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Abstract
We have used modern supercomputer facilities to carry out extensive Monte
Carlo simulations of 2D hopping (at negligible Coulomb interaction) in
conductors with a completely random distribution of localized sites in both
space and energy, within a broad range of the applied electric field E and
temperature T , both within and beyond the variable-range hopping region. The
calculated properties include not only dc current and statistics of localized site
occupation and hop lengths, but also the current fluctuation spectrum. Within
the calculation accuracy, the model does not exhibit 1/ f noise, so that the low-
frequency noise at low temperatures may be characterized by the Fano factor F .
For sufficiently large samples, F scales with conductor length L as (Lc/L)α ,
where α = 0.76 ± 0.08 < 1, and parameter Lc is interpreted as the average
percolation cluster length. At relatively low E , the electric field dependence
of parameter Lc is compatible with the law Lc ∝ E−0.911 which follows from
directed percolation theory arguments.

1. Introduction

The theory of hopping transport in disordered conductors [1–3] at negligible Coulomb
interaction is often perceived as a well established (if not completed) field, with recent research
focused mostly on Coulomb effects. However, only relatively recently was it recognized that
shot noise (see, e.g., [4]) is a very important characteristic of electron transport. In particular,
the suppression of the current fluctuation density SI ( f ) at low frequencies, relative to its
Schottky formula value 2e〈I 〉 (where 〈I 〉 is the dc current), is a necessary condition [5] for the
so-called quasi-continuous (‘sub-electron’) charge transfer in such finite-current experiments
as single-electron oscillations [6].

Earlier calculations of shot noise at hopping through very short samples (e.g., across thin
films [7, 8]) and simple lattice models of long conductors in 1D [9] and 2D [10] have shown
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that such suppression may, indeed, take place. However, calculations for the more realistic case
of disordered 2D conductors have been limited to just one particular value of electric field [10].
It seemed important to examine whether the law governing this suppression is really as general
as it seemed. Such examination, carried out in this work, has become practical only since the
development of a new, advanced method of spectral density calculation [11] in combination
with the use of modern supercomputers. (The work reported below took close to a million
processor-hours of CPU time.)

As a useful by-product of this effort, we have obtained accurate quantitative
characterization of not only the dependence of the average current on both temperature T and
electric field E , but also the statistics of localized site occupation and hop lengths, which give
a useful additional insight into the physics of hopping transport.

2. Model

We have studied hopping in 2D rectangular (L × W ) samples with ‘open’ boundary conditions
on the interface with well conducting electrodes [10]—see the inset in figure 1. In the present
study, we have concentrated on broad samples with width W � Lc, where Lc is the effective
percolation cluster size (see below). The conductor is assumed to be ‘fully frustrated’: the
localized sites are randomly distributed over the sample area, and the corresponding electron
eigenenergies ε

(0)
j are randomly distributed over a sufficiently broad energy band, so that the

2D density of states ν0 is constant at all energies relevant for conduction. Electrons can hop
from any site j to any other site k with the rate

γ jk = � jk exp
(
−r jk

a

)
, (1)

where r jk ≡ √
(x j − xk)2 + (y j − yk)2 is the site separation distance, and a is the localization

radius3. Such exponential dependence on the hop length has been assumed in virtually
all theoretical studies of hopping. (The corrections to this law due to phase interference
effects [12–14] are typically small.) However, in contrast to most other authors, we take
equation (1) literally even at small distances r jk ∼ a; this range is important only at very
high fields and/or temperatures where the average value of r jk becomes comparable to a. Of
course our quantitative results for this particular region are only true for the localized states
with exponential wavefunction decay.

Another distinction from some other works in this field is that we assume that the hopping
rate amplitude � jk depends continuously on the localized site energy difference �U jk ≡
ε

(0)

j − ε
(0)

k + eErjk:

h̄� jk
(
�U jk

) = g
�U jk

1 − exp
(−�U jk/kBT

) . (2)

This model coincides, for low phonon energies �U jk , with that described by
equations (4.2.17)–(4.2.19) of [2] for hopping in lightly doped semiconductors, and of course
satisfies the Gibbs detailed balance requirement � jk = �k j exp(�U jk/kBT ). It is also close to,
but more physical than, the ‘Metropolis’ dependence, which has a cusp at �U jk = 0.

