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Abstract We obtain the set of all detector configurations providing the maximal
violation of the Bell inequality in the Clauser–Horne–Shimony–Holt form for a gen-
eral (pure or mixed) state of two qubits. Next, we analyze optimal conditions for the
Bell-inequality violations in the presence of local decoherence, which includes energy
relaxation at the zero temperature and arbitrary pure dephasing. We reveal that in most
cases the Bell inequality violation is maximal for the “even” two-qubit state. Com-
bined effects of measurement errors and decoherence on the Bell inequality violation
are also discussed.

Keywords Bell’s inequalities · Decoherence · Open quantum systems ·
Superconducting qubits

1 Introduction

Entanglement, i.e., quantum correlations between physical systems, is not only a basic
feature of quantum behavior [21,50], but also an important resource for quantum com-
putation and quantum information [42]. Decoherence, i.e., loss of coherence of states
of quantum systems due to the interaction with the environment, is one of the major
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stumbling blocks for quantum computation [42]. Therefore recently there has been
a surge of interest in effects of decoherence on entanglement [9,29–31,33,35,48,52,
58,61,62]. In particular, it was revealed that, when decoherence is local (i.e., not
correlated between different parts of a multipartite system), entanglement, as a rule,
disappears after a finite time—the phenomenon called entanglement sudden death
[61,62].

One of the most striking manifestations of the nonclassical nature of physics is
violation of the Bell inequality (BI) [11]. In particular, the BI violations demonstrate
non-locality of physics. Moreover, the BI violation is used for quantum key distribution
[22,36]. Decoherence transforms a pure entangled state into a mixed state, decreasing
thus entanglement and the Bell inequality violation. Effects of decoherence on the BI
violation have attracted a significant interest recently [3,10,29–33,35,47,54]. Like
entanglement, in the presence of local decoherence the BI violation in most cases
disappears after a finite time (Bell nonlocality sudden death [3]).

A violation of the BI implies necessarily that the system is in an entangled state,
however the converse statement is not true. Indeed, while any pure (completely coher-
ent) entangled state can be used for violation of the BI [15,23], there are mixed
(partially incoherent) entangled states which cannot violate the BI [60]. In fact, the
ratio of the volume of the states violating the BI to the total volume of the entangled
states is small; for instance, in the Hilbert–Schmidt metric this ratio equals 0.01085
[33]. Correspondingly, in the presence of local decoherence the duration of the Bell-
inequality violation is generally significantly shorter than the entanglement survival
time [33]. Thus, observation of the Bell inequality violation is a more difficult task
than observation of entanglement.

Until now, most experiments on the BI violation have been performed with pho-
tons [2,5–8,59]. However, recently there has been an increasing interest in testing the
BI for various material systems, where decoherence is usually an important factor.
In particular, experiments with ions in traps [45], single neutrons [24], atom-photon
[41] and two-atom [38] systems were performed. Moreover, the violation of the BI
in superconducting Josephson phase qubits [13,17,37,63] was demonstrated in [4].
There are also various theoretical proposals related to the BI violation in solid-state
systems [10,28,46,47,53,54,57].

Optimal experimental conditions for observation of the BI violation in supercon-
ducting phase qubits were considered in [32]. There both the ideal case and effects of
various nonidealities, such as measurement errors and crosstalk [34,39], were analyzed
in detail, while decoherence was discussed briefly. In a recent paper [33] entangle-
ment and the BI violation in the presence of decoherence were considered. In both refs.
[32,33], the class of the “odd” two-qubit states, which are obtained readily in experi-
ments with superconducting phase qubits [39,51], was discussed. Note, however, that
different states, such as “odd”, “even” or more general states, are affected differently
by energy relaxation. Therefore, it is of interest to study which states are better suited
for observing violations of the BI in the presence of decoherence. Moreover, optimal
detector configurations providing the maximal BI violation in the presence of deco-
herence were not discussed previously, except for the case of pure dephasing [47]
(there are also brief remarks on this topics in [32,33]).
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Optimal conditions for Bell-inequality violation 271

In the present paper, we consider the Bell inequality in the CHSH form [18] for two
two-level systems (qubits). We begin with obtaining all optimal detector configura-
tions providing the maximal BI violation for any given state. Basing on this solution,
we provide a comprehensive discussion of effects of local decoherence on the BI vio-
lation. We obtain both optimal states and all detector configurations which yield the
maximal BI violation in the presence of decoheremce. The knowledge of all optimal
configurations is important for planning experiments, since some detector configura-
tions can be easier to realize than others [47]. Our decoherence model includes energy
relaxation at the zero temperature (known also as spontaneous decay or amplitude
damping) and pure dephasing (phase damping). We analyze analytically and numeri-
cally the general case and a number of important special cases. In particular, we study
the experimentally relevant classes of the general “even” and ”odd” states and reveal
that the “even” states provide maximal BI violations in most cases. We also discuss
the combined effect of decoherence and local errors, basing on the treatment of errors
in [32].

The paper is organized as follows. In Sect. 2 we discuss the BI and properties of
maximally entangled states. In Sect. 3 we obtain all optimal configurations of the
detectors which maximize the BI violation for any given (pure or mixed) state. Sec-
tion 4 is devoted to effects of local (independent) decoherence of the qubits on the
BI violation. In Sect. 5 we consider combined effects of errors and decoherence. Sec-
tion 6 provides the concluding remarks. The two appendices supplement the main text.
In particular, in Appendix B we discuss some properties of two-qubit states.

2 Preliminaries

2.1 The Bell inequality

We consider a pair of qubits, i.e., two-level systems a and b. Each qubit has the states
|0〉 and |1〉. A measurement of a qubit along any direction in the Bloch-sphere pro-
duces one of possible results ±1. The correlator of the measurement results for the
two qubits is the following average (expected value),

E(a, b) = 〈A(a)B(b)〉. (2.1)

Here a (b) is the unit radius-vector in the Bloch sphere along the observation (“detec-
tor”) axis for qubit a (b), whereas A(a) and B(b) are dichotomous random variables
with the values ±1 describing results of measurements for qubits a and b, respectively.

Measurements of two qubits satisfy the Bell inequality, provided that a local real-
istic (classical) theory holds and there is no communication between the qubits [11].
We consider the Clauser–Horne–Shimony–Holt (CHSH) version of the BI [12,18]

− 2 ≤ S ≤ 2, (2.2)
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where

S = E(a, b) − E(a, b′) + E(a′, b) + E(a′, b′). (2.3)

Note that the minus sign can be moved to any term in Eq. (2.3). The resulting expres-
sions for S are equivalent up to a change of the labeling of the observables at each qubit.
Indeed, the substitution a ↔ a′ results in the permutation of the signs of the second
and fourth terms in Eq. (2.3). Similarly, the substitution b ↔ b′ (a ↔ a′, b ↔ b′) is
equivalent to moving the minus sign to the first (third) term in Eq. (2.3).

In the quantum case, the quantity (2.3) can be expressed through the Bell operator
[14] B as follows,

S = Tr (Bρ), (2.4)

where ρ is the density matrix for the two qubits and

B = AB − AB ′ + A′ B + A′ B ′. (2.5)

Here the observables

A = a · σa, A′ = a′ · σa, B = b · σb, B ′ = b′ · σb, (2.6)

where σa = σ ⊗ I2, σb = I2 ⊗σ , In is the n ×n identity matrix, and σ = (σx , σy, σz)

is the vector of the Pauli matrices [42]. We denote by |0〉 and |1〉 the eigenvectors of
σz with the eigenvalues 1 and −1, respectively.1

The CHSH parameter S depends on the quantum state of the pair of qubits and on
the “detector configuration”, i.e., the four vectors (a, a′, b, b′). In this paper we look
for experimental conditions, i.e., the quantum states and the corresponding detector
configurations, which are the most favorable for an observation of the BI violation.
Such conditions are reached when |S| − 2 is positive and maximal.

We will use the following properties of S [32].
(i) S is invariant under arbitrary local unitary transformations of the qubits,

ρ → (Ua ⊗ Ub)ρ(U †
a ⊗ U †

b ), (2.7a)

and the corresponding rotations of the detectors,

a → Raa, a′ → Raa′, b → Rbb, b′ → Rbb′. (2.7b)

Here Ua (Ub) is a unitary matrix for qubit a (b) and Ra (Rb) is the rotation matrix
corresponding to Ua (Ub), so that, e.g.,

Ua(ra · σ )U †
a = (Rara) · σ , (2.8)

1 The present notation for the qubit states differs from that used in [32,33] by the permutation of the states
|0〉 and |1〉.
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Optimal conditions for Bell-inequality violation 273

a rotation matrix R being an orthogonal matrix, RT R = I3, with det(R) = 1.
Equation (2.7b) is obtained on inserting Eq. (2.7a) into Eq. (2.4) and using Eqs. (2.5),
(2.6), and (2.8).

(ii) The sign of S is inverted, if the vectors a and a′ (or b and b′) invert the sign,

S → −S if a → −a, a′ → −a′ or b → −b, b′ → −b′. (2.9)

Therefore, for a given state the maximal and minimal values of S are equal by the
magnitude, yielding equal violations of both bounds in the BI (2.2). In other words,

S+ = −S−, (2.10)

where S+ and S− are, respectively, the maximum and minimum of S for a given state.
As a result, it is sufficient to discuss only the conditions for achieving the maximum
of S, at least, in the absence of the measurements errors (effects of errors are discussed
in Sect. 5). Below we denote by Smax the maximum of |S| over all states and detector
axes.

(iii) Equation (2.9) implies that S is not changed if all detectors are inverted,

(a, a′, b, b′) → (−a,−a′,−b,−b′). (2.11)

2.2 Maximally entangled states

In the ideal case, when there is no decoherence or errors, the maximal and minimal
values, Smax and Smin, which S can achieve are [16]

Smax = 2
√

2, Smin = −2
√

2. (2.12)

These limits are obtained for any maximally entangled state [44]. The BI violations
are often considered for the following maximally entangled states, called also the Bell
states [42],

|Φ±〉 = (|00〉 ± |11〉)/√2, (2.13)

|Ψ±〉 = (|01〉 ± |10〉)/√2. (2.14)

For each maximally entangled state there are infinitely many optimal (i.e., produc-
ing a maximal BI violation) configurations of the detector axes a, a′, b, and b′; all
such configurations were described in [32]. In Sect. 3 we describe all configurations
maximizing S for an arbitrary (pure or mixed) state.

It is useful to have a general expression for maximally entangled states in the “stan-
dard” basis of the qubit pair. As shown in Sect. 2.3, with the accuracy to an overall
phase, the most general form of a maximally entangled state is2

|Ψ 〉 = c1|00〉 + c2eiαa |01〉 − c2eiαb |10〉 + c1ei(αa+αb)|11〉 (2.15)

2 An expression equivalent to Eq. (2.15), but written in a different basis, was cited in [56].
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Here αa, αb, c1, and c2 are real numbers, and c2
1 + c2

2 = 1/2.
With the help of local rotations of the qubits around the z axis, the coefficients in

Eq. (2.15) can be made real, yielding one of the two states

|Ψ 〉 = cΦ |Φ±〉 + cΨ |Ψ∓〉, (2.16)

where either the upper or the lower signs should be used simultaneously, cΦ and cΨ are
any real numbers satisfying c2

Φ +c2
Ψ = 1, and |Φ±〉 and |Ψ±〉 are the Bell states (2.13)

and (2.14). Equations (2.15) and (2.16) are used in Sect. 4.

