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We analyze a scheme to entangle the movable mirrors of two spatially separated nanoresonators via a broadband
squeezed light. We show that it is possible to transfer the Einstein–Podolsky–Rosen-type continuous-variable en-
tanglement from the squeezed light to the mechanical motion of the movable mirrors. An optimal entanglement
transfer is achieved when the nanoresonators are tuned at resonance with the vibrational frequencies of the mov-
able mirrors and when strong optomechanical coupling is attained. Stationary entanglement of the states of the
movable mirrors as strong as that of the input squeezed light can be obtained for sufficiently large optomechanical
cooperativity, achievable in currently available optomechanical systems. The scheme can be used to implement
long-distance quantum-state transfer provided that the squeezed light interacts with the nanoresonators. © 2014
Optical Society of America
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1. INTRODUCTION
Quantum-state transfer between two distant parties is an im-
portant and rewarding task in quantum information process-
ing and quantum communications. Several proposals have
been put forward employing schemes based on cavity quan-
tum electrodynamics (QED) [1–3]. More recently quantum-
state transfer in quantum optomechanics, where mechanical
modes are coupled to the optical modes via radiation pres-
sure, has become a subject of interest [4–9]. In particular, en-
tanglement transfer between two spatially separated cavities
is appealing in quantum information processing. Entangling
two movable mirrors of an optical ring cavity [10], entangling
two mirrors of two different cavities illuminated by entangled
light beams [11] and entangling two mirrors of a double-cavity
setup coupled to two independent squeezed vacua [12] have
been considered. Recently, entangling two mirrors of a ring
cavity fed by two independent squeezed vacua has been pro-
posed [13]. This, however, cannot be used to implement long-
distance entanglement transfer because the two movable
mirrors belong to the same cavity.

In this work, we propose a simple model to entangle the
states of two movable mirrors of spatially separated nanore-
sonators coupled to a common two-mode squeezed vacuum.
The two-mode squeezed light, which can be generated by
spontaneous parametric downconversion, is injected into
the nanoresonators as biased noise fluctuations with non-
classical correlations. The nanoresonators are also driven
by two independent coherent lasers (see Fig. 1). The modes
of the movable mirrors are coupled to their respective optical
modes and to their local environments. Our analysis goes be-
yond the adiabatic regime [11] by considering the more gen-
eral case of nonadiabatic regime and asymmetries between
the laser drives as well as mechanical frequencies of the mov-
able mirrors. Using parameters from a recent optomechanics

experiment [14], we show that the states of the two initially
independent movable mirrors can be entangled in the steady
state as a result of entanglement transfer from the two-mode
squeezed light. More interestingly, the entanglement in the
two-mode light can be totally transferred to the relative posi-
tion and the total momentum of the two movable mirrors
when the following conditions are met: (1) the nanoresonators
are resonant with the mechanical modes, (2) the resonator
field adiabatically follows the motion of the mirrors, and
(3) the optomechanical coupling is sufficiently strong. We also
show that the entanglement transfer is possible in the nona-
diabatic regime (low mechanical quality factor), which is
closer to experimental reality. Unlike previous proposals
[12,13], where a double or a ring cavity is considered, our
scheme can be used, in principle, for a practical test of entan-
glement between two distant movable mirrors, for example,
by connecting the squeezed source to the nanoresonators
by an optical fiber cable. Given the recent successful exper-
imental realization of strong optomechanical coupling [14]
and availability of strong squeezing up to 10 dB [15], our pro-
posal of efficient light-to-matter entanglement transfer may be
realized experimentally.