The interaction of hopping electrons is assumed negligible (with the exception of their
implicit on-site interaction, which forbids hopping into already occupied localized states).
This assumption is well justified for practically important materials, in particular very thin
films of amorphous silicon, which is the major candidate material for the implementation

3 Note that in contrast with some prior publications, we do not include the factor 2 in the exponent. This difference
should be kept in mind at the result comparison.
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Figure 1. Linear conductivity σ as a function of temperature T . Points show the results of averaging
over 80 samples varying in size (L × W ) from (20 × 10)a2 to (160 × 100)a2, biased by a low
electric field E � ET . Points are Monte Carlo results. The thin dashed line is just a guide for
the eye, while the thick solid line corresponds to the best fit of the data by equation (5). Here and
below, the error bars are smaller than the point size, unless they are shown explicitly. (The error
bars correspond to the uncertainty in averaging over an ensemble of independent samples that is
larger than the calculational uncertainty for each of the samples.) The inset shows the system under
analysis (schematically).

of sub-electron charge transfer components in single-electronic circuits [15]. Indeed, the
relative strength of the Coulomb interaction may be characterized by a dimensionless parameter
χ ≡ (e2/κa) × (ν0a2), where κ is the relative dielectric constant [16]. For a film of thickness
t ∼ a, ν0 may be estimated as tν, where ν is the 3D density of states. For undoped amorphous
Si, ν is of the order of 1016 eV−1 cm−3, and only special treatments may increase it to
∼1020 eV−1 cm−3—see, e.g., [17]. As a result, for κ ∼ 10 and a ∼ 3 nm (both numbers
are typical for the midgap states in Si), χ is much less than unity for the entire range of ν cited
above, so that there is a broad range (�(ln T ),�(ln E) ∼ 3 ln (χ−1)) of temperature T and
electric field E where the Coulomb interaction is negligible [16].

With this assumption, our model has only three energy scales: kBT , eEa, and (ν0a2)−1.
In other words, there are two characteristic values of electric field:

ET ≡ kBT

ea
and E0 ≡ 1

eν0a3
. (3)

We will be mostly interested in the case of low temperatures T < T0, where

T0 ≡ 1

kBν0a2
(4)

is the field-independent scale of temperature, so that the field scales are related as ET < E0.
(The only role of the dimensionless parameter g introduced by equation (2) is to give the scale
of hopping conductivity σ0 ≡ g(e2/h̄). Coherent quantum effects leading to weak localization
and metal-to-insulator transition are negligibly small, and hence the formulated hopping model
is adequate, only if g � 1.)

The dynamic Monte Carlo calculations were carried out using the algorithm suggested
by Bakhvalov et al [18], which has become the de facto standard for the simulation of
incoherent single-electron tunnelling [19]. All calculated variables were averaged over the
sample, and in most cases over several (many) samples with independent random distributions
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of localized sites in space and energy, but with the same dimensionless parameters L/a, W/a,
T/T0, and E/E0. We have used a new, advanced technique [11] of noise (current spectral
density) calculation to save simulation time. The supercomputer facilities used are listed in the
acknowledgments section below.

3. DC current

In order to understand the relation between our model and the prior results in this field, we
have started from the calculation of dc current 〈I 〉 as a function of T and E . If the electric
field is sufficiently small (E � ET ), then the current is proportional to E , and the transport
is completely characterized by the linear conductivity σ ≡ 〈I 〉/W E . Figure 1 shows the
calculated conductivity as a function of temperature T . In the region T � T0 this dependence
follows the exponential T dependence of the 2D Mott law [1–3]

σ

σ0
≈ A (T, 0) exp

[
−

(
B (T, 0)

T0

T

)1/3
]

, (5)

where A(T, E) and B(T, E) are dimensionless, model-dependent slow functions of their
arguments. We have found that our results may be well fitted by equation (5) with the
following pre-exponential function: A(T, 0) = (23.4 ± 1.4)(T/T0)

(0.68±0.04), and constant
B(T, 0) = 2.0 ± 0.2.4 This latter result may be compared with the following values reported
in the literature. In [20], B was analytically estimated to be close to 2.1. A different value,
3.45 ± 0.2, has been found by mapping a random 2D hopping problem to the problem of
percolation in a system of linked spheres [21, 2]. Finally, a close value 3.25 (with no uncertainty
reported) has been obtained using numerical simulations of hopping on a periodic lattice, with
a slightly different model for the function �(�U) [22]. The difference between our result and
the two last values is probably due to the differences between details of the used models.

