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Quantum Nondemolition Squeezing of a
Nanomechanical Resonator
Rusko Ruskov, Keith Schwab, and Alexander N. Korotkov

Abstract—We show that the nanoresonator position can be
squeezed significantly below the ground state level by measuring
the nanoresonator with a quantum point contact or a single-elec-
tron transistor and applying a periodic voltage across the detector.
The mechanism of squeezing is basically a generalization of
quantum nondemolition measurement of an oscillator to the case
of continuous measurement by a weakly coupled detector. The
quantum feedback is necessary to prevent the “heating” due to
measurement back-action. We also discuss a procedure of experi-
mental verification of the squeezed state.

Index Terms—Nano-electromechanical systems (NEMS),
quantum feedback, squeezing.

I. INTRODUCTION

QUANTUM nondemolition (QND) measurements [1]–[4]
were proposed as a way to overcome the so-called
standard quantum limit for the measurement sensitivity,

which arises due to quantum back-action of a detector. The
general idea of a QND measurement is to avoid measuring (or
obtaining any information on) the magnitude conjugated to the
magnitude of interest and, therefore, to avoid the corresponding
back-action. An important implementation of this idea is the
“stroboscopic” measurement of an oscillator position [2],
[3]. Suppose the position is measured (instantaneously)
with a finite precision , which necessarily disturbs the
momentum according to the Heisenberg uncertainty principle

. Normally this momentum change would affect
the result of the next position measurement and would limit
the accuracy for the position difference , leading to
the standard quantum limit for this magnitude. However, if
the second measurement is performed exactly one oscillation
period after the first one, the oscillator returns to its initial
state and, therefore, the momentum change does not affect the
accuracy of the measurement. Such stroboscopic mea-
surement gives no information related to the momentum, and
this is exactly the reason why the effect of quantum back-action
is avoided [1]–[4].

In terms of applications, the QND measurements have been
mainly discussed in relation to measurement of very weak clas-
sical forces, in particular, gravitational waves (see, e.g., [5] and
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[6]). Recently, the idea of QND measurements has been also ap-
plied to solid-state mesoscopic structures (see, e.g., [7] and [8]).
Among other recent developments (the total number of papers
on QND measurements is over 500), let us mention the exper-
iment on atomic spin-squeezing using the QND measurement
and real-time quantum feedback [9]. In this paper, we discuss
squeezing of a nanomechanical resonator using the QND mea-
surement and quantum feedback.

Recent advances in fabrication of nanomechanical resonators
[10]–[14], [45]–[48] make possible the direct observation of
their quantum behavior in the nearest future. For the resonator
frequency exceeding 1 GHz [12], the condition
(we use ) is satisfied at temperature below 50 mK.
Even in the case , the quantum behavior is in principle
observable [1] when , where is the resonator
quality factor and is the typical observation time. This condi-
tion can be well satisfied even for megahertz-range resonators
for comparable to the oscillation period, i.e., if we can mon-
itor the oscillations with the measurement bandwidth on the
order of , as in [14]. There is a rapid experimental progress
in monitoring the oscillating position of a nanoresonator using
a radio-frequency single-electron transistor (RF-SET) [13],
[14] or quantum point contact (QPC) [15] (at present, the
RF-SET seems to be much more efficient). In particular, the
position measurement accuracy within the factor 5.8 from
the standard quantum limit has been demonstrated [14];
here is the width (standard deviation) of the
ground state of the oscillator with mass . Measurement of the
nanoresonator position by RF-SET or QPC has also received
a significant theoretical attention [16]–[22], [49], [50]. The
process of measurement transfers the energy from the detector
to the nanoresonator leading to its “heating” [16], [17], [49],
[50]. A possible way to prevent such heating is by using the
quantum feedback control of the nanoresonator [22] (another
idea for cooling has been proposed in [23]).