2.3 BI violations and entanglement for pure states

In the presence of decoherence and/or measurement errors, the states providing the
maximal BI violation are not necessarily the maximally entangled states. Here we
discuss the BI violations for arbitrary pure states under ideal conditions, i.e., in the
absence of decoherence and errors.

There is a relation [55] (see also Appendix A) between S+ and an entanglement
measure, the concurrence C [25], for an arbitrary two-qubit pure state,

S+ = 2
√

1 + C 2. (2.17)

The concurrence C is limited by the condition 0 ≤ C ≤ 1, a state being entangled
whenever C > 0. Equation (2.17) shows that the BI is always violated for an entangled
pure state, the maximal violation S+ increasing with the concurrence C .

Let us obtain S+ and C for an arbitrary two-qubit pure state, which, up to an overall
phase, can be written in the form

|Ψ 〉 = c1|00〉 + c2eiαb |01〉 + c3eiαa |10〉 + c4ei(αa+αb+α)|11〉, (2.18)

where αa, αb, α, and ci are real numbers, and
∑4

i=1 c2
i = 1. Since S+ is invariant with

respect to local qubit rotations [the property (i) in Sect. 2.1], the state (2.18) has the
same value of S+ as the state

|Ψ 〉 = c1|00〉 + c2|01〉 + c3|10〉 + c4eiα|11〉, (2.19)

obtained from Eq. (2.18) by rotating the qubits a and b around the z axis by the angles
−αa and −αb, respectively.

As shown in Appendix A, for the state (2.18)

C = 2|c1c4eiα − c2c3|. (2.20)

This result provides also S+ by Eq. (2.17). Equation (2.20) implies that for given
probabilities c2

i , the concurrence and BI violation are maximized in the state (2.18),
when

α = 0, c1c2c3c4 < 0. (2.21)
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Optimal conditions for Bell-inequality violation 275

Then Eqs. (2.18) and (2.19) become

|Ψ 〉 = c1|00〉 + c2eiαb |01〉 + c3eiαa |10〉 + c4ei(αa+αb)|11〉, (2.22)

and

|Ψ 〉 = c1|00〉 + c2|01〉 + c3|10〉 + c4|11〉, (2.23)

whereas the concurrence (2.20) in Eqs. (2.22) and (2.23) becomes

C = 2(|c1c4| + |c2c3|). (2.24)

The condition (2.21) can hold only when all ci �= 0. Otherwise, when, at least,
one of the amplitudes ci vanishes, the concurrence (2.20) is independent of α, being
given by Eq. (2.24), where now at most one term is nonzero. In this case the general
state (2.18) is equivalent to the real state (2.23) up to local z-rotations of the qubits.

Let us maximize C (2.24) and hence S+. We proceed in two stages. First, we keep
c2 and c3 fixed and vary c1 and c4 under the condition that c2

1 + c2
4 = 1 − c2

2 − c2
3

is fixed. This provides the maximization condition |c1| = |c4|. Similarly, varying c2
and c3 with |c1| = |c4| being fixed yields the maximization condition |c2| = |c3|.
Under the above two conditions, C = 1 and S+ = 2

√
2, i.e., the state is maximally

entangled. We should also satisfy the inequality in Eq. (2.21) whenever c1 �= 0 and
c2 �= 0. This is achieved by setting c4 = c1 and c3 = −c2 in Eq. (2.22); as a result,
we obtain the general expression (2.15) for maximally entangled states.

In summary, we have shown that for given probabilities c2
i , the BI violation and

entanglement are maximized in real states (2.23) as well as in states which are equiv-
alent to real states up to local z-rotations of the qubits.

3 Conditions for the maximal BI violation in an arbitrary state

While the formula for the maximum S+ of S in the general mixed state is known [27],
only one optimal detector configuration (i.e., a configuration for which S+ is realized)
was provided [27,23,43]. In contrast, Samuelsson et al. [47] showed that for the Bell
state |Φ+〉 in the presence of dephasing there is a family of optimal configurations
depending on one continuous parameter. In this section we extend the method of [27]
in order to obtain all optimal detector configurations for any (pure or mixed) state. We
show that the set of optimal detector configurations generally depends on one contin-
uous and one discrete parameters, though in special cases the number of continuous
parameters can equal two or three.
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3.1 Maximal BI violation

Let us review the derivation [27] of the maximum S+ of S for a given state. It is useful
to consider the following representation [26,27,49] of the two-qubit density matrix

ρ = (I4 + ra · σa + rb · σb + σaTσb) /4. (3.1)

Here rk is the Bloch vector characterizing the reduced density matrix for the qubit k,
so that, e.g., ρa = Trbρ = (I2 + ra · σ )/2, T is a matrix with the real elements

Tmn = Tr (ρσ a
mσ b

n ) (m, n = x, y, z), (3.2)

and σaTσb = ∑z
m,n=x Tmnσ a

mσ b
n , where σk = (σ k

x , σ k
y , σ k

z ) (k = a, b). Some useful
properties of T are discussed in Appendix B.

Inserting Eq. (2.5) into (2.4) and taking into account Eqs. (2.6) and (3.2), we obtain
that

S = aTb − aTb′ + a′Tb + a′Tb′. (3.3)

The products of the form aTb in Eq. (3.3) and below are defined as follows,

aTb = a · (Tb) =
z∑

m,n=x

Tmnambn . (3.4)

The vectors b and b′ can be always written in the form [43]

b = c′
1 cos(ζb/2) + c′

2 sin(ζb/2),

b′ = c′
1 cos(ζb/2) − c′

2 sin(ζb/2), (3.5)

where c′
1 and c′

2 are orthogonal unit vectors and ζb is the angle between b and b′ (0 <

ζb < π). Inserting Eq. (3.5) into (3.3) yields S = 2[aTc′
2 sin(ζb/2)+a′Tc′

1 cos(ζb/2)].
To maximize this expression, one should require a and a′ to be parallel to Tc′

2 and
Tc′

1, respectively,3 yielding

a = Tc′
2

|Tc′
2|

, a′ = Tc′
1

|Tc′
1|

. (3.6)

Then maximizing S over ζb results in

ζb = 2 arctan

( |Tc′
2|

|Tc′
1|

)
, (3.7)

3 Here the symbols a and a′ are interchanged in comparison with [27] in view of the difference of the
definitions of S in the present paper and in [27] (cf. the last paragraph in Sect. 2.1).
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where |v| denotes the length of a vector v, and

S = 2
√

|Tc′
1|2 + |Tc′

2|2 = 2
√

c′
1U c′

1 + c′
2U c′

2. (3.8)

Here

U = TT T (3.9)

is a real symmetric matrix with nonnegative eigenvalues u1, u2, u3; u3 being the
smallest eigenvalue (0 ≤ u3 ≤ u1, u2). As shown in [27],

max
c′

1,c
′
2

(c′
1U c′

1 + c′
2U c′

2) = u1 + u2 (3.10)

(see the proof in Sect. 3.2). Equations (3.8) and (3.10) yield the maximum of S [27],

S+ = 2
√

u1 + u2. (3.11)

Hence, the BI violation, S+ > 2, occurs when u1 + u2 > 1. Equations (B.4)
and (3.11) imply the following limits on S+,

0 ≤ S+ ≤ 2
√

2. (3.12)

In particular, for pure states [23] 2 ≤ S+ ≤ 2
√

2. The lower limit in Eq. (3.12),
S+ = 0, is obtained for the states with T = 0, which are, in view of Eq. (B.6), the
states locally equivalent to ρ = diag(ρ11, ρ22, 1/2 −ρ22, 1/2 −ρ11). These states are
product states with one of the qubits in the maximally mixed state I2/2 and mixtures
of such states.

As an example, let us obtain S+ for a state with a diagonal T. As shown in Appen-
dix B, all such states have the form (B.5). Now U = T2, and Eqs. (B.6) and (3.11)
imply that

S+ = 2[max{8ρ2
23 + 8ρ2

14, 4(|ρ23| − |ρ14|)2 + (1 − 2ρ22 − 2ρ33)
2}]1/2. (3.13)

As shown in Appendix B, a necessary condition for the BI violation is det(T) < 0,
which implies that

T = −R
√

U, (3.14)

where R = −TU−1/2 is a rotation matrix. Below we focus on the case det(T) < 0.

3.2 Optimal detector configurations

Consider detector configurations providing the maximal S (3.11). Equation (3.10)
obviously holds for c′

1 = c1 and c′
2 = c2, where ci (i = 1, 2, 3) are the unit orthog-

onal eigenvectors of U corresponding to the eigenvalues ui . This is the choice of c′
1
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and c′
2 which was made in [27] (similar choices were made also in [23] and [43]).

In this case Eq. (3.7) becomes ζb = ζ0, where

ζ0 = 2 arctan

√
u2

u1
, (3.15)

since |Tci |2 = ci U ci = ui ci · ci = ui . Hence, Eq. (3.5) becomes

b = c1 cos(ζ0/2) + c2 sin(ζ0/2),

b′ = c1 cos(ζ0/2) − c2 sin(ζ0/2), (3.16)

and, in view of Eqs. (3.6) and (3.14),

a = e2, a′ = e1, (3.17)

where

ei = Tci√
ui

= −R ci (i = 1, 2). (3.18)

The vectors e1 and e2 are orthonormal, since R is a rotation matrix.
The optimal detector configuration given by Eqs. (3.16) and (3.17) is not unique.

To obtain all possible detector configurations providing Eq. (3.11), we derive
Eq. (3.10), as follows. Let c′

3 be a unit vector orthogonal to c′
1 and c′

2; then
c′

i = ∑3
j=1 Wi j c j (i = 1, 2, 3), where W is an orthogonal 3 × 3 matrix, WT W = I3.

We have

c′
3U c′

3 = W2
31u1 + W2

32u2 + W2
33u3 ≥ u3, (3.19)

since W2
31 + W2

32 + W2
33 = 1 and u3 ≤ u1 + u2. Moreover,

3∑

i=1

c′
i U c′

i = Tr U = u1 + u2 + u3. (3.20)

Equations (3.19) and (3.20) imply that c′
1U c′

1 + c′
2U c′

2 = u1 + u2 + u3 − c′
3U c′

3 ≤
u1 + u2. Hence, the maximum (3.10) is achieved when the expression (3.19) is min-
imal, i.e., equals u3, which occurs for W31 = W32 = 0 and W33 = ±1, i.e., for
c′

3 = ±c3. In this case c′
1 and c′

2 are an arbitrary pair of orthonormal vectors in the
plane defined by c1 and c2. All such c′

1 and c′
2 are given by

c′
1 = c1 cos η ± c2 sin η, c′

2 = −c1 sin η ± c2 cos η. (3.21)

Here η is the arbitrary angle between c′
1 and c1, and the two signs before c2 correspond

to a reflection of c′
1 and c′

2 with respect to the c1 axis. The above derivation implies
that no pair of unit orthogonal vectors c′

1 and c′
2 other than those in Eq. (3.21) can
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Optimal conditions for Bell-inequality violation 279

satisfy the condition (3.10), unless u3 equals u1 or u2 (the latter cases are discussed
in Sect. 3.4).