At higher electric fields (E � ET ), dc current starts to grow faster than the Ohm law, so
that if we still keep the above definition of conductivity σ , it starts to grow with E (figure 2).
At T → 0, the results are well described by the expression [23–27]

σ

σ0
≈ A (0, E) exp

[
−

(
B (0, E)

E0

E

)1/3
]

. (6)

The data for not very high fields (ET � E � E0) may be well fitted by equation (6)
with constant B(0, E) = 0.65 ± 0.02 and pre-exponential function A(0, E) = (9.2 ±
0.6)(E/E0)

(0.80±0.02). (Note that the value B(0, E) = 1.27 given in [10] corresponds to a
different pre-exponential function used for fitting.)

Finally, figure 2 shows that when the electric field becomes comparable with the value E0

defined by the second of equation (3), dc current, and hence conductivity, start to grow even
faster than the exponential E dependence of equation (6).

4. Hopping statistics

In order to understand the physics of hopping in the three field regions better, it is useful to
have a look at the statistics of localized site occupation and hopping length. We have found that

4 In view of the approximate character of our model, in particular of equation (2), such accuracy may seem excessive,
and for the purposes of comparison with actual physical experiments it certainly is. However, the accuracy is essential
for the detection of Coulomb interaction effects in our following work [16], especially in the range of very high
temperatures (T ∼ T0) or fields (E ∼ E0).
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Figure 2. Nonlinear conductivity σ ≡ 〈I 〉/W E as a function of electric field E for several values
of temperature T . Each point represents data averaged over 80 samples of the same size, ranging
from (20 × 14)a2 to (1000 × 700)a2, depending on T and E . Points are Monte Carlo results. Thin
dashed lines are only guides for the eye, while the thick solid line shows the best fit of the data by
equation (6).

for all studied values of E and T , the probability of site occupation closely follows the Fermi
distribution with the local Fermi level

µ(r) = µL − eEr (7)

(where µL is the Fermi level of the source electrode) and some effective temperature Teff. Points
in figure 3 show Teff as a function of electric field E for several values of physical temperature
T . Dashed lines show the result of the best fitting of the naive single-particle master equation

∂ f (ε, t)

∂ t
=

∫
d2r

∫
dε ′ exp

(−r

a

){
−�

(
ε − ε ′ + eEr

)
f (ε)

[
1 − f

(
ε ′)]

+ �
(
ε ′ − ε − eEr

)
f
(
ε ′) [

1 − f (ε)
]}

(8)

by a stationary Fermi distribution. Equation (8) would follow from our model if electron
correlation (in particular, percolation) effects were not substantial. In reality, we can expect
the results following from equation (8) to be valid only in certain limits5. For example, in
the low field limit with E → 0, both methods give Teff = T . At higher fields the effective
temperature grows with the applied field, which ‘overheats’ the electrons. At very high fields
(E/E0 � 0.3) both methods agree again and give

kBTeff ≈ CeEa, C = 0.71 ± 0.02. (9)

(A similar result, but with C ≈ 1.34, for our definition of a, was obtained by Marianer and
Shklovskii [28] for a rather different model with an exponential energy dependence of the
density of states ν0.) However, at intermediate fields typical of ‘high-field’ variable-range
hopping (ET � E � E0), the master equation still gives the same result (9) and hence fails to
appreciate that in fact Teff is proportional to E2/3.6 In order to explain this result, let us discuss
the statistics of hop lengths (figures 4 and 5).

5 For a discussion of this issue, see section 4.2 of [2].
6 In compensated semiconductors [2] with the number of hopping electrons (or holes) much smaller than the number
of available hopping sites, the area of applicability of the master equation may be substantially broader. However,
our model provides automatic half-filling of the available state band, and such filling evidently maximizes the electron
correlation effects.
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Figure 3. The effective temperature Teff of current carriers as a function of electric field E for
several values of temperature T . Closed points: Monte Carlo simulation results; dashed lines:
master equation results. The solid curve marked T = 0 is only a guide for the eye.