The quantum feedback of mesoscopic solid-state systems is
a relatively new subject [24], [51], though in quantum optics
the quantum feedback was proposed more than a decade ago
[25] and has already been realized experimentally [9]. The
feedback analyzed in [22] assumes continuous monitoring of
the nanoresonator position with constant “strength” of measure-
ment and allows cooling of the nanoresonator practically down
to the ground state. However, it does not allow squeezing of the
nanoresonator state (below ), which would be important,
for example, for the ultrasensitive measurement of a force
acting on the nanoresonator. (More correctly, squeezing in [22]
is possible only in the unrealistic case of a strong coupling
between the nanoresonator and detector.)
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In this paper, we analyze the case of the nanoresonator mon-
itoring with the measurement strength modulated in time (for
example, modulating the bias voltage of the QPC or RF-SET),
basically applying the idea of stroboscopic QND measurements
[2], [3] to the nanoresonator. We show that, in this case, even
for a weak coupling with a detector, a significant squeezing of
the nanoresonator state can be achieved when the modulation
frequency is close to , . The simple
physical reason of this result is that the total Hamiltonian
evolution during one period of resonator oscillation is exactly
zero (unity operator); therefore, a repeated weak measurement
at proper moments of time adds up to a strong measurement,
which naturally produces a squeezed state. The difference
from the QND measurement of [2] and [3] is that we consider
continuous in time measurement and assume weak coupling
between the nanoresonator and the detector. Therefore, exact
matching with the oscillation period is impossible, which
leads to additional heating due to measurement (above the
level required by squeezing), so we need to use the quantum
feedback to prevent this extra heating. We would also like to
notice the difference between our proposal and squeezing of a
nanoresonator proposed in [26], which is a scaled-down version
of the classical thermomechanical noise squeezing [27] using
the modulation of the resonator spring constant.

II. SYSTEM AND MODEL

For simplicity, we consider the nanoresonator measured by
the low-transparency QPC (though our results are applicable to
the RF-SET as well) and the system Hamiltonian is

(1)

where the first term describes the oscillator (nanoresonator)

where and are the momentum and position operators, the
last term

describes the feedback control of the nanoresonator by applying
the force , while and correspond to the detector
and its interaction with the nanoresonator similar to [17], [28]

Here, and are the creation and annihilation operators
for two electrodes of the QPC, and, for simplicity, we assume
no relative phase between the tunneling amplitudes and

(taking this phase into account is simple [29]–[31], but
makes the formalism significantly lengthier). For a given posi-
tion state of the oscillator, the average detector current is

, where is the QPC voltage

which may vary in time with frequency comparable to ,
is the electron charge, and are the densities of states in the
electrodes.

We assume a weak response of the detector,
and, therefore, the linear dependence of the detector

current on the measured position is

(2)

Also, we neglect the dependence on of the detector current
spectral density which is assumed to be flat in the frequency
range of interest. Because the voltage varies in time, , ,

, and also depend on time, which will be taken into ac-
count explicitly in Section III. Notice that the white noise is
an intrinsic detector noise, which is defined for a fixed voltage
on a time scale much shorter than the time scale of voltage vari-
ations, while the long-time spectral density of the detector cur-
rent is obviously affected by the voltage changes as well as by
the oscillating signal from the nanoresonator.

Somewhat similar to the case of qubit measurement [32],
[52], we define the dimensionless (time-dependent) coupling as

(3)

which can also be expressed as , where
is the “measurement” time which would be nec-

essary to distinguish (with an SNR of 1) two position states sep-
arated by the ground state width . We will
mainly consider the case of weak coupling, , which cor-
responds to a realistic experimental situation. As an example,
is of the order of for the parameters of experiment [14].

To describe the dynamics of the quantum measurement
process, we apply the quantum Bayesian approach [32], [52],
developed initially for measurement of qubits by solid-state de-
tectors (this approach is practically equivalent to the approach
of quantum trajectories used, e.g., in [22], [25], [30], and [33]).
The Bayesian formalism takes into account the information
about the measured system evolution contained in the noisy
detector output and, therefore, is able to describe quantum
evolution in a particular realization of the measurement process
(without ensemble averaging). The main statements of the
Bayesian formalism are that the evolution of the diagonal ma-
trix elements of the measured system density matrix is governed
by the classical Bayes theorem (on conditional probability)
and that the pure state of the measured system remains pure
when measured by an ideal detector (QPC is an example of an
ideal detector); a nonideal detector can be described as an ideal
detector with extra noise sources. While using the quantum
Bayesian approach, we need to use its usual assumptions [32],
[52]; in particular, we assume that the internal dynamics of
the detector is much faster than the oscillator dynamics (this
requires ), and we assume a quasi-continuous
detector current (which requires and even stronger
inequality ).

