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ABSTRACT OF THE DISSERTATION

Measurement and Quantum State Transfer in Superconducting Qubits

by

Eric Mlinar

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, March 2017

Dr. Alexander Korotkov, Chairperson

The potential of superconducting qubits as the medium for a scalable quantum

computer has motivated the pursuit of improved interactions within this system.

Two challenges for the field of superconducting qubits are measurement fidelity, to

accurately determine the state of the qubit, and the efficient transfer of quantum

states. In measurement, the current state-of-the-art method employs dispersive

readout, by coupling the qubit to a cavity and reading the resulting shift in cav-

ity frequency to infer the qubit’s state; however, this is vulnerable to Purcell

relaxation, as well as being modeled off a simplified two-level abstraction of the

qubit. In state transfer, the existing proposal for moving quantum states is mostly

untested against non-idealities that will likely be present in an experiment. In this

dissertation, we examine three problems within these two areas.

We first describe a new scheme for fast and high-fidelity dispersive measure-

ment specifically designed to circumvent the Purcell Effect. To do this, the qubit-

resonator interaction is turned on only when the resonator is decoupled from

the environment; then, after the resonator state has shifted enough to infer the
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qubit state, the qubit-resonator interaction is turned off before the resonator and

environment are recoupled. We also show that the effectiveness of this “Catch-

Disperse-Release” procedure partly originates from quadrature squeezing of the

resonator state induced by the Jaynes-Cummings nonlinearity.

The Catch-Disperse-Release measurement scheme treats the qubit as a two-

level system, which is a common simplification used in theoretical works. However,

the most promising physical candidate for a superconducting qubit, the transmon,

is a multi-level system. In the second work, we examine the effects of including the

higher energy levels of the transmon. Specifically, we expand the eigenstate picture

developed in the first work to encompass multiple qubit levels, and examine the

resulting changes to the system. In particular, we analyze the population of the

non-target eigenstates as a result of this expanded model, and provide an analytical

form for these deviations from the simpler model in Catch-Disperse-Release (i.e.,

the dressed state approximation).

Lastly, we assess the robustness of the existing quantum state transfer proto-

col, testing its performance under typical experimental deviations from the ideal

case. We show that the procedure is resilient to almost all non-idealities, except

frequency mismatch between the two cavities. We also demonstrate a method to

compensate for one such error in frequency-matching.
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Chapter 1

Introduction

1.1 Motivation

A marriage between two of the greatest scientific developments in the twentieth

century, quantum mechanics and the digital computer, could provide the twenty-

first century with the next big leap in information processing in the form of the

quantum computer. Made possible by the introduction of quantum algorithms,

quantum information processing will allow for major breakthroughs in some tra-

ditionally difficult areas of computation. Specifically, several known quantum al-

gorithms will run significantly faster than their classical counterparts. One of the

most prominent examples is Shor’s algorithm, which can solve integer factoriza-

tion exponentially faster than known classical algorithms, and therefore has huge

implications in the decryption of modern day communication security protocols.

The great enthusiasm for quantum information processing is tempered by the

main prerequisite of the field: the implementation of quantum algorithms neces-
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sitates access to a controllable quantum system — a quantum computer. Such a

device incorporates and directly takes advantage of quantum mechanical behavior

to implement algorithms which are impossible for a classical computer to perform.

Two properties intrinsic to the quantum computing system which make this

advancement possible are quantum superposition and quantum entanglement.

Whereas a classical binary digit (bit) can only be in one of two possible states

(e.g. “zero” or “one”; “false” or “true”), its quantum analogue, the quantum bit

(qubit), can exist in any linear combination of these two states. That is, a qubit

can be in a superposition of both “zero” and “one” states simultaneously. En-

tanglement allows this superposition to be extended over multiple qubits. These

characteristics can be used to create a seemingly highly-parallel computing device

and are exploited by quantum algorithms.

However, these potential benefits come with a new set of challenges. It is a

difficult task to physically implement a controllable qubit, and then also to keep

it coherent long enough to interact with it in some desired manner. In the search

for an appropriate system, realizations of qubits have been designed in many

different physical domains. The list can be split into two categories: traditional

quantum systems (e.g., nuclear spins and trapped ions) and artificial ones (e.g.,

quantum dots and superconducting qubits), with each having its own advantages

and disadvantages. The work presented in this dissertation focuses on the use of

artificial atoms in superconducting circuits, but even in this promising domain,

progress towards a scalable quantum computer remains difficult.
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Nevertheless, efforts in this field can lead to greater knowledge of quantum

physics, regardless of the fate of the quantum computer. For example, the char-

acterization of quantum systems can be used to study the behavior of quantum

systems in general. From a scientific standpoint, the field of quantum information

will likely be greatly developed under current pursuits. Even for those who are

skeptical a quantum computer will ever be realized, the quest for one provides

a rich medium for scientific learning. Thus, the advancement of superconduct-

ing qubits as a subset of quantum computing can play a major role in both the

progress towards a scalable quantum computer, as well as the study of fundamental

quantum mechanics and quantum information processing.

Before moving into a discussion of superconducting qubits and concepts related

to the main work of this dissertation, we will first review some general aspects of

quantum computing. A good overview of this topic can be found in Ref. [1],

but a brief introduction will be presented here. We will start with quantum

information processing, including a short synopsis of quantum algorithms, qubits,

and quantum operations. We will then briefly examine the various domains for

the physical realization of a qubit.
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1.2 Quantum Information Processing

1.2.1 Quantum Algorithms

The enthusiasm for quantum computing has its origins in the development

of quantum algorithms because of the signifcant speedup that these algorithms

offer over classical ones for a variety of applications. It is the need for a quantum

computer to perform these algorithms which fuels the current quest for one. We

therefore begin with a brief overview of the development of quantum algorithms.

Richard Feynman is credited with the initial proposal of a quantum computer,

when in 1982 he suggested the use of one for simulating quantum systems [2].

The next big event for quantum information processing occurred in 1985 when

David Deutsch challenged the strong Church-Turing thesis, proposing that quan-

tum algorithms cannot be efficiently simulated with a classical Turing machine [3].

The initial Deutsch algorithm was a toy problem, set up to determine whether a

function is constant or balanced — essentially, whether a coin toss is fair or not.

This algorithm was improved in 1992 to include a system of many binary-valued

inputs and is known as the Deutsch-Jozsa algorithm [4].

One of the most influential developments came in 1994 with Shor’s algorithm,

which solves integer factorization and the discrete logarithm problem [5]. Because

integer factorization is the mechanism of security in the popular RSA encryption

method of public-key cryptography, the implementation of this algorithm has far-

reaching consequences to communication security. Whereas a classical computer

will take super-polynomial time to factorize a number (and for modern day se-
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curity, a solution to the classical algorithm, even on a super-computer, can take

longer than the lifetime of the universe), Shor’s algorithm run on a quantum com-

puter does this in polynomial time, conceivably within a single day. In addition to

decryption, quantum encryption schemes have been proposed that would provide

completely secure communication [6].

Another notable quantum algorithm is Grover’s algorithm, which can run a

search through an unordered database quadratically faster than known classical

algorithms: runtime of O(
√
N) compared to O(N) classically [7], where N is the

database size. While not exponential, such speedups in search algorithms are

highly sought after. There are numerous other quantum algorithms, and as the

list grows, so too the interest in a quantum computer which can apply them.

1.2.2 Qubits

Simply put, a qubit is a quantum system with two energy levels (or eigenstates).

Below, we briefly discuss two important properties of qubits, quantum superpo-

sition and entanglement, as well as their mathematical description in terms of

density matrices.

1.2.2.1 Quantum Superposition

Following the conventional notation for the states of classical bits (0 or 1), the

two eigenstates of the qubit are usually denoted, using bra-ket notation, by |0〉

(e.g., the lowest energy level) and |1〉. Unlike classical bits, however, the qubit state

is not confined to |0〉 or |1〉; it can be any linear combination of these two states.
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This property is known as the principle of quantum interference or superposition

(similar to the superposition of classical waves). More precisely, the state of, say,

qubit “α” is given by the wavefunction

|ψα〉 = α0 |0〉+ α1 |1〉 , (1.1)

where the coefficients α0 and α1 are, in general, complex, and satisfy the normal-

ization condition, |α0|2 + |α1|2 = 1. In this superposition state, the qubit interacts

with its environment through both eigenstates simultaneously, with interaction

strength proportional to the coefficients α0 and α1.

The quantum superposition is generally destroyed by the act of measurement

(in the considered case, the measured quantity is the qubit energy). According

to the postulate of orthodox collapse [8], after the measurement, the state |ψα〉 is

collapsed to state |0〉 with probability P0 = |α0|2 or to state |1〉 with probability

P1 = |α1|2 = 1− P0.

The qubit state |ψ〉α is often depicted by the Bloch vector r = (x, y, z) on the

Bloch sphere: |r| = 1. The Bloch coordinates for the considered state are defined

by

x = 2 Re[α0α
∗
1], y = −2 Im[α0α

∗
1], and z = |α0|2 − |α1|2. (1.2)

Note that, in the Bloch representation, the eigenstates |0〉 and |1〉 are at the poles

of the Bloch sphere, as shown in Fig. 1.1.
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|0〉

|1〉

𝒓 = (𝑥, 𝑦, 𝑧)

Figure 1.1: The Bloch sphere. The Bloch vector r = (x, y, z) depicts a qubit state.
For pure states, e.g. |ψ〉α in Eq. (1.1), the Bloch vector is on the surface of the
Bloch sphere (|r| = 1), as can be shown from the transformation Eq. (1.2). For
mixed states, the Bloch vector is inside the sphere (|r| < 1).

1.2.2.2 Quantum Entanglement

Let us now discuss the state of a two-qubit system, formed by the qubit “α”

mentioned above and another qubit “β” (physically separated and not interacting

with qubit “α”), with wavefunction of the form Eq. (1.1), but with coefficients β0

and β1. The state of this two-qubit system can either be entangled or not.

When the two-qubit state is not entangled, measurement of one qubit does not

affect the state of the other qubit. This situation is an analog to two independent

classical systems. The wavefunction in this case is just the product of the two

individual wavefunctions; that is,

|ψnon−entangled〉 = |ψα〉 |ψβ〉 (1.3)

= α0β0 |0〉α |0〉β + α0β1 |0〉α |1〉β + α1β0 |1〉α |0〉β + α1β1 |1〉α |1〉β .

From Eq. (1.3), we find that the joint probability distribution for the measurement
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result combination i, j is equal to P (i, j) = P
(α)
i P

(β)
j (for i, j = {0, 1}), where

P
(α)
i = |αi|2 and P

(β)
i = |βi|2. This joint probability distribution is what we would

expect for independent classical systems.

However, quantum mechanical systems are richer than classical ones and can

“entangle” with each other. For the considered two-qubit system, the following

wavefunction is also allowed

|ψentangled〉 =
1√
2

(
|0〉α |0〉β + |1〉α |1〉β

)
. (1.4)

The system in the above entangled state (one of the famous Bell states, or EPR

pairs [9]) has the peculiarity that if we perform a measurement on, say, qubit “α”

and obtain the result, say, zero (with 50% chance), then we immediately collapse

the state of the other qubit to |0〉β with 100% certainty. Note that this entangle-

ment property does not rely on any physical interaction between the qubits, and

the spatial separation between them can be arbitrarily large.

This cause-effect interaction seemingly violates Einstein’s theory of relativity,

but there is an important restriction: although some effect travels faster than

the speed of light, no useful (i.e., classical) information is transmitted. As such,

in order to extract some meaningful information, the two observers must still

communicate with each other classically [1].

1.2.2.3 Density matrix

When working with the wavefunction notation for quantum systems, the im-

plication is that the system is fully defined (i.e., we have complete information).

8



These examples of perfect information are known as “pure” states. While these

are commonly assumed in theory, the case is different in the real world. For in-

stance, experimental systems are constantly interacting with their environment

in a way which is impossible to perfectly describe, nor are measurements of the

system itself perfect (e.g., output signals of detectors have noise strength larger

than that of ideal, quantum-limited detectors [10]). As a result, the state of a

system is often defined as a mixture (not a superposition) of possible pure states.

Such type of states are called “mixed” states.

Both pure and mixed states are mathematically described by density matrices

(or density operators) [11, 1]

ρ̂ =
∑
i

pi |ψi〉 〈ψi|, (1.5)

where each term represents a pure state, |ψi〉 〈ψi|, and the weighting factors pi

(probabilities) reflect our uncertainty about what the exact state of the system is.

We also have the normalization condition
∑

i pi = 1. Note that, while pure states

may be represented in terms of wavefunctions [see Eqs. (1.1), (1.3) and (1.4)],

mixed states cannot.

The density matrix, ρ̂, is a Hermitian matrix (ρ̂† = ρ̂) with unit trace. For a

qubit, it has the form (ρ∗01 = ρ10, ρ00 + ρ11 = 1)
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ρ̂ =

ρ00 ρ01

ρ10 ρ11


=ρ00 |0〉 〈0|+ ρ01 |0〉 〈1|+ ρ10 |1〉 〈0|+ ρ11 |1〉 〈1| . (1.6)

The diagonal elements have the classical interpretation of probabilities (i.e. ρ00 =

P0 and ρ11 = P1). A visual representation of Eq. (1.6) can be achieved by using

the Bloch parametrization

ρ̂ =
1

2
(1 + xσx + yσy + zσz) , (1.7)

where the Bloch vector is r = (x, y, z). The Bloch coordinates as defined in

Eq. (1.7) apply to both mixed and pure states, and also agree with the definition

in Eq. (1.2) for pure states. In Eq. (1.7), σx, σy, and σz are the Pauli matrices,

defined as

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , and σz =

1 0

0 −1

 . (1.8)

Physical states correspond to Bloch vectors, r, inside of (mixed states) or on (pure

states) the Bloch sphere, as depicted in Fig. 1.1.

When modeling experimental setups, pure states cannot handle the loss of

information by the system, such as the introduction of noise, or other sources of

decoherence that result in a mixed state. For this reason, although wavefunctions
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are generally easier to work with, the density matrix is often used in simulations,

including results presented in this work (e.g., Sec. 3.4).

1.2.3 Quantum Operations

Quantum operations are, generally speaking, linear mappings which map one

physically valid density matrix to another one. In particular, such mappings are

trace preserving. Quantum (logic) gates are a type of quantum operations which

can be regarded as unitary transformations performed on wavefunctions (or pure

states). This implies that the operation is reversible (unlike most classical gates)

and can be achieved by engineering some specific Hamiltonian. Below, we discuss

some examples of quantum logic gates operating on states of one- and two-qubit

systems. Quantum gates involving three or more qubits can be implemented in

terms of one- or two-qubit quantum logic gates [12, 1].

Examples of one-qubit quantum logic gates are:

• Pauli X, Y, and Z gates. These are single-qubit operations represented

by the Pauli matrices, see Eq. (1.8). In particular, the quantum gate X ≡ σx

(similarly, Y ≡ σy and Z ≡ σz) is the analogue to the classical NOT gate;

i.e.,

If |ψ〉 = α0 |0〉+ α1 |1〉 , then X |ψ〉 = α1 |0〉+ α0 |1〉 . (1.9)
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• Hadamard gate. Represented by the unitary transformation, H,

H =
1√
2

1 1

1 −1

 , (1.10)

this creates a “cat” state, (|0〉 ± |1〉)/
√

2, from a state in the computational

basis, |0〉 or |1〉, and vice-versa.

Again using the Bloch sphere as a visual aid, single-qubit gates are represented

by rotations of Bloch vectors. For instance, the Pauli X (or NOT) quantum gate

can be seen as a π-rotation about the x-axis.

Examples of two-qubit quantum logic gates are:

• Swap gate. This is a two-qubit gate that exchanges the states of the two

qubits, it is represented by the unitary transformation, SWAP ,

SWAP =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


, (1.11)

and it maps an initial two-qubit wave function |ψin〉 = α00 |00〉 + α01 |01〉 +

α10 |10〉+ α11 |11〉 into |ψf〉 = α00 |00〉+ α10 |01〉+ α01 |10〉+ α11 |11〉.

• Controlled-NOT. This gate uses the state of one qubit (the control qubit)

to determine if an operation on another qubit (the target qubit) is performed.