Inserting Eq. (3.21) into Eqs. (3.5) and (3.6) and taking into account Eq. (3.18),
we obtain all detector configurations maximizing S, as follows,

a = (−e1
√

u1 sin η ± e2
√

u2 cos η)/|Tc′
2|,

a′ = (e1
√

u1 cos η ± e2
√

u2 sin η)/|Tc′
1|,

b = c1 cos[η + ζb(η)/2] ± c2 sin[η + ζb(η)/2],
b′ = c1 cos[η − ζb(η)/2] ± c2 sin[η − ζb(η)/2]. (3.22)

In Eq. (3.22) the upper (or lower) signs should be used simultaneously. The quantities
|Tc′

1| and |Tc′
2| are given by

|Tc′
1(2)| =

√
u1 + u2 ± (u1 − u2) cos 2η

2
, (3.23)

where the upper (lower) sign corresponds to |Tc′
1| (|Tc′

2|). Inserting Eq. (3.23) into
Eq. (3.7) and performing trigonometric calculations yields

ζb(η) = arccos

(
u1 − u2

u1 + u2
cos 2η

)
. (3.24)

Equation (3.24) can be compared with the angle ζa between a and a′, satisfying
cos ζa = a · a′. As follows from Eqs. (3.22) and (3.23) and some calculations,

ζa(η) = arccot

(
u2 − u1

2
√

u1u2
sin 2η

)
(3.25)

(we assume that 0 < ζa, ζb < π ). Equations (3.24) and (3.25) imply that the angles
ζa and ζb vary with η between the values ζ0 (3.15) and π − ζ0 with the period π .
In particular, for η = 0,±π/2,±π (η = ±π/4,±3π/4) one gets ζa = π/2 (ζb =
π/2), whereas ζb (ζa) acquires a maximal or minimal value. Moreover, Eqs. (3.22)–
(3.24) imply the relations

a′(η ± π/2) = ±a(η), b′(η ± π/2) = ±b(η), (3.26)

whereas a, a′, b, and b′ change the sign for η → η + π .
As follows from Eq. (3.22), the set of all optimal configurations maximizing S

for a given state generally depends on one continuous parameter (η) and one discrete
parameter [which corresponds to the two possible signs in Eq. (3.22)]. However, when
u3 is equal to u1 and/or u2 (a degenerate case), the set of optimal configurations is
characterized by two or three continuous parameters, as discussed in Sect. 3.4.

Note that the optimal detector orientations (3.22) depend on u1 and u2 only through
the ratio u2/u1. As a result, two different states with the same R, c1, c2, and u2/u1
have the same or, at least, overlapping sets of optimal detector configurations. (The
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overlap may be incomplete only when, at least, for one of the states u1 = u3 or
u2 = u3.) In particular, for the states ρ and ρ′ with the matrices T and T′, respectively,
satisfying T′ = f T ( f > 0), the respective quantities S+ and S′+ obey S′+ = f S+,
whereas the optimal configurations are the same for both states. An example of such
states ρ and ρ′ is given by the input and output states of the depolarizing channel [42],

ρ′ = fρ + (1 − f )
I4

4
(0 < f ≤ 1). (3.27)

3.3 Polar coordinates

According to Eq. (3.22), the optimal detector directions for qubits a and b are con-
fined to the planes (e1, e2) and (c1, c2), respectively. It is convenient to specify these
directions by means of polar angles.

To this end, we introduce the polar coordinate ν in the (c1, c2) plane, which is
counted from c1 in the direction where ν = π/2 corresponds to c2, and the polar
coordinate δ in the (e1, e2) plane [differing generally from the (c1, c2) plane], which
is counted from e1 in the direction where δ = π/2 is the polar coordinate of e2. Then
Eq. (3.22) can be recast in the form

a = e1 cos[δa(η)] ± e2 sin[δa(η)],
a′ = e1 cos[δ′

a(η)] ± e2 sin[δ′
a(η)],

b = c1 cos[νb(η)] ± c2 sin[νb(η)],
b′ = c1 cos[ν′

b(η)] ± c2 sin[ν′
b(η)]. (3.28)

Here δa, δ′
a, νb, and ν′

b (−δa, −δ′
a, −νb, and −ν′

b) are the polar coordinates of the
vectors a, a′, b, and b′, respectively, when the upper (lower) sign in Eq. (3.28) is real-
ized. Thus, Eq. (3.28) implies that an optimal qubit configuration changes to another
optimal configuration under the sign change of the polar angles

(δa, δ′
a, νb, ν

′
b) → (−δa,−δ′

a,−νb,−ν′
b). (3.29)

The configurations corresponding to the two different choices of the sign in Eq. (3.22)
or (3.28) transform to each other by the reflection of the detector axes for qubits a
and b with respect to the axes e1 and c1, respectively.

The functions δa(η), δ′
a(η), νb(η), and ν′

b(η) satisfy the relations [see Eq. (3.26)]

δa(η) = δ′
a(η + π/2), (3.30)

νb(η) = ν′
b(η + π/2). (3.31)

These functions can be obtained as follows. On comparing Eqs. (3.22) and (3.28) with
the upper signs, it is easy to see that

νb(η) = η + ζb(η)/2, ν′
b(η) = η − ζb(η)/2. (3.32)
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This implies that η = (νb +ν′
b)/2, yielding a geometric interpretation of the parameter

η: η equals the polar coordinate of the bisector of the angle between b and b′ when
the upper sign in Eq. (3.22) or (3.28) is realized.

Let us now obtain δa(η) and δ′
a(η). The second Eq. (3.22) implies that

cos δ′
a = a′ · e1 = √

u1 cos η/|Tc′
1|,

sin δ′
a = a′ · e2 = √

u2 sin η/|Tc′
1|. (3.33)

yielding

δ′
a(η) = arctan

(√
u2

u1
tan η

)
(−π/2 ≤ η ≤ π/2). (3.34)

The right-hand sides of Eqs. (3.33) are continuous functions of η, which implies that
δ′

a is also a continuous function of η. A continuous extension of δ′
a(η) beyond the

interval −π/2 ≤ η ≤ π/2 and Eq. (3.30) provide the detector angles for qubit a,

δa(η) = δ′
a(η + π/2), δ′

a(η) = arctan

(√
u2

u1
tan η

)
+ nint

( η

π

)
π, (3.35)

where nint(η/π) is the nearest integer to η/π .
Figure 1 shows the dependence on η of the polar coordinates of the observation

axes in Eq. (3.28) with the upper signs for u2/u1 = 0.3 (ζ0 ≈ 1.00). Our calculations
show that the set of the polar coordinates of the detectors is always ordered as follows
(cf. Fig. 1),

δa > νb > δ′
a > ν′

b. (3.36)

3 2 1 0 1 2 3
η

2

0

2

4

O
bs

er
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n
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gl

es δa

νb δa'

νb'

Fig. 1 Polar angles of the detector axes versus η for u2/u1 = 0.3 (ζ0 ≈ 1.00), as given by Eqs. (3.32) and
(3.35)
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3.3.1 Symmetry with respect to the exchange of the qubits

In the above derivation in Sect. 3.1 the observables for qubit b are treated differently
from those for qubits a, resulting in different solutions for the two qubits [cf., e.g.,
Eqs. (3.24) and (3.25)]. To check whether these solutions are invariant with respect to
the qubit swap, we rewrite Eq. (3.3) in the form

S = bTT a − bTT a′ + b′TT a + b′TT a′, (3.37)

where the roles of qubits a and b are interchanged. As follows from Eq. (3.14),
TT = −√

U RT = −RT R
√

U RT = RT TRT , and hence bTT a = b(RT TRT )a =
(R b)T(RT a). Thus, Eq. (3.37) can be recast as

S = (R b)T(RT a) − (R b′)T(RT a) + (R b)T(RT a′) + (R b′)T(RT a′). (3.38)

Comparing Eqs. (3.3) and (3.38), we obtain that S is invariant under the substitution

(a, a′, b, b′) → (R b′, R b, RT a′, RT a) (3.39)

or

(a, a′, b, b′) → (−R b′,−R b,−RT a′,−RT a). (3.40)

In view of Eq. (2.11), one of the symmetry relations (3.39) and (3.40) is a consequence
of the other.

With the help of Eqs. (3.18) and (3.28), we obtain that Eq. (3.40) is equivalent to
the inversion of the order of the detector coordinates,

(δa, δ′
a, νb, ν

′
b) → (ν′

b, νb, δ
′
a, δa), (3.41)

where the quantities in the parentheses are the respective polar angles of the vectors
(a, a′, b, b′). Our numerical calculations show that if (δa, δ′

a, νb, ν
′
b) is an optimal

detector configuration corresponding to the upper (lower) signs in Eq. (3.28), then
(ν′

b, νb, δ
′
a, δa) is an optimal configuration corresponding to the lower (upper) signs

in Eq. (3.28).
In summary, the set of the optimal detector configurations is invariant with respect

to the qubit-swap symmetry relation (3.41). Thus, there are, at least, three simple
relations between different optimal configurations, Eqs. (2.11), (3.29), and (3.41).

3.4 Degenerate cases

Consider the optimal detector configurations for states characterized by the matrix U
with degenerate eigenvalues.
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3.4.1 Completely degenerate case (u1 = u2 = u3 ≡ u)

Now U = uI3, and Eq. (3.11) yields S+ = 2
√

2u, so that the BI is violated for

u > 1/2. (3.42)

Now Eq. (3.14) becomes

T = −√
uR. (3.43)

In this case any two perpendicular unit vectors can be chosen as c1 and c2. Then
Eqs. (3.18), (3.22)–(3.24) yield that all detector configurations providing S+ are given
by the expressions

a = R b′ − R b√
2

, a′ = −R b + R b′
√

2
, (3.44)

where b and b′ are arbitrary mutually perpendicular unit vectors. Since the orienta-
tion of the pair of orthogonal vectors b and b′ is characterized by three angles, in the
completely degenerate case the set of optimal configurations is characterized by three
continuous parameters.

The class of states possessing U with completely degenerate eigenvalues includes
all pure maximally entangled states. For such states u = 1 and hence S+ = 2

√
2

[cf. Eq. (2.12)]. Since for such states ra = rb = 0, a maximally entangled state is
uniquely determined by T = −R [cf. Eq. (3.43)]. The simplest example of such a
state is the singlet state |Ψ−〉 [Eq. (2.14)], which is often considered in connection
with the BI. For the singlet state Eq. (3.2) yields T = −I3, i.e., R = I3, and Eq. (3.44)
becomes [32]

a = b′ − b√
2

, a′ = −b + b′
√

2
. (3.45)

An example of a mixed state corresponding to the completely degenerate case is
the Werner state [60]

ρ = √
u|Ψ−〉〈Ψ−| + (1 − √

u)
I4

4
, (3.46)

which is a special case of the state (3.27). The BI violation condition (3.42) for this
state was obtained in [27]. For the state (3.46) T = −√

uI3, yielding R = I3, and we
obtain the same optimal configurations (3.45) as for the singlet.

3.4.2 Case u1 = u3 or u2 = u3

In this case we assume for definiteness that u2 = u3 < u1. Then c1 is defined uniquely,
whereas c2 can be any unit radius-vector in the plane perpendicular to c1. Now the set
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of optimal configurations (3.22) or (3.28) is characterized by two continuous param-
eters, η and an angle specifying the direction of c2 in the plane (c2, c3) with respect
to some reference axis. In this case the discrete parameter is replaced by the new
continuous parameter; indeed, now one of the two possible signs in Eqs. (3.22) and
(3.28) can be omitted, since it is recovered for c2 → −c2.