2. MODEL
We consider two nanoresonators, each having a movable mir-
ror and coupled to a common two-mode squeezed vacuum
reservoir, for example, from the output of the parametric
downconverter. One mode of the output of the squeezed vac-
uum is sent to the first nanoresonator and the other mode to
the second nanoresonator. The movable mirror Mj oscillates
at frequency ωMj

and interacts with the jth optical mode. The

jth nanoresonator is also pumped by an external coherent

drive of amplitude εj �
������������������������
2κjPj∕ℏωLj

q
, where κj is the jth
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nanoresonator damping rate, Pj the drive pump power of the
jth laser, and ωLj is its frequency. The schematic of our model

system is depicted in Fig. 1. The system Hamiltonian has the
form (ℏ � 1)

H �
X2
j�1

�ωMj
b†j bj � ωrj a

†
j aj � gja

†
j aj�b†j � bj�

� �a†j εjeiφj e
−iωLj

t � ajεje
−iφj e

iωLj
t��; (1)

where ωrj is the jth nanoresonator frequency, φj is the phase

of the jth input field, and gj � �ωrj∕Lj�
��������������������
ℏ∕MjωMj

q
is the single

photon optomechanical coupling, which describes the cou-
pling of the mechanical mode with the intensity of the optical
mode [16], where Lj is the length of the jth nanoresonator and
Mj is the mass of the jth movable mirror; ωLj is the frequency

of the jth coherent pump laser; and bj is the annihilation op-
erator for the jth mechanical mode while aj is the annihilation
operator for the jth optical mode. Using the Hamiltonian (1),
the nonlinear quantum Langevin equations for the optical and
mechanical mode variables read [4,5,12]

_bj � −

�
iωMj

� γj
2

�
bj − igja

†
j aj �

����
γj

p
f j; (2)

_aj � −

�
κj
2
− iΔj

�
aj − igjaj�b†j � bj� − iεje

iφj � ����
κj

p
Fj; (3)

where γj is the jth movable mirror damping rate, Δj � ωLj −

ωrj is the laser detuning, and f j is a noise operator describing

the coupling of the jth movable mirror with its own environ-
ment while Fj is the squeezed vacuum noise operator. Note
that Eq. (3) is written in a frame rotating with ωLj . We assume

that the mechanical baths are Markovian and have the
following nonzero correlation properties between their noise
operators [17,18]:

h f j�ω�f †j �ω0�i � 2π�nth;j � 1�δ�ω� ω0�; (4)

h f †j �ω�f j�ω0�i � 2πnth;jδ�ω� ω0�; (5)

where the movable mirrors are damped by the thermal baths
of mean number of phonons nth;j��exp�ℏωMj

∕kBTj�−1�−1.

The squeezed vacuum operators Fj and F
†
j have the following

nonvanishing correlation properties [13]:

hFj�ω�F†
j �ω0�i � 2π�N � 1�δ�ω� ω0�; (6)

hF†
j �ω�Fj�ω0�i � 2πNδ�ω� ω0�; (7)

hF1�ω�F2�ω0�i � 2πMδ�ω� ω0
− ωM1

− ωM2
�; (8)

hF†
1�ω�F†

2�ω0�i � 2πMδ�ω� ω0
− ωM1

− ωM2
�; (9)

where N � sinh2 r and M � sinh r cosh r with r being the
squeeze parameter for the squeezed vacuum light.

3. LINEARIZATION OF QUANTUM
LANGEVIN EQUATIONS
The coupled nonlinear quantum Langevin equations [Eqs. (2)
and (3)] are in general not solvable analytically. To obtain an
analytical solution to these equations, we adopt the following
linearization scheme [17]. We decompose the mode operators
as a sum of the steady-state average and a fluctuation quantum
operator as aj � αj � δaj and bj � βj � δbj , where δaj and δbj
are operators. The mean values αj and βj are obtained by solv-
ing the expectation values of Eqs. (2) and (3) in the steady
state:

αj ≡ haji �
−iεje

iφj

κj∕2 − iΔ0
j

; (10)

βj ≡ hbji �
−igjjαjj2

γj∕2� iωMj

; (11)

where Δ0
j � Δj − gj�βj � β�j � is the effective detuning, which

includes the displacement of the mirrors due to the radiation
pressure force. The contribution from the displacement of the
movable mirrors is proportional to the intensity of the nano-
resonator field, n̄j ≡ jαjj2. In principle, we can arbitrarily
choose the detunings Δ0

j , provided that we are away from
the unstable regime [18].