If the control qubit is in the state |1〉, then the operation is performed on
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the target qubit; otherwise, no operation is done. This is achieved by the

unitary transformation

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (1.12)

1.3 Physical Realizations of Qubits

Because of the potential benefits that motivate the desire for a quantum com-

puter, there is a strong push to find the best physical realizations of qubits. While

any two-level quantum system may be considered a qubit, the demands of a scal-

able quantum computer impose certain conditions which successful realizations

have to satisfy.

1.3.1 Requirements

DiVincenzo formulated in 1997 five requirements for a quantum system to be

a quantum computer [13, 14]. They are as follows:

1. The Hilbert space of the system is “precisely delineated” (a system of well-

defined qubits).

2. The system must be able to create initial states (good state preparation).

3. It is isolated from coupling to the environment (low decoherence).
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4. It is possible to subject the system to controlled sequence of unitary trans-

formations (quantum gates are defined).

5. The system allows for a “strong” form of measurement (i.e., it can project

the state to an eigenstate, or “measurement basis”).

Since 1997, there have been some refinements to these initial conditions. A 2010

publication on the state of quantum computing expanded on these to add the

following [15]:

• Scalability: exponential growth of the Hilbert space without an exponential

cost in resources (e.g. time, space, energy).

• Universal Logic: access to the system using finite set of control operations,

for which the resources must also not scale exponentially.

• Correctability: extraction of the entropy of the computer to maintain a

coherent state.

Creating a physical realization of qubits which meets all of the above require-

ments to make a functional, scalable quantum computer is an extremely chal-

lenging endeavor. Each of the necessary conditions is difficult by itself, albeit

achievable, but these conditions have a general conflict with each other. For ex-

ample, quantum systems should minimize interaction with the environment to

avoid decoherence, but measurement and control necessarily involve this interac-

tion. The realization of a quantum computer thus involves the more difficult goal

of simultaneously controlling the quantum system, measuring it, and preserving

its isolation from the environment.
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1.3.2 Experimental Domains

Due to the challenges involved in the physical setup for quantum information

processing, various different physical domains have been considered for the task.

While advancing the understanding of quantum systems in each of these different

areas is by itself already a worthwhile undertaking, the target for much of this

research is finding the appropriate physical system for a scalable quantum com-

puter. Here we provide a cursory glance at some of the domains that have been

probed for their potential in quantum computing; this list is not exhaustive, but

rather meant to provide some background on the efforts in this field, and it may

not reflect the current state-of-the-art.

Nuclear Magnetic Resonance. One of the first systems explored experimen-

tally for use as a quantum computer was nuclear magnetic resonance (NMR). By

1997, there were already proposed quantum computing schemes based on NMR

[16, 17]. In 1998, it was employed to show experimental quantum error correc-

tion [18]. By 2001, simple forms of quantum algorithms had been demonstrated,

for example: Deutsch’s algorithm [19], the quantum Fourier transform [20], and

Shor’s factoring [21].

The popularity of NMR can be partially attributed to the broad research that

already existed in the field by the 1990s, thanks to magnetic resonance technology

(e.g. magnetic resonance imaging, or MRI). NMR quantum computing uses the

nuclear spins in liquid state molecules as the two-level system (spin up or spin

down). The advantages of this technology are that, first and foremost, it has
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great coherence times, with nuclei maintaining their spin orientation for many

seconds [15]. Entanglement is produced through indirect coupling via molecular

electrons. The main limitations of NMR are scalability (systems with more than

20 qubits are very challenging [22, 23]) and the difficulty to address individual

qubits.

Trapped Atoms. We divide the field of trapped atoms into two main groups:

trapped electrically charged atoms (ions), and trapped neutral atoms. The former

of these is the “leading experimental playground in which to explore the evolution

of quantum systems” [24], setting the benchmark for coherence times in relation to

the time for initialization, measurement, and logical gate operations. The typical

ion trap geometry is the linear radio frequency Paul trap [25, 26, 27], whereby

the ions are confined by electrodes and spaced from mutual Coulomb repulsion

between each other. An important ingredient is the laser-cooling (Doppler cooling)

which lowers the atomic energy to the bottom of the trap, and special techniques

can bring it almost to rest in the trap [28]. Entangling in these systems involves the

direct interaction of atoms because of spacial proximity (e.g. Coulomb interaction

of ions), and have reached 99% entangled state fidelities [29]. Initialization can be

done through optical pumping for nearly perfect state preparation. Measurement

takes advantage of state-dependent optical fluorescence for almost 100% efficiency

in detection.

Despite this strong list of advantages, ion traps suffer from the limiting factor

in many potential quantum computing domains: scalability. With enough ions
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present, laser-cooling becomes inefficient and decoherence increases. Tens of ion

traps can presently be realized, even up to roughly a hundred, which is likely

sufficient to demonstrate the potential of the quantum computer in a way that is

intractable to classical computers [30]. Groups in the field are seeking to increase

scalability further in a number of ways, including the use of a quantum charge-

coupled device (QCCD) [31].

Trapped neutral atoms, sometimes referred to as cold atom systems, have not

yet achieved the same remarkable results as their ion trap brethren. In these sys-

tems, arrays of neutrally-charged atoms form an optical lattice by using patterns

of crossed laser beams to create potential wells [15, 32]. The challenges in this

system include controlled initialization of, interaction with, and measurement of

these atomic qubits.

Photons. All-optical systems have great access to highly coherent sources of

qubits in the form of photons. One of the main limitations of photons is a biprod-

uct of one of their greatest advantages, which is their lack of interaction with the

environment. While this means coherence times for photons are very good, it also

means that entangling photons together is very challenging, with the majority of

successful quantum operations being based on one qubit [15] (with some excep-

tions [33]). Photons are often considered for their ability to carry quantum states

over great distances in quantum communication, which ideally can integrate into

other quantum systems.
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Although only non-deterministic quantum computers are achievable with pho-

tons because of probabilistic photon sources [34, 35] and detectors [36, 37], recent

efforts in the field seek to push beyond this in hybrid systems. Atom-photon in-

teractions have been heavily studied, known as cavity quantum electrodynamics

(QED) [38]. This also leads to studies in circuit QED [39], which is a significant

development in the field of superconducting qubits.

Semiconductor Qubits. Semiconductor qubits include quantum dots and the

use of dopants in solids. These quantum systems were among the original sys-

tems suggested for the realizations of qubits, with the quantum-dot-based Loss-

DiVincenzo quantum computer proposed in 1998 to satisfy DiVincenzo’s own cri-

teria (previously mentioned in Sec. 1.3.1) [40]. One of the main advantages, shared

with the superconducting field, is that semiconductor qubits can take advantage

of the mature fabrication processes developed for the classical computer industry

[41].

Computation in semiconductor qubits is typically based on two spin states:

parallel and anti-parallel to an external magnetic field. Measurement in these sys-

tems involves a spin-to-charge conversion, either through a single electron transis-

tor or a quantum point contact [42, 15]. One problem with use of these spin states

is interaction with the nuclear spins in the substrate, which is a major source of

decoherence. The use of nuclear-spin-free lattices (such as silicon and carbon) is

able to avoid this, and there are several semiconductor qubit system realizations
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that demonstrate coherence times of seconds, compared to nanoseconds when nu-

clear spin interactions were present [43, 44]. The problem can also be avoided

through the use of dynamical decoupling protocols [41]. While scalability remains

a challenge similar to other fields, the recent advancements in the semiconducting

qubit field, such as the many orders of magnitude improvement in coherence times,

are very promising for quantum spintronics as well as the possibility of quantum

information processing in this domain.

Superconducting Qubits. While an in-depth discussion of superconducting

qubits follows in Ch. 2, here is a very brief glimpse of the field. As classical

electrical circuits are used for present day information processing, it is natural to

ask if similar circuit devices can be constructed for quantum computing. A known

concern with classical circuits is their dissipation of energy, which creates high

decoherence in a quantum system. This can explain one of the current limitations

of the field: low coherence times of the qubits. Nonetheless, superconducting

circuits, and in particular the use of the the Josephson junction (see Sec. 2.1),

may provide the best prospects for the realization of a quantum computer.

The reason for such optimism comes from the most notable advantage of su-

perconducting qubits: the potential for scalability. Because such devices can be

constructed on 2-D wafers, similar to classical computing, known device-scaling

techniques can be adapted for use in scaling up the number of qubits. This field

of fabrication is already very mature thanks to today’s [classical] computers. The

main disadvantage for quantum computing with superconducting circuits is the
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difficulty of isolating these systems from their environment. Coherence times are

still short in contrast to other domains, which makes their improvement a main

goal. Other areas for improvement are the fidelity of measurement operations and

quantum gates, as well as decreasing the time needed to perform these tasks.

1.4 Dissertation Outline

The dissertation is organized as follows. In Chapter 2, we discuss some aspects

of superconducting qubits, relevant to the work presented in later chapters. In

Chapter 3, we discuss an innovative measurement technique for faster and higher-

fidelity determination of a qubit state by avoiding the Purcell effect. In Chapter 4,

we continue the discussion of measurement, examining the effect of higher energy

levels of transmons on the measurement physics. In Chapter 5, we consider the

experimental viability of the state-of-the-art quantum state transfer protocol for

superconducting systems, by examining the robustness of this protocol to exper-

imental non-idealities. In Chapter 6, the key points of this work are highlighted

with some concluding remarks.
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Chapter 2

Implementation of

Superconducting Qubits

Superconducting circuits can be used to create artificial atoms which satisfy

the DiVincenzo criteria for a scalable quantum computer. These circuits can be

constructed using many of the techniques that are already well-developed in the

fields of integrated circuits and consumers electronics. In this chapter, we will

discuss some of the basic principles of superconducting qubits, examine physical

implementations of qubits in this domain, and also provide some background to

the main body of work in this dissertation.

The microscopic theory of superconductivity was proposed in 1953 by Bardeen,

Cooper, and Schrieffer (“BCS” theory), describing the resistanceless transport of

electrons due to the interaction of electrons and atomic/molecular lattice vibra-

tions (phonons) [45, 46]. The dependence of the critical temperature (TC) for

superconductivity on the nuclear mass of the material, known as the isotope ef-
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fect, showed a reliance of superconductivity on the lattice vibrations, and not

on the electrons alone [47, 48]. This electron-phonon interaction creates Cooper

pairs, where two electrons are effectively coupled through the lattice vibrations

(phonons). The bound pair acts as a single entity and exhibits Bosonic behavior,

as the two electrons can condense into the ground state, which would normally

violate the Pauli exclusion principle for two individual electrons (or any fermions).

Below the critical temperature, the attractive force mediated by the positive ions

in the lattice overcomes the usually-dominant force of Coulomb repulsion between

the electrons.

One important observation from superconducting materials is that, although

it is a macroscopic object with millions of particles, it exhibits quantum behavior.

As such, it can be represented as a wavefunction, with an amplitude and phase

component:

Ψ(r, t) = |Ψ(r, t)| exp [iθ(r, t)], (2.1)

where r is the spatial variable, and θ is the global phase. A superconducting ring

then has one collective wavefunction, and the wavefunction is continuous along

the wire. When the wavefunction loops back to original point, there can be no

jump, so only changes of phase by factors of 2π are allowed.

The discrete nature of jumps in the wavefunction’s phase may seem to conflict

with the continuous modes of nature, for example, when a superconducting loop

is exposed to an external flux. On the one hand, Faraday’s law of induction states

that the changing magnetic field induces an electric field (Lenz’s law specifies this

induced current acts to oppose the original magnetic flux) [49]. The Meissner
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effect states that the external magnetic field is expelled from inside a supercon-

ducting loop. Thus, the external flux should create an opposing flux in the ring

via induced current. One the other hand, this change of current cannot break the

wavefunction’s continuity. The loop may acquire shifts in its phase, but they must

obey the following relation:

∆θ

2π
=

∆φ

φ0

= n, (2.2)

where ∆φ is the change of magnetic flux, φ0 = h/2e = 2.07× 10−15 Wb is a single

flux quantum, h is Planck’s constant, e is the charge of an electron, and n takes

integer values (n = 0, 1, 2, ...).

This leads to two conclusions. First, in the context of a loop of superconducting

wire, phase and flux are interchangeable terms, with a relation given by Eq. (2.2).

Second, flux displays discrete, quantized behavior, with allowed levels at integer

multiples of φ0. Below, we will show that breaking the continuity of this loop

leads to the superconducting qubit.

2.1 Josephson Junctions

The standard Josephson junction is two superconducting electrodes separated

by an insulated barrier (often an oxide), which acts as a tunnel junction between

two superconducting wires. Josephson first demonstrated that a supercurrent, I,

flows in such a device as [50, 51]

I = IC sinϕ, (2.3)
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where IC is the critical current, and ϕ is the difference between the global phase of

each electrode’s wavefunction, ϕ = ∆θ. If this junction is placed within a loop of

wire, the loop no longer has a continuous wavefunction: a finite phase difference

is allowed across the tunnel junction.

To model the Josephson junction in a superconducting loop, we break down

its circuit contribution to a capacitive element (from the two electrodes separated

by a short distance) and an inductive one (from the [super]current flowing in the

loop). An important feature of this device is that the Josephson inductance is

non-linear, which we show here.

From Eq. (2.3), we can extract İ = IC (cosϕ) ϕ̇, and from Faraday’s Law, we

have V = (φ0/2π) ϕ̇. Substituting ϕ̇ from the second equation into the first, we

have the classical equation for an inductor,

V =

(
φ0

2πIC

1

cosϕ

)
İ , (2.4)

with inductance, L, equal to the middle term in parentheses. We can further sepa-

rate this term into the linear inductance, φ0/(2πIC), and the nonlinear component,

1/ cosϕ.

Whereas a standard (linear) LC circuit acts as a harmonic oscillator, nonlinear

inductance creates an uneven spacing between subsequent energy levels in the

system. This anharmonicity allows for unique energies for the transition between

different states, providing a means to target specific levels of the system. A qubit

can thus be engineered by isolating one such transition between states, creating
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a pseudo-two-level system. In this manner, the Josephson inductance is the basis

for quantum computing in the superconducting domain.

The energy stored in a superconducting element is (Φ = ϕφ0/2π)

U =

∫
I dΦ (2.5)

Using the Josephson current definition in Eq. (2.3) and substituting the relation

between phase and flux [e.g., in Eq. (2.2)], we find the energy stored in a Josephson

Junction:

U = −φ0

2π
IC cosϕ,

= −EJ cosϕ, (2.6)

where EJ ≡ (φ0/2π) IC .

2.2 Superconducting Qubits

The Josephson junction can be used in different circuit setups to provide the

different “flavors” (types) of superconducting qubits. Using the anharmonicity

of Josephson junction, as described in Sec. 2.1, these different architectures are

capable of isolating two energy levels for use as a pseudo-two-level system.

The qubit must be engineered around common sources of decoherence, such

background charge fluctuations, trapped magnetic eddies (flux loops in the sub-

strate), or even preparation-related errors, such as not initializing in the desired
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state. For instance, even below TC (experimental setups use a dilution refrigerator

and typically operate at around T = 50mK or below [52]), higher energy states

can be thermally populated, preventing localization in the ground state.

The various systems in which superconducting qubits are realized typically in-

volve tradeoffs. In the process of engineering a setup that is less sensitive to deco-

herence from background charge noise, one might make the system more sensitive

to stray magnetic fields. Similarly, making a system too insensitive to interactions,

while improving coherence times, might adversely affect measurement or the use

of quantum gates to manipulate the qubit state.

In this section, we will look briefly at each of the different setups used for

superconducting qubits. One distinguishing characteristic is how localized (or

“well-defined”) specific observables are within a system. Flux and charge are

conjugate operators, [φ, q] = i~, which can alternatively be expressed in terms of

phase and number of Cooper pairs, [ϕ,N ] = i. To determine which term is well-

defined, the ratio between the Josephson coupling energy, EJ = ICφ0/2π, and the

charging energy, EC ≡ (2e)2/2C, is compared. Lower values of EJ/EC means that

the charge, q, is well-defined, whereas higher values means that phase, ϕ, is the

better-defined term [53].

2.2.1 Charge Qubit

The first realized superconducting qubit was the charge qubit [54], which is

also referred to as the Cooper pair box because it involves an isolated island

of superconducting wire for Cooper pairs between a Josephson junction and a
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Figure 2.1: Circuit schematic of the charge qubit; the Cooper pair box exists
between the capacitor, Cg and the Josephson junction (which is represented by
both its capacitive component, C, and its Josephson tunneling component, which
appears as a cross.

capacitor (as depicted in Fig. 2.1). The relevant quantum variable, the number of

Cooper pairs that cross the junction, can be controlled by applying a voltage, Vg,

as depicted in Fig. 2.1. For instance, a superposition of zero and one additional

Cooper pairs on the island can be created. The gate charge that manipulates the

number of Cooper pairs is Qg = VgCg. Note that, as the charge is well-defined in

this setup, phase is not (EJ ≈ EC).