3.4.3 Case u3 < u1 = u2 ≡ u

In this case Eq. (3.11) yields S+ = 2
√

2u, as in the completely degenerate case.
Now any two perpendicular unit vectors can be chosen as c1 and c2 in the plane of
the eigenvectors of U corresponding to the degenerate eigenvalue u1 = u2. Then
Eqs. (3.18), (3.22)–(3.24) yield that all detector configurations providing S+ are given
by Eq. (3.44), where b and b′ are arbitrary mutually perpendicular unit vectors in the
plane determined by c1 and c2. In other words, now the optimal configurations are
a subset of the set of the optimal configurations for the maximally entangled state
characterized by the rotation matrix R. The optimal configurations are described by
the following polar angles [see Eqs. (3.32) and (3.35)],

δa = η + π/2, δ′
a = η, νb = η + π/4, ν′

b = η − π/4, (3.47)

and by Eq. (3.29). Now the set of optimal configurations is characterized by one
continuous parameter and one discrete parameter as in the nondegenerate case.

3.5 Special cases

Here we provide all optimal detector configurations for the states with T assuming
one of the two simple forms,

T = diag(τx , τx ,−τz), (3.48)

T = diag(τx ,−τx , τz). (3.49)

The cases (3.48) and (3.49) are of interest since they describe the important classes
of odd and even states (see below Sect. 4.4.2). In view of Eq. (B.6), the most gen-
eral two-qubit states with T given by Eq. (3.48) or (3.49) are described by Eq. (B.5)
with ρ14 = 0 or ρ23 = 0, respectively, so that in Eq. (3.48) [ (3.49)] τx = 2ρ23 and
τz = 2ρ22 + 2ρ33 − 1 (τx = 2ρ14 and τz = 1 − 2ρ22 − 2ρ33). We assume below
the validity of a necessary condition for the BI violation, det(T) < 0 (Sect. 3.1),
which implies τx �= 0 and τz > 0. The latter inequality is equivalent to the conditions
ρ22 + ρ33 > 1/2 and ρ22 + ρ33 < 1/2 for the cases (3.48) and (3.49), respec-
tively. Without a loss of generality, we focus on the states with τx > 0 in Eqs. (3.48)
and (3.49).4 Thus we require that in Eqs. (3.48)and (3.49)

4 One can make ρ23 and ρ14 nonnegative in Eq. (B.5) by a local transformation. For instance, the π rotation
of one of the qubits around the z axis changes the signs of ρ23 and ρ14, whereas the π/2z-rotations of the
qubits change the sign of ρ14.
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τx > 0, τz > 0. (3.50)

In both cases (3.48) and (3.49) U = diag(τ 2
x , τ 2

x , τ 2
z ), yielding, in view of Eq. (3.11),

S+ = 2 max

{√
2τx ,

√
τ 2

x + τ 2
z

}
, (3.51)

i.e., S+ = 2
√

2τx for τx ≥ τz and S+ = 2
√

τ 2
x + τ 2

z for τx ≤ τz . However, the optimal
detector configurations are different in the cases (3.48) and (3.49), as follows.

3.5.1 Case (3.48)

In the case (3.48) R = diag(−1,−1, 1). There are three possibilities, as follows.
a. If τx ≥ τz, u1 = u2 = τ 2

x , and one can choose as c1 and c2 any two unit perpen-
dicular radius-vectors in the xy plane (see Sect. 3.4.3). We choose c1 = x and c2 = y,
where x, y, and z denote the unit vectors along the corresponding axes. Now e1 (e2)
coincides with c1 (c2), yielding δ = ν = φ, where φ is the polar coordinate in the
horizontal (xy) plane. The optimal configurations lie in the horizontal plane, being
given by

(φa, φ′
a, φb, φ

′
b) = ±(0, π/2, π/4, 3π/4) + C, (3.52)

where C is an arbitrary real number. Equation (3.52) follows from Eq. (3.47), where we
introduced the double sign to take into account both signs in Eq. (3.28) [cf. Eq. (3.29)].
Hence, Eq. (3.52) describes all optimal configurations for τx > τz .

b. If τx ≤ τz , we choose

u1 = τ 2
z , u2 = u3 = τ 2

x . (3.53)

Then c1 = −e1 = z. Since u2 = u3 (see Sect. 3.4.2), we choose c2 = e2 =
x cos φ0 + y sin φ0, where φ0 is an arbitrary number which equals the polar angle of
c2 in the xy plane. The above expressions for c1, c2, e1, and e2 imply that the polar
coordinates δ and ν satisfy the relation

ν = π − δ = θ. (3.54)

Here θ is the polar angle in a vertical plane (a plane passing through the z axis), which
makes the angle φ0 with the x axis; θ is counted from the z axis in the direction
where θ = π/2 corresponds to c2. The polar coordinates of the optimal detector axes
θa, θ ′

a, θb, and θ ′
b as functions of the parameter η can be obtained from Eqs. (3.29),

(3.32), (3.35), (3.53), and (3.54), namely,

θa(η) = θ ′
a(η+π/2), θ ′

a(η) = π ∓
[

arctan

(
τx

τz
tan η

)
+nint

( η

π

)
π

]
, (3.55)

θb(η) = ±[η+ζb(η)/2], θ ′
b(η) = ±[η − ζb(η)/2], (3.56)
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where, in view of Eq. (3.24),

ζb(η) = arccos

(
τ 2

z − τ 2
x

τ 2
z + τ 2

x
cos 2η

)

. (3.57)

In Eqs. (3.55) and (3.56) the upper (or lower) signs should be used simultaneously;
they correspond to the upper (lower) signs in Eq. (3.28).

Thus, now optimal configurations lie in any vertical plane; they are characterized
by two continuous parameters, η and φ0, in agreement with Sect. 3.4.2. As discussed
above, the optimal configurations are horizontal for τx > τz and vertical for τx < τz .

c. For τx = τz we have the completely degenerate case (Sect. 3.4.1) with R =
diag(−1,−1, 1) describing the rotation by π around the z axis. This rotation of qubit
a yields |Ψ−〉 → |Ψ+〉. Hence, in this case the optimal configurations coincide with
those for the Bell state |Ψ+〉 (2.14) (see Sect. 3.4.1). These configurations [32] include,
in particular, the horizontal configurations given by Eq. (3.52) and the vertical config-
urations which follow from Eqs. (3.47) and (3.54) and can be cast as

(θa, θ ′
a) = ±(0, π/2) − C, (θb, θ

′
b) = ±(3π/4, π/4) + C. (3.58)

Here we introduced the double sign as in Eq. (3.52).

3.5.2 Case (3.49)

In the case (3.49) R = diag(−1, 1,−1). There are three possibilities, as follows.
a. If τx ≥ τz, u1 = u2 = τ 2

x , and we can choose c1 = e1 = x and c2 = −e2 = y,
yielding ν = −δ = φ. In this case the optimal configurations lie in the horizontal
plane and are given by Eq. (3.52) with φa → −φa and φ′

a → −φ′
a , i.e., by

(φa, φ′
a) = ±(0,−π/2) − C, (φb, φ

′
b) = ±(π/4, 3π/4) + C. (3.59)

b. For τx ≤ τz Eq. (3.53) holds. As above, c1 = e1 = z and c2 = x cos φ0+y sin φ0,
but e2 = x cos φ0 −y sin φ0. Now the optimal detector axes for qubits a and b lie gen-
erally in different vertical planes characterized, respectively, by the polar coordinates
φa and φb (in the xy plane) of c2 and e2, respectively, such that

φb = −φa = φ0. (3.60)

For a given value of φ0, the optimal configurations are given by Eqs. (3.32), (3.35),
(3.29), (3.53), and (3.57).

In particular, the detectors are coplanar in two cases. For φ0 = 0 and π the optimal
configurations lie in the xz plane, the polar coordinates satisfying

ν = δ = θ, (3.61)

whereas for φ0 = π/2 and 3π/2 they lie in the yz plane and
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ν = −δ = θ. (3.62)

In Eqs. (3.61) and (3.62) θ is counted from z in the direction where θ = π/2 corre-
sponds to x and y, respectively. In the cases (3.61) and (3.62), the optimal configura-
tions for qubit a are given, respectively, by the equations [cf. Eqs. (3.55)]

θa(η) = θ ′
a(η + π/2), θ ′

a(η) = ±
[

arctan

(
τx

τz
tan η

)
+ nint

( η

π

)
π

]
(3.63)

and

θa(η) = θ ′
a(η + π/2), θ ′

a(η) = ∓
[

arctan

(
τx

τz
tan η

)
+ nint

( η

π

)
π

]
, (3.64)

whereas the optimal configurations for qubit b are given by Eqs. (3.56) for both
cases (3.61) and (3.62).

c. In the completely degenerate case τx = τz the optimal configurations coincide
with those for the maximally entangled state characterized by R = diag(−1, 1,−1)

(see Sect. 3.4.1). This state, obtained from the singlet by the π rotation of qubit a
around the y axis, is |Φ+〉 [Eq. (2.13)]. In particular, the horizontal optimal configu-
rations for |Φ+〉 are given by Eq. (3.59), whereas the vertical optimal configurations
are given by Eqs. (3.47) and (3.29),

(δa, δ′
a, νb, ν

′
b) = ±(0, π/2, π/4, 3π/4) + C. (3.65)

In the planar cases Eq. (3.65) simplifies according to Eqs. (3.61) and (3.62).
Note that Eq. (3.49) follows from Eq. (3.48) under the π rotation of qubit a around

the x axis. As a result, the above optimal configurations for the case (3.49) can be
obtained from those discussed in Sect. 3.5.1 by the π rotation of the detector axes for
qubit a around the x axis.

4 Effects of decoherence

4.1 Description of decoherence

To investigate effects of decoherence on the BI violation, we assume the following
simplified picture of the experiment: after a fast preparation of the initial state ρ0,
the qubits undergo decoherence during time t resulting in the state ρ, then a fast
measurement follows. Now in Eq. (2.4)

ρ = L (ρ0), (4.1)

where the superoperator (linear map) L describes decoherence of the qubit pair. We
assume independent (local) decoherence of each qubit and the absence of any other
evolution, so that
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L = La ⊗ Lb. (4.2)

We consider Markovian decoherence which involves energy relaxation at the zero
temperature (i.e., spontaneous transitions |1〉 → |0〉) and pure dephasing. The assump-
tion of the zero temperature, T = 0, is applicable to low-temperature systems (such as
superconducting phase qubits), with kB T � Eq , where kB is the Boltzmann constant
and Eq is the energy separation of the qubit. Note, however, that the BI violation
conditions were found in [33] to depend very weakly on the temperature. Under the
above assumptions, the elements of the density matrix ρk(t) of qubit k (k = a, b)

obey the Bloch equations [19]

ρ̇k
11(t) = −ρ̇k

00(t) = −ρk
11(t)/T k

1 ,

ρ̇k
10(t) = −ρk

10(t)/T k
2 , ρ̇k

01(t) = −ρk
01(t)/T k

2 . (4.3)

Here T k
1 and T k

2 are the decoherence times, obeying T k
2 ≤ 2T k

1 , where the inequal-
ity occurs in the presence of pure dephasing which proceeds with the rate �k

d =
1/T k

2 − 1/(2T k
1 ). In the derivation of Eqs. (4.3) it is usually assumed that Eq/h̄ �

1/T k
1 , 1/T k

2 . This condition is satisfied in many systems. In particular, it holds for
superconducting phase qubits.

Equations (4.3) are usually used to describe environmentally induced (or extrin-
sic) decoherence, which can be contrasted with the so called intrinsic decoherence,
introduced via a modification of the Schrödinger equation in order to solve some fun-
damental difficulties in our understanding of quantum mechanics [40]. Note, however,
that the model in [40] in the first order in the expansion parameter, as well as other
models of intrinsic decoherence (see references in [40]), are formally equivalent to
proper dephasing. Hence, the present paper describes effects of both extrinsic and
intrinsic decoherence.