Applying the Bayesian approach to our system, we derive (the
derivation will be presented elsewhere) the following equation
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for the evolution of oscillator density matrix in -basis (in
Stratonovich form):

(4)

where the first term is a usual evolution due to ,
while the second term describes the evolution due to mea-
surement and, therefore, depends on the noisy detector current

; we introduced notations and
. Notice that (4) actually does not require

the current linearity (2). Also notice that (4) coincides with
the similar equation for the case of an arbitrary number of
entangled qubits measured by an ideal detector [31], if is
replaced by the index corresponding to the state of qubits.

Equation (4) allows us to monitor the oscillator density matrix
using the measurement record , while for simulations

may be replaced with

(5)

where is a white noise with spectral density . (These
equations are derived assuming a constant detector voltage;
however, they can still be used when the voltage (or any other
parameter) variation is much slower than internal dynamics of
the detector, which involves time constants and .)

Translating (4) from Stratonovich into Ito form, using current
linearity (2), and taking into account quantum efficiency of the
detector [32], [52] (QPC is an ideal detector, , while
can be used for the RF-SET as a detector), we obtain

(6)

where . Equation (6) is similar to equa-
tions derived in many publications (e.g., in [22] and [33]–[35])
for measurement of a mechanical oscillator. Averaging (6) over
the measurement record eliminates the last term of (6) [in
Ito form, averaging over the noise is equivalent to using

] and leads to the ensemble averaged equation derived
in even larger number of papers, including, e.g., [17]. Notice
that the second (decoherence) term in (6) can also be rewritten in
a standard double-commutator form (see, e.g., [17], [22], [33],
and [35]–[39]) since . The
nanoresonator evolution described by (6) does not depend on
the environment temperature because we essentially assume a
large (infinite) quality factor of the nanoresonator, so that the
interaction with the thermal bath is much weaker than interac-
tion with the detector, which is infinite by assumption of the
effective temperature [16], [17], [49], [50].

III. QND SQUEEZING OF THE NANORESONATOR

A. Modulation of the Measurement Strength

We assume periodic modulation of the voltage across the
QPC detector , which leads to the corresponding
modulation of the parameters in (4) and (6) as follows:

(7)

while quantum efficiency is assumed to be constant (in the
general case, may become negative). Notice that the noise

has an implicit time dependence because of the modulated
time spectral density . The dimensionless coupling is modu-
lated as .

In this paper, we will consider two types of modulation with
frequency : harmonic modulation with 100% depth

(8)

and the square-wave (stroboscopic) modulation with pulse
width

otherwise.
(9)

Notice that , so and correspond to the max-
imum coupling. Since reaches zero in both types of mod-
ulation, the conditions and required
for the Bayesian formalism are violated during a fraction of
the modulation period. However, the expected corrections to the
Bayesian equations (see, e.g., [17]) have the relative strength of
crude , which means that the poorly described evolution
during these fractions of the period is quite slow. Therefore, we
can still use (6) for the analysis in the case of sufficiently large
maximum voltage, when the neglected contribution to the evolu-
tion during a low-voltage phase is significantly smaller than the
well-described contribution during a large-voltage phase. The
neglected contribution is expected to lead to a weak relaxation
of the nanoresonator state.

B. Simplified Equations for the Gaussian States

Following [22], [33], [40], and [41], we assume that the os-
cillator state is Gaussian [42]

(10)

and, therefore, is characterized by only five parameters: average
position and momentum , their variances

and , and the correlation
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. These parameters satisfy the
generalized Heisenberg inequality [43]

(11)

which reaches the lower bound for the pure states. The assump-
tion of the Gaussian state can be justified by the fact that a
Gaussian state remains Gaussian in the process of continuous
measurement [41] (we have checked this statement for nonideal
detectors including “asymmetric” detectors and for varying in
time strength of measurement) and by the fact that the thermal
state (natural initial condition) is Gaussian [42].