The total electrostatic energy of the circuit is

Echarge =
2e2

Cg
(n− ng)2, (2.7)

where ng = CgVg/2e, with n assuming only integer values but ng is a continuous

variable defined by the gate voltage (and by the fabrication value of the capacitor

Cg). The charging energy as a function of ng and n is depicted in Fig. 2.2 (dashed

lines).
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Figure 2.2: Graph of the total energy (solid lines) and charging energy (dashed
lines) versus value of ng in charge qubit system, as adapted from [52].

The Hamiltonian of this system is [53]

H = Ec (n− ng)2 − EJ cosϕ, (2.8)

which is the Josephson junction (second term) with an added charging energy

for the shunted capacitor (first term), as expected. Readout of these systems is

accomplished through a single electron transistor (SET) [55], which is similar to

a quantum point contact (QPC), both of which are sensitive electrometers.

A main disadvantage of charge qubits is their sensitivity to low-frequency (1/f)

noise from background electrons. This major source of decoherence led to new

designs for the charge qubit, for example the transmon (see Sec. 2.2.2) and the

quantronium.

2.2.2 Transmons

The transmon qubit is a variation of the charge qubit, with higher values of

EJ/EC (although still far below those for the flux or phase qubits) [56]. This is
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done by shunting the Josephson junction with a large external capacitor. Com-

pared to the charge qubit that was highly susceptible to background electric noise,

the transmon is insensitive to such sources of decoherence. Because of its insen-

sitivity to the environment, coupling to this system for measurement purposes is

difficult; this will be discussed further in Sec. 2.3.

Higher values of EJ/EC reduce the charge dispersion, and thus the sensitivity

to charge noise; however, as this ratio increases, anharmonicity decreases, which

reduces the distinguishability of particular state transitions. The transmon oper-

ates in the middle ground, EJ/EC ≈ 50, where the qubit is mostly immune to

background charge, but still has unique transition energies in order to isolate two

levels as a qubit.

The Hamiltonian can be reduced to the same form as the charge qubit:

H = 4EC (n− ng)2 − EJ cosϕ. (2.9)

An example of the eigenenergies vs. phase profile of the transmon is shown in

Fig. 2.3. The lowest two energy levels, E0 and E1, are isolated as the two-level

qubit. The transition energy between any two levels is given by ωn = En+1 − En

(~ = 1), and from this we get the qubit frequency: ωq = ω0 = E1 − E0. The

anharmonicity parameter, η, is defined as η = ω1 − ω0 = (E2 − E1)− (E1 − E0).

These devices are considered an improvement over the previous flavors of

qubits, and at present transmons have become the most popular of the super-

conducting qubits. Although the qubit is ideally a two-level system, it is clear
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Figure 2.3: The potential of the transmon with respect to phase. Also shown (in
color) are the lowest eigenenergy states, with the lowest two isolated to act as a
qubit.

that the transmon has multiple higher levels which can be excited. A look at the

effects of incorporating these higher levels into common theoretical models is the

focus of the discussion found in Chapter 4.

2.3 Qubit State Readout and Preservation

The transmon (Sec. 2.2.2) has become the most popular superconducting qubit

in current experimental setups. Its weak interaction with the environment leads

to insensitivity to background charge noise, which is a major advantage, but also

makes the measurement of its state difficult. A solution is adapted from Cavity

QED in atomic physics and quantum optics, where the state of an atom inside

a cavity is inferred from state-dependent changes to the cavity’s transmission

properties [57].

The same principle applies to an artificial atom and microwave resonator [39]:

in circuit quantum electrodynamics (cQED) setups, a superconducting qubit is
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coupled to the electric field of a confined electromagnetic mode (resonator). The

coupling is typically linear in the field and modeled by the Jaynes-Cummings

(JC) Hamiltonian. In the dispersive measurement scheme, the state of the qubit is

inferred from changes in the resonator frequency resulting from the qubit-resonator

interaction. Note that in Chapter 4, we will extend the conventional JC model to

include higher energy levels of transmon qubits and study the ring-up dynamics

of this multi-level system coupled with a resonator.

The introduction of a resonator to interact with the transmon — an important

feature in cQED setups to set, manipulate, and read the state of the qubit —

unfortunately also adds sources of decoherence. We note here two useful perfor-

mance parameters for the qubit: the energy relaxation rate (determined by, e.g.,

the Purcell effect), “T−1
1 ”, and the dephasing rate, “(T2)−1”. The dephasing rate

has contributions from energy relaxation and other mechanisms of dephasing; i.e.,

(T2)−1 = (2T1)−1 + T−1
ϕ , where Tϕ is the pure dephasing time.

In particular for transmons, the coupling of the qubit to a confined electro-

magnetic mode leads to an increase of its energy relaxation rate (i.e., it decreases

the qubit T1-time). Several ideas have been put forward to enhance the T1- and

T2-times of transmon qubits; for instance, a Purcell filter may be used [58], or a

tunable coupler can decouple the resonator from the continuum (physically rep-

resented by a transmission line). The latter idea is discussed in detail in Chapter

3.
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2.3.1 cQED Dispersive Readout

Often used in atomic physics, quantum optics and, more recently, superconductor-

based quantum circuits, the JC model describes the exchange of quanta between a

two-level system and a harmonic oscillator, as shown by the following Hamiltonian

H = ~ωr

(
a†a+

1

2

)
+

~ωq

2
σz + ~g

(
a†σ− + σ+a

)
, (2.10)

where ωr and ωq are the eigenfrequencies of the resonator and qubit, respectively.

The creation and annihilation operators of quanta of the oscillator are, respec-

tively, a† and a. Similarly, the creation and annihilation operators for the qubit

are σ+ and σ−, respectively. The last term in Eq. (2.10) is the coupling term,

describing the coherent exchange of quanta between the oscillator and the qubit

at a rate given by the coupling parameter g (assumed to be real for simplicity).

We now discuss the dispersive limit of large frequency detuning: |∆| � g,

where ∆ = ωq−ωr. In this limit, there is no exchange of energy; however, the qubit

can still modulate the oscillator eigenfrequency and vice versa. To see this, we first

go to the rotating frame by applying the transformation, Urw(t) = exp[−iωr(a
†a+

σz/2)t]. The Hamiltonian is then transformed to Hrw = ~∆σz/2+~g(a†σ−+h.c.).

We then apply another unitary transfomation, U ,

U = exp
[ g

∆

(
aσ+ − a†σ−

)]
, (2.11)

so that the Hamiltonian, in the rotating frame, is transformed to Hrw → UHrwU
†,
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which is approximately equal to (in the laboratory frame)

H ≈ ~
[
ωr +

g2

∆
σz

]
a†a+

~
2

[
ωq +

g2

∆

]
σz, (2.12)

where we have neglected terms of cubic order in the coupling parameter, g, and

dropped constant terms. In Eq. (2.12), the term (~g2/∆)σza
†a is the effective dis-

persive coupling whereby the qubit modulates the eigenfrequency of the resonator

and vice versa. This term leads to the ac Stark shift of the qubit eigenfrequency.

Note also that the qubit frequency is shifted by g2/∆, which is known as the

Lamb-shift.

2.3.2 The Purcell Effect

Ideally, we would like the qubit to be isolated from its environment in order to

avoid loss of coherence and to protect its state; however, the processes of measuring

the qubit and using gates to control it necessitate interaction, and this means

complete isolation is not possible. In dispersive measurement, the qubit is coupled

to a detuned readout resonator, and the qubit state is inferred by measuring the

state-dependent phase shift of the leaked resonator field. In this setup, the qubit is

indirectly coupled to the environment (i.e., the transmission line) via the resonator.

This interaction of the qubit with its environment through the readout resonator

will degrade the qubit lifetime, and is called the Purcell effect in cQED.

Let us now present a simple formula for the qubit energy decay rate due to

the aforementioned process, called the Purcell rate. When the qubit is excited,
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there is a (g/∆)2 probability that this excitation exists in the resonator. This is

because of the eigenstate formation (hybridization) in the joint qubit-resonator

system. The resonator energy decays with a rate κ, and this leads to the decay

of the qubit excitation from the resonator with the same rate. As such the qubit

experiences the rate of decay (Purcell rate) [39]

ΓPurcell ≈ κ
( g

∆

)2

. (2.13)

This is an approximate formula for the strong-dispersive-regime that can be useful

for most practical purposes. For a more detailed analysis of the Purcell effect in

cQED, see Ref. [59].

The Purcell effect reduces the qubit lifetime by decreasing T1, and degrades

qubit operations and measurement fidelities. However, this effect can be mostly

avoided by using Purcell filters [58, 60, 61]. For example, Ref. [60] used a bandpass

Purcell filter to avoid the excitation leakage at the qubit frequency, while allowing

the readout pulse at the resonator frequency to leak. Fig. 2.4 shows the design of

this Purcell filter that allowed for measurement fidelities of 99% within 150 ns.
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Figure 2.4: The Purcell filter (adapted from Ref. [60]). Panel (a) shows the
optical micrograph, with the qubit (red), readout resonator (blue), and Purcell
filter (green) in false color. The inset shows the lumped element circuit model of
the device. Panel (b) shows the transmission spectrum of the device, with qubit
frequencies shown in red and readout resonator frequencies in blue, showing that
the bandpass filter masks qubit frequencies, while allowing photons at the readout
frequencies to pass through.
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Chapter 3

Catch-Disperse-Release

Measurement

A new scheme for fast and high-fidelity measurement in superconducting qubits

is the focus of this chapter. The main idea behind this single-shot readout is

the use of a controlled catch, dispersion, and release of microwave field in the

resonator. A tunable coupler decouples the microwave resonator from the trans-

mission line during the dispersive qubit-resonator interaction, which circumvents

harmful damping from the Purcell effect. If the qubit frequency in this scheme

is sufficiently adiabatic, a fast and high-fidelity qubit readout is possible, even in

the strongly nonlinear dispersive regime.

An interesting result from the research of this approach is the discovery that

the Jaynes-Cummings nonlinearity leads to quadrature squeezing of the resonator

field below the standard quantum limit. While scientifically interesting in itself,

this additionally leads to a significant decrease in measurement error.
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3.1 Introduction

One main source of error in the method of dispersive readout comes from the

interaction of the qubit with the environment through its entanglement with the

resonator. This is known from optics as the Purcell effect, and in cQED is the

cavity-induced relaxation of the qubit from the coupling of the resonator to the

outgoing transmission line [62]. There are several ways to minimize this negative

effect. One may increase the detuning between the qubit and resonator, although

this has the harmful side effect of slowing down the readout process. Some other

recent proposals are the use of a Purcell filter [58], or use of a Purcell-protected

qubit [63].

Another idea is that, because this decay happens only when there is significant

coupling between the qubit and resonator as well as between the resonator and

transmission line, the resonator-transmission coupling should be turned off while

the qubit-resonator coupling is turned on. In this manner, the Purcell effect is

avoided. To accomplish this, the measurement is divided into three operations:

“catch”, “disperse”, and “release” of the microwave field. During the first two

stages, a tunable coupler decouples the transmission line from the resonator, thus

eliminating the Purcell effect.

During the “catch” phase, the initially empty resonator is driven by a mi-

crowave pulse and populated with ∼10 photons. At this stage the qubit is far

detuned from the resonator [Fig. 3.1(b)], which makes the dispersive coupling

negligible, leaving a coherent state (to high approximation) in the resonator. At

the next “disperse” stage of the measurement, the qubit frequency is adiabatically
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Figure 3.1: (a) Schematic of the measurement setup. The radio frequency (RF)
source produces a microwave pulse, which populates the resonator via a small
capacitor Cin. The resonator photons then interacts with a capacitively (Cg)
coupled qubit. The interaction with the outgoing transmission line is controlled
by a tunable coupler, which releases photons at the end of the procedure. The
released field is then amplified and mixed with the local oscillator (LO) signal
to be measured via homodyne detection. (b) The RF pulse B(t) (blue curve)
and varying qubit frequency ωq(t) (red curve), with approximate indication of
the “catch”, “disperse”, and “release” stages. Dashed lines show the resonator
frequency ωr and initial/final qubit frequency ω0; ∆ = ωr − ωq is the detuning at
the “disperse” stage.

tuned closer to the resonator frequency to produce a strong qubit-resonator inter-

action (it may even be pushed into the nonlinear regime). During this interaction,

the resonator field amplitudes (λeff) associated with the initial qubit states |0〉 and

|1〉 rapidly accumulate additional phases and separate in the complex phase plane

[see Fig. 3.2(a)]. Finally, at the last “release” stage of the measurement, after the

qubit frequency is again detuned from the resonator, the resonator photons are

released into the outgoing transmission line. The signal is subsequently amplified

(by a phase-sensitive parametric amplifier) and sent to the mixer where homodyne

detection is performed.

With realistic parameters for superconducting qubit technology, we numeri-

cally show that the measurement of 30–40 ns duration can be realized with an

error below 10−3, neglecting the intrinsic qubit decoherence. The latter assump-
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tion requires the qubit coherence time to be over 40 µs, which is already possible

experimentally [64]. It is interesting that because of the interaction nonlinearity

[65, 66], increasing the microwave field beyond ∼10 photons only slightly reduces

the measurement time. The nonlinearity also gives rise to about ∼50% squeez-

ing of the microwave field (see [67, 68]), which provides an order-of-magnitude

reduction of the measurement error.

3.2 Model

We consider a superconducting phase or transmon qubit capacitively coupled

to a microwave resonator [Fig. 3.1(a)]. We use a two-level qubit as a simple

approximation, while possible effects of the third level are discussed later. The

system is described (as from Sec. 2.3) by the Jaynes-Cummings Hamiltonian [39]

with a microwave drive (~ = 1),

H = ωq(t)σ+σ− + ωra
†a+ g(aσ+ + σ−a

†)

+B(t)a†e−iωt +B∗(t)aeiωt, (3.1)

where ωq(t) is the qubit’s frequency (previously the atomic frequency “Ω”), g

(assumed real) is the qubit-resonator coupling, and and ω is the effective frequency

of the microwave drive. In this work we assume ω = ωr.

For the microwave drive B(t) and the qubit frequency ωq(t) [Fig. 3.1(b)], we

use Gaussian-smoothed step-functions:
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B(t) =
B0

2

{
Erf[

(t− tB)√
2σB

]− Erf[
t− tB − τB√

2σB

]

}
, and (3.2)

ωq(t) = ω0 +
∆0 −∆

2

{
Erf[

t− tq√
2σq

]− Erf[
t− tqe√

2σqe

]

}
(3.3)

where tB, tB + τB, tq, and tqe are the centers of the front/end ramps, and σB, σq,

and σqe are the corresponding standard deviations. In numerical simulations, we

use σB = σqe = 1 ns (typical experimental value for a short ramp), while we use

longer σq to make the qubit front ramp more adiabatic. Other fixed parameters

are: g/2π = 30 MHz, τB = 1 ns, tB = 3 ns, ωr/2π = 7 GHz, and ω0/2π = 6 GHz,

so that initial and final detuning ∆0 = ωr − ω0 is 1 GHz, while the disperse-stage

detuning ∆ is varied. The measurement starts at t = 0 and ends at tf = tqe +2σqe,

when the field is quickly released1 [69].

3.3 Simplified Analysis

Let us first consider a simple dispersive scenario at large qubit-resonator detun-

ing, |∆| � g
√
n+ 1, where n is the average number of photons in the resonator.

