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We analyze the optical bistability and the entanglement of two movable mirrors coupled to a two-mode laser in
a doubly resonant cavity. We show that in stark contrast to the usual red-detuned condition for observing
bistability in single-mode optomechanics, the optical intensities exhibit bistability for all values of cavity laser
detuning due to intermode coupling induced by two-photon atomic coherence. Interestingly, an unconventional
bistability with “ribbon”-shaped hysteresis can be observed for a certain range of cavity laser detuning. We
also demonstrate that the atomic coherence leads to a strong entanglement between the movable mirrors in
the adiabatic regime. Surprisingly, the mirror–mirror entanglement is shown to persist for environment temper-
atures of the phonon bath up to 12 K using experimental parameters. © 2015 Optical Society of America
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1. INTRODUCTION

The entanglement of macroscopic systems provides insight into
the fundamental questions regarding the quantum-to-classical
transitions. In this respect, mechanical oscillators are of particu-
lar interest because of their resemblance to prototypical classical
systems. In addition to the theoretical proposals [1–5] that
predict entanglement between a mechanical oscillator and a
cavity field, the recent experimental realization [6] of entangle-
ment between the motion of a mechanical oscillator and a
propagating microwave in an electromechanical circuit makes
optomechanical coupling a promising platform for generating
macroscopic entanglement. Other interesting theoretical pro-
posals include the entanglement of the mirrors of two different
cavities illuminated by entangled light beams [7] and the en-
tanglement of two mirrors of a double-cavity setup coupled to
squeezed light [4,8,9]. Optomechanical coupling is also shown
to exhibit nonlinear effects such as squeezing [10–13], optical
bistability [12,14–19], optomechanically induced transparency
[20,21], and photon blockade [22,23].

A two-mode laser with a gain medium containing an ensem-
ble of three-level atoms in a cascade configuration is shown to
exhibit quenching of spontaneous emission [24] and squeezed
light [25–27] due to the two-photon coherence between the
upper and lower levels of the atoms. In such a laser, the
two-photon coherence can be generated in two ways: either

by injecting the atoms in a coherent superposition of the upper
and lower levels of each atom (injected coherence) or by coupling
the same levels with a strong laser (driven coherence). These
coherences are shown to generate entanglement between the
cavity modes of a laser [28–31], and more recently to entangle
the movable mirrors of a doubly resonant cavity [32–34].

In this work, we consider a two-mode laser with the two
movable mirrors of the doubly resonant cavity coupled to
the cavity fields via radiation pressure. The laser system consists
of a gain medium of three-level atoms in a cascade configura-
tion. We rigorously derive a master equation for the two-mode
laser coupled to thermal reservoirs, which generalizes previous
results that are only valid for the case of driven coherence [34].
Using this master equation and the mirror-field interaction
Hamiltonian, we obtain Langevin equations, which are used
to study the bistability and entanglement between the two
movable mirrors. We show that, in contrast to the conventional
bistability in single-mode optomechanics [14,15,35] that is
shown to exist only when the cavity frequency is larger than
the laser frequency, the mean photon numbers exhibit bista-
bility for all values of detuning due to the intermode coupling
induced by the two-photon coherence. Additionally, the bist-
abilities show anomalous (“ribbon-shaped”) hysteresis for the
circulation of the intracavity intensities for cavity laser detuning
opposite to the conventional bistability frequency range. These
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anomalous bistabilities are observed only if the RWA is not
made in the coupled Langevin equations. We also investigate
the entanglement of the movable mirrors as a result of coupling
to the laser system and find that the movable mirrors are
strongly entangled in the adiabatic regime using realistic param-
eters. Interestingly, the entanglement persists for environmen-
tal temperatures of the mechanical oscillators up to 12 K,
making our system a source for robust entanglement.

2. MODEL AND HAMILTONIAN

We consider a two-mode three-level laser with two movable
mirrors. The schematic of the laser system is shown in
Fig. 1(a). The active medium is an ensemble of three-level
atoms in a cascade configuration; see Fig. 1(b). The atoms, ini-
tially prepared in coherent superposition of the upper jai and
lower jci levels with no population in the intermediate level jbi,
are injected into the doubly resonant cavity at a rate ra and
removed after a time τ, longer than the spontaneous emission
time. During this time each atom nonresonantly interacts with
the two cavity modes of frequencies ν1 and ν2. Moreover, the
upper and lower levels are driven by a strong laser field of am-
plitude Ω and frequency ωd . We treat the movable mirrors as
harmonic oscillators. The doubly resonant cavity is driven by
two additional coherent drives.

The total Hamiltonian of the system in the rotating wave
and dipole approximations is given by (ℏ � 1) [36]

H �
X
j�a;b;c

ωjjjihjj �
X2
j�1

νja
†
j aj

� g1�a1jaihbj � a†1jbihaj� � g2�a2jbihcj � a†2jcihbj�

� i
Ω
2
�e−iωd t jaihcj − h:c� � i

X2
j�1

�εja†j e−iωLj t − h:c:�

�
X2
j�1

�ωmj
b†j bj � Gja

†
j aj�bj � b†j ��; (1)

where ωj�j � a; b; c� are the frequencies of the jth atomic level,
g1�g2� is the coupling strength between the transition jai →
jbi (jbi → jci) and the cavity mode, and aj�a†j � is the

annihilation (creation) operator for the jth cavity mode. ωmj

are the mechanical frequencies, bj�b†j � are the annihilation (cre-
ation) operators for the mechanical modes, and Gj �
�νj∕Lj�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ∕mjωmj

q
is the optomechanical coupling strength,

with Lj and mj being the length of the cavities and the mass

of the movable mirrors, respectively. jεjj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κjPj∕ℏωLj

q
are

the amplitudes of the lasers that drive the doubly resonant cav-
ity, with κj, Pj, and ωLj being the damping rates of the cavities,
the power, and the frequencies of the pump lasers, respectively.
In Eq. (1), the first line represents the free energy of the atom
and the cavity modes, and the terms in the second line describe
the atom–cavity mode interactions. The first term in the third
line describes the coupling of the levels jai and jci by a strong
laser, while the second term represents the coupling of the ex-
ternal laser drives with the cavity modes. The first and second
terms in the fourth line represent the free energy of the
mechanical oscillators and the optomechanical couplings, re-
spectively.