The two- and one-dimensional histograms in figure 4 show the probability density P of
a hop between two sites separated by the vector �r, and also the density Pd weighted by the
factor |H jk − Hkj |, where each H is the total number of hops (during a certain time interval) in
the indicated direction, i.e jk ≡ j → k. The latter weighting emphasizes the site pairs ( j, k)

contributing substantially to the net hopping transport, in comparison with ‘blinking’ pairs,
which exchange an electron many times before allowing it to advance along the field. It is
clear that at relatively high temperatures or low fields (E � ET ) the non-weighted distribution
should be symmetric (figure 4(a)). Figure 4(d) shows that in this case the one-dimensional
probability density is well approximated by the Rayleigh distribution, P(r) ∝ r exp(−r/aeff),
with aeff ≈ a. However, the weighted hop distribution is strongly asymmetric even in the limit
E → 0 (figure 4(b)). This asymmetry is even more evident at low temperatures or high fields
(E � ET ); in this case the distribution has a sharp boundary (figure 4(c)). Figure 4(d) shows
those cases where the 1D histograms deviate substantially from the distribution predicted by
the master equation—see the first of equations (16).

Figure 5 shows the rms non-weighted (rrms) and direction-weighted (rrmds) hop lengths,
defined, respectively, as

rrms
2 ≡

∑
j,k r 2

jk

(
H jk + Hkj

)
∑

j,k

(
H jk + Hkj

) (10)

and

rrmds
2 ≡

∑
j,k r 2

jk

∣∣H jk − Hkj

∣∣
∑

j,k

∣∣H jk − Hkj

∣∣ (11)

(that are of course just the averages of the histograms shown in figure 4), as functions of applied
electric field for several values of temperature. At T → 0, hopping is strictly one directional
(i.e., if H jk �= 0, then Hkj = 0), so that rrms and rrmds are equal. In fact, simulation shows that
in this limit both lengths coincide, at lower fields following the scaling [23]

rrms = rrmds = Da

(
E0

E

)1/3

, ET � E � E0, (12)
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Figure 4. (a)–(c) Two-dimensional and (d) one-dimensional histograms of hop lengths for two
typical cases: (a), (b) T/T0 = 5 × 10−3, E/E0 = 1.37 × 10−4 (E � ET ) and (c) T = 0,
E/E0 = 1.09 × 10−3 (ET � E). The shade-coding in panels (a) and (c) corresponds to the
probability P of hops with given �r = (�x,�y), while that in panel (b) to the probability Pd

weighted by the factor |H jk − Hkj |—see the text. (Since at T = 0 there are no backward hops,
for the case shown in panel (c) P and Pd coincide.) Panel (d) shows P and Pd , averaged over all
directions of vector �r, for the low-field, intermediate, and high-field cases. Dashed lines show the
distribution (16) given by the master equation for the best-fit values of parameter aeff.

with D = 0.72 ± 0.01. (We are not aware of any prior results with which this value could be
compared.)

This scaling of r in the variable-range hopping region is essentially the reason for the
scaling of Teff mentioned above; in fact, the hopping electron gas ‘overheating’ may be
estimated by equating kBTeff to the energy gain eErrmds, possibly multiplied by a constant
of the order of one. For the effective temperature, this estimate gives

kBTeff = const × eErrmds = Gea E1/3
0 E2/3 = G

(E/E0)
2/3

ν0a2
, (13)

in accordance with the result shown in figure 3. Our Monte Carlo simulations give G =
0.60 ± 0.02; we are not aware of any previous results with which this number could be
compared.

At higher fields (E � 0.1E0) the hop lengths start to decrease more slowly, approaching
a few localization lengths a (figure 5(a)). In this (‘ultra-high-field’) region, the energy range
∼eEa for tunnelling at distances of a few a is so high that there are always some accessible
empty sites within this range, so that long hops, so dominant at variable-range hopping, do not
contribute much to conduction.
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Figure 5. Rms hop length rrms (solid points) and the weighted average hop length rrmds (open
points) as functions (a) of applied electric field E for several temperatures T , and (b) of temperature
at E → 0. Tilted straight lines in panels (a) and (b) show the best fits by equation (12) and (17),
respectively, while the horizontal thin lines show the values following from the master equation.
Curves are only guides for the eye.