In this case, the system is described by the usual dispersive Hamiltonian [39]

Hd = (ω0−g2/∆)σz/2+(ωr−σzg2/∆)a†a, where σz is the Pauli matrix. After the

short “catch” stage the system is in a product state (α|0〉+β|1〉)|λin〉, where α and

β are the initial qubit state amplitudes and λin is the amplitude of the coherent

resonator field, λin = −i
∫
B(t) dt (so n = |λin|2). Then during the “disperse”

1Actually, for ωq(t) we additionally use small compensating ramps at the beginning and end
of the procedure to provide the exact value ω0 and to zero ω̇q(t) at t = 0 and t = tf .
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Figure 3.2: (a) Evolution in time of the effective field amplitude λeff on the phase
plane for initial qubit states |0〉 and |1〉, computed numerically. The dots indicate
time moments t = 0, 5, 10, 15, 20, 25, and 30 ns. (b) Corresponding probability
distributions P0(xϕ) and P1(xϕ) for measurement (at t = tf) of the optimum
quadrature xϕ. Side bumps of P0 and P1 are due to non-adiabaticity. We used
∆/2π = 50 MHz, |λin|2 = 9, σq = 3 ns, tq = 3.25 ns, tqe = 30 ns, and tf = 32 ns.

stage the qubit-resonator state becomes entangled, α|0〉|λ0(t)〉+ β|1〉|λ1(t)〉, with

λ0 = λine
−iφ, λ1 = λine

iφ, and φ(t) =
∫ t

0
[g2/∆(t′)]dt′.

The distinguishability of the two resonator states depends on their separation

|δλ| ≡ |λ1−λ0| = 2|λin| sin |φ| (see numerical results in Fig. 3.2). The released co-

herent states are measured via the homodyne detection using the optimal quadra-

ture connecting λ0 and λ1, i.e., corresponding to the angle ϕ = arg(λ1 − λ0).

We rescale the measurement results to the dimensionless field quadrature x̂ϕ =

(ae−iϕ + a†eiϕ)/2, which corresponds to the ϕ-angle axis in the phase space of

Fig. 3.2(a). In resolving the two coherent states, we are essentially distinguishing

two Gaussian probability distributions, P0(xϕ) and P1(xϕ), centered at ±|δλ|σcoh

with σcoh = 1/2 being the coherent-state width (standard deviation) for both
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distributions. Then the measurement error has a simple form

E =
1

2

∫ ∞
−∞

min(P0, P1) dxϕ =
1− Erf(|δλ|

√
η/2)

2
, (3.4)

where η = ηcolηamp is the detection efficiency [70], which includes the collection

efficiency ηcol and quantum efficiency of the amplifier ηamp. Unless mentioned

otherwise, we assume η = 1, which corresponds to a quantum-limited phase-

sensitive amplifier (for a phase-preserving amplifier η ≤ 1/2).

3.4 Full Analysis

In general the JC qubit-resonator interaction [Eq. (3.1)] is non-linear for |λin|2 &

ncrit ≡ ∆2/4g2 [39] and the resonator states are not coherent. The measurement

error E is still given by the first part of Eq. (3.4), while the probability distribu-

tions P0,1(xϕ) of the measurement result for the qubit starting in either state |0〉 or

|1〉 can be calculated in the following way. Assuming an instantaneous release of

the field, we are essentially measuring the operator x̂ϕ. Therefore the probability

P (xϕ) for the ideal detection (η = 1) can be calculated by converting the Fock-

space density matrix ρnm describing the resonator field, into the xϕ-basis, thus

obtaining P (xϕ) =
∑

nm ψn(xϕ)ρnm(t)ψ∗m(xϕ)e−i(n−m)ϕ, where ψn(x) is the stan-

dard nth-level wave function of a harmonic oscillator. For a non-instantaneous

release of the microwave field the calculation of P (xϕ) is non-trivial; however,

since the qubit is already essentially decoupled from the resonator, the above re-

sult for P (xϕ) remains the same [71] for optimal time-weighting of the signal. In
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the case of a non-ideal detection (η < 1) we should take a convolution of the ideal

P (xϕ) with the Gaussian of width
√
η−1 − 1σcoh. Calculation of the optimum

phase angle ϕ minimizing the error is non-trivial in the general case. For sim-

plicity we still use the natural choice ϕ = arg(λeff,1 − λeff,0), where the effective

amplitude of the resonator field [72] is defined by λeff =
∑

n

√
nρn,n−1. The field

density matrix ρnm is calculated numerically using the Hamiltonian [Eq. (3.1)] and

then tracing over the qubit.

Extensive numerical simulations allowed us to identify two main contributions

to the measurement error E in our scheme. The first contribution is due to the

insufficient separation of the final resonator states |λeff,1〉 and |λeff,0〉, as described

above. However, there are two important differences from the simplified analysis:

the JC nonlinearity may dramatically change |δλ| and it also produces a self-

developing squeezing of the resonator states in the quadrature xϕ, significantly

decreasing the error compared with Eq. (3.4) (both effects are discussed in more

detail later). The second contribution to the measurement error is due to the nona-

diabaticity of the front ramp of the qubit frequency pulse ωq(t), which leads to the

population of “wrong” levels in the eigenbasis. This gives rise to the side peaks

(“bumps”) in the probability distributions P0,1(xϕ), as can be seen in Fig. 3.2(b)

(notice their similarity to the experimental results [73, 74], though the mechanism

is different). During the dispersion stage these bumps move in the “wrong” direc-

tion, halting the exponential decrease in the error, and thus causing the error to

saturate. The nonadiabaticity at the rear ramp of ωq(t) is not important because

the moving bumps do not have enough time to develop. Therefore the rear ramp
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can be steep, while the front ramp should be sufficiently smooth [Fig. 1(a)] to

minimize the error.

Now let us discuss the effect of nonlinearity (when |λin|2 > ncrit) on the evolu-

tion of λeff,0 and λeff,1 during the disperse stage. Since the RF drive is turned off,

the interaction described by the Hamiltonian [Eq. (3.1)] occurs only between the

pairs of states |0, n〉 and |1, n− 1〉 of the JC ladder. Therefore, if the front ramp

of the qubit frequency pulse is adiabatic, the pairs of the JC eigenstates evolve

only by accumulating their respective phases while maintaining their populations.

Then for the qubit initial state |0〉, the qubit-resonator wavefunction evolves ap-

proximately as |ψ0(t)〉 ' e−|λin|
2/2
∑

n(λnin/
√
n!)e−iφ0,n(t)|0, n〉, where the overbar

denotes the (dressed) eigenstate and φ0,n(t) =
∫ t
tD
dt′[
√

∆(t′)2 + 4g2n − ∆(t′)]/2

is the accumulated phase, with tD = tB + τB/2 being the center of the B(t)-

pulse, which is crudely the start of the dispersion. Similarly, if the qubit starts

in state |1〉 (following the ideology of Ref. [75], we then use |10〉 as the initial

state), the state evolves as |ψ1(t)〉 ' e−|λin|
2/2
∑

n(λnin/
√
n!)eiφ1,n(t)|1, n〉, where

φ1,n(t) =
∫ t
tD
dt′[
√

∆(t′)2 + 4g2(n+ 1) − ∆(t′)]/2. Using the above definition of

λeff and assuming |λin|2 � 1 we derive an approximate formula

λeff,0 = λin exp

[
−i
∫ t

tD

g2√
∆(t′)2 + 4g2|λin|2

dt′

]
. (3.5)

The corresponding expression for λeff,1 can be obtained by replacing −i with i and

|λin|2 with |λin|2 + 1. These formulas agree well with our numerical results.
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Figure 3.3: Optimized measurement error E vs measurement time tf (optimization
is over ∆, σq, and tq). (a) For two-level qubit and for mean photon number
|λin|2 = 6, 9, 12, and 15. (b) For |λin|2 = 9 and η = 1 or 1/2 (e.g. for a phase-
preserving amplifier), taking into account the qubit level |2〉 (with anharmonicity
A/2π = 200 MHz) or assuming a two-level qubit (A =∞).

Equation (3.5) shows that a decrease in detuning leads to an increase in the

rotation speed of λeff. However, in the strongly nonlinear regime |λin|2 � ncrit,

the angular speed saturates at d(arg(λeff,0/1))/dt = ∓g/2|λin|. Thus, the rate at

which the λeff,1 and λeff,0 separate is limited by

d|δλ|/dt ≤ |g|, (3.6)

which does not depend on |λin|. This means that the measurement time should not

improve much with increasing the mean number of photons |λin|2 in the resonator,

as long as it is sufficient for distinguishing the states with a desired fidelity (crudely,

|λin|2 & 7/η for E . 10−4).

Figure 3.3(a) shows the results of a three-parameter optimization of the mea-

surement error E for several values of the average number of photons in the res-

onator, |λin|2 (assuming η = 1). The optimization parameters are the qubit-
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resonator detuning ∆, the width σq, and the center tq of the qubit front ramp. We

see that for 9 photons in the resonator the error of 10−4 can be achieved with 30

ns measurement duration, excluding time to release and measure the field. The

optimum parameters in this case are: ∆/2π = 60 MHz, σq = 4.20 ns, and tq = 3.25

ns (this is a strongly nonlinear regime: |λin|2/ncrit = 9). As expected from the

above discussion, increasing the mean photon number to 12 and 15 shortens the

measurement time only slightly (by 1 ns and 2 ns, keeping the same error). The

dashed blue curve in Fig. 3.3(b) shows the optimized error for |λin|2 = 9 and

imperfect quantum efficiency η = 1/2. As we see, the measurement time for the

error level of 10−4 increases to 40 ns, while the error of 10−3 is achieved at tf = 32

ns.

So far, we considered the two-level model for the qubit. However, real su-

perconducting qubits are only slightly anharmonic oscillators, so the effect of

the next excited level |2〉 is often important. It is straightforward to include

the level |2〉 into the Hamiltonian [Eq. (3.1)] by replacing its first term with

ωq|1〉〈1| + (2ωq − A)|2〉〈2|, where A is the anharmonicity. The dispersion can

then be understood as due to repulsion of three eigenstates: |0, n〉, |1, n− 1〉, and

|2, n− 2〉. As the result, λeff,0 rotates on the phase plane faster than in the two-

level approximation, while λeff,1 rotates slower (sometimes even in the opposite

direction). In Fig. 3.3(b), we present the optimized error for A/2π = 200 MHz

(a typical value for transmon and phase qubits), |λin|2 = 9 and η = 1 (solid-red

curve) or η = 1/2 (dashed-red curve). An error of 10−3 can be achieved with 31

ns (η = 1) and 39 ns (η = 1/2) measurement durations.
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Figure 3.4: (a) Evolution of the quadrature squeezing (the qubit is initially in
state |0〉). (b) Measurement error vs |δλ| calculated numerically in the nonlinear
regime (solid lines) and using the linear approximation (3.4) (dashed line); here
the evolution stops at 98 ns. |λin|2 = 9, σq = 4ns, tq = 3.25 ns.

We next discuss the self-generated quadrature squeezing of the microwave field

induced by the JC nonlinearity. To quantify the degree of squeezing, we calcu-

late the variance ∆x2
ϕ = 〈x2

ϕ〉 − 〈xϕ〉2 = 1/4 + 〈a†a〉/2 − |〈a〉|2/2 + Re[(〈a2〉 −

〈a〉2)e−2iϕ]/2. For a coherent field ∆x2
ϕ = 1/4, thus the state is squeezed [72]

when 4∆x2
ϕ < 1. Figure 3.4(a) shows evolution of 4∆x2

ϕ when the initial qubit

state is |0〉, for η = 1 and assuming a two-level qubit (a similar result is ob-

tained for qubit initially in state |1〉). Notice that at first the field stays coherent,

which is due to the linearity of the qubit-resonator interaction at large detuning.

Later on, however, the interaction becomes nonlinear due to decreased detuning

and leads to quadrature squeezing reaching the level of ∼50% for ∆/2π . 100

MHz (see Supplemental Materials of Ref. [76] for the Wigner function evolution).

Figure 3.4(b) shows the measurement error as a function of |δλ| in the nonlinear

regime calculated numerically (solid curves) and in the linear regime based on

Eq. (3.4) (dashed curve). As expected, with the squeezing developing, the error

becomes significantly smaller than the linear (analytical) prediction, for instance,
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up to a factor of 30 for ∆/2π = 250 MHz. Note also that the error shown in

Fig. 3.4(b) saturates in spite of increasing separation |δλ|. This is because of the

non-adiabatic error discussed above.

We do not focus on the quantum non-demolition (QND) [77] property of the

readout, because in the proposed implementation of the surface code [78] the mea-

sured qubits are reset, so the QNDness is not important. For the results presented

in Fig. 3.3 the non-QNDness (probability that the initial states |00〉 and |10〉 are

changed after the procedure) is crudely about 5%, which is mainly due to non-

adiabaticity of the rear ramp. It is possible to strongly decrease the non-QNDness

by using smoother rear ramp, but it cannot be reduced below few times (g/∆0)2,

essentially because of the Purcell effect during the release stage. Furthermore,

we do not consider the measurement-induced dephasing of the qubit, since our

readout is not intended for a continuous qubit monitoring or a quantum feedback.

We neglect the qubit relaxation and excitation due to “dressed dephasing” [79],

because its rate is smaller than the intrinsic pure dephasing, which for transmons

is usually smaller than intrinsic relaxation.

3.5 Summary

We have analyzed a fast high-fidelity readout scheme for superconducting

qubits in a cQED architecture using the controlled catch, dispersion, and release

of microwave photons. This readout scheme uses a tunable coupler to decouple

the resonator from the transmission line during the dispersion stage of the mea-
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surement, thus avoiding the Purcell effect. Our approach may also be used as a

new tool to beat the standard quantum limit via self-developing field squeezing,

directly measurable using the state-of-the-art parametric amplifiers.
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Chapter 4

Deviations from

Dressed-Coherent State Model

In the previous chapter, we considered a specialized scheme for measurement

of a qubit-resonator system that avoids the Purcell effect to achieve fast and high-

fidelity readout. This chapter will further explore the same system; specifically,

we consider the measurement of a superconducting transmon qubit via a coupled

microwave resonator.

For ideally dispersive coupling, ringing up the resonator produces coherent

states with frequencies matched to transmon energy states. Realistic coupling

is not ideally dispersive, however, so transmon-resonator energy levels hybridize

into joint eigenstate ladders of the Jaynes-Cummings type. Previous work has

shown that ringing up the resonator approximately respects this ladder structure

to produce a coherent state in the eigenbasis (a dressed coherent state).
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One of the simplifications of the model used in the work on Catch-Disperse-

Release, however, was the assumption in the Jaynes-Cummings model of a two-

level artificial atom. Although this approximation is commonly used in the theory

for transmon-based systems, the latter has multiple levels which can be excited.

The effect of the |2〉 level was estimated, but this basic investigation was meant

more to approximate the effect of higher levels on the discussed measurement

scheme than to examine the general effects of an extended Jaynes-Cummings

ladder. Here, we more accurately model the transmon qubit with many levels

(typically, seven).

In this chapter, we numerically investigate the validity of the coherent state

approximation in this extended system, and find one of the primary deviations

to be that resonator ring-up leaks small stray populations into eigenstate ladders

corresponding to different transmon states. We then quantify these deviations and

find their analytical forms.

We organize this chapter as follows. In Sec. 4.1 we begin with an introduction

to the dressed coherent state and outlining the problem we will solve in this chap-

ter. In Sec. 4.2 we describe the resonator-transmon system and how the numerical

simulations are performed. In Sec. 4.3 we discuss the dressed coherent state model

and focus on analyzing the inaccuracy of this model relative to numerical simu-

lation. We also quantify the stray population leakage into incorrect eigenstate

ladders as a major deviation from the dressed coherent state model. We conclude

in Sec. 4.4.
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4.1 Introduction

Qubit technology using superconducting circuit quantum electrodynamics

(QED) [39, 80] has rapidly developed over the past decade to become a leading

contender for realizing a scalable quantum computer. Most recent qubit designs

favor variations of the transmon [56, 81, 64, 82, 83, 84, 85] due to its charge-noise

insensitivity, which permits long coherence times while also enabling high-fidelity

quantum gates [86, 87, 88] and high-fidelity dispersive qubit readout [89, 74, 60]

via coupled microwave resonators. Transmon-based circuit operation fidelities are

now near the threshold for quantum error correction protocols, some versions of

which have been realized [90, 91, 92, 93].

The quantized energy states of a transmon are measured in circuit QED by

coupling them to a detuned microwave resonator. For low numbers of photons

populating the readout resonator, the coupling is well-studied [39, 56, 94] and ap-

proximates an idealized dispersive quantum non-demolition (QND) measurement

[77]. Each transmon energy level dispersively shifts the frequency of the coupled

resonator by a distinct amount, allowing the transmon state to be determined by

measurement of the leaked and amplified resonator field. However, nondispersive

effects become important when the number of resonator photons becomes com-

parable to a characteristic (“critical”) number set by the detuning and coupling

strength [39, 95, 66]; present-day experiments often operate in this nondispersive

(or nonlinear dispersive) regime [60, 96, 97, 98].