For Gaussian states, (6) transforms into

(12)

(13)

(14)

(15)

(16)

which practically coincide with the equations derived in [22],
[33], and [40], except for time-dependent . It is interesting
to notice that, while (6) is a nonlinear stochastic equation, for
which the Stratonovich and Ito forms are significantly different,
there is no such difference for (12)–(16), so they can be treated
as simple ordinary differential equations.

Notice that the equations for , , and do not depend
on noise and feedback force and are decoupled from
the remaining equations. Therefore, the evolution of the “wave
packet width” is deterministic. Analyzing the possibility
to squeeze the nanoresonator state, we will consider separately
the squeezing of the packet width and the contribution
to the total position variance due to fluctuating position of the
packet center . As will be discussed below, may be made
significantly smaller than the ground state variance using
modulation , while can be made even smaller using
the feedback.

C. Packet Width Squeezing

Let us use the natural normalization of and
by the ground state parameters, ,

, and similarly . Then
(14)–(16) can be rewritten as

(17)

(18)

(19)

We have analyzed these equations numerically for the har-
monic (8) and stroboscopic (9) modulation for several
values of the maximum coupling , concentrating on the

Fig. 1. Dependence of the packet width squeezing S (maximized over the
modulation period) on the frequency ! of the harmonic modulation (8) of
the measurement strength, for three values of the quantum efficiency � of the
detector. Solid lines show the numerical results, dashed lines are the analytical
results corresponding to (25) and (27), and dotted lines are the asymptotes
S = p

�.

range . Notice that for the stroboscopic modulation the
evolution during each period of modulation can be calculated
analytically using Riccati equations [33] that significantly
simplifies the numerical calculations. As anticipated, we have
found that, irrespective of the initial conditions, (17)–(19)
approach the asymptotic solutions which oscillate with the
modulation frequency . Even for small coupling, , the
asymptotic oscillations are significant in the case of resonance:

for harmonic modulation and for the
stroboscopic modulation (notice that at the variances
oscillate with frequency ). During the oscillation period, the
asymptotic solution for reaches the values both above and
below the stationary solution for which is [22], [33]

and becomes
for . Most importantly, the squeezed state may
be achieved for both harmonic and stroboscopic modulation
(momentum squeezing is also achieved; however, we do not
analyze it in this paper).

Fig. 1 shows the maximum squeezing over the oscillation
period for the asymptotic solution,

, as a function of the modulation frequency
for the harmonic modulation (8) in the case of weak coupling

. One can see that, for the ideal detector, , the
squeezing is achieved at and decreases
to (which corresponds to the ground state width) away
from the resonance. The resonances at , , are
barely visible and lead to small shoulders rather than to peaks.
For nonideal detectors, , the height of the resonance peak
decreases, , while the width increases; the
squeezing becomes impossible, , at .

Much stronger squeezing of the packet width can be achieved
for the stroboscopic modulation (9). (Correspondingly, the effi-
ciency can also be much lower—see analytics below.) Fig. 2
shows for the ideal detector with and pulse dura-
tion , where is the nanoresonator pe-
riod. One can see that the sharp resonances at have
equal height; however, their width decreases with . [If modu-
lation (9) is modified so that during the “off”
phase, then the peak height also decreases with .] For smaller
coupling , the peak height remains practically the same, but
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Fig. 2. Numerical results for the packet width squeezing S as a function of
modulation frequency ! for the stroboscopic measurement modulation (9) with
the pulse width �t. Efficient squeezing occurs at ! � 2! =n. The height of
the squeezing peaks is proportional to

p
�(�t) [see (36)] while their width is

proportional to C (�t) =n
p
� [see (37)].

the peak width decreases; this is the reason why we chose rel-
atively large coupling in Fig. 2 in order to have a noticeable
peak width. For smaller pulse duration , the squeezing peaks
in Fig. 2 would become higher and narrower, while the detector
nonideality makes peaks lower and wider (this will be evident
from the analytical results discussed below).