At finite temperatures, the most curious result is a non-monotonic dependence of the
rms hopping length on the applied field—see figure 5(a). At E → 0, rrms has to be field
independent, and there is no scale for it besides a. (As evident as it may seem, this fact is
sometimes missed in popular descriptions of hopping.) In order to make a crude estimate of
rrms in this limit, one can use the master equation (8). In this approach, at thermal equilibrium
(i.e. at � independent of r ), the hop length probability density P(r) can be found as

P (r) = 2πr
∫

dε

∫
dε ′ exp

(−r

a

) {
�

(
ε − ε ′) f (ε)

[
1 − f

(
ε ′)]

+ �
(
ε ′ − ε

)
f
(
ε ′) [

1 − f (ε)
]} ∝ r exp

(−r

a

)
, (14)

in a good agreement with the results shown in figure 4(d) for this case. From equation (14), we
get

rrms ≡ 〈
r 2

〉1/2 =
[∫

P (r) r 2 dr∫
P (r) dr

]1/2

= √
6a ≈ 2.45a, (15)

in a good agreement with numerical data shown in figure 5.
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A similar calculation for rrmds may be obtained by expanding the tunnelling rate �(ε−ε ′ +
eEr) in small electric field as �(ε − ε ′) + eEr�′(ε − ε ′). The result is

Pd (r) = eEr 2
∫

dφ |cos φ|
∫

dε

∫
dε ′ exp

(−r

a

)

× {
�′ (ε ′ − ε

)
f
(
ε ′) [

1 − f (ε)
] + �′ (ε − ε ′) f (ε)

[
1 − f

(
ε ′)]} ,

Pd (r) ∝ r 2 exp

(−r

a

)
, rrmds ≡

[∫
Pd (r) r 2 dr∫

Pd (r) dr

]1/2

= √
12a ≈ 3.46a. (16)

The Monte Carlo data (figure 5), however, differ from this result7, showing that at E → 0, rrmds

obeys the Mott law [1–3]

rrmds = H a

(
T0

T

)1/3

+ Ia, T � T0, (17)

with the best-fit values H = 0.52 ± 0.05 and I = 2.0 ± 0.1. In contrast, the function rrms(T ) is
rather far from equation (17), because the Mott law refers to long hops responsible for transport
(with the average approximately corresponding to rrmds), while rrms reflects the statistics of all
hops.

5. Shot noise

The current noise simulation has been limited to the case of zero temperature for two reasons.
First, in the opposite limit (ET � E) current noise obeys the fluctuation–dissipation theorem;
as a result, its low-frequency intensity can be found from σ(T ), and hence does not provide any
new information. Second, the calculation of the spectral density SI ( f ) of current fluctuations
with acceptable accuracy requires a much larger statistical ensemble of random samples than
that of the average current, which means it becomes increasingly difficult to extend it to
finite temperatures even with the advanced averaging algorithm and substantial supercomputer
resources used in this work.

Figure 6 shows a typical dependence of the current noise spectral density SI , normalized
to the Schottky value 2e〈I 〉, on the observation frequency ω ≡ 2π f . One can see a crossover
from a low-frequency plateau to another plateau at high frequencies. As the sample length
grows, the crossover becomes extended, i.e. features a broad intermediate range ωl � ω � ωh ,
just like in 1D systems with next-site hopping [9]. The position of the high-frequency end ωh

of this region can be estimated in the following way.
In all single-electron tunnelling systems, the high-frequency plateau is reached at

frequency ωh close to the rate � of the fastest electron hops affecting the total
current [9, 10, 29, 30]. (For example, in systems described by the ‘orthodox’ theory of single-
electron tunnelling, ωh ≈ �max ≈ �Umax/e2 R ≈ 1/RC , where R and C are, respectively,
resistance and capacitance of a single junction [29, 30].) In our current case, this means
that ωh ∼ (� jk)max ∼ (g/h̄)[�U jk exp (−r jk/a)]max. For this estimate, �U jk can be taken
as kBTeff from figure 3, while according to the histograms shown in figure 4(d) the length
of shortest hops, still giving a noticeable contribution to the current, can be estimated as
∼rrmds/2. For the case shown in figure 6 (E/E0 = 8.75 × 10−3), these estimates yield
�U jk/kBT0 ≈ 2 × 10−2, (r jk)min/a ≈ 2.5, giving finally ωh/ω0 ∼ 1.5 × 10−3, in a very
reasonable agreement with numerical results shown in figure 6. (Note that this simple estimate,
giving a length-independent value for ωh , is only valid for relatively long and broad samples.)