We analyze and model the nondispersive effects that occur during the ring-

up of a readout resonator coupled to a transmon. These effects arise from the
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hybridization of the resonator and transmon states into joint resonator-transmon

eigenstates. While ringing up the resonator from its ground state, the joint state

remains largely confined to a single Jaynes-Cummings eigenstate ladder that cor-

responds to the initial transmon state. As pointed out in Refs. [76, 59, 99], this

joint state can be approximated by a coherent state in the eigenbasis (recently

named a dressed coherent state [99]). Here we refine this initial approximation

and provide a more accurate model for the hybridized resonator-transmon state.

We numerically simulate the ring-up process for a resonator coupled to a trans-

mon, then use this simulation to develop and verify our analytical model. We

consider one of the dominant deviations from a dressed coherent state by showing

that the ring-up process allows a small population to leak from an initial trans-

mon state into neighboring eigenstate ladders. We find simple expressions that

quantify this stray population (.10−4 for typical experimental parameters).

To simplify our analysis and isolate the hybridization effects of interest, we

restrict our attention to a transmon (modeled as a seven-level nonlinear oscillator)

coupled to a coherently pumped but non-leaking resonator (using the rotating wave

approximation). The simplification of no resonator leakage may seem artificial,

but it is still a reasonable approximation during the resonator ring-up and it is

also relevant for at least two known protocols. First, the catch-disperse-release

protocol [76] encodes qubit information into resonator states with minimal initial

leakage, then rapidly releases the resonator field to a transmission line. Second, a

recently proposed readout protocol [100] similarly encodes qubit information into
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bright and dark resonator states with minimal leakage, then rapidly distinguishes

them destructively using Josephson photomultipliers [101].

4.2 Model

Following the circuit QED paradigm of measurement [39], we consider a trans-

mon coupled to a detuned readout resonator. We do not simplify the transmon to

a two-level qubit, but instead include the lowest seven energy levels confined by the

cosine potential of the transmon. Though the transmon eigenstates may be writ-

ten explicitly as Mathieu functions [56, 102], we have checked that a perturbative

treatment of the transmon as an approximate oscillator with quartic arharmonic-

ity [56] is sufficiently accurate for our purposes. We assume a transmon-resonator

coupling of Jaynes-Cummings type [103], using the rotating wave approximation

(RWA) for simplicity. We do not pump our system to very high photon numbers

in order to avoid some unwanted effects [98].

4.2.1 Pumped resonator-transmon Hamiltonian

In our model the resonator Hamiltonian is

Hr = ωr a
†a =

∑
n,k

nωr |n, k〉 〈n, k| , (4.1)

with ~ = 1, bare resonator frequency ωr, lowering (raising) operator a (a†) for

the resonator mode satisfying [a, a†] = 1, and resonator index n = 0, 1, . . . for
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successive energy levels. For completeness we included the transmon index k =

0, 1, . . . , 6 for the 7 lowest levels to emphasize the matrix representation in terms

of the joint product states |n, k〉 ≡ |n〉r ⊗ |k〉q for the bare energy states.

Similarly, the transmon Hamiltonian has the form

Hq =
∑
n,k

Ek |n, k〉 〈n, k| , (4.2)

Ek = E0 + ωqk − η
k(k − 1)

2
. (4.3)

The dominant effect of the nonlinearity of the cosine potential for the transmon is

the quartic anharmonicity η ≡ ω10−ω21 > 0 of the upper level frequency spacings

relative to the qubit frequency ωq ≡ ω10, where each frequency ωk` ≡ Ek − E`

denotes an energy difference. At this level of approximation, the transmon has

the structure of a Duffing oscillator with a linearly accumulating anharmonicity

ω(k+1)k = ωq − k η. [This approximation is sometimes extended to an infinite

number of levels, Hq = E0 + ωq b
†b − (η/2) b†b(b†b − 1) [104], with an effective

oscillator lowering (raising) operator b (b†) satisfying [b, b†] = 1, but we explicitly

keep only the 7 lowest levels here.]

The excitation-preserving interaction (within RWA) is

HI =
∑
n,k

g
√
n(k + 1) |n− 1, k + 1〉 〈n, k|+ H.c., (4.4)

where g is the coupling strength between levels |0, 1〉 and |1, 0〉. As in Ref. [56],
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we neglect the effects of the anharmonicity η in the coupling for simplicity. [Ex-

tending this coupling to an infinite number of transmon levels yields HI = g (ab†+

a†b).]

Finally, the Hamiltonian for coherently pumping the resonator with a classical

field ε(t) e−iωdt is (within RWA)

Hd = ε(t) e−iωdt a† + ε∗(t) eiωdt a

= ε(t) e−iωdt
∑
n,k

√
n+ 1 |n+ 1, k〉 〈n, k|+ H.c., (4.5)

where ε(t) is a complex envelope for the drive. Note that, in the previous chapter

we use the notation B(t) for ε(t) and ω for ωd [see Eq. (3.1)].

Combining Eqs. (4.1)–(4.5) into the total Hamiltonian H = Hr +Hq +HI +Hd,

and rewriting it in the rotating frame of the drive frequency ωd yields

Hrot =
∑
n,k

{
[n (ωr − ωd) + (Ek − k ωd)] |n, k〉 〈n, k|

+ g
√
n(k + 1) |n− 1, k + 1〉 〈n, k|+ H.c.

+ ε(t)
√
n+ 1 |n+ 1, k〉 〈n, k|+ H.c.

}
. (4.6)

This simplified Hamiltonian will be sufficient in what follows to observe the domi-

nant non-dispersive effects that affect the resonator ring-up. Note that we use the

rotating frame in numerical simulations, but physics related to Jaynes-Cummings
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ladders of states is easier to understand in the lab frame, so we will often imply

the lab frame for clarity in the discussions below.

4.2.2 Numerical simulation and diagonalization

For numerical simulation, the Hamiltonian in Eq. (4.6) is represented by a

7N × 7N matrix using the bare energy basis |n, k〉, where N = 200–800 is the

maximum number of simulated levels for the resonator. We choose experimen-

tally relevant resonator and transmon parameters, which in most simulations are

ωr/2π = 6 GHz, ωq/2π = 5 GHz, η/2π = 200 MHz, and g/2π = 100 MHz. For the

drive, we change the frequency ωd to be resonant with specific eigenstate transi-

tion frequencies of interest (detailed later) and use drive amplitudes typically in

the range ε/2π = 10–60 MHz.

The hybridization of the joint eigenstates is significant when the number of

photons n in the resonator is comparable to or larger than the so-called critical

photon number [39, 95, 66],

nc =
(ωr − ωq)2

4g2
. (4.7)

For the above parameters nc = 25. This defines the scale at which we expect

significant deviations from the ideal dispersive model.

We use the following numerical procedure for identifying the joint hybridized

eigenstates |n, k〉 of Eq. (4.6) without a drive—we will distinguish dressed (eigen)
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states (and operators) from bare states by an overline throughout. After setting

ε = 0 to eliminate the drive, the matrix representation of Eq. (4.6) is numerically

diagonalized to obtain an initially unsorted list of matched eigenenergy/eigenstate

pairs {En,k, |n, k〉} for the qubit-resonator system. The one-to-one correspondence

between these pairs and the bare energy/state pairs {En,k, |n, k〉} may be found by

examining the structure of the RWA interaction Hamiltonian in Eq. (4.4): Since

excitation number is preserved, there exist closed subspaces {|n, k〉 : (n+k) = nΣ}

with constant excitation number nΣ = 0, 1, . . ., which we name RWA strips [98].

Crucially, since energy levels repel during interaction and avoid crossing, the order

of the eigenenergies within a strip is the same as for bare energies. Thus, for each

strip with nΣ excitations we first identify the eigenstates |n, k〉 that lie within the

span of that strip; next, we order the eigenenergies En,k to match the bare energies

En,k, which uniquely identifies each hybridized eigenenergy/eigenstate pair. We

then set the overall sign of each eigenstate such that it does not flip with changing

n. After performing this identification, we construct a basis-change matrix

U ≡
∑
n,k

|n, k〉 〈n, k| (4.8)

to easily switch between representations numerically. Note that without proper

identification (sorting) of the eigenstates, the numerical analysis at large photon

numbers is practically impossible.

The eigenstates |n, k〉 form the Jaynes-Cummings ladders of effective resonator

levels that correspond to a fixed nominal qubit level k. For brevity we will call
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them eigenladders of dressed resonator Fock states. Each eigenladder behaves like

a nonlinear resonator, with an n-dependent frequency

ω(k)
r (n) = En+1,k − En,k. (4.9)

Note that in this formula both sides are numerically calculated in the rotating

frame; however, the equation in the lab frame is the same. Conversion to the lab

frame involves adding the drive frequency: ωd+ω
(k)
r (n) for the resonator frequency

and (n+ k)ωd + En,k for energy.

At large photon numbers, n & nc, each |n, k〉 spans a significant fraction of

all bare transmon levels. Nevertheless, as we will see, ringing up the resonator

from its ground state with an initial transmon level k will primarily excite the

states within the eigenladder corresponding to k. This behavior closely mimics

that of the ideal dispersive case, where a pump excites the bare resonator states

|n〉r while keeping the transmon state |k〉q unperturbed. However, we will also

show that there are small but important dynamical differences between our RWA

Jaynes-Cummings model and ideal dispersive coupling in the eigenbasis.

4.3 Dressed coherent state model

We now define an ideal coherent state in the eigenbasis [76, 59, 99] (a dressed

coherent state) corresponding to a nominal transmon state k as

|α〉k = e−|α|
2/2
∑
n

αn√
n!
|n, k〉, (4.10)
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so that the only difference from the standard coherent state of the resonator is

that we use eigenstates instead of the bare states. Perhaps surprisingly given the

eigenstate hybridization, such a dressed coherent state is practically unentangled

even for |α|2 � nc, in contrast to what one might initially guess [99]—see the

appendix of [105].

A dressed coherent state is not an eigenstate of the bare lowering operator a of

the resonator. Instead, it is an eigenstate of the dressed lowering operator [79, 59]

a ≡ UaU † =
∑
n,k

√
n+ 1 |n, k〉〈n+ 1, k| (4.11)

that removes a collective excitation within the same eigenladder. The parameter

α is the expectation value of the dressed lowering operator, α = k 〈α| a |α〉k, which

will be useful in what follows.

Note that for a dressed coherent state |α〉k, |α|2 is not exactly equal to the

average number n̄ of photons in the resonator. (Instead, |α|2 = k 〈α| a†a |α〉k

is the average dressed excitation number within eigenladder k.) However, the

difference is very small and will be mostly neglected below, so that we will use

n̄ = |α|2. In the cases when the difference may be important, we will specify the

meaning of n̄ explicitly.

4.3.1 Model inaccuracy contributions

During resonator ring-up, we expect the joint qubit-resonator state to approxi-

mate such a dressed coherent state, rather than a bare coherent state as is usually
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assumed with ideal dispersive coupling. As such, we quantify the fidelity of a

numerically simulated state |ψ〉 compared to a dressed coherent state |α〉k as the

overlap

F = | 〈ψ|α〉k|2, (4.12)

where the parameter α is chosen to maximize the fidelity. In practice, we find that

an initial guess of α = 〈ψ| a |ψ〉 is very close to the optimal α, producing nearly

indistinguishable fidelity.

Note that we can expand a numerically calculated state |ψ〉 =
∑

n,` cn,` |n, `〉

as

|ψ〉 =
√

1− Pstray |ψ〉k +
√
Pstray |ψ〉⊥ , (4.13)

splitting it into a part |ψ〉k ∝
∑

n cn,k |n, k〉 within the “correct” eigenladder k,

and a part |ψ〉⊥ ∝
∑

n,` 6=k cn,` |n, `〉 orthogonal to that eigenladder, where Pstray =∑
n,` 6=k |cn,`|2 is the stray population that leaked out of the eigenladder k, and both

|ψ〉k and |ψ〉⊥ are normalized. As such, if we define the overlap fidelity within

the correct eigenladder Fc = |k 〈α|ψ〉k|2, then we can write the total fidelity as

F = (1− Pstray)Fc, and thus decompose the infidelity

1− F = Pstray + (1− Pstray)(1− Fc) (4.14)

into two distinct sources: (i) the stray population Pstray outside the correct eigen-
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Figure 4.1: Infidelity of coherent-state approximations during resonator ring-up.
The infidelity 1−Fb of a bare coherent state (dotted red line) is compared with the
infidelity 1−F of a dressed coherent state (dashed black line). The latter displays
two distinct effects: at short time (and small photon number n̄) the dominant
effect is the leakage of a stray population Pstray (blue line) out of the correct
eigenladder; however, at longer time (and larger n̄) the infidelity 1 − Fc of the
renormalized state within the correct eigenladder (solid orange line) significantly
increases during evolution. Here the system, with parameters ωr/2π = 6 GHz,
ωq/2π = 5 GHz, η/2π = 200MHz, g/2π = 100 MHz, is resonantly pumped from
its ground state |0, 0〉 with a constant drive envelope ε/2π = 10 MHz.

ladder, and (ii) the infidelity 1 − Fc compared with a coherent state within the

correct eigenladder.

To test the infidelity of the dressed coherent state model, we numerically sim-

ulate the resonator ring-up with a (sudden) constant drive amplitude ε/2π = 10

MHz, and then calculate the infidelity according to Eq. (4.14) as a function of

time, yielding the results presented in Fig. 4.1. First, we confirm that the infi-

delity 1− F for a dressed coherent state (black dashed line) is typically orders of

magnitude better than the infidelity 1− Fb for a bare coherent state (red dotted

line); as expected, 1 − Fb becomes very significant at n & nc. Second, we can

clearly separate the effects of the stray population leakage Pstray (solid blue line)
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from the infidelity 1− Fc of the renormalized state within the correct eigenladder

(solid orange line). At short times, the dominant effect is a small (∼10−5) stray

population leakage that rapidly oscillates and then stays approximately constant.

(For clarity we do not show oscillations for the black dashed line, showing only the

maxima.) However, at longer times the contribution 1−Fc becomes the dominant

source of infidelity (eventually reaching ∼10−1). Below, we quantify these two

sources of infidelity in more detail.

4.3.2 Infidelity from stray population

We now focus on the cause of the stray population outside the correct eigen-

ladder. Figure 4.2 shows numerical results for different choices of initial state

and drive amplitude, produced in a manner similar to Fig. 4.1, but focusing on

shorter times and lower photon numbers, where the stray population is the dom-

inant source of infidelity. Initially, the stray population rapidly oscillates from

zero around a steady-state value, then the oscillations damp, after which the stray

population continues to slowly decay on a longer time scale. We now provide a

phenomenological model that describes this behavior.

A dressed coherent state would naturally be produced by a dressed displace-

ment Hamiltonian of the form ε∗a + εa†, as opposed to the bare displacement

Hamiltonian ε∗a + εa† of the drive that appears in Eq. (4.6). This mismatch be-

tween bare and dressed states in the drive is the source of the stray population that

leaks out of the correct eigenladder during ring-up. To show this mismatch in a

simple way, we first focus on the ring-up from an initial ground state |0, 0〉 = |0, 0〉.
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In this case the dominant leakage occurs to the eigenladder |n, 1〉, with negligible

second-order leakage to the other eigenladders. [As discussed later, the follow-

ing derivation may be readily generalized to other initial states, such as |0, 1〉 in

Figs. 4.2(c)-(d).]

Focusing only on the coupling between eigenladders |n, 0〉 and |n, 1〉, for n� nc

we can write [79, 59]

a ≈ ā− g

∆
σ−, ∆ = ωr − ωq, σ− =

∑
n

|n, 0〉〈n, 1|, (4.15)

where σ− is the qubit lowering operator in the eigenbasis. It is natural to guess

that at n & nc the resonator-qubit detuning ∆ should change because of the ac

Stark shift, and therefore Eq. (4.15) can be replaced with approximation

a ≈ ā−
∑
n

g

∆n

|n, 0〉〈n, 1|, ∆n = En+1,0 − En,1, (4.16)

where ∆n is the qubit-resonator detuning with account of the ac Stark shift,

ωq(n) = En,1 − En,0 (see Appendix of [61]). We did not prove Eq. (4.16) ana-

lytically, but we checked numerically that this approximation works well, at least

for our range of parameters. Additionally approximating ∆n ≈ ∆n̄ for a dressed

coherent state with n̄ = |α|2, from Eq. (4.16) we obtain

a ≈ ā− g

∆n̄

σ−. (4.17)

(For non-integer n̄, we can use the nearest integer or the more precise method
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of averaging ∆n over the state.) Note that for a constant resonant drive, the

average number of photons increases as n̄(t) ≈ |εt|2, before the changing resonator

frequency (4.9) starts affecting the resonance.