Using the fact that jaihaj � jbihbj � jcihcj � 1, the free
Hamiltonian for the atom and cavity modes can be written
(dropping the constant ℏωc) as H 0

0 ≡ �ωa − ωc�jaihaj�
�ωb − ωc�jbihbj � ν1a

†
1a1 � ν2a

†
2a2. In view of this, the total

Hamiltonian H can be rearranged as H � H 0 �HI :

H 0 � �ν̃1 � ν̃2�jaihaj � ν̃2jbihbj � ν̃1a
†
1a1 � ν̃2a

†
2a2; (2)

HI � �Δ1 � Δ2�jaihaj � Δ2jbihbj � δν1a
†
1a1 � δν2a

†
2a2

� g1�a1jaihbj � a†1jbihaj� � g2�a2jbihcj � a†2jcihbj�

� i
Ω
2
�e−iωd t jaihcj − h:c� � i

X2
j�1

�εja†j e−iωLj t − h:c:�

�
X2
j�1

�ωmj
b†j bj � Gja

†
j aj�bj � b†j ��; (3)

where H 0�H 0
0−�ν̃1� ν̃2�jaihaj− ν̃2jbihbj−δν1a†1a1−δν2a†2a2,

Δ1 � ωab − ν̃1, and Δ2 � ωbc − ν̃2, with ωab � ωa − ωb and
ωbc � ωb − ωc being the frequencies for the jai → jbi and

(a) (b)

Fig. 1. (a) Schematic of a two-mode correlated spontaneous emission laser coupled to movable mirrors of mechanical frequencies ωm1
and ωm2

.
The doubly resonant cavity is driven by two external lasers of frequency ωL1 and ωL2 , and the cavity modes, filtered by a beam splitter (BS), are
coupled to their respective movable mirrors. (b) The gain medium of the laser system is an ensemble of three-level atoms in a cascade configuration
injected at a rate ra into the cavity in a coherent superposition of the upper jai and lower jci levels. An external laser drive of amplitude Ω and
frequency ωd is also applied to generate two-photon coherence by coupling the upper jai and lower jci levels.
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jbi → jci transitions, respectively. Here we have introduced
the shifted cavity mode frequencies ν̃j ≡ νj − δνj; the shifts δνj
will be defined later in Sections 5 and 6. Now the interaction
picture Hamiltonian can be derived using the unitary transfor-
mation H � eiH 0tH I e−iH 0t � H1 �H2:

H1 � �Δ1 � Δ2�jaihaj � Δ2jbihbj � i
Ω
2
�jaihcj − jcihaj�

� g1�a1jaihbj � a†1jbihaj� � g2�a2jbihcj � a†2jcihbj�;
(4)

H2 �
X2
j�1

�ωmj
b†j bj � δνja

†
j aj � Gja

†
j aj�bj � b†j �

� i�εja†j eiδj t − ε�j aje−iδj t��; (5)

where δj � ν̃j − ωLj and we have assumed a two-photon reso-
nance condition ωd � ν̃1 � ν̃2. We represent all terms that in-
volve the atomic state by H1, which will be used to derive the
master equation for the laser system, and the rest of the terms
by H2. This is because it will be convenient to obtain the
reduced master equation for the cavity modes only by tracing
out the atomic states. See the next section for details.

In this work, the main idea is to exploit the two-photon
coherence induced by the laser system to increase the mirror–
mirror entanglement. We show that even though the movable
mirrors are not directly coupled, the two-photon coherence in-
duces an effective coupling between the two mirrors mediated
by the cavity. This coupling strength also depends on the num-
ber of photons in the cavity. In effect, it is possible to improve
the entanglement by increasing the input laser power [see
Figs. 6(b) and 8].

3. MASTER EQUATION FOR THE TWO-MODE
LASER

We next derive the reduced master equation for the cavity fields
using the Hamiltonian in Eq. (4). While there are several ap-
proaches for deriving the master equation, here we employ the
procedure outlined in [36,37]. Suppose that ρAR�t; t j� repre-
sents the density operator at time t for the radiation plus a
single atom in the cavity that is injected at an earlier time t j.
Since the atom leaves the cavity after time τ, it easy to see that
t − τ ≤ t j ≤ t. Thus, the unnormalized density operator for an
ensemble of atoms in the cavity plus the two-mode field at time
t can be written as

ρAR�t� � ra
X
j

ρAR�t; t j�Δt; (6)

where raΔt is the total number of atoms injected into the cavity
in a small time interval Δt . Note that ρAR�t� is normalized to
the total number of atoms. In the limit that Δt → 0, we can
approximate the summation by integration. Differentiating
both sides of the resulting equation yields

d
d t

ρAR�t� � ra
d
d t

Z
t

t−τ
ρAR�t; t 0�dt 0: (7)

In order to include the initial preparation of the atoms into the
dynamics, we expand the right-hand side of Eq. (7):

d
d t

ρAR�t�

� ra

�
�ρAR�t; t� − ρAR�t; t − τ���

Z
t

t−τ

∂
∂t
ρAR�t; t 0�dt 0

�
: (8)

Here ρAR�t; t� represents the density operator for an atom plus
the cavity modes at time t for an atom injected at an “earlier
time” t. Assuming atomic and cavity mode states are uncorre-
lated at the instant the atom is injected into the cavity (Markov
approximation), the density operator for each field–atom pair
can be written as [38] ρAR�t; t� ≡ ρR�t�ρA�0�, where ρR�t� is
the cavity mode density operator and ρA�0� is the initial density
operator for each atom. For simplicity, we further assume that
the states of atomic and cavity modes are uncorrelated just
after the atom is removed from the cavity, i.e., the cavity mode
does not change appreciably because of the interaction with an
atom (or even several atoms) during time τ. This allows us to
write ρAR�t; t − τ� ≡ ρR�t�ρA�t; t − τ�, where ρA�t; t − τ� is the
density operator at time t for an atom injected at t − τ. In the
following, for simplicity of notation, we represent the
density of the operator for the cavity modes by ρ, by dropping
R in ρR for brevity.

In this work, we consider the atoms to be injected into the
cavity in a coherent superposition of the upper jai and lower jci
levels, that is, jψA�0�i � cajai � cc jci. The corresponding
initial density matrix of the atom then has the form
ρA�0��jψAihψAj�ρ�0�aa jaihaj�ρ�0�cc jcihcj��ρ�0�ac jaihcj�h:c:�,
where ρ�0�aa � jcaj2 and ρ�0�cc � jcc j2 are the upper- and lower-
level initial populations and ρ�0�ac � c�a cc is the initial two-
photon atomic coherence. Such a coherence has been shown
to produce two-mode squeezing and entanglement between
the cavity modes [28–31]. Here we exploit this coherence to
generate entanglement between the movable mirrors instead.