Equations (4.3) can be easily solved, providing the linear map ρk(t) = Lk(ρk(0)).
The superoperator Lk can be written in terms of the Kraus operators (the operator-
product form [42]),

Lk(ρk(0)) =
3∑

i=1

K k
i ρk(0)(K k

i )†, (4.4)

where the Kraus operators are the special case for T = 0 of the Kraus operators
obtained in [33], namely1

K k
1 =

(
0

√
1 − γk

0 0

)
, K k

2 =
(

μk 0
0

√
γk

)
,

K k
3 =

(√
1 − μ2

k 0

0 0

)

. (4.5)
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Here

γk = e−t/T k
1 , μk = λk/

√
γk = e−�k

d t , λk = e−t/T k
2 . (4.6)

The Kraus operators (4.5) take into account energy relaxation and pure dephasing
simultaneously, extending thus the previously known Kraus operators [42] which
describe either effect separately.

Combining Eqs. (4.1), (4.2), and (4.4) yields the expression for the two-qubit super-
operator

ρ = L (ρ0) =
3∑

i, j=1

Ki jρ0 K †
i j , Ki j = K a

i ⊗ K b
j (4.7)

through the nine two-qubit Kraus operators Ki j . As a result of decoherence, the initial
two-qubit density matrix ρ0 = {ρ0

i j } evolves after time t to

ρ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ0
11 + γ ′

bρ0
22 + γ ′

aρ0
33 + γ ′

aγ ′
bρ0

44 λb(ρ0
12 + γ ′

aρ0
34) λa(ρ0

13 + γ ′
bρ0

24) λaλbρ0
14

λb(ρ0
21 + γ ′

aρ0
43) γb(ρ0

22 + γ ′
aρ0

44) λaλbρ0
23 λaγbρ0

24

λa(ρ0
31 + γ ′

bρ0
42) λaλbρ0

32 γa(ρ0
33 + γ ′

bρ0
44) γaλbρ0

34

λaλbρ0
41 λaγbρ0

42 γaλbρ0
43 γaγbρ0

44

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.8)

where γ ′
a(b) = 1 − γa(b) and the values i, j = 1, 2, 3, 4 of the subscripts of ρi j

correspond to the basis

{|00〉, |01〉, |10〉, |11〉}. (4.9)

Decoherence generally breaks the invariance of S with respect to local transfor-
mations of the initial state ρ0 and the corresponding rotations of the detectors [cf.
Eq. (2.7)]. As a result, locally equivalent initial states may yield different maximal
violations of the BI. However, in the present model of decoherence S is still invariant
under transformations of ρ0 due to local rotations of the qubits around the z axis and
the corresponding rotations of the detectors.

4.2 Bell operator modified by decoherence

It is useful to recast Eq. (2.4), S = Tr (Bρ), in the form

S = Tr (Bdρ0) (4.10)

with the modified Bell operator Bd = (L ∗
a ⊗ L ∗

b )(B) or

Bd = Ad Bd − Ad B ′
d + A′

d Bd + A′
d B ′

d . (4.11)
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Here L ∗
k (k = a, b) is the map adjoint (dual) to Lk that moves observables of the

quantum system [1] and

Ad = L ∗
a (A) =

3∑

i=1

(K a
i )† AK a

i , (4.12)

etc. By combining Eqs. (2.6), (4.5), and (4.12) we obtain that

Ad = (1 − γa)az + qa · σa, qa = (λaax , λaay, γaaz), (4.13)

where λk is defined in Eq. (4.6). Expressions similar to Eq. (4.13) hold also for A′
d , Bd ,

and B ′
d . The maximal violation of the BI occurs always for a pure initial state (equal

to an eigenvector of the Hermitian operator Bd corresponding to the maximal eigen-
value).

We performed numerical calculations of the maximum Smax of S over all the states
and observation directions as a function of the decoherence parameters with the help
of the Mathematica routine NMaximize. We used two methods.

The first method is based on the fact that Smax is equal to the maximum of the
greatest eigenvalue of Bd over the directions a, a′, b, and b′, the optimal state being
given by the corresponding eigenvector. The detector axes are determined by eight
independent parameters, but the number of the varied parameters can be reduced to
five, using the following facts. (i) The set of points corresponding to any unit vector in
all optimal configurations is a great circle on the Bloch sphere (see Eq. (3.28); Fig. 1).
Since all great circles intersect each other, one of the detectors can be fixed in any
great circle; in our calculations, we place a in the xy plane. (ii) The invariance of S
with respect to rotations of the qubits around the z axis (Sect. 4.1) allows us to set
a = (1, 0, 0) and, say, by = 0.

The second method, based on the analytical approach of Sect. 3, is discussed in
Sect. 4.3.

4.3 States maximizing the BI violation

It was shown in Sect. 2.3 that real states (2.23),

|Ψ 〉 = c1|00〉 + c2|01〉 + c3|10〉 + c4|11〉, (4.14)

provide maximal BI violations for given probabilities c2
i . More generally, our numer-

ical calculations by the method of Sect. 4.2 show that even in the presence of deco-
herence, Smax can be always obtained for an initial state of the form (4.14). The real
states (4.14) form a subset, depending on 3 independent parameters, of the set of pure
two-qubit states, depending on 6 independent parameters.

The most general state equivalent to Eq. (4.14) up to local qubit z-rotations has the
form (with the accuracy to an overall phase factor)

|Ψ (αa, αb)〉 = c1|00〉 + c2eiαb |01〉 + c3eiαa |10〉 + c4ei(αa+αb)|11〉. (4.15)
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All optimal detector configurations for this state are obtained from those for the
state (4.14) by rotating the detectors for qubits a and b around the z axis by the
angles αa and αb, respectively [cf. Eqs. (2.7)]. As mentioned in Sect. 2.3, the class of
states (4.15) includes all maximally entangled states.

It is convenient for numerical calculations to express the coefficients ci through 3
parameters κ1, κ2, and κ3 by

(c1, c2, c3, c4) = (sin κ1, cos κ1 sin κ2, cos κ1 cos κ2 sin κ3, cos κ1 cos κ2 cos κ3).

(4.16)

For the state (4.14) we can obtain an analytical solution for the maximal BI viola-
tion and optimal detector configurations in the presence of decoherence, as follows.
Now in Eq. (4.8) the elements ρ0

i j = ci c j are real and we obtain from Eq. (3.2) the
matrix

T =
⎛

⎝
2λaλb(ρ0

23 + ρ0
14) 0 2λa [ρ0

13 + (1 − 2γb)ρ0
24]

0 2λaλb(ρ0
23 − ρ0

14) 0
2λb[ρ0

12 + (1 − 2γa)ρ0
34] 0 1 − 2γbρ0

22 − 2γaρ0
33 − 2dρ0

44

⎞

⎠, (4.17)

where d = γa + γb − 2γaγb (note that 0 ≤ d ≤ 1). In the matrix T (4.17) only the
xz and zx off-diagonal elements are nonvanishing. This allows us to obtain an analyt-
ical solution for S+ and the optimal configurations, using the formalism of Sect. 3, as
follows. From Eq. (4.17) we obtain that the nonzero elements of U = TT T equal

Uxx = 4λ2
b{λ2

a(ρ0
14 + ρ0

23)
2 + [ρ0

12 + (1 − 2γa)ρ0
34]2},

Uyy = 4λ2
aλ2

b(ρ
0
14 − ρ0

23)
2,

Uzz = 4λ2
a[ρ0

13 + (1 − 2γb)ρ
0
24]2 + g2,

Uxz = Uzx = 4λ2
aλb(ρ

0
14 + ρ0

23)[ρ0
13 + (1 − 2γb)ρ

0
24]

+ 2λb[ρ0
12 + (1 − 2γa)ρ0

34]g, (4.18)

where g = 1 − 2γbρ
0
22 − 2γaρ0

33 − 2dρ0
44.

When Uxz = Uzx �= 0, it is easy to see that the eigenvalues of U are

uy = Uyy, u± = Uxx + Uzz

2
±

√
(Uxx − Uzz)2

4
+ U2

xz, (4.19)

the corresponding eigenvectors being

cy = y, c± = [(u± − Uxx )
2 + U2

xz]−1/2(Uxz, 0, u± − Uxx ). (4.20)

Thus, we obtain that

u1 = u+, u2 = max{u−, Uyy}, (4.21)
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which implies two cases,

c1 = c+, c2 = c− if u2 = u− > Uyy, (4.22)

c1 = c+, c2 = y if u2 = Uyy > u−. (4.23)

Equations (3.11), (3.18), and (4.17)–(4.23) together with Eqs. (3.22)–(3.24) [or (3.28),
(3.32), and (3.35)] provide S+ and the optimal detector configurations for the
state (4.14).

In particular, in the case (4.22) c1, c2, e1, and e2 are located in the xz plane [see
Eqs. (3.18), (4.17), and (4.20)], i.e., all optimal detector axes lie in the xz plane. In
contrast, in the case (4.23) c1 and e1 are in the xz plane, whereas c2 = y and e2 equals
y or −y, i.e., the optimal detector axes for the two qubits lie in two respective planes
passing through the y axis.

When U is diagonal, i.e., Uxz = Uzx = 0 in Eq. (4.18), the treatment is straight-
forward. In particular, the case, when U and T are diagonal and Uxx = Uyy , was
discussed in Sect. 3.5.

We use the above analytical solution to obtain Smax and the corresponding opti-
mal state, by maximizing S+ numerically over the 3 parameters κ1, κ2, and κ3 in
Eq. (4.16). This procedure is significantly faster than the numerical method described
in Sect. 4.2. Before the discussion of the results of numerical calculations in Sect. 4.5,
we consider important cases which admit simple analytical solutions.

4.4 Analytical solutions for special cases

Here we consider cases allowing for relatively simple analytical solutions.

4.4.1 Horizontal optimal configurations

An especially simple solution is obtained when the optimal observation axes lie in the
xy (horizontal) plane. Then Eqs. (4.11) and (4.13) with az = 0 yield Bd = λaλbB,
and hence S = λaλb S0, where S0 = Tr (Bρ0) is obtained in the absence of deco-
herence (Sect. 2). As a result, the value of S maximized over all states and horizontal
observation directions is

S+ = Sh ≡ 2
√

2λaλb. (4.24)

This value is obtained only for the maximally entangled states which have horizon-
tal optimal detector configurations in the ideal case, as, e.g., the states |Ψ+〉 and |Φ+〉
discussed in Sect. 3.5. All such states are given by the expressions

|Ψ 〉 = (|01〉 + eiα|10〉)/√2, (4.25)

|Φ〉 = (|00〉 + eiα|11〉)/√2. (4.26)

Indeed, taking into account that S is invariant under identical rotations of qubits and
detectors, Eq. (2.7), and that all maximally entangled states are related by a rotation of
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one of the qubits (cf. Sect. 3.4.1), we obtain that all maximally entangled states with
horizontal optimal configurations result from the state |Ψ+〉 (or |Φ+〉) on applying to
one of the qubits an arbitrary rotation around the z axis and/or a π rotation around the
x axis, since only such rotations do not take the detector axes out of the horizontal
plane. All the resulting states are given by Eqs. (4.25) and (4.26).

The states (4.25) and (4.26) are special cases of the states (4.27) and (4.28), which
are discussed in detail in Sect. 4.4.2. In particular, in Sect. 4.4.2 the validity conditions
of Eq. (4.24) are obtained.

