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Abstract. We have analyzed the operation of the Bayesian quantum feedback of a solid-state
qubit, designed to maintain perfect coherent oscillations in the qubit for arbitrarily long time.
In particular, we have studied the feedback efficiency in presence of dephasing environment and
detector nonideality. Also, we have investigated the effect of qubit parameter deviation.

1. Introduction
With recent experimental demonstration [1] of quantum feedback in optics, the issue of quantum
feedback of solid-state systems becomes especially interesting. The use of quantum feedback to
maintain coherent (Rabi) oscillations in a qubit for arbitrarily long time has been proposed and
analyzed in Refs. [2] and [3]. The basic idea is to monitor the qubit state via the output of a
weakly coupled detector (using Bayesian formalism [4] to translate noisy detector output into
the qubit evolution), then compare the qubit oscillation phase with the desired value, and then
slightly change the qubit barrier height in order to reduce the phase difference. As has been
shown in Ref. [2], the fidelity of such feedback loop can be close to 100% in the ideal case,
while the fidelity decreases because of detector nonideality and/or significant interaction with
environment, as well as in the case of insufficient bandwidth of the line carrying the signal from
detector. In the present paper we study in more detail the operation of the quantum feedback
loop in presence of extra dephasing due to environment and non-ideal detector, and also analyze
the effect of qubit parameter deviation on the feedback loop performance.

2. Model
We consider the quantum feedback loop shown in Fig. 1, which controls the qubit characterized
by the Hamiltonian Hqb = (ε/2)(c†2c2 − c†1c1) + Hfb(c

†
1c2 + c†2c1), where c†1,2 and c1,2 are creation

and annihilation operators in the measurement basis, ε is the qubit energy asymmetry, and
tunneling amplitude Hfb can be controlled by the feedback loop: Hfb = H + ΔHfb. We
consider a “charge” qubit continuously measured by QPC or SET, so that the measurement
setup is similar to what has been studied theoretically, e.g. in Refs. [4, 5, 6, 7, 8]. The evolution
of the qubit density matrix ρ is described by the quantum Bayesian equations [4]

ρ̇11 = −(2Hfb/�) Imρ12 + (2ΔI/SI) ρ11ρ22 [I(t) − I0], (1)
ρ̇12 = i (ε/�) ρ12 + i (Hfb/�) (ρ11 − ρ22) − (ΔI/SI) (ρ11 − ρ22) [I(t) − I0] ρ12 − γρ12 , (2)

where I(t) = I0+(ΔI/2)(ρ11−ρ22)+ξ(t) is the noisy detector current , SI is the current spectral
density, ΔI = I1 − I2, I0 = (I1 + I2)/2, and I1,2 are two average detector currents corresponding
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to two states of the qubit. The dephasing rate γ = γd + γenv has the contribution γd due to
detector nonideality, γd = (η−1 − 1)(ΔI)2/4SI (here η ≤ 1 is the detector quantum efficiency
[4, 7, 8]) and contribution γenv due to interaction with extra environment. We focus on the case
of weak coupling between qubit and detector: C � 1 where C = �(ΔI)2/SIH.

desired ρ t)(d

feedback signal
actuator controller

qubit detector “processor”

Eqs. (1)-(2)I(t)

environment

ρ t)(mΔHfb

Figure 1. Schematic of the quantum
feedback loop. By comparing the monitored
qubit state ρm with the desired state ρd, a
certain algorithm (controller) produces the
feedback signal which changes the qubit
tunneling amplitude Hfb in order to reduce
the difference between ρm and ρd.

We study the feedback loop (Fig. 1), which goal is to maintain perfect coherent oscillations
in the qubit, so the desired evolution is

ρd
11(t) = (1 + cos Ω0t)/2, ρd

12(t) = (i sin Ω0t)/2, (3)

with frequency Ω0 = 2H/� equal to Rabi frequency Ω =
√

4H2 + ε2/� in the case ε = 0. We
assume simple linear feedback control:

ΔHfb = −FHΔφm, (4)

where Δφm = φm(t) − Ω0t (mod 2π), φm(t) = arctan[2 Imρm
12/(ρm

11 − ρm
22)], and F is feedback

strength. The monitored qubit state ρm may differ from the actual state ρ because of
imperfections. The controller (4) is supposed to decrease the phase difference: if the monitored
phase φm(t) is ahead of the desired value, then negative ΔHfb slows down qubit oscillations; if
φm(t) is behind the desired value, the oscillation frequency increases to catch up. We characterize
the feedback efficiency (fidelity) D by the average scalar product of two Bloch vectors
corresponding to the desired and actual states; an equivalent definition is D = 2〈Trρρd〉 − 1.

3. Ideal case
The starting point is the case of ideal detector (η = 1, e.g. QPC), no extra environment
(γenv = 0), and symmetric qubit (ε = 0). We also assume infinite bandwidth of the line between
detector and processor (then ρm = ρ) and no time delay in the feedback loop. As shown in
Ref. [2], in this case the feedback fidelity D can be made arbitrarily close to 1. Approximate
analytical formula can be derived for weak coupling and sufficiently efficient feedback (C � 1,
D � 1/2), then D ≈ exp(−C/32F ). This formula has been confirmed by numerical calculations
using Monte Carlo method [4]. Notice that |ΔHfb|/H < πF , and F scales with coupling C.
Therefore, in the experimentally realistic case C � 1 a typical amount of the parameter change
due to feedback is small, |ΔHfb| � H.