Using aj � αj � δaj and bj � βj � δbj , Eqs. (2) and (3) can
be written as

Fig. 1. Schematics of two nanoresonators coupled to a two-mode squeezed light from spontaneous parametric downconversion. The output of the
squeezed source is incident on the resonators as noise operators F1 and F2 (see text for their correlation properties). The first (second) nano-
resonator movable mirror M1�M2� is coupled to the nanoresonator mode of frequency ωr1 �ωr2 � via radiation pressure. The nanoresonators are also
driven by an external coherent laser lasers of amplitude εj . In the strong optomechanical coupling regime, the states of the twomovable mirrors can
be entangled due to the squeezed light. A Faraday isolator F is used to facilitate unidirectional coupling. The output fields a1;out and a2;out can be
measured using the standard homodyne detection method to determine the entanglement between the mirrors.
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δ_bj � −

�
iωMj

� γj
2

�
δbj � Gj�δaj − δa†j � �

����
γj

p
f j; (12)

δ _aj � −

�
κj
2
− iΔ0

j

�
δaj − Gj�δb†j � δbj� � ����

κj
p

Fj; (13)

where Gj ≡ gjjαjj � gj
�����
n̄j

p
is the many-photon optomechani-

cal coupling. Since the phase of the coherent drives can be
arbitrary, for convenience we have chosen the phase of the
input field to be φj � − arctan�2Δ0

j∕κj� so that αj � −ijαjj. No-
tice that the linearized Eqs. (12) and (13) can be described by
an effective Hamiltonian (ℏ � 1)

ℋ �
X2
j�1

�ωMj
δb†j δbj − Δ0

jδa
†
j δaj � iGj�δaj − δa†j ��δbj � δb†j ��

(14)

with a new effective many-photon optomechanical coupling
Gj , which is stronger than the single photon coupling gj by
a factor of

�����
n̄j

p
. The effective Hamiltonian (14) describes

two different processes depending on the choice of the laser
detuning Δ0

j [16]. Here we want to emphasize that ωMj
≫ γj

and Δj ≫ κj so that we can apply the rotating wave approxi-
mation. The latter condition is the case when the resonators
are strongly off-resonant with the laser fields. When Δ0

j �
−ωMj

, within the rotating wave approximation, the interaction
Hamiltonian reduces to ℋI � −i

P2
j�1 Gj�δajδb†j − δa†j δbj�,

which is relevant for quantum-state transfer [4,5] and cooling
(transferring of all thermal phonons into cold photon mode)
[19]. In quantum optics, it is referred to as a beamsplitter in-
teraction, whereas when Δ0

j � �ωMj
(in the rotating wave

approximation), the interaction Hamiltonian takes a simple
formℋI � −i

P
2
j�1 Gj�δajδbj − δa†j δb

†
j �, which describes para-

metric amplification interaction and can be used for efficient
generation of optomechanical squeezing and entanglement. In
this work, we are interested in quantum-state transfer and
hence choose Δ0

j � −ωMj
. Thus, for Δ0

j � −ωMj
and in a frame

rotating with frequency ωMj
(neglecting the fast oscillating

terms), one gets

δ_~bj � −

γj
2
δ~bj � Gjδ ~aj � ����

γj
p ~f j; (15)

δ _~aj � −

κj
2
δ ~aj − Gjδ~bj � ����

κj
p ~Fj; (16)

where we have introduced a notation for operators:
~o � o exp�iωMj

t�.
In the following section, we use these equations to analyze

the entanglement of the states of the movable mirrors via
entanglement transfer.

4. ENTANGLEMENT ANALYSIS
In order to investigate the entanglement between the states of
the movable mirrors of the two spatially separated nanoreso-
nators, we introduce two Einstein–Podolsky–Rosen (EPR)-
type quadrature operators for the mirrors, namely their
relative position X and the total momentum Y : X � X1 − X2

and Y � Y 1 � Y 2, where Xl � �δ~bl � δ~b†l �∕
���
2

p
and Yl �

i�δ~b†l − δ~bl�∕
���
2

p
. We apply an entanglement criterion [20]

for continuous variables, which is sufficient for non-
Gaussian states and sufficient and necessary for Gaussian
states. According to this criterion, the states of the movable
mirrors are entangled if