4.4.2 Even and odd states

It is of interest to consider maximal violations of the BI for the classes of general
complex “odd” and “even” states, respectively (0 ≤ α < 2π, 0 < β < π/2),

|Ψ 〉 = sin β|01〉 + eiα cos β|10〉, (4.27)

|Φ〉 = sin β|00〉 + eiα cos β|11〉. (4.28)

In particular, the state (4.27) is directly obtainable in experiments with superconduc-
ting phase qubits [39,51].

It is sufficient to consider the general positive odd and even states, which are special
cases of Eq. (4.14),

|Ψ 〉 = sin β|01〉 + cos β|10〉 (0 < β < π/2), (4.29)

|Φ〉 = sin β|00〉 + cos β|11〉 (0 < β < π/2). (4.30)

Indeed, the states (4.27) and (4.28) result from Eqs. (4.29) and (4.30), respectively,
under the rotation of qubit a around the z axis by the angle α. Hence, the results for
S+ obtained in the present paper for the odd and even states (4.29) and (4.30) hold,
respectively, also for the states (4.27) and (4.28) with the same β, the correspond-
ing optimal configurations being modified by the rotation of the detectors for qubit a
around the z axis by α [cf. the remark after Eq. (4.15)].

For the general (positive) odd and even states (4.29) and (4.30), respectively,
Eq. (4.17) yields

T = diag(λaλb sin 2β, λaλb sin 2β, 1 − γ+ − γ− cos 2β), (4.31)

T = diag(λaλb sin 2β,−λaλb sin 2β, 1 − d − d cos 2β), (4.32)

where γ± = γa ± γb. The discussion in Sect. 3.5) applies to the odd and even states,
since Eqs. (4.31) and (4.32) have the form of Eqs. (3.48) and (3.49), respectively, with

τx = λaλb sin 2β, (4.33)

whereas for the general odd states

τz = γ+ + γ− cos 2β − 1 (4.34)
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and for the general even states

τz = 1 − d − d cos 2β. (4.35)

Now only positive values of τz are of interest for the BI violation [see Eq. (3.50)].
For both states we obtain,5 in view of Eq. (3.51),

S+ = 2 max

{√
2λaλb sin 2β,

√
λ2

aλ2
b sin2 2β + τ 2

z

}
. (4.36)

Correspondingly, the optimal configurations for the general odd and even states (with
τz > 0) are given in Sects. 3.5.1 and 3.5.2, respectively. These configurations lie in
the horizontal (a vertical) plane if τz is less (greater) than λaλb sin 2β.

For comparison, in the absence of decoherence Eqs. (4.33)–(4.35) become

τx = sin 2β, τz = 1, (4.37)

and hence Eq. (4.36) yields [23,43]

S+ = 2
√

1 + sin2 2β. (4.38)

Since now τx ≤ τz , the optimal detector configurations for the qubits lie in ver-
tical planes, as described in points b. in Sects. 3.5.1 and 3.5.2. For β = π/4 the
states (4.29) and (4.30) are maximally entangled, and the BI violation is maximal,
S+ = Smax = 2

√
2; then optimal configurations lie both in vertical and horizontal

planes [32] (points c. in Sects. 3.5.1 and 3.5.2).
In contrast to the ideal case, in the presence of decoherence Smax is not necessarily

obtained for a maximally entangled state. It is still of interest to consider S+ for the
maximally entangled odd and even states (β = π/4), i.e., |Ψ+〉 and |Φ+〉, respectively.
For |Ψ+〉 and |Φ+〉 Eq. (4.36) with β = π/4 becomes, respectively,

S+ = SΨ+ = 2[λ2
aλ2

b + max{λ2
aλ2

b, (γ+ − 1)2}]1/2, (4.39)

S+ = SΦ+ = 2[λ2
aλ2

b + max{λ2
aλ2

b, (1 − d)2}]1/2. (4.40)

When the first term in the braces in Eqs. (4.39) and (4.40) is greater than the sec-
ond term, Eqs. (4.39) and (4.40) reduce to Eq. (4.24). One can show that generally
1 − d ≥ |γ+ − 1|, the equality here being for γa = γb equal to 1 or 0. This yields
that SΦ+ ≥ SΨ+ when the second term in the braces in Eqs. (4.39) and (4.40) is greater
than the first term. Hence, in the presence of decoherence, the BI violation for |Φ+〉 is
generally greater than for |Ψ+〉. This means that the BI violation duration τB , defined
by S+(t = τB) = 2, is generally greater for |Φ+〉 than for |Ψ+〉.

5 For the general odd state, Eq. (4.36) is a special case for the zero temperature of the result in [33].
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Consider now the maximal BI violations for the classes of the general even and
odd states. To this end, S+ in Eq. (4.36) should be maximized with respect to β. This
yields for the optimal odd state (4.29)

S+ = 2λaλb[1 + max{1, (γ+ − 1)2/(λ2
aλ2

b − γ 2−)}]1/2 if λ2
aλ2

b > d1, (4.41a)

S+ = 2 max{√2λaλb, d2} if λ2
aλ2

b ≤ d1, (4.41b)

where d1 = γ 2− +|γ−|(γ+ −1) ≤ 1 and d2 = |γ+ +|γ−|−1| ≤ 1, and for the optimal
even state (4.30)

S+ = 2λaλb

[

1 + max

{

1,
(1 − d)2

λ2
aλ2

b − d2

}]1/2

if λ2
aλ2

b > d, (4.42a)

S+ = 2 if λ2
aλ2

b ≤ d. (4.42b)

Equations (4.41a) and (4.42a), in contrast to Eqs. (4.41b) and (4.42b), can describe
a violation of the BI. When the first term in the braces in Eq. (4.41a) or (4.42a) is
greater than the second term, the case (4.24) is realized and the corresponding state is
maximally entangled (β = π/4). In the opposite case, the optimal odd and even states
generally are not maximally entangled, being characterized by the following values
of β, respectively,

β = arccos[γ−(γ+ − 1)/(λ2
aλ2

b − γ 2−)]/2, (4.43)

β = π/2 − arccos[(d − d2)/(λ2
aλ2

b − d2)]/2. (4.44)

Note that Eq. (4.41b), with the second term greater than the first term, and Eq. (4.42b)
are obtained for a nonentangled initial state: |10〉 if T a

1 < T b
1 or |10〉 if T a

1 > T b
1 for

Eq. (4.41b) and |00〉 for Eq. (4.42b).
Numerical calculations show that the maximal BI violation in the optimal even state

is greater than or equal to that obtained in the optimal odd state. The differences in S+
for the optimal even and odd states can appear only in the case when the detectors are
in a vertical plane. In this case the optimal states are generally nonmaximally entan-
gled. The reason for this is as follows. While for horizontal detector configurations
S = λaλb S0 depends only on the dephasing parameters λa,b (see Sect. 4.4.1), S is
sensitive to energy relaxation when detectors axes do not lie in the horizontal plane.
As a result, for instance, in the optimal even state the amplitude of |11〉 is less than the
amplitude of |00〉, since this bias reduces spontaneous decay and hence diminishes
the detrimental effect of energy relaxation on the BI violation. By the same reason,
in the optimal odd state the amplitude of the excited qubit with a smaller γk (shorter
T k

1 ) is reduced. Note, however, a difference between optimal even and odd states.
For example, in the case γa = γb the optimal odd state, in contrast to the optimal
even state, is maximally entangled, since no relaxation reduction can be achieved in a
nonmaximally entangled odd state.
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4.5 Numerical results and discussion

4.5.1 Pure dephasing

First, let us discuss the case of the absence of energy relaxation, γa = γb = 1, when
decoherence occurs due to pure dephasing. Our calculations show that now both the
odd and even Bell states, |Ψ+〉 and |Φ+〉, are optimal states providing Smax. In this
case γ+ = 2, γ− = d = d1 = 0, and both Eqs. (4.41) and (4.42) yield [10,47,54]

Smax = 2
√

1 + λ2
aλ2

b. (4.45)

Thus, now the BI can be violated for any level of decoherence, and hence there is no
Bell nonlocality sudden death now. The value (4.45) is achieved for the observation
axes lying in a vertical plane [47]. The detector orientations for the odd and even
Bell states are described in points b. in Sects. 3.5.1 and 3.5.2, respectively, taking into
account that now τx = λaλb and τz = 1 for both states. Note that the states (4.27)
and (4.28) are also optimal. However, not all maximally entangled states are optimal
now [10,54], since S is generally non-invariant with respect to local transformations
(see the last paragraph in Sect. 4.1).

4.5.2 Identical decoherence of the qubits

Next, consider the case of identical decoherence for the qubits of a pair. Now

γa = γb = γ, λa = λb = λ, d = 2γ (1 − γ ), γ+ = 2γ, (4.46)

γ− = d1 = 0, and μa = μb = μ. The numerical calculations show that in this case
the maximal S can be always obtained with the even state (4.30), i.e., Smax is given
by Eq. (4.42) with the account of Eq. (4.46),

Smax = 2λ2
[

1 + max

{
1,

(1 − d)2

λ4 − d2

}]1/2

if λ4 > d, (4.47a)

Smax = 2 if λ4 ≤ d. (4.47b)

Now the optimal odd state is the Bell state |Ψ+〉, so that Eq. (4.41) reduces to Eq. (4.39),
which becomes now

S+ = SΨ+ = 2
√

λ4 + max{λ4, (2γ − 1)2}. (4.48)

Figure 2 shows the dependence of S+ on γ with μ = 1 (no pure dephasing)
and μ = 0.9 for the even state (when S+ = Smax) and the odd state |Ψ+〉. Note
that the straight segments in Fig. 2 (in particular, both plots for the odd state given
by dashed lines) correspond to the case of horizontal optimal configurations where
S+ = Sh = 2

√
2λ2 [Eq. (4.24)]. Equation (4.47a) and Fig. 2 imply that the vio-

lation of the BI is possible only for γ > 2/3, this limit being approached for the
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Fig. 2 S+ versus the relaxation parameter γ for μ = 1 (no pure dephasing) and μ = 0.9, where μ = λ/
√

γ .
Solid lines S+ = Smax (4.47) for the even state (4.30), dashed lines Eq. (4.48) for the odd Bell state
|Ψ+〉 (2.14)

Fig. 3 S+ versus the pure dephasing parameter μ for γ = 1 (no decay) and γ = 0.9. Solid lines S+ =
Smax (4.47) with the even state (4.30), dashed lines Eq. (4.48) for the odd state |Ψ+〉 (2.14)

vanishing pure dephasing (μ = 1). As a result, for a given value of T1, the maximal
BI violation duration τB is obtained for the even state when μ = 1, being given by
γ = e−τB/T1 = 2/3 or τB = T1 ln 1.5 ≈ 0.405T1. For comparison, we mention that
in the case μ = 1 the odd state yields S+ = Sh = 2

√
2γ , so that the BI can be violated

only for γ > 1/
√

2 ≈ 0.707. This corresponds to the longest τB for the odd state with
a given T1 equal to [31,33] τB = T1 ln 2/2 ≈ 0.347T1. Note that, in contrast to [31],
we obtain different values of τB for the even and odd states.