Thus, the drive term in the Hamiltonian can be approximately expanded in

the eigenbasis as

ε∗a+ εa† ≈ (ε∗ā+ εā†)− g

∆n̄

(ε∗σ− + εσ+) , (4.18)

where σ+ = (σ−)†. The first term of this effective drive produces dressed coherent

states, while the second term couples the lowest two eigenladders to cause leakage.

The coupling essentially “copies” the dressed coherent state from the correct

eigenladder |n, 0〉 to the neighboring eigenladder. The resulting copy has a rela-

tively small magnitude because g/∆n̄ � 1 and also because the two eigenladders

have a significant frequency shift due to differing energies. Thus, we assume ap-

proximately the same dressed coherent state α(t) in both eigenladders and use

the joint state of the form |ψ〉 ≈ |α(t)〉0 + c(t) |α(t)〉1, where the small amplitude

c(t) quantifies the leakage to the |n, 1〉 eigenladder, so that the stray population

is Pstray = |c|2 � 1. In this case we can approximately write c = 〈ψ|σ− |ψ〉, and

thus find the evolution ċ = 〈ψ| i [Hrot, σ−] |ψ〉, which simplifies to

ċ ≈ i
εg

∆n̄

+ iΩn̄ c, (4.19)

where Ωn̄ = ∆n̄ + ωd − ωr is the oscillation frequency (note that Ωn̄ = ∆n̄ for a

resonant drive). The steady state for this evolution (assuming a slowly changing
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n̄), ċs.s. = 0, corresponds to the steady-state leakage population

Ps.s. = |cs.s.|2 =

∣∣∣∣ εg

Ωn̄∆n̄

∣∣∣∣2 . (4.20)

For a drive that is suddenly turned on, as in Fig. 4.2(a), the stray population

will oscillate to reach a maximum

Pmax = |2cs.s.(0)|2 = 4Ps.s.(0) = 4

∣∣∣∣ εgΩ0∆

∣∣∣∣2 , (4.21)

which is close to the numerical value for Pmax in Fig. 4.2(a). As discussed below,

the oscillations eventually dephase, so we would expect the value Pstray = Pmax/2

after that. However, by the time it occurs, Ps.s. in Eq. (4.20), shown by the dashed

black line in Fig. 4.2(a), significantly decreases because n̄ is already large. As a

result, we expect the value Pstray = Ps.s.(0) +Ps.s.(t) after decay of the oscillations.

(Here the first term comes from continuing dephased oscillations while the second

term comes from the moving center of oscillations on the complex plane of c.)

This formula is also close to the numerical result in Fig. 4.2(a).

Figures 4.3(a–d) show in more detail that the functional form of Eq. (4.21)

agrees well with the numerically obtained maximum stray populations Pmax in the

case of a sudden drive. In contrast, when the drive ε(t) is adiabatically increased

from zero, then the stray population closely follows the time-dependent steady

state Ps.s. of Eq. (4.20), as shown in Fig. 4.2(b). Our analysis based on Eq. (4.19)

predicts that in the diabatic case of a sudden drive, the oscillation frequency Ωn̄
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should increase when n̄ increases. This is checked in Fig. 4.3(e); agreement with

numerical results is again very good.

Now let us discuss the decay of oscillations seen in Fig. 4.2(a). Numerical

results show that the oscillations decay only for a resonant drive (for a strongly

off-resonant drive, n̄ � 1 and oscillations do not decay). Therefore, we assume

a resonant drive, so that n̄(t) ≈ |εt|2. Let us now take into account the spread

in photon number n̄ ±
√
n̄, which produces a corresponding spread in oscillation

frequency Ωn = ∆n in Eq. (4.19) that dephases the oscillations. At sufficiently

low photon number (up to several nc), we can use the approximation

∆n ≈ ∆− 2χn, χ ≈ −ωr

ωq

g2η

∆(∆ + η)
, (4.22)

which produces the spread of oscillation frequency in Eq. (4.19) with the standard

deviation δΩ ' 2χ
√
n̄ ≈ 2χ|ε|t. This implies that the corresponding accumulated

phase difference after a time t is δϕ =
∫ t

0
δΩ dt′ ≈ χ|ε|t2. Assuming that a phase

accumulation of |δϕ| ' 1 indicates a significant level of dephasing, this estimate

yields an oscillation decay time

tdecay ' |χε|−1/2, (4.23)

with an unknown prefactor on the order of 1. This estimate crudely agrees with

the oscillation decay in Fig. 4.2(a). For a more detailed analysis we checked the

numerical dependence of the decay time on ε and χ in Figs. 4.3(f) and 4.3(g). The

agreement is quite good using a prefactor of 1.23 in Eq. (4.23), when the decay
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time is defined numerically as decay of the probability oscillations [as in Fig. 4.2(a)]

to 1/3 of initial amplitude. Note that this derivation predicts a crudely Gaussian

envelope of oscillation decay for
√
Pstray(t), and this prediction also agrees with the

numerical results (though not quite well because of the change of the oscillation

center cs.s. over time).

Simple modifications of the above derivation are sufficient to describe the stray

populations when starting from a different initial state. As an example, let us con-

sider an initially excited qubit state |0, 1〉. In this case there will be two neighboring

eigenladders that interact: the ground eigenladder |n, 0〉, and the second excited

eigenladder |n, 2〉. Stray population that leaks to the ground eigenladder will oscil-

late precisely as before between the ground and excited eigenladders, reproducing

Eqs. (4.20), (4.21), and (4.23); this equivalence due to symmetry is emphasized

in Fig. 4.2(c). In contrast, the stray population leaking to the second excited

eigenladder |n, 2〉 oscillates between excited and second-excited eigenladders, so

behaves somewhat differently. We modify our derivation starting from Eq. (4.18)

to include only the interaction between the eigenladders |n, 1〉 and |n, 2〉, which

yields the following parameter replacements: g →
√

2 g, ∆n → En+1,1 − En,2,

∆→ ∆+η, Ω0 → Ω0 +η, and 2χ→ 2χ′ = ω
(2)
r (0)−ω(1)

r (0). Thus, the equivalents

of Eqs. (4.20) and (4.23) at low n are

P ′s.s. =

∣∣∣∣∣
√

2 εg

(∆ + η − 2χ′n̄)(Ω0 + η − 2χ′n̄)

∣∣∣∣∣
2

, (4.24)

t′decay ' |χ′ε|−1/2. (4.25)
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These equations agree with the numerical results shown in Fig. 4.2(d) and Fig. 4.3(h,i).

Our analysis shows that the stray population of a “wrong” eigenladder con-

sidered in this section should be quite small for typical experimental parameters.

The case of an adiabatically increased drive is more experimentally relevant, so

let us use Eq. (4.20) and crudely estimate the effect as Pstray ∼ (εg/∆2)2. Then

for g/2π ' 100 MHz, ∆/2π ' 1 GHz, and ε/2π ' 50 MHz (such drive pumps

∼ 10 photons within first 10 ns), we obtain Pstray ∼ 3 × 10−5. Even if ∆/2π

is decreased to 500 MHz in this estimate and ε/2π is increased to 100 MHz (40

photons within first 10 ns), the resulting value Pstray ∼ 2×10−3 still remains quite

small. Therefore, this should not significantly affect the qubit measurement error,

at least for present-day experiments.

4.4 Summary

We have analyzed the ring-up of a readout resonator coupled to a transmon

qubit. The bare bases of the transmon and resonator hybridize into a joint eigen-

basis that is organized into natural eigenladders associated with each nominal

transmon state. As was pointed out previously, ringing up the resonator from

its ground state using a coherent pump approximately creates a coherent state in

this eigenbasis (i.e., a dressed coherent state) that is confined to the eigenladder

corresponding to the initial transmon state. We analyzed one main deviation from

this first approximation and developed a more accurate dynamical model for the

ring-up process.
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Through numerical simulation, we demonstrated that the ring-up evolution

deviates from the dressed coherent state model. The initial transmon population

may leak into other (“incorrect”) eigenladders that correspond to different initial

transmon states. We analyzed this deviation and developed analytical models to

quantify the effects.

The stray population that leaks outside the correct eigenladder arises from

the mismatch between the coherent pump (in the bare basis) and the hybridized

resonator (in the eigenbasis). We found that this mismatch creates interesting dy-

namics over a relatively short timescale after the pump is applied, and were able

to describe the resulting damped oscillations between neighboring eigenladders

quantitatively. The most important result is that for typical experimental param-

eters the occupation of incorrect eigenladders remains small (. 10−4); therefore,

this effect should not significantly contribute to the qubit measurement error in

present-day experiments. Note, however, that our analysis focuses solely on the

population leakage caused by the pump itself during the ring-up process; as such,

it neglects other important effects that contribute to the total leakage to incor-

rect eigenladders in practice, such as qubit energy relaxation, the Purcell effect,

interactions with defects, dressed dephasing, and non-RWA effects.
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Figure 4.2: Blue lines: numerically calculated stray population Pstray as a function
of time t; dashed black lines: steady-state value Ps.s., calculated via Eq. (4.20).
(a) Leaked population in the excited eigenladder |n, 1〉 for sudden driving with
ε/2π = 60 MHz from initial ground state |0, 0〉. The oscillations reach an initial
maximum of Pmax ≈ 4Ps.s.(0), then dephase to about Ps.s.(t) + Ps.s.(0), with de-
creasing Ps.s.(t) because of increasing average photon number n̄. (b) The same for
adiabatic drive ε(t), linearly increasing for first 10 ns to the same constant value of
60 MHz. The stray population follows the steady state, which increases for 10 ns
because of increasing ε(t). (c) Sudden driving with ε/2π = 60 MHz from an initial
excited qubit state |0, 1〉, showing population Pstray,0 leaked to the ground-state

eigenladder |n, 0〉. This case is fully symmetric with (a) since it involves the same
pair of transmon levels. (d) The same driving as in (c), but showing leaked pop-
ulation Pstray,2 of the second-excited eigenladder |n, 2〉. The behavior is similar to
(c), but involves the next pair of transmon levels. For all panels ωr/2π = 6 GHz,
ωq/2π = 5 GHz, η/2π = 250MHz, g/2π = 100 MHz, and ωd is on resonance with
the resonator frequency, corresponding to each initial state.
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Figure 4.3: Model validation for stray population Pstray in the neighboring eigen-
ladder, using a sudden resonant [off-resonant in (d)] drive and starting with |0, 0〉
(a-g) or |0, 1〉 (h,i). Panels (a–d): Testing of Eq. (4.21) for the maximum stray pop-
ulation Pmax against numerical results, by varying (a) the drive amplitude ε, (b)
coupling g, (c) resonator-qubit detuning ∆, and (d) drive frequency ωd. (e): Test-
ing that the time-dependent oscillation frequency evolves as Ωn̄ = ∆n̄ given by Eq.
(4.16). (f,g): Testing of Eq. (4.23) for the decay time tdecay of the eigenladder oscil-
lations [as in Fig. 4.2(a)], using a prefactor of 1.23 for decay to 1/3 amplitude. (h,i):
Similar to panels (a,g), but for the leakage to the second excited eigenladder |n, 2〉
starting from the excited state |0, 1〉; in this case Eqs. (4.21) and (4.23) need the

following replacements: g 7→
√

2 g, ∆ 7→ ∆+η, Ω0 7→ Ω0 +η, χ 7→ χ′ = ω
(2)
r −ω(1)

r .
In all panels blue dots show numerical results, while red lines are calculated an-
alytically. We use the following parameters: ωr/2π = 6 GHz, ωq/2π = 5 GHz,
η/2π = 200 MHz, g/2π = 100 MHz, ε/2π = 10 MHz, except for parameters, which
are varied, and in (g) ε/2π = 50 MHz and in (h,i) η/2π = 300 MHz.
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Chapter 5

Testing the Robustness of

Quantum State Transfer

Present realizations of superconducting qubits are restricted to one chip inside

a dilution refrigerator. While this is sufficient for the implementation of only a few

qubits, future developments and upward scaling will require interconnects between

several chips of superconducting qubits. The realization of quantum networks with

many nodes and the transfer of quantum states from site to site therefore rely on

a high-fidelity quantum state transfer protocol.

The use of photons traveling in optical fibers is the standard method of shar-

ing quantum information across a significant length, with photons able to travel a

long distance before decohering. These “flying qubit” could be used for many pur-

poses within quantum communication. But the advantages that optics can provide

through relatively-coherent photons can be misleading. Among other difficulties,
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the photons must be captured without being destroyed in order for quantum in-

formation to be transferred in this way.

Flying qubits need not be restricted to optical photons and optical waveguides.

It may be useful instead to use microwave photons that travel through supercon-

ducting waveguides to achieve the transfer of quantum states. In this chapter, we

analyze the transfer of a quantum state between two resonators connected by a

superconducting transmission line. Nearly perfect state-transfer efficiency can be

achieved by using adjustable couplers and destructive interference to cancel the

back-reflection into the transmission line at the receiving coupler.

We show that the transfer protocol is robust to parameter variations affect-

ing the transmission amplitudes of the couplers. We also show that the effects

of Gaussian filtering, pulse-shape noise, and multiple reflections on the transfer

efficiency are insignificant. However, the transfer protocol is very sensitive to fre-

quency mismatch between the two resonators. Moreover, the tunable coupler we

considered produces time-varying frequency detuning caused by the changing cou-

pling. This detuning requires an active frequency compensation with an accuracy

better than 90% to yield the transfer efficiency above 99%.

The chapter is organized in the following way. In Sec. 5.1 we stage the prob-

lem with appropriate background. In Sec. 5.2 we discuss the ideal state transfer

protocol, its mathematical model, and the relation between classical transfer effi-

ciency (which is mostly used throughout this chapter) and quantum state/process

fidelity. In Sec. 5.3 we analyze the decrease of the transfer efficiency due to devi-
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ations from the design values of various parameters that define the transmission

amplitudes of the couplers. We also study the effects of pulse-shape warping,

Gaussian filtering, noise, and dissipative losses. In Sec. 5.4 we analyze the effect

of multiple reflections of the back-reflected field on the transfer efficiency. The

effect of frequency mismatch between the two resonators is discussed in Sec. 5.5.

Finally, we summarize the main results of this chapter in Sec. 5.6.

It should be noted that the two appendices that appear in this dissertation

also relate to this work. Appendix A is devoted to the quantum theory of a beam

splitter, which is used to relate the efficiency of a classical state transfer to the

fidelity of a quantum state transfer. In Appendix B we discuss the theory of the

tunable coupler of Refs. [106, 107] and find the frequency detuning caused by the

coupling variation.

5.1 Introduction

The realization of quantum networks composed of many nodes requires high-

fidelity protocols that transfer quantum states from site to site by using “fly-

ing qubits” [42, 14]. The standard idea of the state transfer between two nodes

of a quantum network [108] assumes that the state of a qubit is first encoded

onto a photonic state at the emitting end, after which the photon leaks out and

propagates through a transmission line to the receiving end, where its state is

transferred onto the second qubit. The importance of quantum state transfer

has stimulated significant research activity in optical realizations of such proto-
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cols, e.g., [109, 110, 111], including trapping of photon states in atomic ensembles

[112, 113, 114, 115]. Recent experimental demonstrations include the transfer of

an atomic state between two distant nodes [116] and the transfer between an ion

and a photon [117].

An important idea for state transfer in the microwave domain is to use tunable

couplers between the quantum oscillators and the transmission line [118, 119] (the

idea is in general similar to the idea proposed in Ref. [108] for an optical system).