1) Evolution of the State Purity: Before discussing the ana-
lytical results for squeezing, let us briefly discuss the evolution
of the state purity, ,

where . From (17)–(19), it is easy to derive
the equation . Since and are
positive, the asymptotic solution of this equation is obviously

and, therefore, the state purity reaches the asymptote
. In particular, in the case of ideal detector ,

the state eventually becomes pure (similar to the case of a qubit
measurement [32], [52]). It is interesting to note that the typ-
ical purification time is comparable to the time of reaching the
asymptotic regime.

2) Analytics for Harmonic Modulation: Without measure-
ment, , (17)–(19) have the solution

(20)

(21)

(22)

with arbitrary amplitude and phase . (Notice that these
equations satisfy the condition .) For weak coupling,

, and harmonic modulation (8) in the vicinity of the
resonance, , it is natural to look for the asymptotic
solution of (17)–(19) in the form of (20)–(22) with replaced
with (actually, and vary in time with frequency , but
variations are negligible at ).

To find and , we substitute these equations into the equa-
tion which follows from

the stationarity condition , and (17) and
(18). This gives us the relation

(23)

We find numerically that at the resonance, .
(This is quite natural, corresponding to smaller at larger mea-
surement strength, and is also proven below). Then, from (23),
we find and, therefore,

(24)

since the maximum squeezing and the amplitude are related
as

(25)

This result confirms the numerical result for the peak height in
Fig. 1.

To find the shape of the resonant peak, we need one more
equation relating and . It can be obtained by deriving the
equation for from (17)–(19), and equating the
component for the two sides of the equation (assuming

and ). In this way, we obtain

(26)

In particular, this proves that at . Combining
(23) and (26), we find the amplitude as

(27)

where . This result gives us the an-
alytical expression for squeezing via (25). The corresponding
squeezing is shown by the dashed lines in Fig. 1, which prac-
tically coincide with the solid lines representing the numerical
results. Notice that the linewidth of the peak is proportional to

; away from the resonance, decreases to zero, and the
squeezing approaches , which is the same as for the case
without modulation [33]. The analytical result for works
well for coupling up to approximately 0.3. It is curious that
the rather complex shape of the resonance peak given by (25)
and (27) is quite close to the square root of the Lorentzian shape

(28)

with .
3) Analytics for Stroboscopic Modulation: In the case of

stroboscopic modulation (9) of the measurement strength, the
variances , , and should follow (20)–(22) during the
“off” phase of the modulation, while during the measurement
pulse of duration (“on” phase) the parameters and
slowly change (we again assume the weak coupling limit)
in accordance with (17)–(19). In particular, close to the th
resonant peak of Fig. 2, , the phase should change
during the pulse by the small amount

(29)



RUSKOV et al.: QND SQUEEZING OF NANOMECHANICAL RESONATOR 137

Fig. 3. Squeezing for the stroboscopic modulation for three values of the
coupling with detector C . Solid lines show numerical results, dashed lines
(practically coinciding with the solid lines) are the analytical results given by
(33) and (25), and the dotted lines are calculated using the simplified equation
(35).

in order to match the periodicity of the asymptotic solu-
tion with the periodicity of free oscillations (20)–(22). On the
other hand, can be found from the equation

(30)

which follows from from (17)–(19). Integrating (30) within the
pulse interval using (20)–(22) in which and are
assumed to be constant, we obtain .
Combining this result with (29), we obtain an equation relating

and

(31)

To obtain one more equation for and , we use the condi-
tion . Expressing the derivative
from (17) and (18) and using (20)–(22), we get the equation

(32)

Equations (31) and (32) are sufficient to find for the th res-
onance, though the expression is quite long as follows:

(33)

where and
. The squeezing is obtained from

this result using (25). The corresponding analytical curves are
plotted in Fig. 3 by the dashed lines which practically coincide
with the numerical results shown by the solid lines. One can see
that the analytics work well even for , even though it was
assumed that for the derivation.