Using the assumption that the atom and the cavity field
state are uncorrelated at the time of injection and when
the atom leaves the cavity, Eq. (8) can be put in the
form

d
d t

ρAR�t� � ra

�
�ρA�0� − ρA�t − τ��ρ�

Z
t

t−τ

∂
∂t
ρAR�t; t 0�dt 0

�
:

(9)

Furthermore, the time evolution of the density operator
ρAR�t; t 0� has the usual form ∂ρAR�t; t 0�∕∂t �
−i�H1; ρAR�t; t 0��, which together with ∂ρAR�t�∕∂t �
ra
R
t
t−τ�∂ρAR�t; t 0�∕∂t�dt 0 leads to
d
d t

ρAR�t� � ra�ρA�0� − ρA�t − τ��ρ − i�H1; ρAR�t��: (10)

We are interested in the dynamics of the cavity modes only. As
such, we trace the atom plus field density operator over the
atomic variables to find

d
d t

ρ�t� � −iTrA�H1; ρAR�t��; (11)

where we have used the fact that TrA�ρA�0�� �
TrA�ρA�t − τ�� � 1. Substituting the Hamiltonian H1 in
Eq. (11) and performing the trace operation, we obtain
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d
d t

ρ�t� � −ig1�a1ρba − ρbaa1 � a†1ρab − ρaba
†
1�

− ig2�a2ρcb − ρcba2 � a†2ρbc − ρbca
†
2�

� κ1L�a1�ρ� κ2L�a2�ρ: (12)

The Lindblad dissipation terms [39] in the last line, with κj
being the cavity damping rates, are added to account for the
damping of the cavity modes by thermal reservoirs. The explicit
form of these terms will be given later [see Eq. (26)]. The
next step in the derivation of the master equation is to obtain
conditioned density operators, ρab � hajρARjbi and ρbc �
hbjρARjci, and their complex conjugates that appear in
Eq. (12). To this end, we return to Eq. (10) and solve for these
elements. Now multiplying Eq. (10) on the left by hl j and on
the right by jki, where l ; k � a; b; c, and assuming that the
atom decays to energy levels other than the three lasing levels
when it leaves the cavity, i.e., hl jρA�t − τ��jki � 0, we obtain

d
dt

ρl k�t� � raρ
�0�
lk ρ − ihl j�H1; ρAR�t��jki − γlkρlk : (13)

We phenomenologically included the last term to account for
the spontaneous emission and dephasing processes. γl ≡ γl l
are the atomic spontaneous emission rates, and γlk�l ≠ k� are
the dephasing rates. Thus, using Eq. (13), the equations for ρab
and ρbc are

_ρab � −�γab � iΔ1�ρab � ig1�ρaaa1 − a1ρbb�

� ig2ρaca
†
2 �

Ω
2
ρcb; (14)

_ρbc � −�γbc � iΔ2�ρbc � ig2�ρbba2 − a2ρcc�

− ig1a
†
1ρac −

Ω
2
ρba: (15)

Here γab and γbc are the dephasing rates for single-photon
“coherences” ρab and ρbc , respectively.

To proceed further, we apply a linearization scheme, which
amounts to keeping terms only up to the second order in the
coupling strength, gj in the master equation. This can be imple-
mented by first writing the equations of motion for ρaa; ρcc ; ρac ,
and ρbb to the zeroth order in the coupling strength gj and
substituting them in Eqs. (14) and (15) so that ρab and ρbc
will be first order in gj. Therefore, when the expressions for
ρab and ρbc are substituted in Eq. (12), the resulting master
equation is second order in gj. Using Eq. (6), the equations
for ρaa; ρcc ; ρbb, and ρac to the first order in gj read

_ρaa � raρ
�0�
aa ρ�Ω

2
�ρca � ρac� − γaρaa; (16)

_ρcc � raρ
�0�
cc ρ −

Ω
2
�ρac � ρca� − γcρcc ; (17)

_ρbb � −γbρbb; (18)

_ρac � raρ
�0�
ac ρ�Ω

2
�ρcc − ρaa� − �γac � i�Δ1 � Δ2��ρac ; (19)

where γj�j � a; b; c� are the jth atomic-level spontaneous emis-
sion decay rates and γac is the two-photon dephasing rate. We

next apply the good-cavity approximation, where the cavity
damping rates κj are much smaller than the spontaneous emis-
sion rates γj, κj ≪ γj. We also assume that κj < ra. In this
limit, the cavity modes vary more slowly than the atomic states,
and thus the atomic states reach steady state in a short time.
The time derivatives of such states can be set to zero while keep-
ing the cavity-mode states time dependent, which is frequently
called the adiabatic approximation. After setting the time deriv-
atives in Eqs. (16)–(19) to zero we obtain

ρaa �
raρ
d

Zaa; ρcc �
raρ
d

Z cc ;

ρac �
raρ
d

Zac; ρbb � 0;

Z aa �
1

2
fγcχ�1 − η� �Ω2γac∕2� γcγacΩ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
g;

Z cc �
1

2
fγaχ�1� η� �Ω2γac∕2� γaγacΩ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
g;

Z ac �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
8�γac � i�Δ1 � Δ2��

f4μ −Ω2γac�γa � γc�

−
χΩ

4�γac � i�Δ1 � Δ2��
��1 − η�γb − �1� η�γa�;

with χ � γ2ac � �Δ1 � Δ2�2 and d � γaγcχ �Ω2γac�γa�
γc�∕2. In order to represent the initial state of the atoms with
a single parameter, we have introduced a new variable
η ∈ �−1; 1� such that the initial populations and coherence
are given by ρ�0�aa � �1 − η�∕2; ρ�0�cc � �1� η�∕2 and initial
coherence ρ�0�ac �

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
∕2, respectively. Applying the

adiabatic approximation in Eqs. (14) and (15) and using the
expressions for ρaa; ρbb; ρcc , and ρac , we obtain, after some
lengthy algebra,

−ig1ρab � ξ11ρa1 � ξ12ρa
†
2; (20)

ig2ρbc � ξ22a2ρ� ξ21a
†
1ρ; (21)

ξ11 �
g21ra
ϒd

�
�γbc − iΔ2�Zaa �

Ω
2
Z �

ac

�
; (22)

ξ12 �
g1g2ra
ϒd

�
�γbc − iΔ2�Zac �

Ω
2
Z cc

�
; (23)

ξ21 �
g1g2ra
ϒ�d

�
�γab − iΔ1�Zac −

Ω
2
Zaa

�
; (24)

ξ22 �
g22ra
ϒ�d

�
�γab − iΔ1�Zcc −

Ω
2
Z �

ac

�
; (25)

where ϒ � �γab � iΔ1��γbc − iΔ2� �Ω2∕4. Thus, substitut-
ing Eqs. (20) and (21) into Eq. (12), we obtain the master
equation for just the cavity modes:
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d
dt

ρ � ξ11�a†1ρa1 − ρa1a†1� � ξ�11�a†1ρa1 − a1a†1ρ�

� ξ22�a2ρa†2 − a†2a2ρ� � ξ�22�a2ρa†2 − ρa†2a2�
� ξ12�a†1ρa†2 − ρa†2a†1� � ξ�12�a2ρa1 − a1a2ρ�
� ξ21�a†1ρa†2 − a†2a†1ρ� � ξ�21�a2ρa1 − ρa1a2�

� 1

2

X2
i�1

κi ��N i � 1��2aiρa†i − a†i aiρ − ρ̂a†i ai�

� N i�2a†i ρai − aia†i ρ − ρaia†i ��: (26)

Here we included the damping of the cavity modes by two in-
dependent thermal reservoirs with mean photon number N j.
Note that the terms proportional to Re�ξ11� give rise to gain for
the first cavity mode, while Im�ξ11� yields a frequency shift.
The terms proportional to Re�ξ22� result in loss of the second
cavity mode, while Im�ξ22� produces a frequency shift. The
terms proportional to ξ12 and ξ21 represent the correlation
between the two cavity modes, which are known to produce
two-mode squeezing and entanglement between the cavity
modes [28–31]. In this work, we now exploit this correlation
to entangle the movable mirrors of the doubly resonant cavity.