Figure 3 shows the dependence of S+ on the pure dephasing parameter μ = λ/
√

γ .
In the absence of energy relaxation (γ = 1) the plots for the odd and even states coin-
cide and are given by Eq. (4.45), S+ = Smax = √

1 + μ4 = √
1 + λ4. In this case

violations of the BI can be achieved for any degree of pure dephasing.
Figure 4 is a contour plot of S+ as a function of γ and μ. The boundary of the region

of the BI violation is shown by the solid line with S+ = Smax = 2. This boundary is
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Fig. 4 Contour plot of the maximum S+ of S versus γ and μ. Solid lines the even state (4.30) (S+ = Smax),
dashed lines the odd state |Ψ+〉

obtained when the second term dominates in the braces in Eq. (4.47a). The kinks on
the curves in Figs. 2, 3, and 4 correspond to a change of the dominating term in the
braces in Eqs. (4.47a) and (4.48). Figures 2, 3, and 4 show that S+ for the odd state is
generally lower than Smax, which results in more stringent conditions on the decoher-
ence parameters required for the BI violation than for the even state. The difference
is significant when S+ − 2 is small. However, for S+ ≥ 2.4 there is practically no
difference in the values of S+ for the odd and even states.

4.5.3 No decoherence in one qubit

Consider the extreme case of nonequal decoherence of the qubits, i.e., the case when
decoherence is absent in one of the qubits, e.g., in qubit b. Now γb = λb = 1, γ+ =
1+γa, d = d1 = −γ− = 1−γa, d2 = 1, and hence Eqs. (4.41) and (4.42) coincide,
i.e., both odd and even states give the same maximal BI violation S+. This S+ is
maximally possible, S+ = Smax, as shown by our numerical calculations, so that

Smax = 2λa

√

max

{
2,

λ2
a + 2γa − 1

λ2
a − (1 − γa)2

}
if λ2

a > 1 − γa, (4.49a)

Smax = 2 if λ2
a ≤ 1 − γa . (4.49b)

The optimal value of β corresponding to Eq. (4.49a) follows from Eq. (4.43) or (4.44)
to be

β = π/2 − arccos{(γa − γ 2
a )/[λ2

a − (1 − γa)2]}/2. (4.50)

Since qubit b is not affected by decoherence, S+ is invariant with respect to arbitrary
rotations of qubit b. Therefore, all states obtained from the optimal odd (or even) state
by rotations of qubit b are optimal. [This explains why the states (4.29) and (4.30)
yield the same results: these states are related by the unitary transformation σ b

x of
the qubit b.] Moreover, since maximally entangled states transform to each other by

123



Optimal conditions for Bell-inequality violation 299
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Fig. 5 Contour plot of the maximum S+ of S versus γa and μa . Solid lines S+ = Smax (4.49) for the even
state (4.30) and the odd state (4.29), dashed lines Eq. (4.51) for a maximally entangled state

a rotation of one qubit [56], S+ is the same for all maximally entangled states [cf.
Eq. (4.39) or (4.40)], being given by

S+ =
{

2
√

2λa, T a
1 ≤ T a

2 ,

2
√

λ2
a + γ 2

a , T a
1 ≥ T a

2 .
(4.51)

Figure 5 shows the contour plot of S+ versus γa and μa for the even and odd
states which produce S+ = Smax (the solid lines) and for any maximally entangled
state (the dashed lines). Equation (4.49) and Fig. 5 imply that now the BI viola-
tion is possible for γa > 0.5, this limit being approached in the absence of proper
dephasing (μa = 1). Hence, in particular, for μa = 1 the BI violation duration
maximized over all states is given by τB = T1 ln 2 ≈ 0.693T1. Equations (4.49a)
and (4.51) imply that the BI violation for maximally entangled states is maximal
(S+ = Smax) when there is no energy relaxation (γa = 1) or when the first term in
the braces in Eq. (4.49a) is dominating (see Fig. 5); the latter occurs for a sufficiently
weak pure dephasing, μ > (2

√
2 − 2)1/2 ≈ 0.910, when γ2 < γa < γ1 where

γ1,2 = [2 + μ2 ± √
(2 + μ2)2 − 8]/4. Note that maximally entangled states produce

practically the same BI violation as the optimal states for S+ ≥ 2.4.

4.5.4 General case

In the general case when the decoherence parameters for the two qubits are differ-
ent, the maximum of the BI violation can be obtained in a state of the form (4.14),
as discussed in Sect. 4.3. We performed several hundred calculations of S+ for the
states (4.14) and (4.30) with random values of the four parameters γk and μk (k = a, b)

from the interval [0.8, 1]. In our calculations the maximal violation of the BI inequal-
ity resulted from the even state (4.30) in about 70% of the cases. In the cases, where
the even state did not yield the maximal S, there were various optimal states, which
included both general maximally entangled states (2.16) and nonmaximally entangled
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states. However, the difference between Smax and S+ due to the optimal even state
was less than 0.1.

Thus, there can be several approaches to obtain Smax and the optimal observation
conditions for given decoherence parameters, In the decreasing order of the degree of
complexity and accuracy, such approaches are as follows: (a) One can use the exact
numerical approach of Sect. 4.3, which provides Smax, the optimal state, and the opti-
mal detector configurations. (b) A simpler approach is to use the optimal even state
[Eqs. (4.30) and (4.44)], which provides rather accurate, if not exact, result (4.42),
as discussed above. (c) The analytical formulas (4.41) and (4.43) for the optimal
odd state can be used, if, e.g., in the experiment the odd state is realized more conve-
niently than other entangled states, as is the case for experiments with superconducting
phase qubits. (d) An even simpler approach is to use the Bell state |Ψ+〉 or |Φ+〉 [see
Eqs. (4.39) and (4.40)]. However, if one requires a significant degree of the BI vio-
lation, say, S+ ≥ 2.4 (which may be needed in the presence of other experimental
errors), any of the approaches (b)–(d) yields values of S+ which are very close to Smax
(see Figs. 4, 5).

5 Decoherence and measurement errors

In the previous sections we assumed that measurements are ideal. Here we take into
account the possibility that measurements of the qubits are performed with local (inde-
pendent) errors. Effects of local errors were studied elsewhere [20,32]. In this section
we discuss combined effects of local errors and local decoherence. The present case
is rather involved, since it includes complications due to both decoherence and errors.
Here we discuss only the general approach to the problem, whereas a detailed analysis
is out of the scope of the present paper (see also [32]).

5.1 Bell inequality in the presence of measurement errors

As in [32], we describe measurement errors by the fidelity matrix {Fk
im}, where Fk

im
is the probability to find qubit k in state |i〉 when it is actually in state |m〉. Since
Fk

0m + Fk
1m = 1, there are two independent error parameters per qubit, e.g., Fk

0 = Fk
00

and Fk
1 = Fk

11, the measurement fidelities for the states |0〉 and |1〉, respectively. As
shown in [32], in the presence of local measurement errors the BI has the form (2.2),
where now

S = Tr (B̃ρ) (5.1)

and the error modified Bell operator is given by

B̃ = Ã B̃ − Ã B̃ ′ + Ã′ B̃ + Ã′ B̃ ′. (5.2)

Here, e.g.,

Ã = ξa− + ξa+a · σa, B̃ = ξb− + ξb+b · σb, (5.3)
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where

ξ k+ = Fk
0 + Fk

1 − 1, ξ k− = Fk
1 − Fk

0 , (5.4)

Ã′ and B̃ ′ following from Ã and B̃ in Eq. (5.3) on the replacement of a and b by a′
and b′, respectively.

Consider properties of S which can be helpful in calculations [32]. The property
(i) of S (Sect. 2.1) holds also in the presence of errors. However, the properties (ii)
and (iii) generally do not hold now. As a result, in the case with errors, the maximal
and minimal values of S for a given state are generally not equal by the magnitude,
S+ �= |S−|, so that the maximum BI violation for a given state is determined by
max{S+, |S−|}. Note, however, the relations which follow from Eqs. (5.1)–(5.4),

S → −S if a → −a, a′ → −a′, Fa
0 ↔ Fa

1 ; (5.5a)

S → −S if b → −b, b′ → −b′, Fb
0 ↔ Fb

1 . (5.5b)

Equations (5.5) imply that S+ = |S−| if the two measurement fidelities are equal, at
least, for one qubit:

Fa
0 = Fa

1 or Fb
0 = Fb

1 . (5.6)

5.2 Modified Bell operator for decoherence and errors

In the presence of decoherence and errors one should substitute Eq. (4.1) into Eq. (5.1).
It is useful to recast the resulting expression as

S = Tr (B̂ρ0) (5.7)

where the Bell operator modified by errors and decoherence is

B̂ = (L ∗
a ⊗ L ∗

b )(B̃) = Â B̂ − Â B̂ ′ + Â′ B̂ + Â′ B̂ ′. (5.8)

It is straightforward to show that [cf. Eq. (4.13)]

Â = ξa− + ξa+(1 − γa)az + ξa+qa · σa, (5.9)

whereas the operators Â′, B̂, and B̂ ′ are given by Eq. (5.9), where a is replaced by
a′, b, and b′, respectively.

In the special case when for each qubit the measurement fidelities for the two states
are equal,

Fa
0 = Fa

1 = Fa, Fb
0 = Fb

1 = Fb, (5.10)
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Equation (5.8) yields B̂ = (2Fa − 1)(2Fb − 1)Bd and hence

S = (2Fa − 1)(2Fb − 1)Sd , (5.11)

where Sd is the value of S obtained in the presence of decoherence but in the absence
of measurement errors. This case can be analyzed, as discussed in Sect. 4.

5.3 Qubit-swap symmetry

In the presence of the errors, the theory of Sect. 3 is not applicable. The reason for
this is that S in Eq. (5.1) depends on ρ not only through the matrix T, as in Eq. (3.3),
but also through the vectors ra and rb in Eq. (3.1). Actually, now there are, in a sense,
much less optimal configurations for a given state than for the case of ideal measure-
ments [32]. Anyhow, there is always, at least, one optimal configuration maximizing
|S|. However, in the case of equal measurement errors for the two qubits,

Fa
0 = Fb

0 , Fa
1 = Fb

1 , (5.12)

there exists an important class of states for which there are, at least, two optimal
configurations. This class consists of symmetric states and the states equivalent to
symmetric states up to local unitary transformations.

We call a state symmetric if it is symmetric with respect to a qubit swap, i.e., it is
not changed under a swap of the qubit labels in Eq. (3.1). In other words, the state is
symmetric if in Eq. (3.1)

TT = T, ra = rb. (5.13)

Taking into account that in the case (5.12) the Bell operator (5.2) is invariant when
simultaneously the qubit labels are swapped and the substitution

(a, a′, b, b′) → (b′, b, a′, a) (5.14)

is made, we obtain that for a symmetric state, S in Eq. (5.1) is invariant under the
substitution (5.14). Thus, in the case of equivalent errors (5.12) and a symmetric state,
there exist, at least, two optimal configurations, these configurations being related by
the substitution (5.14).

Moreover, for any state obtained from a symmetric state by a local transforma-
tion (2.7a) there exist, at least, two optimal configurations. The relation between
two configurations providing the same S, and hence between the optimal configu-
rations, is given by Eq. (5.14), where a, a′, b, and b′ are replaced, respectively, by
RT

a a, RT
a a′, RT

b b, and RT
b b′ [cf. Eq. (2.7b)]; thus, the relation is

(a, a′, b, b′) → (Rab b′, Rab b, RT
aba′, RT

aba), Rab = RaRT
b . (5.15)

An example of a state symmetric with respect to a qubit swap is the even state (4.30).
Indeed, this state has a diagonal T (see Sect. 4.4.2) and ra = rb = −z cos 2β. Any
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pure state can be reduced to the form (4.30) by local rotations of the qubits, since
Eq. (4.30) is the Schmidt decomposition [42] for pure two-qubit states. Thus, for any
pure state there are, at least, two optimal detector configurations providing maximal
BI violations in the presence of equivalent errors.

