to dynamical fluctuation of the local field, there is also
phenomenological dephasing due to static or slow fluctuations, i.e. inhomogeneous broadening
that exists even for a single spin since the sequential measurement contains many shots that
form an ensemble. Inhomogeneous broadening is modeled by a Gaussian distribution of ω with
mean value ω0 and width σ . With inhomogeneous broadening included, the ensemble-averaged
correlation function becomes

〈g(2)(nτ)〉 =
D
2

[
1 + e−n(τ/T2+D/4)−n2τ 2σ 2/2 cos(nω0τ)+ O(D)

]
. (14)

Since usually σ � T −1
2 , the decay of the second-order correlation is dominated by the

inhomogeneous broadening effect (see figure 2(c)).
To separate spin decoherence from inhomogeneous broadening, we resort to the third-order

correlation g(3)(n1τ, n2τ), the probability of having three clicks separated by n1 − 1 and n2 − 1
measurements. The idea can be understood in a post-measurement selection picture. After the
first click, the second click has the peak probability appearing at an integer multiple of the spin
precession period, so the coincidence of the two earlier clicks serves as filtering of the spin
frequency and the third click would have a peak probability appearing at n2τ = n1τ , similar
to the spin echo. The third-order correlation in the absence of inhomogeneous broadening is
g(3)(t1, t2)∝ g(2)(t1)g(2)(t2). The ensemble average leads to

〈g(3)(t1, t2)〉 ∝ 1 +
∑
j=1,2

e−(T −1
2 +τ−1D/4)t j −σ

2t2
j /2 cos(ω0t j)

+
1

2
e−(T −1

2 +τ−1D/4)(t1+t2)e−σ 2(t1+t2)2/2 cos(ω0(t1 + t2))

+
1

2
e−(T −1

2 +τ−1D/4)(t1+t2)e−σ 2(t1−t2)2/2 cos (ω0(t1 − t2)) . (15)
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Figure 3. Contour plot of the envelope of the third-order correlation G(3)(t1, t2),
with parameters the same as for figure 2(c). Insets (a) and (b) show the oscillation
details of G(t1, t2) in the range 0 ns6 t1,2 6 30 ns and 90 ns6 t1,2 6 120 ns,
respectively.

Figure 3 plots G(3)(t1, t2)≡ 〈g(3)(t1, t2)〉 − 〈g(2)(t1)〉〈g(2)(t2)〉 to exclude the trivial background.
Along the direction t1 = −t2, the third-order correlation oscillates and decays rapidly (with
timescale σ−1). But the oscillation amplitude decays slowly (with timescale T2) along the
direction t1 = t2, as expected from the last term of equation (15).

In conclusion, we have given a statistical treatment of sequential weak measurements of a
single spin. The characteristics of the weak measurement consist of the negligible perturbation
of the spin state except for the projective state collapse when the measurement is successful
in identifying the spin state. We show that the third-order correlation reveals spin decoherence
from inhomogeneous broadening. The theory presented here for sequential pulse measurement
can be straightforwardly generalized to continuous weak measurement by letting the pulse
separation τ → 0 while keeping the average power of the light unchanged (i.e.D/τ = constant).
In the proof-of-principle setup based on Faraday rotation, all optical elements have been
assumed to be ideal for conceptual simplicity. An investigation of the defects, e.g. in the PBS
and in the photon detector, shows that they do not change the essential results presented here
but only reduce the visibility of the features. Details will be published elsewhere.
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