4. QUANTUM LANGEVIN EQUATIONS

To analyze the bistability and entanglement between the two
movable mirrors, it is more convenient to use the quantum
Langevin approach. In this respect, we derive the quantum
Langevin equation for the atom–cavity mode and the optome-
chanical system separately. This is justified if the atom–field
coupling is much stronger than the optomechanical coupling,
which is the regime considered in this work. The contribution
of the laser system (without mechanical oscillators) to the
Langevin equations for the cavity field is derived from the
master equation [Eq. (26)] using h_oi � Tr�_ρo�; �o � a1; a2�
and removing the bracket from the resulting equations by
adding appropriate noise operators F j with vanishing mean
hF ji � 0 [36]:

_a1 � −
1

2
�κ1 − 2ξ11�a1 � ξ12a

†
2 � F 1; (27)

_a2 � −
1

2
�κ2 � 2ξ22�a2 − ξ21a†1 � F 2: (28)

The correlation properties of the noise operators can be ob-
tained by using Einstein relations [24]: hDo1o2i � d

d t ho1o2i −
h�_o1 − Fo1�o2i − ho1�_o2 − Fo2�, where hDo1o2i is the diffusion
coefficient (with oj � aj; a

†
j ). Using this relation and the equa-

tions for second-order moments of the cavity mode operators
aj, the nonvanishing correlation properties of the noise
operators are:

hF †
1�t�F 1�t 0�i � �κ1N 1 � 2Re�ξ11��δ�t − t 0�; (29)

hF 1�t�F †
1�t 0�i � κ1�N 1 � 1�δ�t − t 0�; (30)

hF †
2�t�F 2�t 0�i � κ2N 2δ�t − t 0�; (31)

hF 2�t�F †
2�t 0�i � �κ2�N 2 � 1� � 2Re�ξ22��δ�t − t 0�; (32)

hF 2�t�F 1�t 0�i � −�ξ12 � ξ21�δ�t − t 0�: (33)

Now adding the contribution of the optomechanical coupling
[Eq. (5)] to the Langevin equations, we obtain the following
equations for the cavity mode and mechanical mode operators:

_a1 � −

�
κ1
2
� iδν1 − ξ11

�
a1 � ξ12a

†
2 − iG1a1�b†1 � b1�

� ε1eiδ1t � F 1; (34)

_a2 � −

�
κ2
2
� iδν2 � ξ22

�
a2 − ξ21a

†
1 − iG2a2�b†2 � b2�

� ε2eiδ2t � F 2; (35)

_bj � −iωmj
bj −

γmj

2
bj − iGja

†
j aj �

ffiffiffiffiffiffi
γmj

p
f j; (36)

where f j are the noise operators for the mechanical oscillators
with zero mean and the following nonvanishing correlation
properties:

hf †
j �t�f j�t 0�i � njδ�t − t 0�;

hf j�t�f †
j �t 0�i � �nj � 1�δ�t − t 0�; (37)

where n−1j � exp�ℏωmj
∕kBT j� − 1, kB is the Boltzmann con-

stant, and T j is the temperature of the jth thermal phonon bath.
In the following sections, Eqs. (34)–(36) will be used to study the
bistability and entanglement between the two movable mirrors.

5. BISTABILITY OF INTRACAVITY MEAN
PHOTON NUMBERS

Here we discuss the effect of the coupling induced by the two-
photon coherence on the bistability of the mean intracavity
photon numbers. It is well known that the usual single-mode
dispersive optomechanical coupling gives rise to an S-shaped
bistability in the mean cavity photon number in the red-
detuned frequency regime [12,35]. The bistability behavior
can be studied from the steady-state solutions of the expecta-
tion values of Eqs. (34)–(36). This can be done by first choos-
ing a rotating frame defined by ãj � aje−iδj t and by writing
ãj � hãji � δãj and bj � hbji � δbj. In this transformed
frame, the equations for both the fluctuations δãj and classical
mean values hãji have a coupling between the two cavity modes
(terms proportional to ξ12 and ξ21) that contains highly oscil-
lating factors exp�−i�δ1 � δ2�t �. To obtain solutions for hãji in
the steady state, one must either make the RWA, which
amounts to dropping the highly oscillating terms completely,
or choose a condition such that δ2 � −δ1 and retain the cou-
pling terms. (It is important to mention here that we do not
make the RWA in the equations for the fluctuation δãj, which
is later used to study mirror–mirror entanglement.) In the
following, we consider both cases and study the bistability
of the intracavity photon numbers.

Rotating wave approximation (RWA). If we drop the highly
oscillating terms (RWA) in the transformed Langevin equations
for hãji, we obtain the steady-state solutions for hbji and haji:
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hb†j � bji � −
2ωmj

GjI j
γ2mj

∕4� ω2
mj

; (38)

hãji �
εj

iδj � �−1�jξjj � κj∕2
; (39)

where I j � jhãjij2 are the steady-state intracavity mean photon
numbers and δj � νj − ωLj � Gjhbj � bji are the cavity mode
detunings. Here we have chosen δνj ≡ Gjhb†j � bji to be the
frequency shift due to radiation pressure. The equations for
the intracavity mean photon numbers have the implicit form

I j

				i�δ0j − βjI j�2 � κj
2
� �−1�jξjj

				
2

� jεjj2; (40)

where δ0j � νj − ωLj and βj � �2ωmj
G2

j �∕�γ2mj
∕4� ω2

mj
�.

These are the standard equations for S-shaped bistabilities
for intracavity intensities in an optomechanical system, with
effective cavity damping rates kj � 2�−1�jξjj. Note that because
of the RWA, there is no coupling between the intensities of the
cavity modes that is due to the two-photon coherence induced
in the system.

Let us set realistic parameters from recent experiments
[40,41]: mass of the mirrors m � 145 ng, cavity lengths
L1 � 112 μm, L2 � 88.6 μm, pump laser wavelengths
λ1 � 810 nm, λ2 � 1024 nm, rate of injection of atoms
ra � 1.6 MHz, mechanical oscillator damping rates γm1

�
γm2

� 2π × 60 Hz, mechanical frequencies ωm1
� ωm2

�
2π × 3 MHz, and dephasing and spontaneous emission rates
for the atoms γac � γab � γbc � γa � γb � γc � γ �
3.4 MHz. In this paper, we considerΔ1 � Δ2 � 0 for the sake
of simplicity.