4. Effect of imperfect detector and extra dephasing
Various nonidealities reduce the feedback fidelity, preventing D from approaching 100%. In this
Section we consider the effects of imperfect quantum efficiency of the detector (η < 1) and extra
qubit dephasing γenv due to coupling to environment. Both effects contribute to the total qubit
dephasing rate γ = γenv + (η−1 − 1)(ΔI)2/4SI in Eq. (2) and can be characterized by effective
quantum efficiency of the qubit detection ηe = [1 + 4γSI/(ΔI)2]−1 = [η−1 + 4γenvSI/(ΔI)2]−1.

The dots in Fig. 2 show the Monte Carlo result for the feedback efficiency Dmax(ηe) maximized
over the feedback factor F in the case of weak coupling C (there is practically no dependence on
C if C/ηe ≤ 1). The maximum is still reached at large F , similar to the ideal case.
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Figure 2. Efficiency (fidelity) D of
the quantum feedback operation in the
case of extra dephasing (characterized by
the quantum efficiency ηe of detection),
maximized over the feedback strength F
(maximum of D is reached at F → ∞). Dots
show Monte Carlo results for weak coupling
between the qubit and detector (C = 0.1),
solid line corresponds to Eq. (9), and dashed
line shows approximate formula (8).

For analytical analysis we parameterize the qubit state as ρ11 − ρ22 = P cos φ and ρ12 =
iP (sin φ)/2 (we assume ε = 0 ), and derive equations for P and φ from Eqs. (1)–(2):

Ṗ = (ΔI/SI)(1 − P 2)[(ΔI/2)P cos φ + ξ] cos φ − γP sin2 φ, (5)
φ̇ = 2Hfb/� − sinφ (ΔI/PSI) [(ΔI/2)P cos φ + ξ) − (γ/2) sin 2φ. (6)

Translating these equations from Stratonovich into Itô form and averaging over φ we obtain

dP 2/dt = [(ΔI)2/2SI ](1 − P 2)(1 − P 2/2) − γP 2 + (
√

2ΔI/SI)P (1 − P 2) ξ̃ , (7)

where ξ̃ is the white noise with the same spectral density SI as ξ. In case of sufficiently strong
feedback the phase φ is arbitrarily close to the desired phase Ω0t (mod 2π), so the maximum
fidelity Dmax is equal to 〈P 〉. Neglecting the noise term in Eq. (7), we find a simple estimate of
the feedback efficiency:

Dmax ≈ [1 + 1/2ηe −
√

(1 + 1/2ηe)2 − 2]1/2. (8)

The rigorous analysis of Eq. (7) leads to the following result [9] (see Fig. 2):

Dmax =
(∫ 1

0
P 2 G(P 2) dP

)
/

(∫ 1

0
P G(P 2) dP

)
, (9)

where G(P 2) = (1 − P 2)−5/2 exp
[−(η−1

e − 1)/(2 − 2P 2)
]
.

5. Effect of ε and H deviation
In this Section we analyze what happens if the qubit parameters ε and H deviate from the
“nominal” values ε = 0 and H = H0 assumed by an experimentalist and used in the processor.
The monitored value ρm calculated through “incorrect” parameters ε = 0 and H0 differs from
the actual value ρ governed by actual ε and H; and because of the mistake in qubit monitoring,
the feedback performance should obviously worsen. The desired evolution is still described by
Eq. (3) and the controller is still given by Eq. (4).

Let us start with deviation of ε (while H = H0). Solid lines in Fig. 3(a) show the numerical
(Monte Carlo) results for the maximized over F fidelity Dmax(ε/H) for coupling C = 0.1, 0.3,
and 1. One can see that significant decrease of Dmax starts at smaller ε/H for smaller coupling C.
Rescaling of the horizontal axis by

√C makes the curves (dashed lines) quite close to each other.
The dotted lines in Fig. 3(a) show dependence Dmax(ε/H) for the situation when the exact ε
is used in the processor, but the controller is still given by Eq. (4) designed for ε = 0 [desired
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Figure 3. (a): Solid lines: feedback efficiency Dmax(ε/H) maximized over F for coupling
C = 1, 0.3, and 0.1. Dashed lines: the same curves for C = 0.3 and 0.1 drawn as functions of
ε/H

√C. Dotted lines: Dmax(ε/H) for three couplings when actual ε is used in the processor,
while the controller (4) is still designed for ε = 0. (b): Solid lines: Dmax as a function of relative
H-deviation (H − H0)/H for coupling C = 1, 0.3, and 0.1. Dashed lines: the same curves for
C = 0.3 and 0.1 drawn as functions of (H − H0)/HC.

evolution is still given by Eq. (3)]. Exact monitoring of the qubit significantly improves the
feedback efficiency compared with the case considered above; however, the feedback efficiency
still decreases with energy asymmetry because the desired evolution (3) cannot be achieved at
nonzero ε/H and also because of non-optimal controller designed for ε = 0.

To analyze the effect of the deviation of H, we assume ε = 0. Fig. 3(b) shows the numerical
results for Dmax(ΔH/H) for several couplings. Similar to the previous case, larger deviation
of H can be tolerated for stronger coupling. The curves practically collapse onto one curve if
Dmax is plotted as a function of ΔH/HC (dashed lines). The different scaling is due to the fact
that small change of Ω is linear in H deviation but quadratic in ε. The results presented by
solid and dashed lines in Fig. 3 can be crudely interpreted in the following way: Dmax decreases
significantly when the Rabi frequency change due to parameter deviations (ΔΩ = 2ΔH/� or
ΔΩ ≈ ε2/4H�) becomes comparable to the “measurement rate” (ΔI)2/4SI .

The main practical conclusion of the analysis presented in this Section is that the feedback
operation is robust against small unknown deviations of the qubit parameters ε and H.
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