7 This result emphasizes again that the validity of the master equation approach is very limited, and for most transport
characteristics this equation fails to give quantitatively correct results for any region in the [E, T ] space.
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Figure 6. Spectral density SI of current fluctuations normalized to the Schottky noise 2e〈I 〉 as a
function of observation frequency ω, measured in units of ω0 ≡ g/h̄ν0a2, for several values of
sample length L for T = 0 and E/E0 = 8.75 × 10−3. Small points show results for W/a = 60,
while open squares are for W/a = 120 (at L/a = 60). Horizontal lines correspond to the Fano
factor for hopping through short samples with one and two localized sites [7, 8]. Curves are only
guides for the eye.

At ω → 0, a crossover to 1/ f noise might be expected, because the discussion of this effect
in some earlier publications [31, 32] was apparently independent of the Coulomb interaction
between hopping electrons. However, within the accuracy of our simulations, we could not find
any trace of 1/ f -type noise for any parameters we have explored. This fact may not be very
surprising, because all the discussions of the 1/ f noise we are aware of require the presence of
thermal fluctuations which are absent in our case (T = 0).

Since the low-frequency spectral density is flat, at T = 0 it may be considered as shot
noise8 and characterized by the Fano factor [4]

F ≡ SI ( f → 0)

2e 〈I 〉 . (18)

Similarly, in order to characterize the flat high-frequency spectral density, we may use the
parameter

F∞ ≡ SI ( f → ∞)

2e 〈I 〉 . (19)

Figure 7(a) shows the average Fano factors F and F∞ as a function of L for several values
of the applied electric field, while figure 7(b) shows that the same data can be collapsed on
universal curves by the introduction of certain length scales: Lc for F and Lh for F∞.

For the high frequency case,

F∞ =
(

Lh

L

)β

, L � Lh, (20)

where, within the accuracy of our calculations, β = 1. Such dependence could be expected,
because the high-frequency noise at hopping can be interpreted as a result of the ‘capacitive

8 In the case of hopping, the noise intensity is not exactly proportional to dc current, because the noise suppression
factor depends on the ratio L/Lc, where the characteristic length Lc is itself a function of applied electric field, and
hence (implicitly) of dc current—see figures 7, 8 and their discussion below.
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Figure 7. Average Fano factor F and its high-frequency counterpart F∞ as functions of sample
length L normalized to (a) the localization length a, and (b) the scaling lengths Lc (for F) and Lh

(for F∞) (see figure 8 below), for several values of applied field at T = 0 and W � Lc. Horizontal
lines correspond to the average Fano factor for hopping via one and two localized sites [7, 8].
Straight lines are the best fits to the data, while dashed curves are only guides for the eye.

division’ of the discrete increments of externally measured charge jumps resulting from single-
electron hops through the system [6]. When applied to uniform (ordered) systems, these
arguments always give the result F∞ ≈ 1/Nh with Nh = L/d being the number of electron
hops (d the hopping length along the current flow) necessary to pass an electron through the
system, regardless of hop rates [4, 5, 9]. For T → 0 in the case of disordered conductors, Lh

in equation (20) may then be interpreted as the average hop length along current flow. This
interpretation turns out to be correct. Indeed, figure 8 shows that the parameter Lh obtained
from equation (20) scales with the electric field in a manner similar to xrmds, especially at low
fields, where it follows the variable-range hopping dependence of equation (12).

The low-frequency value F , in the limit (L � Lc), is weakly dependent on length and
approaches F ≈ 0.7, which not surprisingly is consistent with the prior results for hopping via
one intermediate site [7] (F = 0.75) and two such sites [8] (F = 0.707). The results for long
samples are much more interesting. We have found that they may be reasonably well fitted with
a universal dependence

F =
(

Lc

L

)α

, L � Lc. (21)

Here α is a numerical exponent; in the current study we could establish that

α = 0.76 ± 0.08. (22)
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Figure 8. The values of Lh and Lc giving the best fitting of shot noise results by equations (20)
and (21) as functions of applied electric field E (open and solid circles, respectively). Open squares
show the simple and direction-weighted average hop length along the applied field direction, defined
similarly to equations (10) and (11). Straight lines are the best fits to the data.