To illustrate the bistability behavior, we plot, in Fig. 2(a),
the steady-state mean photon number for the first cavity mode
I 1 as a function of the laser detuning and the cavity drive laser
power P1. This figure reveals a large bistable regime (the
meshed area) for a wide range of the drive laser power. As
expected [12,35], the bistable behavior only exists for the

red-detuned (δ01 > 0) frequency range (notice that because
of our definition of δ0j � νj − ωLj , red-detuned occurs for pos-
itive detuning, which is the opposite of the usual convention
[35]). The cross section of the phase diagram at different de-
tunings, shown in Fig. 2(b), indicates the S-shaped bistable
behavior of the intracavity mean photon number I1. We also
observe that the bistable region widens with increasing detun-
ing and drive laser power. Similar plots for the mean photon
number I 2 show bistability for a wide range of detunings at a
power one order of magnitude larger than was needed to
achieve the bistability of I 1, but we omit them here.

Beyond rotating wave approximation. It is interesting to study
the bistability behavior of the intracavity mean photon num-
bers in the nonrotating wave approximation, because it allows
us to see the effect of the two-photon coherence. Note that to
analyze the bistability in this regime, it is convenient to work in
the rotating frame defined by the bare cavity frequencies νj,
which is equivalent to choosing δνj � 0 in the Hamiltonian
given by Eq. (5). Thus, the condition for retaining the
counter-rotating terms in the Langevin equations for ãj
becomes δ02 � −δ01 ≡ −δ0. With this choice of detuning,
we obtain the expectation values of the cavity mode operators:

hã1i �
ε1α

�
2 � ε2ξ12

α1α
�
2 � ξ12ξ

�
21

; (41)

hã2i �
ε2α

�
1 − ε1ξ21

α�1α2 � ξ�12ξ21
; (42)

where α1 � i�δ0 − β1I1� � κ1∕2 − ξ11 and α2 � −i�δ0�
β2I 2� � κ2∕2� ξ22. We see from Eqs. (41) and (42) that
the coupling between hã1i and hã2i is due to ξ12 and ξ21, which
are proportional to the coherence induced either by the cou-
pling of atomic levels by an external laser or by injecting
the atoms in a coherent superposition of upper and lower levels.
Introducing a new variable that relates the cavity drive ampli-
tudes, jε2j � μjε1j ≡ μjεj�P2 ∼ μ2P1�, we obtain coupled
equations for I 1 and I 2:

jα1�I 1�α�2�I2� � ξ12ξ
�
21j2

jα�2�I2� � μξ12j2
I 1 � jεj2; (43)

jα�1�I 1�α2�I 2� � ξ�12ξ21j2
jμα�1�I 1� − ξ21j2

I 2 � jεj2: (44)

To gain insight into the effect of the coupling on the bista-
bility behavior of the cavity modes, we slightly simplify the
above equations by choosing the value of μ2. Let us first
consider the case when μ2 ≪ 1�P2 ≪ P1�. Thus, the denom-
inator in Eq. (44) can be approximated as jμα�1 − ξ21j2 ≈
jμ�−iδ0 � κ1∕2 − ξ�11� − ξ21j2 for μ2β1I 1∕jξ21j2 ≪ 1. In this
case, the ratio of Eqs. (43) and (44) yields a cubic equation
for I2: I 1 � I 2jα�2�I 2� � μξ12j2∕jμ�−iδ0 � κ1∕2 − ξ11�−
ξ21j2. This equation reveals that I 2 can exhibit bistability when
the intensity of the first cavity mode is varied. In Fig. 3(a) we
plot a phase diagram showing steady-state solutions for the first
cavity mode mean photon number I 1. The “tornado”-shaped
center region represents the unstable solutions for positive de-
tuning, while the regions on the left and right areas represent

Δ01 2 3 MHz

2

0

0.00 0.01 0.02 0.03 0.04
0.0

0.5

1.0

1.5

P1 pW

I 1
10

10

(a) (b)

Fig. 2. (a) Phase diagram showing bistability of the intracavity mean
photon number I1 for varying cavity laser detuning δ01 and cavity
drive laser power P1 in RWA. The meshed region shows the unstable
solutions. (b) Cross section of the phase diagram for different values of
cavity laser detuning δ01. Here we have used atom–field couplings
g1 � g2 � 2π × 4 MHz, Ω∕γ � 10, κ1 � κ2 � 2π × 215 kHz,
and when all atoms are initially in their excited state jψ0i �
jai�η � −1�. See text for the other parameters.
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stable solutions. In the vicinity of resonance (δ0 � 0), the
unstable area diminishes. The region of the unstable behavior
widens when the detuning is increased further to large negative
values. The intriguing aspect is that, in contrast to the RWA
case, the bistability occurs at resonance as well as in the blue-
detuned regime (δ0 < 0). Furthermore, these bistabilities occur
at higher pump powers than the positive detunings. The cross
section of the phase diagram at different detunings reveals two
distinct features of the bistability. When δ0 > 0, the system
exhibits the usual S-shaped bistability, as discussed in the
RWA case. However, when δ0 < 0 and above a critical detun-
ing δ0∕2π ≈ 1.1 MHz, the system shows unconventional
bistability with “ribbon”-shaped hysteresis [see Fig. 3(b)]. The
circulation of the intensity shows peculiar behavior: when the
drive laser power is swept to higher powers, the first turning
point A is reached at P ≈ 0.085 pW and the hysteresis then
follows the upward arrow to the upper branch. When the laser
power is decreased to lower values, the hysteresis reaches the
second turning point B�P ≈ 0.022 pW� and the hysteresis
follows the downward arrow to the lower branch.

In Fig. 4, we plot a phase diagram for the mean photon
number of the second cavity mode I 2. Similar to I 1, the mean
photon number I2 exhibits bistability for all values of detuning.
The main difference between the bistability behaviors of I 1
and I2 is that I 2 only exhibits S-shaped bistability, due to the
coupling between I 1 and I 2. This can be understood from the
bistability curve for I 2 when I 1 is varied. When I1 increases
from zero to higher values, I 2 also increases until a turning
point A [the same turning point shown in Fig. 3(b) and that
of the red solid curve in Fig. 4(b)] is reached. The shape of the
hysteresis for I 1 and I 2 is determined by whether the intensities
increase or decrease along the saddle node instability curve [ma-
genta dashed curve in Fig. 4(b)]. Notice that in traversing from
turning point A to B, I 1 decreases but I2 increases. Therefore,
in the plot of I1 versus power P [see Fig. 3(a)], after tuning
point A, I 1 should decrease, going below turning point A until
turning point B, producing the “ribbon”-shaped bistability.
However, since I 2 increases in going from A to B, the saddle

node instability curve in Fig. 4(b) should go above turning
point A until it reaches B, creating the S-shaped bistability.