The value of squeezing at (peak height) can be
obtained from (33), but it is easier to use (32) with [which
follows from (31)], which leads to the result

(34)

The analytical results significantly simplify in the case of
short pulses, , then

(35)

which corresponds to the peak squeezing

(36)

and the full width at half height of equal to

(37)

The curves calculated using (35) are shown in Fig. 3 by the
dotted lines. As one can see, there is a noticeable difference
from the numerical results away from the resonance; however,
the main part of the peak is fitted quite well.

Equation (36) shows that the maximum squeezing in our
model does not depend on coupling . Nanoresonator in-
teraction with an extra environment (for example, due to the
finite quality factor) would obviously change this conclusion,
because the corresponding decay of squeezing would compete
with the squeezing “build up,” which rate is propotional to
as follows from (17)–(19).

D. Quantum Feedback of the Packet Center

While the width of the monitored Gaussian packet can be
squeezed below the ground state width as shown in the previous
subsection, the center of the packet undergoes random evolution
described by (12) and (13) and without feedback diffuses far
away from the origin. For our model, which assumes an infinite
quality factor of the nanoresonator, the packet center evolves
infinitely far away because the back-action from the detector
“heats up” the nanoresonator to a formally infinite effective tem-
perature (voltage) of the detector [17], [22], [33]. To prevent
deviation of the packet center from the origin, we can apply the
quantum feedback described by the force in (13). Similar to
[22] and [33], we choose it as

(38)

Notice that the random oscillating evolution of and can
be extracted from the measurement record using (12) and (13)
even when the measurement is performed during only small
fraction of the period.

Following [22] and [33], we characterize the distribution of
the packet center position and center momentum by the
ensemble averages (over realizations) and and the
variances , , and

. In the notation of doubled
angle brackets, the inner brackets mean averaging with the den-
sity matrix in an individual realization of the process, while
the outer brackets represent averaging over realizations.
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The equations for and derived from (12) and (13)
lead to the ensemble averaged position evolution as

, from which it is clear that
relaxes to zero for positive .

Introducing dimensionless variances ,
, and , we derive the

following equations from (12) and (13):

(39)

(40)

(41)

where and are the dimensionless feed-
back parameters.

We have simulated these equations numerically using the
asymptotic solutions of (17)–(19) for , , and . We have
mostly studied the resonance in the weakly coupling
regime. The main finding is that, for both harmonic [see (8)]
and stroboscopic [see (9)] modulation of measurement, the
center position variance can be made much smaller than
the packet variance at time moments when
the packet squeezing is at a maximum. Therefore, the cor-
responding worsening of the ensemble-averaged squeezing
defined as is negligible.

As an example, for the stroboscopic modulation with
and at , the ratio

at is around 0.4% for and and
around 0.1% for and . [The term with in
(38) is not necessary; however, it improves squeezing of the
packet center, so nonzero is beneficial.] The ratio
decreases with a decrease of the pulse width and a decrease
of coupling . It is important to notice that scales linearly
with as follows from (39)–(41), while as well as and

do not depend on at and (this was
also checked numerically). Therefore, the ratio can be
made arbitrary small at small coupling.

The analytical results (which will be described in more de-
tail elsewhere) show that, in the case and ,
the variance of the packet center at the middle of the measure-
ment pulse is , which can obviously be
made much smaller than given by (36) at sufficiently small

and and/or sufficiently large .

E. Observability of the Squeezed State

The fact that the squeezed state of a nanoresonator can be
prepared by the modulated measurement and quantum feedback
does not automatically mean that this state may be useful for the
measurement of extremely weak forces and even that such state
can be checked experimentally in a straightforward way. As an
example of such a problem, in one of the setups analyzed in [44]
the squeezed in-loop optical state is realized by using quantum
feedback, but the squeezing of the output light is impossible.
Fortunately, as we discuss below, in our case there is no problem
with observability of the squeezed state.

We have studied the possibility to verify the squeezed state of
the nanoresonator in the following way. After the preparation of
the squeezed state by stroboscopic measurement and feedback,
the feedback at some moment is switched off, while
the stroboscopic measurement continues. Considering for sim-
plicity the case of one measurement per nanoresonator period
( , ), we calculate the average of the position mea-
surements (each pulse gives a very imprecise measurement be-
cause of weak coupling)

(42)

The idea is that, for a squeezed initial state, can be much
closer to zero than if we would start with the ground state.