ΔX2 � ΔY 2 < 2: (17)

A. Adiabatic Regime
An optimal quantum-state transfer (in this case from the two-
mode squeezed vacuum to the mechanical motion of the mir-
rors) is achieved when the nanoresonator fields adiabatically
follow the mirrors, κj ≫ γj ;Gj [12], which is the case for mir-
rors with high-Q mechanical factor and weak effective opto-
mechanical coupling. [In fact the condition κj ≫ γj can also be
expressed as ωrj ≫ ωMj

�Qrj∕QMj
�.] Inserting the steady state

solution of Eq. (16) into Eq. (15), we obtain equations describ-
ing the dynamics of the movable mirrors:

δ_~bj � −

Γj

2
δ~bj �

�������
Γaj

q
~Fj � ����

γj
p ~f j; (18)

where Γj � Γaj
� γj with Γaj

� 4G2
j ∕κj being the effective

damping rate induced by the radiation pressure [21].
First, let us consider the variance of the relative position of

the two mirrors ΔX2, which can be expressed as ΔX2 �
hX2i − hXi2. Since the noise operators corresponding to the
two-mode squeezed vacuum Fj as well as the movable mirrors
baths f j have zero mean values, it is easy to show that hXi � 0.
Therefore, ΔX2 � hX2

1i � hX2
2i − hX1X2i − hX2X1i. To evalu-

ate these correlations, it is more convenient to work in the
frequency domain. To this end, the Fourier transform of
Eq. (18) yields

δ~bj�ω� �
�������
Γaj

p ~Fj�ω� � ����
γj

p ~f j�ω�
Γj∕2� iω

: (19)

The expectation value of the position X1 of the first movable
mirror can be expressed as

hX2
1i �

1
4π2

Z
∞

−∞

Z
∞

−∞
dωdω0ei�ω�ω0�thX1�ω�X1�ω0�i: (20)

Using the correlation properties of the noise operators
[Eqs. (4)–(9)], we obtain

hX2
1i �

1
2
�2N � 1�Γa1

Γ1
� γ1

2Γ1
�2nth;1 � 1�: (21)

Similarly, it is easy to show that

hX2
2i �

1
2
�2N � 1�Γa2

Γ2
� γ2

2Γ2
�2nth;2 � 1�: (22)

hX1X2i � hX2X1i �
2

��������������
Γa1

Γa2

p
Γ1 � Γ2

M: (23)

Therefore, using Eqs. (21)–(23), the variance of the relative
position of the movable mirrors becomes
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ΔX2 � 1
2
�2N � 1�

�
Γa1

Γ1
� Γa2

Γ2

�
−

4
��������������
Γa1

Γa2

p
Γ1 � Γ2

M

� γ1
2Γ1

�2nth;1 � 1� � γ2
2Γ2

�2nth;2 � 1�: (24)

It is easy to show that the variance of the total momentum
of the movable mirrors is the same as that of X , i.e.,
ΔX2 � ΔY 2. Thus, the sum of the variances of the relative po-
sition and total momentum of the movable mirrors is given by

ΔX2 � ΔY 2 � γ1
Γ1

�2nth;1 � 1� � γ2
Γ2

�2nth;2 � 1�

� �2N � 1�
�
Γa1

Γ1
� Γa2

Γ2

�
−

8
��������������
Γa1

Γa2

p
Γ1 � Γ2

M: (25)

1. Identical Nanoresonators
To elucidate the physics of light-to-matter entanglement trans-
fer, we first consider a simplified case of identical nanoreso-
nators coupled to a two-mode squeezed vacuum. We also
assume the external laser drives to have the same strength
and the thermal baths of the two movable mirrors to be at
the same temperature (nth;1 � nth;2 � nth). To this end, setting
Γ1 � Γ2 � Γ, Γa1

� Γa2
� Γa, M1 � M2, ωr � ωr1

� ωr2
,

ωM � ωM1
� ωM2

, κ � κ1 � κ2, and γ1 � γ2 � γ and using
the relation N � sinh2 r;M � sinh r cosh r, the variance of
the relative position (25) takes a simple form:

ΔX2 � ΔY 2 � 2Γa

γ � Γa

e−2r � 2γ
γ � Γa

�2nth � 1�

� 8e−2rG2∕γκ � 2� 4nth

4G2∕γκ� 1

� 2C
C� 1

e−2r � 2�1� 2nth�
C� 1

; (26)

where C � 4G2∕γκ � 4n̄g2∕γκ is the optomechanical coopera-
tivity [22]. In the absence of the two-mode squeezed vacuum
reservoir r � 0, Eq. (26) reduces to ΔX2 � ΔY 2 � 2� 4nth∕
�C� 1�, which is always greater than 2, indicating the
mechanical motion of the two mirrors cannot be entangled
without the squeezed vacuum. This is because the motion
of the mirrors is initially uncorrelated and their interaction
via vacuum does not create correlations. In the limit C ≫ 1
(a weaker condition [23] for strong coupling regime), the
sum of the variances can be approximated by ΔX2 � ΔY 2 ≈
2 exp�−2r� � 4nth∕C. Therefore, when 4nth∕C < 1, which
can be achieved for a sufficiently large number of photons
in the nanoresonator, the sum of the variances can be less
than 2 when

r >
1
2
ln�1∕�1–2nth∕C��; (27)

indicating transfer of the quantum fluctuations of the input
fields to the motion of the movable mirrors. This can be inter-
preted as entanglement transfer from light to mechanical mo-
tion. The interesting aspect is that this quantum-state-transfer
scheme can, in principle, be extended to long-distance state
transfer if the two nanoresonators are kept far apart but con-
nected by, for example, an optical fiber cable to the output of
the two-mode squeezed vacuum. Obviously, the entanglement
between the mirrors would degrade when the distance

between the resonators is increased owing to the decrease
in degree of squeezing as a result of environmental couplings.
Recently, similar transfer scheme from light to matter has
been proposed [1,24,25].

For realistic estimation of the entanglement between the
movable mirrors, we use parameters from recent experiment
[14]: laser frequency ωL � 2π × 2.82 × 1014 Hz�λ � 1064 nm�,
ωr � 2π × 5.64 × 1014 Hz�ωr � 2ωL�, M1 � M2 � 145 ng, L �
25 mm, κ � 2π × 215 × 103 Hz, γ � 2π × 140 Hz, and ωM �
2π × 947 × 103 Hz. In Fig. 2, we plot the sum of the variances
of X and Y as a function the temperature of the thermal bath
of the movable mirrors. This figure shows that the movable
mirrors are entangled when the nanoresonators are fed by
squeezed light. Notice that based on the definition of the quad-
rature operators X and Y , an optomechanical quadrature
squeezing [18,22,26] is achieved when ΔX2 < 1 or ΔY 2 < 1.
This implies that whenever there is optomechanical squeez-
ing, the two movable mirrors are always entangled. This
shows a direct relationship between optomechanical squeez-
ing and entanglement of the mechanical modes of the movable
mirrors.

It is also interesting to see the dependence of the mirror–
mirror entanglement on the pump laser power strength.
Figure 3 shows that for a given squeeze parameter r and ther-
mal bath temperature T of the movable mirrors, there exists
a minimum pump power strength for which the movable
mirrors are entangled. The minimum power required to
observe mirror–mirror entanglement can be derived from
Eq. (26) by imposing the condition that ΔX2 � ΔY 2 < 2,
which yields

C >
2nth

1 − exp�−2r� : (28)

Using the explicit form of G in C � 4G2∕γκ, we then obtain
(r ≠ 0)