We next consider the case when μ2 ≫ 1�P2 ≫ P1�. In this
case, the denominator in Eq. (41) can be approximated as
jα�2 � μξ12j2 ≈ jiδ0 � κ2∕2� ξ22 � μξ12j2, assuming that
β2I 2∕�μ2jξ12j2� ≪ 1. Then the ratio of Eqs. (41) and (42)
gives a relation between I 1 and I2: I2 � I 1jμα�1�I 1�−
ξ21j2∕jiδ0 � κ2∕2� ξ22 � μξ12j2. Therefore, I 1 can exhibit
bistability behavior when I 2 is varied. Our numerical simula-
tions (not shown here) reveal that both I 1 and I2 exhibit
bistabilities for all values of detuning. However, for μ2 ≫ 1, the
role of I1 and I 2 is interchanged: I1 shows only S-shaped
bistability, while I2 exhibits both S-shaped and unconventional
bistability. In contrast to the case of μ2 ≪ 1, the anomalous
bistability emerges in the red-detuned (δ0 > 0) frequency
range.

These rich features of intracavity mean photon number
bistabilities are observed only if we do not make the RWA in
the steady-state classical equations. This is because the RWA
drops the terms that couple the two cavity modes that are in-
duced by the two-photon coherence, which is the main source
of unconventional bistabilities. These unconventional bistabil-
ities can be measured experimentally by measuring the field
leaking out from the cavity. We expect that the transmitted
field will also exhibit bistability due to the linear input–output
relation [38].

6. ENTANGLEMENT OF MOVABLE MIRRORS

In this section we study the entanglement of the movable mirrors
of the doubly resonant cavity in the adiabatic regime. It has
been shown that the cavity modes of the laser system are
entangled [28–31] due to the two-photon coherence induced
by either strong external drive or initial coherent superposition
of atomic levels. Here we exploit this field–field entanglement to
entangle the movable mirrors of the doubly resonant cavity.
Optimal entanglement transfer from the two-mode cavity field
to the mechanical modes is achieved in the adiabatic limit, when
the movable mirrors adiabatically follow the cavity fields,

(a) (b) (c)

Fig. 3. (a) Phase diagram for mean photon number for the first cavity mode I1 showing instability regions. The “tornado”-shaped center area
represents the unstable regime. Notice that the bistability appears for all values of detuning, which is in stark contrast to the usual red-detuned
condition being required to observe bistability in single-mode optomechanics [12,35]. (b) Cross section of the phase diagram at δ0∕2π �
−1.75 MHz showing anomalous “ribbon”-shaped hysteresis due to the intermode coupling induced by the two-photon coherence. The area between
the turning points represents the unstable regime, while the magenta dashed curve shows the saddle node instability. The arrows show the hysteresis
for the circulation of the optical intensity. (c) Cross section of the phase diagram at δ0 � 0 (blue dashed curve) and δ0∕2π � 1.75 MHz (black
dot-dashed curve) showing the usual S-shaped bistability. Here we have used Ω∕γ � 10, μ � 0.1�P2 � 0.08P1�, and atoms are initially injected
into the cavity in state jci�η � 1�. See text and Fig. 2 for the other parameters.
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κj ≫ γmj
[4,8], which is the case for mirrors with a high

mechanical Q factor and weak effective optomechanical
coupling.

Using the standard linearization procedure and transforming
back (see Section 5) to the original rotating frame by introducing
δaj � δãjeiδj t and defining b̃j � bj exp�iωmj

t�, we obtain

δ_a1 � −
κ 01
2
δa1 � ξ12δa

†
2 − iG1hã1i�δb1e−i�ωm1−δ1�t

� δb†1e
−i�ωm1�δ1�t� � F 1; (45)

δ_a2 � −
κ 02
2
δa2 − ξ21δa

†
1 − iG2hã2i�δb2e−i�ωm2−δ2�t

� δb†2e
−i�ωm2�δ2�t� � F 2; (46)

δ _̃bj � −
γmj

2
δb̃j − iGjhãjiδa†j ei�ωmj�δj�t

− iGjhã†j iδajei�ωmj −δj�t � ffiffiffiffiffiffi
γmj

p
f j; (47)

where κ 01 � κ1 − 2ξ11 and κ 02 � κ2 � 2ξ22. Here hãji is given
by Eq. (39), which is obtained in the RWA.We have deliberately
made the RWA to obtain the steady-state solutions that would
give stable solutions when choosing the effective detuning
δj � 	ωmj

. For δj � 	ωmj
, the bistability of I j completely dis-

appears, i.e., Eq. (39) becomes intensity independent. As men-
tioned earlier, no RWA has been made in the fluctuation
equations, so that the coupling terms (proportional to ξ12
and ξ21) induced by the two-photon coherence are retained.
In an optomechanical coupling when δj � ωmj

, the interaction
describes parametric amplification and can be used to generate
optomechanical squeezing [35], and when δj � −ωmj

, the inter-
action is relevant for quantum state transfer [4,8,35] and cooling.
Since we are interested in transferring the entanglement between
the modes of the cavity to the mechanical modes, we
choose δj � −ωmj

.
Setting δj � −ωmj

and applying adiabatic approximation to
the resulting δaj equations, we obtain coupled Langevin
equations for b̃j:

δ _̃b1 � −
Γ1

2
δb̃1 − G12δb

†
2 � v1F 1 � v2F

†
2 �

ffiffiffiffiffiffiffi
γm1

p f 1;

δ _̃b2 � −
Γ2

2
δb̃2 � G21δb

†
1 − u1F

†
1 � u2F 2 � ffiffiffiffiffiffiffi

γm2

p f 2;

where Γj � γmj
� Γbj with Γb1 � 4G2

1κ
0
2∕K and Γb2 �

4G2
2κ

0
1∕K , with K � κ 01κ

0
2 � 4ξ12ξ21, are the effective damp-

ing rates for the mechanical modes induced by the radiation
pressure; G12 � 4ξ12G1G2∕K and G21 � 4ξ21G1G2∕K are
the effective coupling between the two mechanical modes
induced by the laser system and v1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γb1κ

0
2∕K

p
, v2 �

2ξ12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γb1∕κ

0
1K

p
, u1�2ξ21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γb2∕κ

0
1K

p
, and u2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γb2κ

0
1∕K

p
.

Here we have introduced many-photon coupling Gj �
Gj

ffiffiffiffiffiffiffiffiffiffijhãjij
p

≡ Gj
ffiffiffiffi
I j

p
by choosing the phase of the cavity laser

drives such that hãi � −ijhãij [4]. Note that since we have
chosen Δ1 � Δ2 � 0, for the sake of simplicity, ξjj and ξij
are real.