Equation (21) and the value for α are compatible with our previous results [10] α = 0.85±0.07
(for the same model, but just one particular value of E) and α = 0.85 ± 0.02 (for nearest
neighbour hopping on uniform slanted lattices).

Figure 8 shows the fitting parameter Lc as a function of electric field E . In the variable-
range hopping region, it may be fitted with the following law:

Lc = Ja

(
E0

E

)µ

, J = 0.04 ± 0.01, µ = 0.98 ± 0.08. (23)

This law may be compared with the result of the following arguments. According to the
arguments given in [10], parameter Lc may be interpreted as the average percolation cluster
length (up to a constant of the order of unity). The theory of directed percolation [33–35] gives
the following scaling:

Lc ∝ 〈x〉
(

xc

|〈x〉 − xc|
)δ‖

. (24)

Here 〈x〉 is the rmds hop length along the field direction, while xc is its critical value.
According to [35], the critical index δ‖ should be close to 1.73. Due to the exponential
nature of the percolation, |〈x〉 − xc| ∼ a, while 〈x〉 should follow a field scaling similar
to that given by equation (12). (Square points in figure 8 show that this is true for our
simulation results as well.) Thus for sufficiently large 〈x〉 we arrive at equation (23) with
µ = 1

3 (1 + δ‖) ≈ 0.911. Equation (24) shows that this value is quite compatible with our
numerical result, thus confirming the interpretation of Lc as the average percolation cluster
length.

Note that in the variable-range hopping regime, Lc has a different field dependence and is
much larger than the average hop length. However, as the applied electric field approaches E0,
both lengths become comparable with each other and with the localization radius a.

6. Discussion

To summarize, our results for average conductivity and hop statistics are in agreement with the
well known semi-quantitative picture of hopping, including the usual variable-range hopping at
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low fields (E � ET ) and ‘high-field’ variable-range hopping at ET � E � E0. However, our
supercomputer-based simulation has allowed, for the first time, a high-precision quantitative
characterization of hopping, for a particular but very natural model. Moreover, our model also
describes the ‘ultra-high field’ region (E ∼ E0) where the variable-range hopping picture is no
longer valid, since from most localized sites an electron can hop, with comparable probability,
to several close sites. (In the last region, there are no clearly defined percolation clusters; rather,
electrons follow a large number of interwoven trajectories.)

Our simulations of shot noise in 2D hopping have confirmed our earlier hypothesis [10]
that in the absence of substantial Coulomb interaction, in sufficiently large samples (L, W �
Lc), the Fano factor F scales approximately proportionally to 1/L—see equation (21). Other
confirmations of this hypothesis have come from recent experiments with lateral transport
in SiGe quantum wells [36] and GaAs MESFET channels [37, 38]. Unfortunately, these
experiments are not precise enough to distinguish the small difference between the exponent α

in equation (21) and unity.
The hypothesis that α is in fact equal to unity for sufficiently long samples seems

appealing, because it would mean the simple addition of mutually independent noise voltages
generated by sample sections connected in series. In contrast, a deviation of α from unity
would mean that some dynamic correlations of electron motion persist even at L � Lc. For
1D hopping this fact is well established: in at least one exactly solvable model (the ‘asymmetric
single exclusion process’, or ASEP [39]) the dynamic correlations may change α from 1 to 0.5.
However, for 2D conductors the fact that the correlation length (if any) may be substantially
larger than the percolation cluster length comes as a surprise9.

From the point of view of possible applications in single-electron devices [15], the fact
that F may be suppressed to values much less than unity is generally encouraging, since it
enables the use of circuit components with quasi-continuous charge transport. However, in
order to achieve the high-quality quasi-continuous transfer (say, F � 0.1), the sample length
L has to be at least an order of magnitude longer than the percolation cluster length scale Lc.
On the other hand, Lc itself, especially in the most interesting case of low applied fields, is
substantially longer than the localization length a (figure 8), which is of the order of a few
nanometres in most prospective materials, e.g., amorphous silicon. Hence, it may be hard to
implement sub-electron transport in conductors substantially shorter than ∼100 nm. This size
is quite acceptable for experiments at low temperatures (say, below 1 K), but is too large for the
most important case of room-temperature single-electron circuits [15], because of large stray
capacitance of the hopping conductor, which effectively sums up with the capacitance of the
island to be serviced.
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