P >
α

�1 − e−2r��exp�ℏωM∕kBT � − 1� ; (29)

where α ≡ γωM1L
2ωM��κ∕2�2 � ω2

M�∕2ω2
r is a factor that can be

fixed at the beginning of the experiment (note here that

r
0.5

1.0

2.0

0 200 400 600 800
0.0

0.5

1.0

1.5

2.0

T K

X
2

Y
2

Fig. 2. Plots of the sum of variances ΔX2 � ΔY 2 versus bath temper-
ature T of the movable mirrors for drive laser power P � 10 mW and
frequency ωL � 2π × 2.82 × 1014 Hz�λ � 1064 nm�, mass of the mov-
able mirrors M1 � M2 � 145 ng, frequency of the nanoresonator
ωr � 2π × 5.26 × 1014 Hz, length of the cavity L � 125 mm, the
mechanical motion damping rate γ � 2π × 140 Hz, mechanical
frequency � 2π × 947 × 103 Hz, nanoresonator damping rate
κ � 2π × 215 × 103 Hz, and for different values of the squeezing
parameter r: 0.5 (blue solid curve), 1.0 (red dashed curve), and
2.0 (green dotted curve). The blue dashed line represents
ΔX2 � ΔY 2 � 2.
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M1 � M2). It is easy to see from Eq. (29) that for a given ther-
mal bath temperature T of the movable mirrors, increasing r

decreases the minimum power required to achieve entangle-
ment between the mirrors.

When the number of thermal bath phonons increases, the
minimum value of the cooperativity parameter for which
the entanglement occurs increases. In the weak coupling
regime, where the optomechanical cooperatively is much less
than one, C ≪ 1, the sum of the variances (26) that character-
ize the entanglement can be approximated by ΔX2 � ΔY 2 ≈
2� 2Ce−2r � 4nth. This is always greater than 2, independent
of the degree of squeezing of the input field, indicating no
quantum-state transfer from the squeezed light to the
mechanical motion of the movable mirrors, and hence the mir-
rors remain unentangled. Figure 4 shows the plot of the
entanglement measure versus the optomechanical cooperativ-
ity as a function of the thermal bath phonon numbers. For
r � 1.0 and n � 1.0�62.2 μK�, the motion of the two mirrors
are not entangled up to C � 2nth�1 − exp�−2r��−1 ≈ 2.3.

2. Effect of Asymmetric Coherent Drives
and Mechanical Frequencies
We next analyze the effect of the asymmetries in the strength
of coherent drives and in the vibrational frequencies of the
movable mirrors. Figure 5(a) illustrates that for a constant
thermal bath temperature T1 � T2 � 0.25 mK of the movable
mirrors and the squeeze parameter r � 2.0, there exist input
laser powers P1 and P2, where ΔX2 � ΔY 2 is minimum or the

entanglement is the strongest. It turns out that for identical
nanoresonators, strong entanglement is achieved when
P1 � P2. Notice also that the width of the entanglement region
is mainly determined by the input power: The higher the input
powers, the wider the width of the entanglement region be-
comes. Figure 5(b) shows optimized ΔX2 � ΔY 2 over the in-
put power P2 for a given P1 and for different values of the
thermal bath temperatures T1 and T2. As expected the entan-
glement degrades as the thermal bath temperatures of the
mirrors increase, and the entanglement persists at higher tem-
peratures for sufficiently strong pump power strength (see
green-dotted curve for T1 � T2 � 0.5 mK).

Tuning the frequencies of the movable mirrors also affects
the degree of the mirror–mirror entanglement. As shown in
Fig. 6(a), for fixed temperatures of the thermal bath of the
movable mirrors T1 � T2 � 0.25 mK, squeeze parameter
r � 2.0, drive powers P1 � P2 � 11 mW, and frequency ωM1

of the first movable mirror, there exists a frequency ωM2
of

the second movable mirror for which the entanglement is
maximum. The smaller ωM1

is, the stronger the entanglement
becomes. The optimum entanglement decreases with increas-
ing frequency ωM1

of the first movable mirror and eventually
disappears at sufficiently large ωM1

and relatively high temper-
atures [see Fig. 6(b)].