To analyze the entanglement between the two mechanical
modes, it is convenient to use quadrature operators defined as
δqj � �δb̃j � δb̃†j �∕

ffiffiffi
2

p
and δpj � i�δb̃†j − δb̃j�∕

ffiffiffi
2

p
. We also

introduce the corresponding noise operators f qi
, f pi

and
Fxi ; F yi , defined in a similar way. The equations for the these
quadrature operators are

δ_q1 � −
Γ1

2
δq1 − G12δq2 � F̃ q1 ; (48)

δ_p1 � −
Γ1

2
δp1 � G12δp2 � F̃ p1 ; (49)

δ_q2 � −
Γ2

2
δq2 � G21δq1 � F̃ q2 ; (50)

δ_p2 � −
Γ2

2
δp2 − G21δp1 � F̃ p2 ; (51)

where F̃ q1 � v2Fp2 � v1Fq1 �
ffiffiffiffiffiffiffi
γm1

p f q1
, F̃ p1 � −v2Fp2�

v1Fp1 �
ffiffiffiffiffiffiffi
γm1

p f p1
, F̃ q2 � u2Fq2 − u1Fq1 �

ffiffiffiffiffiffiffi
γm2

p f q2, and

(a) (b) (c)

Fig. 4. (a) Phase diagram for mean photon number for the second cavity mode I 2 showing instability regions. The “tornado”-shaped area rep-
resents the unstable regime. Notice that the bistability again appears for all values of detuning. (b) Cross section of the phase diagram at δ0∕2π �
−1.75 MHz (red solid curve), with the magenta dashed curve showing the saddle node instability and δ0 � 0 (blue dashed curve) and δ0∕2π �
1.75 MHz (black dot-dashed curve) showing the usual S-shaped bistability. (c) Intracavity mean photon number for second mode I 2 versus the
mean photon number for the first cavity mode I 1, indicating that I2 exhibits S-shaped bistability behavior when I 1 is varied, and only in the red-
detuned (δ0 < 0) frequency range. The arrows indicate the hysteresis for the flow of intensities when I1 is varied with turning points A and B, which
are the same turning points shown in Figs. 3(b) and 4(b). The magenta dashed curve shows the saddle node instability. The blue dashed (δ0 � 0)
and the black dot-dashed (δ0∕2π � 1.75 MHz) curves do not show bistability. Here we have used Ω∕γ � 10, μ � 0.1�P2 � 0.08P1�, and atoms
are initially injected into the cavity in state jci�η � 1�. See text and Fig. 2 for the other parameters.
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F̃ p2 � u2Fp2 � u1Fp1 �
ffiffiffiffiffiffiffi
γm2

p f p2. Alternatively, the above
equations can be written in a matrix form as

_U �t� � RU �t� � ζ�t�; (52)

R �

0
BB@

−Γ1∕2 0 −G12 0
0 −Γ1∕2 0 G12

G21 0 −Γ2∕2 0
0 −G21 0 −Γ2∕2

1
CCA; (53)

and U �t� � �δq1; δp1; δq2; δp2�T and ζ�t� � �F̃ q1 ; F̃ p1 ;
F̃ q2 ; F̃ p2�T .

In this section, we focus on the steady-state entanglement
between the mechanical modes. To this end, one needs to
find a stable solution for Eq. (52) so that it reaches a unique
steady state independent of the initial conditions. Since we have
assumed the quantum noises f qj

; f pj
, Fxj , and Fyj to be zero-

mean Gaussian noises and the equations for fluctuations
�δqj; δpj� are linearized, the quantum steady state for fluctua-
tions is simply a zero-mean Gaussian state, which is fully
characterized by a correlation matrix V ij � �hUi�∞�U j�∞��
U j�∞�Ui�∞�i�∕2. For fixed realistic parameters mentioned in
this section, we have chosen externally controllable parameters
such as Ω, the powers of the cavity drive lasers, and the initial
state of the atoms for which the system is stable. Thus, for all
results presented in this section, the system is stable and the
correlation matrix satisfies the Lyapunov equation:

RV � V RT � −D; (54)

D �

0
B@

A1 0 A3 0
0 A1 0 −A3

A3 0 A2 0
0 −A3 0 A2

1
CA; (55)

where A1 � κ11v21 � κ22v22 − 2β12v1v2 � γm1
�2n1 � 1�, A3 �

β12�u1v2 − u2v1� � κ22u2v2 − κ22u1v1, and A2 � κ11u21�
κ22u22 � 2β12u1u2 � γm2

�2n2 � 1�∕2, with κjj ≡ �κj�2N j �
1� � 2Re�ξjj��∕2 and β12 ≡ Re�ξ12 � ξ21�∕2.

In order to quantify the two-mode entanglement, we
employ the logarithmic negativity EN , a quantity that has been
proposed as a measure of bipartite entanglement for Gaussian
states [42]. For continuous variables, EN is defined as

EN � max�0; − ln 2Λ�; (56)

where Λ � 2−1∕2�σ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 4 det V

p
�1∕2 is the smallest sim-

plistic eigenvalue of the partial transpose of the 4 × 4 correla-
tion matrix V with σ � det V A � det V B − 2 det V AB . Here
V A and V B , respectively, represent the first and second
mechanical modes, while V AB describes the correlation
between them. These matrices are elements of the 2 × 2 block
form of the correlation matrix

V ≡
�

V A V AB
V T

AB V B

�
: (57)

The movable mirrors are entangled when the logarithmic neg-
ativity EN is positive.

In Fig. 5 we plot the logarithmic negativity EN versus the
cavity drive lasers’ powers P1 and P2 when all atoms are in-
jected in their upper level jai (η � −1), for thermal phonon

numbers n1 � n2 � 100 and thermal photon numbers
N 1 � N 2 � 1. The two movable mirrors are entangled for
a wide range of the drive lasers’ powers. Maximum entangle-
ment is achieved slightly below the diagonal of the phase dia-
gram, i.e., when drive laser power P1 is slightly higher than P2.
This can be explained by the fact that the effective couplings
G12 and G21 between the two mechanical mirrors can be
enhanced because they directly rely on the mean number of
photons I j, or the cavity drive lasers’ powers.

We next examine the entanglement generated by either the
driven or injected coherence separately. First, we consider the
contribution of the injected coherence characterized by the ini-
tial states of the three-level atoms, i.e., η to the entanglement of
the mirrors. Figure 6(a) displays the phase diagram of logarith-
mic negativity as a function of the cavity drive laser power P
(assumed to be the same for both laser drives) and η. This figure

Fig. 5. Entanglement of movable mirrors. Logarithmic negativity
EN versus the cavity drive lasers’ powers P1 and P2 for thermal pho-
non numbers n1 � n2 � 100 and thermal photon numbers
N 1 � N 2 � 1, normalized drive laser amplitude Ω∕γ � 6, η � −1
(more atoms are injected in their upper level jai), atom–field coupling
constants g1 � g2 � 2π × 2.5 MHz, and cavity damping rates κ1 �
2π × 215 kHz and κ2 � 2π × 430 kHz. See text and Fig. 5 for the
other parameters.