The analysis of the distribution of (over realizations) is
very simple in the case of instantaneous but imprecise measure-
ments, , , since the Hamiltonian evolution
of the resonator in between the measurements can be completely
neglected and, therefore, measurements are equivalent to one

-times stronger measurement. This gives us the variance of
equal to

(43)

where the first term is due to the initial packet width, while the
second term is the inaccuracy of the measurement which im-
proves with . Obviously, at , this variance for
a squeezed state is significantly smaller than the vari-
ance for the ground state . Even though this difference
can be rigorously verified only by performing many experiments
to accumulate statistics for , it can be observed even in a
single experiment with good reliability if . (In a single
realization, the failure probability for distinguishing squeezed
and ground states is crudely .)

Unfortunately, this result requires the assumption of infin-
itely strong coupling, so it is not obvious if it holds in the case
of weak coupling or not. The possible problem is that for suf-
ficiently large which makes the second term in (43) suffi-
ciently small, the nanoresonator heating due to measurement
back-action may already eliminate the squeezing (the feedback
is off). We have calculated for stroboscopic modulation
numerically using (12) and (13) and have found that there is
still a range of where the squeezed and ground initial states
lead to significantly different and, therefore, can be reli-
ably distinguished. As an example, for , , and

, the normalized variance
achieves a minimum of 0.078 (at ), which is crudely
two times larger than the contribution from the initial squeezing

and is still significantly smaller than the ground
state limit . We have found numerically that the min-
imum scales linearly with the pulse width (similarly to

) and practically does not depend on coupling at .
This hints that the product is practically a con-
stant approximately equal to 2 and, therefore, verification of the
squeezed state by a weakly coupled detector is almost as effi-
cient as the verification by instantaneous measurements (within
a factor of about 2).
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IV. CONCLUSION

In this paper, we have shown that the uncertainty of the
nanoresonator position can be squeezed significantly below the
ground state level by the modulated in time measurement of the
nanoresonator position with the QPC or RF-SET detector. The
measurement strength is modulated by applying the periodic
voltage across the detector. The mechanism of squeezing is
similar to the QND measurements [1] (cancelled Hamiltonian
evolution allows the buildup of the effective measurement
strength for repeated weak measurements), though a significant
difference in our case is the continuous measurement with weak
coupling to the detector. We have considered harmonic [see
(8)] and stroboscopic [see (9)] modulations and found that only
a moderate squeezing is possible for the harmonic
modulation with frequency [see (24), (27), and Fig. 1].
However, the stroboscopic modulation can lead to an arbitrary
strong squeezing for sufficiently short mea-
surement pulses applied with frequency [see
(34)–(37) and Fig. 2]. Obviously, the state width oscillates
with time, so that the maximum position squeezing is achieved
periodically (with a period close to ), while the maximum
squeezing of momentum happens with time
shift (when ).

While the modulated measurement squeezes the width of the
state (packet), the position of the packet center fluctuates due
to random back-action from the detector; so, to keep the packet
center near , we need to apply quantum feedback. We
have found that the feedback can keep the deviation of from
zero much smaller than the packet width, which means that the
ensemble-averaged squeezing practically does not differ from
the packet width squeezing.

In this paper, we have used the Bayesian formalism [32], [52]
for the description of the quantum measurement process. How-
ever, since the obtained equations practically coincide with the
equations used in [22] and [33], we have followed those papers
to a large extent, especially for the analysis of the evolution of
the Gaussian states.

An important issue is the possibility to use the squeezed states
of the nanoresonator for the measurement of weak forces with
the accuracy beyond the standard quantum limit. Even though
we did not consider this question explicitly, we have found that
the state squeezing can be verified (with high reliability) even
in a single measurement run by a weakly coupled detector.

The main drawback of the present theory is the assumption
of a very large quality factor of the nanoresonator. Crude pre-
liminary analysis indicates that our results for the stroboscopic
modulation are valid for
and sufficiently small temperature of the environment,

. These condi-
tions seem to be within present-day experimental reach for
moderate squeezing .
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