B. Nonadiabatic Regime
So far we have discussed the mirror–mirror entanglement
induced by the squeezed light in the adiabatic regime
(κj ≫ γj ;Gj). We next derive a condition for entanglement
valid for both adiabatic and nonadiabatic regimes. We also
study the field–field entanglement in the regime where the
two mirrors are entangled.

r
0.5

1.0

2.0

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

P mW

X
2

Y
2

Fig. 3. Plots of the sum of variances ΔX2 � ΔY 2 versus the drive
pump power for the thermal bath temperature T � 50 μK of the mov-
able mirrors, ωr � 2π × 2.82 × 1014 Hz, and for different values of the
squeezing parameter r: 0.5 (blue solid curve), 1.0 (red dashed curve),
and 2.0 (green dotted curve). All other parameters are the same as in
Fig. 2. The blue dashed line represents ΔX2 � ΔY 2 � 2.
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Fig. 4. Plots of the sum of variances ΔX2 � ΔY 2 versus the optome-
chanical cooperativity C for squeeze parameter r � 1 and for various
values of the thermal bath phonon numbers: nth � 1�T � 62.2 μK�
(green dotted curve), nth � 5�T � 236 μK� (red dashed curve), and
nth � 10�T � 452 μK� (blue solid curve).
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Fig. 5. (a) ΔX2 � ΔY 2 versus the input drive power P2 of the second
nanoresonator and for various values of the input drive power P1 of
the first nanoresonator and assuming the same thermal bath temper-
atures of the movable mirrors T1 � T2 � 0.25 mK and squeeze
parameter r � 2.0. (b) ΔX2 � ΔY 2 versus the input drive power of
the first nanoresonator optimized over the input power of the second
nanoresonator and for different values of T1 and T2 and squeeze
parameter r � 2.0. All other parameters are the same as in Fig. 2.
The blue dashed line in both figures represents ΔX2 � ΔY 2 � 2.
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The dynamics of the movable mirrors in the nonadiabatic
regime is described by the coupled Eqs. (15) and (16). Solving
the Fourier transforms of these equations yields

δ~bj �
κj∕2� iω

dj�ω�
����
γj

p ~f j �
Gj

dj�ω�
����
κj

p ~Fj; (30)

where dj�ω� � G2
j � �γj∕2� iω��κj∕2� iω�. Thus using

Eq. (30) and the properties of the noise operators (4)–(9),
the sum of the variances of the relative position X and total
momentum Y of the movable mirrors (for identical nanoreso-
nators) is found to be

ΔX2 � ΔY 2 � 2C
C� 1

κe−2r

κ � γ
� 2�2nth � 1�

C� 1

�
1� Cγ

κ� γ

�
: (31)

We immediately see that for κ ≫ γ;G, Eq. (31) reduces to
the expression (26) derived in the adiabatic approximation.
In general, for the dissipation rate of the movable mirrors
γj comparable to the resonator decay κj , the expression (31)
can be significantly different from (26).

In Fig. 7 we present a comparison showing the entangle-
ment transfer in the adiabatic and nonadiabatic regimes.
The main difference comes from the mechanical dissipation
rate γ. Since the adiabatic approximation assumes negligible
mechanical dissipation rate, the transfer is more efficient than
the nonadiabatic case. This, however, is an ideal situation,
which requires a very high mechanical quality factor. In
general, for a low mechanical quality factor the mechanical
dissipation can be significant, leading to a less efficient entan-
glement transfer. As can be noted from Fig. 7, the mirror–
mirror entanglement diminishes when the normalized

mechanical dissipation rate γ∕κ increases from 0.01 to 0.05.
We note that when the dissipation rate increases, a large
cooperativity (strong coupling) is required to observe the
mirror–mirror entanglement.

To gain insight into the transfer of entanglement from the
squeezed light to the motion of the mirrors, it is important to
study the entanglement between the optical modes of the
nanoresonators. This can be analyzed by introducing two
EPR-type quadrature operators x � x1 − x2 and y � y1 � y2,
where xl � �δ ~al � δ ~a†l �∕

���
2

p
and yl � i�δ ~a†l − δ ~al�∕

���
2

p
. The op-

tical modes of the nanoresonators are entangled if

Δx2 � Δy2 < 2: (32)