Fig. 6. Entanglement of movable mirrors with injected coherence
only (Ω � 0). Logarithmic negativity EN versus the cavity drive laser
power P and initial state of the atoms η for thermal phonon numbers
n1 � n2 � 100 and thermal photon numbers N 1 � N 2 � 1. See
text and Fig. 5 for the other parameters.
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reveals two blocks of parametric regimes showing entanglement
of the two movable mirrors. The lower block appears around
the maximum initial coherence η � 0 [corresponds to
jψA�0�i � �jai � jci�∕ ffiffiffi

2
p �], while the second block appears

for η > 0, which corresponds to more atoms in the lower level
than the upper level. It is somewhat counterintuitive that the
maximum entanglement does not occur when the injected
coherence is maximum. Instead, the maximum mirror–mirror
entanglement is achieved around η � 0.36, which corresponds
to more atoms populating the upper level.

Figures 7(a) and 7(b) show the dependence of the entangle-
ment on the temperature of the environment. When the
cavity drive lasers’ power is fixed at P � 200 mW and the
temperature of the thermal phonon bath is zero T � 0 K
�n1 � n2 � 0�, the mirrors become disentangled at N ≈ 3.5.
The range of N for which the entanglement exists is weakly
dependent on the drive power strength. However, when the
thermal photon bath is at a temperature of zero, N � N 1 �
N 2 � 0, the mirror–mirror entanglement persists up to a tem-
perature T ≲ 12 K of the thermal phonon bath, which is two
orders of magnitude larger than the ground state temperature of
the movable mirrors. The entanglement can even survive at
higher temperatures if the drive laser power is increased. It
is worth mentioning that the entanglement generated when
more atoms are initially in the lower level (η ≳ 0.3) is more
robust than that created around the maximum coherence
η ∼ 0. Therefore, the entanglement is robust against the ther-
mal phonons’ temperature, but substantially more sensitive to
the thermal photons’ temperature.

Next, we consider the entanglement generated solely due to
the driven coherence by assuming atoms are injected into the
cavity in their upper level. Figure 8 shows the entanglement of
the movable mirrors due to the driven coherence and when all
atoms are injected in their upper level jai�η � −1�, or without

injected coherence (ρ�0�ac � 0). There exists a minimum
strength of the cavity laser drives for which the mirror–mirror
entanglement appears. The movable mirrors remain entangled
for a wide range of the strength of the laser drives, with
the maximum entanglement appearing at around Ω ≈ 4.5γ.
The degree of the entanglement increases with increasing
power of the cavity drive lasers and saturates (not shown)
at P ≈ 80 mW.

Finally, we studied the environmental temperature depend-
ence of the mirror–mirror entanglement due to driven coher-
ence and when all atoms are injected in the upper level.
Our numerical simulations (see Fig. 9) show that at zero
thermal phonon temperature and fixed cavity drive power
P � 200 mW, the entanglement decreases gradually with
the number of thermal photons and eventually disappears.
We note that the entanglement is more susceptible to thermal

Fig. 7. Environment temperature dependence of the mirror–mirror
entanglement with injected coherence only (Ω � 0). (a) Logarithmic
negativity EN versus initial state of the atoms η and thermal photon
numbers N when the temperature of the thermal phonon bath is
zero, T � 0 K�n1 � n2 � 0�; (b) logarithmic negativity EN versus
the initial state of the atoms η and the temperature T of the thermal
phonon bath when the thermal photon bath is at zero temperature
(N � N 1 � N 2 � 0). The cavity drive lasers power is fixed
at P � P1 � P2 � 200 mW. See text and Fig. 5 for the other
parameters.
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Fig. 8. Entanglement of movable mirrors with driven coherence
only. Logarithmic negativity EN versus the cavity drive laser power
P and normalized drive amplitude Ω∕γ for thermal phonon numbers
n1 � n2 � 100 and thermal photon numbers N 1 � N 2 � 1, in the
absence of injected coherence η � −1 (all atoms are injected in the
their upper level). See text and Fig. 5 for the other parameters.

Fig. 9. Environment temperature dependence of the mirror–mirror
entanglement with driven coherence only. (a) Logarithmic negativity
EN versus the normalized drive amplitude Ω∕γ of the coherent drive
(for atoms) and the thermal photon numbers N when the temperature
of the thermal phonon bath is zero, T � 0 K�n � n1 � n2 � 0�;
(b) logarithmic negativity EN versus Ω∕γ and the temperature T
of the thermal phonon bath when the photon bath is at zero temper-
ature (N � N 1 � N 2 � 0). The cavity drive laser power is fixed at
P � P1 � P2 � 200 mW and atoms are injected in their upper state
(η � −1). See text and Fig. 5 for the other parameters.
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photons at higher values of the drive laser amplitude, Ω.
However, when the number of thermal photons is zero
(N � N 1 � N 2 � 0), the entanglement persists for temper-
atures of the phonon thermal bath up to 12 K. This reveals
that the entanglement generated using either injected or driven
coherence disappears at the same range of phonon bath temper-
atures.

7. CONCLUSION

We analyzed the optical bistability and entanglement between
two mechanical oscillators coupled to the cavity modes of a
two-mode laser via radiation pressure using parameters from
recent experiments. In stark contrast to the usual S-shaped
bistability observed in single-mode optomechanics, we find
that the optical intensities of the two cavity modes exhibit
bistabilities for all values of detuning, due to the parametric-
amplification-type coupling induced by the two-photon coher-
ence. In addition to this, the optical intensities reveal uncon-
ventional “ribbon”-shaped hysteresis for the circulation of the
optical intensities for the blue-detuned frequencies. We showed
that the two-photon coherence, induced either by a strong
external laser or by initial preparation of the atoms of the laser
medium, plays a crucial role in creating anomalous bistabilities.
From an application viewpoint, optical bistability has a wide
range of potential applications from optical communications
to quantum computation.

We also studied the entanglement of the movable mirrors by
exploiting the intermode correlation induced by the two-
photon coherence. We showed that strong mirror–mirror
entanglement can be created in the adiabatic regime. Strong
entanglement between the movable mirrors is obtained when
the drive lasers have approximately the same power. We exam-
ined the entanglement generation due to the injected coherence
and driven coherence separately. Although the two mirrors
are entangled when the injected coherence is maximum, the
maximum entanglement is actually achieved for slightly less
coherence and when more atoms are injected in the lower level
than the upper level. When the coherence is induced by a
strong laser (driven coherence), there exists a threshold value
of the drive strength for which the two mirrors become en-
tangled. This entanglement then holds for a wide range of
the drive strength. Moreover, the entanglement created due
to both coherences is remarkably robust to the phonon
bath temperature, persisting up to 12 K for certain parameter
ranges.
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