Generally, mixed states resulting from pure states due to decoherence cannot be
made symmetric by local rotations. However, there are notable exceptions, as follows.
Mixed states resulting from the even state (4.30) or an odd Bell state (2.14) due to
decoherence with γa = γb = γ are symmetric, since then T is diagonal [Eqs. (4.32),
(4.31)] and it is easy to show that ra = rb = z(1−2γ cos2 β) and ra = rb = z(1−γ ),
respectively. Furthermore, a mixed state resulting from the odd state (4.29) due to pure
dephasing is equivalent to a symmetric state up to a rotation of one of the qubits by
π around the x axis. In contrast, a state resulting from a nonmaximally entangled odd
state due to energy relaxation (and perhaps pure dephasing) cannot be made symmetric
by local rotations, since then |ra | �= |rb|.

5.4 Discussion

There is no analytical solution in the presence of errors [20,32]. Moreover, the present
case involves an eight-dimensional parameter space (there are two decoherence param-
eters and two measurement fidelities for each qubit), which additionally complicates
the analysis.

Similarly to Sect. 4.2, the modified Bell operator B̂ (5.8) can be used for numerical
calculations, since for given decoherence and error parameters the maximum (mini-
mum) value of S equals the maximum (minimum) of the greatest (smallest) eigenvalue
of B̂ over the detector directions, the optimal state being given by the corresponding
eigenvector. Now, as in Sect. 4, S is invariant to rotations of the qubits and detectors
around the z axis, which allows one to reduce the number of the fitting parameters
from eight to six by setting, say, ay = by = 0. This number cannot be further reduced,
since now point (i) in Sect. 4.2 is not applicable.

This computation procedure is relatively slow. It produces generally different opti-
mal states for different values of the parameters. An approach which is faster and
more relevant for most experiments is to consider the BI violation for a specific initial
state ρ0, e.g., the odd or even state [Eqs. (4.29) and (4.30), respectively]. In this case
an expression for S resulting from Eq. (5.7) is varied over the detector directions and
perhaps the state parameters [e.g., β in Eqs. (4.29) and (4.30)] in order to obtain S+
and S−.

Note that in the cases of the odd and even states the number of the detector parame-
ters can be reduced from eight to seven, as follows. When the initial state is odd (even),
for the measured state ρ (4.8) which underwent decoherence, the only nonvanishing
off-diagonal elements are ρ23 = ρ32 (ρ14 = ρ41). As a result, for the odd (even) initial
state, the density matrix ρ is invariant under a rotation of qubits a and b around the z
axis by an arbitrary angle α (angles α and −α, respectively). Because of the invariance
of S under identical rotations of the qubits and detectors, Eq. (2.7), one can reduce the
number of the detector parameters by moving, say, a into the xz plane, i.e., choosing
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ay = 0. A detailed analysis of the case of the odd state, Eq. (4.29), is performed in
[32]; the even state can be discussed in a similar way.

6 Conclusions

In the present paper we have considered conditions for maximal violations of the Bell
inequality in the presence of decoherence. In addition, combined effects of decoher-
ence and local measurement errors have been discussed.

Since decoherence transforms a pure entangled state into a mixed state, we have
begun the consideration from the study of optimal conditions for the violation of the
BI (2.2) for a general (pure or mixed) state. We have obtained all detector config-
urations providing the maximal value of the CHSH parameter S in Eq. (2.2) for an
arbitrary state. We have shown that generally the set of all optimal configurations for a
given state is characterized by one continuous and one discrete parameters, whereas in
special cases it can be characterized by two or three continuous parameters. We have
obtained also the symmetry relation for the optimal detector orientations, Eq. (3.40)
or (3.41), which follows from the invariance of S with respect to the qubit swap.

Further, we have considered effects of local decoherence on the BI violation. We
have used the decoherence superoperator in the operator-sum form, which describes
energy relaxation at the zero temperature and arbitrary pure dephasing. We have
expressed S as the average over the initial state of the Bell operator modified by deco-
herence. This operator has been used for numerical calculations in order to obtain the
maximal BI violation for any values of the decoherence parameters. We have reduced
the number of varied parameters from 8 to 5 and thus significantly accelerated the
calculations, using the symmetry of the decoherence model and the fact revealed here
(Sect. 3) that the set of optimal configurations for a given state is continuous. Our cal-
culations have allowed us to identify a class of two-qubit pure states (the real states)
which provide maximal BI violations for all values of decoherence parameters. We
have obtained an analytical solution for this class of states and used it to develop a
fast numerical approach for maximizing Bell violations.

We have obtained simple analytical solutions for both optimal and maximally entan-
gled odd and even states. Such states are often used in experiments on the BI violation.
In particular, the general odd state is relevant for experiments with superconducting
phase qubits. While in the absence of decoherence the optimal detector configura-
tions for the odd and even states are vertical, in the presence of decoherence, they
are either vertical or horizontal. We have discussed both the general case of arbitrary
decoherence parameters and a number of important special cases. In particular, we
have revealed that the even state is optimal in most cases. Our analysis have been
illustrated by numerical calculations.

Moreover, the combined effects of local errors and decoherence have been consid-
ered. In this case the maximal Bell violation depends on eight parameters. We have
derived the Bell operator modified by decoherence and errors and have used it to
discuss symmetry properties of S. Numerical approaches in this case have been also
outlined.
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The present results are applicable to many types of qubits, including, in particular,
superconducting qubits. Moreover, the present results have relevance to the ongoing
discussion of effects of decoherence on entanglement, a major resource in the field of
quantum information.

Acknowledgments I am grateful to A. N. Korotkov for useful discussions and for the encouragement of
this work. The work was supported by NSA and DTO under ARO grant W911NF-04-1-0204.

Appendix

A BI violations and entanglement for pure states

Here we obtain the maximal BI violation S+ and the entanglement measure, the con-
currence C , for the state (2.19). Any pure two-qubit state |Ψ 〉 can be written in the
Schmidt form [42]

|Ψ 〉 = s1|iaib〉 + s2| ja jb〉. (A.1)

Here s1,2 ≥ 0 and s2
1 + s2

2 = 1, whereas {|ia〉, | ja〉} and {|ib〉, | jb〉} are orthonormal
bases for qubits a and b, respectively. For the state (A.1), we obtain that [23,43] [cf.
Eq. (4.38)]

S+ = 2
√

1 + 4s2
1 s2

2 (A.2)

and [55]

C = 2s1s2. (A.3)

Combining Eqs. (A.2) and (A.3) yields Eq. (2.17).
For the state (2.19), the quantities s2

1 and s2
2 are [42] eigenvalues of D1 = DT D,

where

D =
(

c1 c2

c3 c4eiα

)
. (A.4)

It is easy to see that the eigenvalues of D1 are the solutions of the following equation
for the variable s2,

(s2)2 − s2Tr D1 + det(D1) = 0. (A.5)

We obtain that Tr D1 = 1 and

det(D1) = | det(D)|2 = |c1c4eiα − c2c3|2. (A.6)
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The solutions of Eq. (A.5) are

s2
1,2 = 1 ± √

1 − 4 det(D1)

2
. (A.7)

Inserting Eq. (A.7) into Eq. (A.3) yields C = 2
√

det(D1). The latter equality with the
account of Eq. (A.6) yields Eq. (2.20).

B Properties of matrix T

Consider some useful properties of the matrix T in Eq. (3.1). Since the eigenvalues of
the Hermitian operators σ a

mσ b
n equal ±1, Eq. (3.2) implies that

|Tmn| ≤ 1. (B.1)

There exists the polar decomposition [42]

T = V
√

U, (B.2)

where V is a 3 × 3 orthogonal matrix, VT V = I3, and U = TT T is a real symmetric
matrix with nonnegative eigenvalues u1, u2, u3(0 ≤ u3 ≤ u1, u2). V is unique, being
given by V = TU−1/2, only if u3 �= 0; this is the most interesting case, as shown below.
The determinant of V equals 1 or −1 for det(T) > 0 and det(T) < 0, respectively;
when det(T) = 0 (which means that u3 = 0), V can be chosen such that det(V) = 1.

Under a local unitary transformation ρ → (Ua ⊗Ub)ρ(U †
a ⊗U †

b ) Eq. (3.1) changes
so that rk → Rkrk and [49]

T → RaTRT
b , (B.3)

where Ra,b are defined after Eq. (2.7b). As follows from Eqs. (B.2) and (B.3), with
suitable rotations of the qubits, R′

a and R′
b, the matrix T can be reduced to one of the

two diagonal forms, T′ = R′
aT(R′

b)
T = ±√

U′. Here R′
b is such that U′ = R′

bU (R′
b)

T

is diagonal and R′
a = ±R′

bVT . The plus and minus signs in the above formulas are
obtained for det(T) ≥ 0 and det(T) < 0, respectively [on choosing det(V) = 1 when
det(T) = 0]. As a consequence, in view of Eq. (B.1), we obtain

0 ≤ u3 ≤ u1, u2 ≤ 1. (B.4)

Note that an arbitrary two-qubit state reduces to a simpler form by a local unitary
transformation which diagonalizes T. Inserting a general diagonal T into Eq. (3.1), we
obtain that all states with a diagonal T have the form

ρ =

⎛

⎜
⎜
⎝

ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ13
ρ31 ρ23 ρ33 ρ12
ρ14 ρ31 ρ21 ρ44

⎞

⎟
⎟
⎠ . (B.5)
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In the state (B.5) ρ12 = ρ34 and ρ13 = ρ24, whereas ρ14 and ρ23 are real.4

For the state (B.5) we obtain from Eq. (3.2) that

T = 2 diag(ρ23 + ρ14, ρ23 − ρ14, 1/2 − ρ22 − ρ33). (B.6)

Note that this expression is independent of ρ12, ρ21, ρ13, and ρ31.
The states with det(T) ≥ 0 do not violate the BI. To show this, it is sufficient to

consider a diagonal T = √
U, since, as mentioned above, such T can be obtained for

any state with det(T) ≥ 0 by means of local unitary transformations, which do not
change S. A diagonal T = √

U is given by Eq. (B.6) with nonnegative matrix elements,
which implies that r ≡ ρ22 + ρ33 ≤ 1/2 and ρ23 ≥ |ρ14|. As follows from Eq. (B.6),
Tr U = Tr T2 = 4ρ2

14 + 4ρ2
23 + (1 − 2r)2. For a given r, Tr U is maximal if ρ23

and |ρ14| are maximal under the above constraints, i.e., if |ρ14| = ρ23 = r/2, which
yields Tr U ≤ 6r2 − 4r + 1 (0 ≤ r ≤ 1/2). This expression achieves the maximum
Tr U = 1 for r = 0. Thus, in the case det(T) ≥ 0 we have Tr U ≤ 1, the value Tr U = 1
being obtained for the states which, with the accuracy to local unitary transformations,
have the form ρ = diag(ρ11, 0, 0, ρ44) and hence have T = U = diag(0, 0, 1) [see
Eq. (B.6)]. In view of Eq. (3.11), these states yield S+ = 2; they include, in particular,
pure nonentangled states.

However, the BI violation implies Tr U ≥ u1 + u2 > 1. Hence, a necessary condi-
tion for the BI violation is det(T) < 0. As a consequence, in view of Eq. (B.2), for the
states violating the BI all ui do not vanish. Note that in the case det(T) < 0 Eq. (B.2)
can be recast in the form (3.14).
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