Solving the Fourier transforms of Eqs. (2) and (3), we obtain

δ ~aj�ω� � −

Gj

dj�ω�
�����
γ1

p ~f j�ω� �
γj∕2� iω

dj�ω�
����
κj

p ~Fj; (33)

where dj�ω� � G2
j � �κj∕2� iω��γj∕2� iω�. The sum of the

variances of x and y for identical nanoresonators reads

Δx2 � Δy2 � 2C�2nth � 1�
C� 1

γ

γ � κ

� 2
�

κ

κ� γ
� 1

1� C
γ

γ � κ

�
e−2r; (34)

which for the case γ∕κ ≪ 1 and strong coupling regime
(C ≫ 1) reduces to

Δx2 � Δy2 ≈ 2�2nth � 1� γ

γ � κ
� 2e−2r: (35)

We note from Eq. (35) that in the strong coupling regime,
the field–field entanglement is mainly determined by the ther-
mal bath temperature and the squeeze parameter, not on the
value of C. For experimental parameter in Ref. [10] we have
γ∕κ � 6.5 × 10−4, and assuming the thermal bath mean phonon
number nth � 5, the field–field entanglement is insensitive to
the increase of the cooperativity while the entanglement of the
states of the movable mirrors increases as the optomechanical
coupling becomes stronger or when C increases (Fig. 8). It is
interesting to see that for a sufficiently strong coupling (large
values of cooperativity, C), the entanglement between the
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Fig. 6. (a) ΔX2 � ΔY 2 versus the vibrational frequency ωM2
of the

second nanoresonator and for various values of the vibrational
frequency ωM1

of the first nanoresonator and assuming the input
laser powers P1 � P2 � 11 mW and the squeeze parameter r � 2.0.
(b) ΔX2 � ΔY 2 versus the vibrational frequency ωM1

of the first nano-
resonator optimized over ωM2

and for different values of T1 and T2
and the squeeze parameter r � 2.0. All other parameters are the same
as in Fig. 2. The blue dashed line in both figures represents
ΔX2 � ΔY 2 � 2.
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Fig. 7. Plots of the sum of the variance of the quadrature operators
X , Y for the mirror versus the optomechanical cooperativity param-
eter in the adiabatic regime [(26)] (red solid curve) and in the nona-
diabatic regime [Eq. (31)] for γ∕κ � 0.01 (black dashed curve) and
0.05 (black dot-dashed curve). Here we used nth � 5 and squeeze
parameter r � 2. The blue dashed line in both figures represents
ΔX2 � ΔY 2 � 2.
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states of the movable mirrors can be as strong as that of
the squeezed light. Therefore, in addition to choosing the
mechanical frequency to be Δ0 � −ωM and adiabatic approxi-
mation (κ ≫ γ;G), it is imperative to attain strong coupling
regime to achieve the maximum entanglement between the
states of the movable mirrors.

Experimentally, the entanglement between the states of the
movable mirrors can be measured by monitoring the phase
and amplitude [10] of the transmitted field via the method
of homodyne detection, in which the signal is brought into in-
terference with a local oscillator that serves as phase refer-
ence. For other variants of optical measurement schemes,
see Ref. [16]. With the availability [15] of strong squeezing
sources up to 10 dB squeezing (90%) below the standard quan-
tum limit, our proposal may be realized experimentally.

5. CONCLUSION
In summary, we have analyzed a scheme to entangle the vibra-
tional modes of two independent movable mirrors of two spa-
tially separated nanoresonators via two-mode squeezed light.
We showed that in the regime of strong coupling C ≫ 1�4G2 ≫
κγ� and when the nanoresonator field adiabatically follows the
motion of the mirrors, the quantum fluctuations of the two-
mode squeezed light is transferred to the motion of the mov-
able mirrors, creating stationary entanglement between the
vibrational modes of the movable mirrors. It turns out that
an entanglement of the states of the movable mirrors as strong
as the entanglement of the two-mode squeezed light can be
achieved for a sufficiently large optomechanical cooperativity
C or equivalently for a sufficiently strong optomechanical
coupling. We also considered a less stringent condition–
nonadiabatic regime that is more realistic than the adiabatic
approximation and still obtained entanglement transfer from
the two-mode light to the movable mirrors. Given the recent
successful experimental realization of strong optomechanical
coupling [14] and well-developed method of homodyne mea-
surement, our proposal for an efficient light-to-matter entan-
glement transfer may be realized experimentally.
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