In particular, this strategy is natural for superconducting qubits, for which a va-

riety of tunable couplers have been demonstrated experimentally [120, 121, 122,

123, 124, 106, 125, 107, 126, 127, 128] (these couplers are important for many

applications, e.g., [53, 63, 76, 129]). Although there has been rapid progress in

superconducting qubit technology, e.g. [87, 88, 130, 131, 132, 133, 134, 135, 136],

most of the experiments so far are limited to a single chip or a single resonator

in a dilution refrigerator (an exception is [137]). Implementing the quantum state

transfer between remote superconducting qubits, resonators, or even different re-

frigerators using “flying” microwave qubits propagating through lossless super-

conducting waveguides would significantly extend the capability of the technology

(eventually permitting distributed quantum computing and quantum communica-

tions over extended distances using quantum repeaters).

The essential ingredients of the transfer protocol proposed in Ref. [119] have al-

ready been demonstrated experimentally. The emission of a proper (exponentially

increasing) waveform of a quantum signal has been demonstrated in Ref. [125],

while the capture of such a waveform with 99.4% efficiency has been demonstrated
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in Ref. [107]. The combination of these two procedures in one experiment would

demonstrate a complete quantum state transfer (more precisely, the complete first

half of the procedure of Ref. [119]). Note that Refs. [125] and [107] used dif-

ferent tunable couplers: a “tunable mirror” [106] between the resonator and the

transmission line in Ref. [107] and a tunable coupling between the qubit and the

resonator [124] (which then rapidly decays into the transmission line) in Ref. [125].

However, this difference is insignificant for the transfer protocol of Ref. [119]. An-

other promising way to produce shaped photons is to use a modulated microwave

drive to couple the superconducting qubit with the resonator [138, 139] (see also

Refs. [140, 141] for implementation of optical techniques for shaped photons).

In this chapter, we extend the theoretical analysis of the state transfer protocol

proposed in Ref. [119], focusing on its robustness against various imperfections.

In our protocol a quantum state is transferred from the emitting resonator to the

receiving resonator through a transmission line (the state transfer using tunable

coupling directly between the qubit and the transmission line has also been consid-

ered in Ref. [119], but we do not discuss it here). The procedure essentially relies

on the cancellation of back-reflection into the transmission line via destructive

interference at the receiving end, which is achieved by modulation of the tunable

couplers between the resonators and the transmission line. (Note that the protocol

is often discussed in terms of a “time reversal”, following the terminology of Ref.

[108]; however, we think that discussion in terms of a destructive interference is

more appropriate.) In Ref. [119], it was shown that nearly perfect transfer effi-

ciency can be achieved if identical resonators and proper time-varying transmission
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amplitudes of the two couplers are used. However, in obtaining this high-efficiency

state transfer, only ideal design parameters were assumed. Also, various exper-

imentally relevant effects, including multiple reflections and frequency mismatch

between the two resonators, were not analyzed quantitatively.

We study in detail (mostly numerically) the effect of various imperfections

that affect the transmission amplitudes of the couplers. In the simulations we

focus on two values for the design efficiency: 0.99 and 0.999. The value of 0.99

crudely corresponds to the current state of the art for the two-qubit quantum gate

fidelities [87] and threshold of some quantum codes [78]; we believe that the state

transfer with 0.99 efficiency may already be interesting for practical purposes,

while the value of 0.999 would be the next natural milestone for the experimental

quantum state transfer. We find that the transfer protocol is surprisingly robust

to parameter variations, with a typical decrease in the efficiency of less than 1%

for a 5% variation of the design parameters (the scaling is typically quadratic, so

half of the variation produces a quarter of the effect). We also study the effect

of Gaussian filtering of the signals and find that it is practically negligible. The

addition of noise to the ideal waveforms produces only a minor decrease in the

transfer efficiency. Numerical analysis of multiple reflections also shows that the

corresponding effect is not significant and can increase the inefficiency by at most

a factor of two. The analysis of the effect of dissipative losses is quite simple

and, as expected, shows that a high-efficiency state transfer requires a low-loss

transmission line and resonators with energy relaxation times much longer than

duration of the procedure.
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A major concern, however, is the effect of frequency mismatch between the

two resonators, since the destructive interference is very sensitive to the frequency

detuning. We consider two models: a constant-in-time detuning and a time-

dependent detuning due to changing coupling. For the latter model we use the

theory of the coupler realized in Refs. [106, 107]; the frequency variation due to

the coupling modulation has been observed experimentally [106]. Our results show

that a high-efficiency state transfer is impossible without an active compensation

of the frequency change; the accuracy of this compensation should be at least

within the 90%-95% range.

Although we assume that the state transfer is performed between two super-

conducting resonators, using the tunable couplers of Refs. [106, 107], our analysis

can also be applied to other setups, for example, schemes based on tunable cou-

plers between the qubits and the transmission line or based on the tunable couplers

between the qubits and the resonators [124, 125, 138, 139], which are then strongly

coupled with the transmission line. Note that the frequency change compensation

is done routinely in the coupler of Refs. [124, 125], thus giving a natural way to

solve the problem of frequency mismatch. Similarly, the phase is naturally tunable

in the coupler of Refs. [138, 139].

79



Figure 5.1: (a) The state transfer setup. An initial microwave field amplitude
G(0) is transferred from the emitting resonator to the receiving resonator via a
transmission line. This is done using variable couplers for both resonators, char-
acterized by (effective) transmission amplitudes te(t) and tr(t), and corresponding
leakage rates κe(t) and κr(t). Almost perfect transfer can be achieved when the
back-reflection of the propagating field A(t) is cancelled by arranging its destruc-
tive interference with the leaking part of the field B(t) in the receiving resonator.
(b) A variant of the setup that includes a circulator, which prevents multiple
reflections of the small back-reflected field F (t).

5.2 Model and transfer protocol

5.2.1 Model

We consider the system illustrated in Fig. 5.1(a). A quantum state is being

transferred from the emitting (left) resonator into the initially empty receiving

(right) resonator via the transmission line. This is done by using time-varying

couplings (“tunable mirrors”) between the resonators and the transmission line.

The (effective) transmission amplitudes te and tr for the emitting and receiving

resonator couplers, respectively, as a function of time t are illustrated in Fig. 5.2.

As discussed later, the main idea is to almost cancel the back-reflection into the
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Figure 5.2: Time dependence (“pulse shapes”) of the absolute values of transmis-
sion amplitudes te(t) for the emitting coupler (red dashed curve) and tr(t) for the
receiving coupler (blue solid curve). The amplitude te(t) is kept constant at the
maximum level te,max after the mid-time tm, while tr(t) is kept at the maximum
tr,max during the first part of the procedure, t ≤ tm. The propagating field A(t)
first increases exponentially and then decreases exponentially (black solid curve).
In simulations we typically use |te,max| = |tr,max| = 0.05 for quarter-wavelength 6
GHz resonators (τe = τr = 33 ns); then the transfer efficiency η = 0.999 requires
the procedure duration of tf = 460 ns.

transmission line from the receiving resonator by using destructive interference.

Then the field leaking from the emitting resonator is almost fully absorbed into the

receiving resonator. Ideally, we want the two resonators to have equal frequencies,

ωe = ωr; however, in the formalism we will also consider slightly unequal resonator

frequencies ωe(t) and ωr(t). We assume large quality factors Q for both resonators

by assuming |te(t)| � 1 and |tr(t)| � 1 (the maximum value is crudely |te(r),max| ∼

0.05, leading to Qmin ∼ 103 – see later), so that we can use the single-mode

approximation. For simplicity, we assume a dispersionless transmission line.

We will mostly analyze a classical field transfer between the two resonators,

with a straightforward relation to the quantum case, discussed later. The no-
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tations G(t) and B(t) correspond to the field amplitudes in the emitting and

receiving resonators [see Fig. 5.1(a)], while A(t) describes the propagating field in

the transmission line. However, in contrast to the notations of Ref. [119], here we

use dimensionless G and B, normalizing the field amplitudes [142, 143] in such

a way that for classical (coherent) fields, |G|2 and |B|2 are equal to the average

number of photons in the resonators. Similarly, the normalization of A is chosen

so that |A|2 is the number of propagating photons per second. Such normaliza-

tions for resonators are more appropriate for the analysis of quantum information.

Also, with this normalization, the amplitudes will not change with adiabatically-

changing resonator frequency, in contrast to the usual field amplitudes.

In most of the analysis we assume (unless mentioned otherwise) that the trans-

mission line is either long or contains a circulator [Fig. 5.1(b)], so that we can

neglect the multiple reflections of the small back-propagating field F (t) (the effect

of multiple reflections will be considered in Sec. IV). We also assume that there is

no classical noise entering the emitting resonator from the circulator (only vacuum

noise).

With these assumptions and normalizations, the time dynamics of the classical

field amplitudes is described in the rotating frame by the equations

Ġ = −i∆ωeG−
1

2

(
κe + T−1

1,e

)
G, (5.1)

Ḃ = −i∆ωrB −
1

2

(
κr + T−1

1,r

)
B +

tr

|tr|
√
κrA, (5.2)

A =
√
ηtl

te

|te|
√
κe G, (5.3)
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where ∆ωe = ωe − ω0 and ∆ωr = ωr − ω0 are small detunings (possibly changing

slowly with time) from the (arbitrary) rotating frame frequency ω0(t), the decay

rates κe and κr are due to leakage into the transmission line, while additional

losses are described by the energy relaxation times T1,e and T1,r in the resonators

and imperfect transfer efficiency ηtl of the transmission line. Note that A has the

dimension of 1/
√

s in contrast to the dimensionless G and B, so that the factors

√
κe(r) restore the proper dimension. The leakage rates are

κe(t) =
|t̃in

e |2

τrt,e

Re

Rtl

=
|te|2

τrt,e

, κr(t) =
|t̃in

r |2

τrt,r

Rr

Rtl

=
|tr|2

τrt,r

, (5.4)

where t̃in
e and t̃in

r are the transmission amplitudes of the couplers (for a wave

incident from inside of the resonators), τrt,e and τrt,r are the round-trip times in

the resonators, Re, Rr, and Rtl are the wave impedances of the resonators and the

transmission line, while te = t̃in
e

√
Re/Rtl and tr = t̃in

r

√
Rr/Rtl are the effective

transmission amplitudes. Note that the transmission amplitudes t̃ depend on

the wave direction (from inside or outside of a resonator), while the effective

transmission amplitudes t do not. For convenience we will be working with the

effective transmission amplitudes te and tr, so that we do not need to worry about

possibly unequal wave impedances. For quarter-wavelength resonators τrt,e ≈

π/ωe ≈ π/ω0 and τrt,r ≈ π/ωr ≈ π/ω0, so the quality factors are

Qe(r) =
ωe(r)

κe(r)

≈ π

|te(r)|2
. (5.5)

Note that the phase factors tr/|tr| and te/|te| in Eqs. (5.2) and (5.3) may change in
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time because of changing coupling [119, 106] (as discussed later in Sec. 5.5.2 and

Appendix B); this is why these somewhat unusual factors cannot be neglected.

Strictly speaking, the last term in Eq. (5.2) should also be multiplied by
√
ωe/ωr;

this is because of different normalizations, related to different photon energies

~ωe and ~ωr in the resonators. However, we neglect this correction, assuming a

relatively small detuning. Note that the effective propagation time along the trans-

mission line is zero in Eqs. (5.1)–(5.3) since we use appropriately shifted clocks

(here the assumption of a dispersionless transmission line is necessary); however,

the physical propagation time will be important in the analysis of multiple reflec-

tions in Sec. 5.4. Also note that to keep Eqs. (5.1)–(5.3) reasonably simple, we

defined the phases of B and G to be somewhat different from the actual phases of

the standing waves in the resonators (see discussion in Sec. 5.2.3.

Even though in Eqs. (5.1)–(5.3) we use normalized fields G, B, and A, which

imply discussion in terms of the photon number, below we will often use the

energy terminology and invoke the arguments of the energy conservation instead

of the photon number conservation. At least in the case without detuning the two

pictures are fully equivalent, but the energy language is more intuitive, and thus

preferable. This is why in the following we will use the energy and photon number

terminology interchangeably.

5.2.2 Efficiency and fidelity

We will characterize performance of the protocol via the transfer efficiency η,

which is defined as the ratio between the energy of the field (converted into the
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photon number) in the receiving resonator at the end of the procedure, t = tf , and

the energy (photon number) at the initial time, t = 0, in the emitting resonator:

η =
|B(tf)|2

|G(0)|2
. (5.6)

We emphasize that in this definition we assume that only the emitting resonator

has initially a non-zero field.

As we discuss in this section, the classical efficiency η is sufficient to character-

ize the quantum transfer as well, so that the quantum state and process fidelities

derived below are directly related to η (this requires assumption of vacuum every-

where except the initial state of the emitting resonator). The idea of the conversion

between the classical and quantum transfers is based on the linearity of the pro-

cess, and thus can be analyzed in essentially the same way as the quantum optical

theory of beam splitters, discussed in Appendix A.

Let us focus on the case with the circulator [Fig. 1(b)] in the absence of dissi-

pative losses (T−1
1,e = T−1

1,r = 0, ηtl = 1). In general, there is a linear input-output

relation between the fields at t = 0 and the fields at t = tf . This relation is

the same for the classical fields and the corresponding quantum operators in the

Heisenberg picture ([144, 118]), so for simplicity we discuss the classical fields.

The relevant fields at t = 0 are G(0), B(0), and the (infinite number of) temporal

modes propagating towards the emitting resonator through the circulator; these

modes can be described as time-dependent field V (t), where t corresponds to the

time, at which the field arrives to the emitting resonator. Note that B(0) and
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V (t) are assumed to be zero in our protocol; however, we need to take them into

account explicitly, because in the quantum language they would correspond to

operators, representing vacuum noise (with the standard commutation relations).

The fields at the final time t = tf are B(tf), G(tf), and the collection of the outgo-

ing back-reflected fields F (t) for 0 ≤ t ≤ tf [see Fig. 1(b)]. Note that normalization

of the propagating fields V (t) and F (t) is similar to the normalization of A(t).

The input-output relation {G(0), B(0), V (t)|0≤t≤tf} 7→

{G(tf), B(tf), F (t)|0≤t≤tf} is linear and unitary, physically because of the conser-

vation of the number of photons (energy). In particular,

B(tf) =
√
η eiϕfG(0) + wBB(0) +

∫ tf

0

wV (t)V (t) dt, (5.7)

where η is obviously given by Eq. (5.6), ϕf is the phase shift between B(tf) and

G(0), while wB and wV (t) are some weight factors in this general linear relation.

These weight factors can be calculated by augmenting Eqs. (5.1)–(5.3) to include

V (t) and F (t), but we do not really need them to find the quantum transfer

fidelity if B(0) and V (t) correspond to vacuum. Note that the unitarity of the

input-output transformation requires the relation

η + |wB|2 +

∫ tf

0

|wV (t)|2 dt = 1 (5.8)

(sum of squared absolute values of elements in a row of a unitary matrix equals

one), where we neglected the slight change in the normalization (discussed above)

in the case of time-varying detuning.
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This picture of the input-output relations can in principle be extended to in-

clude non-zero T−1
1,e(r) and/or ηtl 6= 1; for that we would need to introduce additional

noise sources, which create additional terms in Eqs. (5.7) and (5.8) similar to the

terms from the noise V . Also, if we consider the case without the circulator, the

structure of these equations remains similar, but the role of V (t) is played by the

temporal modes of the initial field propagating in the transmission line from the

receiving to the emitting resonator (since clocks are shifted along the transmission

line, there is formally no field “stored” in the transmission line, which propagates

from the emitting to the receiving resonator).

Using the framework of the linear input-output relation, Eq. (5.7) derived

for classical fields can also be used to describe the quantum case. This can be

done using the standard quantum theory of beam splitters [143] (see Appendix

A), by viewing Eq. (5.7) as the result of mixing the fields G(0), B(0), and an

infinite number of fields (temporal modes) V (t) with beam splitters to produce

the proper linear combination. Importantly, if B(0) corresponds to vacuum and

V (t) also corresponds to vacuum, then we can assume only one beam splitter

with the proper transfer amplitude
√
η eiϕf for G(0) → B(tf); this is because a

linear combination of several vacua is still the vacuum. Equivalently, the resulting

quantum state in the receiving resonator is equal to the initial quantum state of

the emitting resonator, subjected to the phase shift ϕf and leakage (into vacuum)

described by the (classical) efficiency η. The same remains correct in the presence

of nonzero relaxation rates T−1
1,e and T−1

1,r and imperfect ηtl if these processes occur

at zero effective temperature (involving only vacuum noise).
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As shown in Appendix A, if the initial state in the emitting resonator is |ψin〉 =∑
n αn|n〉 in the Fock space (

∑
n |αn|2 = 1), then the final state of the receiving

resonator is represented by the density matrix, which can be obtained from the

state |ψfin〉 =
∑

n,k αn+k

√
(n+ k)!/n!k! ηn/2(1 − η)k/2ei(n+k)ϕf |n〉|k〉a by tracing

over the ancillary state |k〉a (this ancilla corresponds to the second outgoing arm

of the beam splitter). This gives the density matrix

ρfin =
∑
j,n,m

αn+jα
∗
m+j

√
(n+ j)!(m+ j)!(j!

√
n!m!)−1η(n+m)/2(1−η)jei(n−m)ϕf )|n〉〈m|

The state fidelity (overlap with the initial state) is then

Fst =
∑
j,n,m

√
(n+ j)!(m+ j)!

j!
√
n!m!

α∗nαmαn+jα
∗
m+j

× η(n+m)/2(1− η)jei(n−m)ϕf . (5.9)

Note that the phase shift ϕf can easily be corrected in an experiment (this correc-

tion is needed anyway for resonators, which are significantly separated in space),

and then the factor ei(n−m)ϕf in Eq. (5.9) can be removed.

The discussed quantum theory (at zero temperature, i.e., with only vacuum

noise) becomes very simple if we transfer a qubit state |ψin〉 = α|0〉+ β|1〉. Then

the resulting state is

|ψfin〉 = α|0〉|0〉a + βeiϕf (
√
η |1〉|0〉a +

√
1− η |0〉|1〉a), (5.10)

where the ancillary states |1〉a and |0〉a indicate whether a photon was lost to the
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environment or not. After tracing |ψfin〉〈ψfin| over the ancilla we obtain density

matrix

ρfin =

 η|β|2 √
η eiϕfα∗β

√
η e−iϕfαβ∗ |α|2 + |β|2(1− η)

 . (5.11)

Note that since a qubit state contains at most one excitation, the essential dy-

namics occurs only in the single-photon subspace. Therefore, it is fully equivalent

to the dynamics of classical fields (with field amplitudes replaced by probability

amplitudes). Thus, Eq. (5.10) can be written directly, without using the quantum

beam splitter approach, which is necessary only for multi-photon states.

In quantum computing the qubit state transfer (quantum channel) is usually

characterized by the quantum process fidelity Fχ or by the average state fidelity

F st, which are related as [145, 146] 1−Fχ = (1−F st)× 3/2. In order to calculate

Fχ, we calculate state fidelity Fst (overlap with initial state) and then average it

over the Bloch sphere. Neglecting the phase ϕf , which can be easily corrected in

an experiment, from Eq. (5.11) we find Fst = |α|4 + η|β|4 + |αβ|2(1 − η + 2
√
η),

which also follows from Eq. (5.9). To average this fidelity over the Bloch sphere of

initial states, it is sufficient [145] (see also [147]) to average it over only six states:

|0〉, |1〉, (|0〉 ± |1〉)/
√

2, and (|0〉 ± i|1〉)/
√

2. This gives F st = (3 + η + 2
√
η)/6,

which can be converted into the process fidelity

Fχ =
1

4
(1 +

√
η)2. (5.12)

This equation gives the relation between the classical energy transfer efficiency η

which we use in this chapter and the process fidelity Fχ used in quantum comput-
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ing. Note the relation 1−Fχ ≈ (1−η)/2 when η ≈ 1. Also note that a non-vacuum

noise contribution (due to finite temperature) always decreases Fχ (see Appendix

A). If the phase shift ϕf is included in the definition of fidelity (assuming that ϕf

is not corrected), then Eq. (5.12) becomes Fχ = (1 + η + 2
√
η cosϕf)/4.

Thus, in this section we have shown that the state and the process fidelities

of the quantum state transfer are determined by the classical efficiency η and

experimentally correctable phase shift ϕf . This is why in the rest of this chapter

we analyze the efficiency η of essentially a classical state transfer.

5.2.3 Transfer procedure

Now let us describe the transfer protocol, following Ref. [119] (this will be the

second protocol out of two slightly different procedures considered in Ref. [119]).

Recall that we consider normalized classical field amplitudes. The main idea of

achieving nearly perfect transfer is to use time-dependent transmission amplitudes

te and tr to arrange destructive interference between the field A reflected from the

receiving resonator and the part of field B leaking through the coupler (see Fig.

5.1). Thus, we want the total back-reflected field F (t) to nearly vanish: F (t) ≈ 0,

where

F =
rout

r

|rr|
A+

tr

|tr|
√
κr
|rr|
rin

r

B, (5.13)

rout
r and rin

r are the coupler reflection amplitudes from the outside and inside of the

receiving resonator, and |rr| = |rin
r | = |rout

r |. Note that the (effective) scattering
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matrix of the receiving resonator coupler is

 rout
r tr

tr rin
r

, when looking from the

transmission line. The formula (5.13) looks somewhat unusual for two reasons.

First, in the single-mode formalism of Eqs. (5.1)–(5.3), the reflection amplitude

in Eq. (5.13) must be treated as having the absolute value of 1; this is why we

have the pure phase factor rout
r /|rr|. This is rather counterintuitive and physically

stems from the single-mode approximation, which neglects the time delay due to

the round-trip propagation in a resonator. It is easy to show that if the actual

amplitude rout
r were used for the reflection A→ F , then solution of Eqs. (5.2) and

(5.13) would lead to the energy non-conservation on the order of |t|2. Second, in

our definition the phase of the field B corresponds to the standing wave component

(near the coupler) propagating away from the coupler [see Eq. (5.2)], so the wave

incident to the coupler is B |rr|/rin
r , thus explaining the phase factor in the last

term of Eq. (5.13). Actually, a better way would be to define B using the phase

of the standing wave in the resonator; this would replace the last term in Eq.

(5.2) with (tr/|tr|)
√
κrA

√
|rr|/rin

r and replace the last term in Eq. (5.13) with

(tr/|tr|)
√
κr

√
|rr|/rin

r B. However, we do not use this better definition to keep a

simpler form of Eq. (5.2).

Using the fact that t2
r/r

in
r rout

r is necessarily real and negative [since rout
r =

−(rin
r )∗tr/t

∗
r from unitarity], we can rewrite Eq. (5.13) as

F =
rout

r

|rr|

(
A− t∗r

|tr|
√
κrB

)
. (5.14)
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This form shows that if the phases of tr and A do not change in time and there

is no detuning, then the two terms in Eq. (5.14) have the same phase [because

arg(B) = arg(trA) from Eq. (5.2)]. Therefore, for the desired cancellation of

the terms we need only the cancellation of absolute values, i.e., a one-parameter

condition.

For a non-zero field B, the exact back-reflection cancellation can be achieved by

varying in time the emitting coupling te [118], which determines A in Eq. (5.13) or

by varying the receiving coupling tr or by varying both of them with an appropriate

ratio [119]. At the very beginning of the procedure the exact cancellation is

impossible because B(0) = 0, so there are two ways to arrange an almost perfect

state transfer. First, we can allow for some loss during a start-up time ts intended

to create a sufficient field B, and then maintain the exact cancellation of the back-

reflection at t > ts. Second, we can have a slightly imperfect cancellation during

the whole procedure. Both methods were considered in Ref. [119]; in this chapter

we discuss only the second method, which can be easily understood via an elegant

“pretend” construction explained later.

Motivated by a simpler experimental realization, we divide our protocol into

two parts [119] (see Fig. 5.2). During the first part of the procedure, we keep the

receiving coupler fixed at its maximum value tr,max, while varying the emitting

coupler to produce a specific form of A(t) for an almost perfect cancellation.

During the second part, we do the opposite: we fix the emitting coupler at its

maximum value te,max and vary the receiving coupler. The durations of the two

parts are approximately equal.
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The maximum available couplings between the resonators and transmission

line determine the timescales τe and τr of the transfer procedure, which we define

as the inverse of the maximum leakage rates,

τe(r) =
1

κe(r),max

, κe(r),max =
|te(r),max|2

τrt,e(r)

. (5.15)

The time τr affects the buildup of the field in the receiving resonator, while τe

determines the fastest depopulation of the emitting resonator; we will call both τe

and τr the buildup/leakage times.

Now let us discuss a particular construction [119] of the procedure for nearly-

perfect state transfer, assuming that the complex phases of te and tr are constant

in time, there is no detuning, ωe = ωr = ω0, and there is no dissipative loss,

T−1
1,e = T−1

1,r = 0, ηtl = 1. (For the experimental coupler discussed in Appendix

B, te and tr are mostly imaginary, but also have a significant real component.)

As mentioned above, during the first part of the procedure, the receiving res-

onator is maximally coupled, tr(t) = tr,max, with this value being determined

by experimental limitations. Then a complete cancellation of the back-reflection,

F = 0, would be possible if A(t) = A0 exp(t/2τr) and B(t) = B0 exp(t/2τr) with

B0 =
√
τrA0tr,max/|tr,max|. This is simple to see from Eqs. (5.2) and (5.14), and

even simpler to see using the time reversal symmetry: the absence of the back-

reflection will then correspond to a leaking resonator without an incident field.

This is why in the reversed-time picture B ∝ exp(−t/2τr), and therefore in the

forward-time picture B ∝ exp(t/2τr); the same argument applies to A.
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Thus, we wish to generate an exponentially increasing transmitted field

A(t) = A0 exp(t/2τr), 0 ≤ t ≤ tm, (5.16)

during the first half of the procedure (until the mid-time tm) by increasing the

emitting coupling te(t). This would provide the perfect cancellation of reflection

if B(0) = B0 (as in the above example), while in the actual case when B(0) = 0

we can still use the waveform (5.16), just “pretending” that B(0) = B0. It is

easy to see that this provides an almost perfect cancellation. Let us view the

initially empty resonator as a linear combination: B(0) = B0 − B0. Then due to

linearity of the evolution, the part B0 will lead to perfect cancellation as in the

above example, while the part −B0 will leak through the coupler and will be lost.

If −B0 is fully lost during a sufficiently long procedure, then the corresponding

contribution to the inefficiency (mostly from the initial part of the procedure)

is 1 − ηr = |B0/G(0)|2. In particular, for a symmetric procedure (τe = τr = τ ,

tm = tf/2) approximately one half of the energy will be transmitted during the first

half of the procedure, |B(tm)|2 ≈ |G(0)|2/2; then |B0|2 ≈ exp(−tm/τ) |G(0)|2/2,

and therefore the inefficiency contribution is 1 − ηr ≈ exp(−tm/τ)/2. As we see,

the inefficiency decreases exponentially with the procedure duration.

At time tm the increasing emitting coupling te reaches its maximum value

te,max (determined by experimental limitations), and after that we can continue

cancellation of the back-reflection (5.14) by decreasing the receiving coupling tr(t),

while keeping emitting coupling at te,max. Then the transmitted field A(t) will
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become exponentially decreasing,

A(t) = A0 exp(tm/2τr) exp[−(t− tm)/2τe], tm ≤ t ≤ tf , (5.17)

and tr should be varied correspondingly, so that κr(t) = |A(t)|2/|B(t)|2. As men-

tioned above, the phase conditions for the destructive interference are satisfied

automatically in the absence of detuning and for fixed complex phases of te(t)

and tr(t). The procedure is stopped at time tf , after which tr(t) = 0, so that the

receiving resonator field B(tf) no longer changes. When the procedure is stopped

at time tf , there is still some field G(tf) remaining in the emitting resonator. This

leads to the inefficiency contribution 1 − ηe = |G(tf)/G(0)|2. Again assuming a

symmetric procedure (τe = τr = τ , tf = 2tm), we can use |B(tm)|2 ≈ |B(0)|2/2;

then |B(tf)|2 ≈ exp(−tm/τ)|B(0)|2/2 and therefore 1− ηe = exp(−tm/τ)/2. Com-

bining the two (equal) contributions to the inefficiency, we obtain [119]

1− η ≈ exp(−tf/2τ). (5.18)

The numerical accuracy of this formula is very high when tf & 10τ .

Now let us derive the time dependence of the couplings te(t) and tr(t) needed

for this almost perfect state transfer (we assume that τe and τr can in general

be different). Again, the idea of the construction is to arrange exact cancelation

of the back-reflection if there were an initial field B0 in the receiving resonator

(with proper phase). In this hypothetical “pretend” scenario the evolution of the

receiving resonator field B̃(t) is slightly different from B(t) in the actual case
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[B(0) = 0, B̃(0) = B0], while the fields G(t) and A(t) do not change. Thus,

we consider the easy-to-analyze ideal “pretend” scenario B̃(t) and then relate it

to the actual evolution B(t). Note that the transmitted field A(t) is given by

Eqs. (5.16) and (5.17): it is exponentially increasing until tm and exponentially

decreasing after tm. Also note that our procedure does not involve optimization:

the only parameter, which can be varied, is the duration of the procedure, which

is determined by the desired efficiency (the only formal optimization will be a

symmetric choice of tm).

In the first part of the procedure, t ≤ tm, the receiving coupling is at its

maximum, tr(t) = tr,max, and the emitting coupling can be found as te(t) =

te,max
√
τe |A/G| (recall that phase conditions are fixed). Here A(t) is given by Eq.

(5.16) and |G(t)| can be found from energy conservation in the “pretend” scenario:

|G(t)|2 + |B0 exp(t/2τr)|2 = |G(0)|2 + |B0|2. Using the relation |B0/A0| =
√
τr, we

find

te(t) = te,max

√
τe

τr

exp(t/2τr)√
|G(0)/B0|2 + 1− exp(t/τr)

. (5.19)

Here |B0| is an arbitrary parameter (related to an arbitrary |A0|), which affects

the efficiency and duration of the procedure. The corresponding G(t) and B(t)

evolutions are

G(t) = G(0)
√

1− |B0/G(0)|2[exp(t/τr)− 1], (5.20)

B(t) = B0[exp(t/2τr)− exp(−t/2τr)]. (5.21)

Note that in the “pretend” scenario B̃(t) = B0 exp(t/2τr), while actually B(t) =
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B̃(t) − B0 exp(−t/2τr), where the second term describes the decay of the com-

pensating initial field −B0. The phase of B0 is determined by the phases of the

transmission amplitudes, arg(B0) = arg[te,maxtr,maxG(0)].

Since |B0| is related to the mid-time tm via the condition te(tm) = te,max, it

is convenient to rewrite Eq. (5.19) in terms of tm. Thus, the resonator couplings

during the first part of the procedure should be [119]

te(t) =
te,max

√
τe/τr√

(1 + τe/τr) exp[(tm − t)/τr]− 1
, (5.22)

tr(t) = tr,max, 0 ≤ t ≤ tm. (5.23)

Note that the increase of te(t) is slightly faster than exponential.

To derive the required tr(t) during the second part of the procedure, t ≥ tm,

we can use the time reversal of the “pretend” scenario. It will then describe a

perfect field absorption by the emitting resonator; therefore, tr(t) in the reversed

(and shifted) time should obey the same Eq. (5.19), but with exchanged indices

(e↔r) and |G(0)/B0| replaced with |B̃(tf)/G(tf)|. Then by using the condition

tr(tm) = tr,max we immediately derive the formula similar to Eq. (5.22),

tr(t) =
tr,max

√
τr/τe√

(1 + τr/τe) exp[(t− tm)/τe]− 1
, (5.24)

te(t) = te,max, tm ≤ t ≤ tf . (5.25)

It is also easy to derive Eq. (5.24) as tr(t) = tr,max
√
τr |A/B̃|, with A(t) given by

Eq. (5.17) and |B̃(t)|2 = |G(0)|2 + |B0|2−|G(t)|2 given by the energy conservation,
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where |G(t)| = √τe |A(t)|.

The contribution to the inefficiency due to imperfect reflection (mostly during

the initial part of the procedure) is 1 − ηr ≈ |B0/G(0)|2 since the reflected field

is the leaking initial field −B0 and it is almost fully leaked during the procedure.

Comparing Eqs. (5.19) and (5.22), we find |B0/G(0)|2 ≈ exp(−tm/τr) τr/(τe +

τr) assuming exp(−tm/τr) � 1. The contribution to the inefficiency due to the

untransmitted field left in the emitting resonator at the end of procedure is 1−ηe =

|G(tf)/G(0)|2 = (τe/τr) |B0/G(0)|2 exp(tm/τr) exp[−(tf − tm)/τe], where we used

relation |G(tf)|2 = τe|A(tf)|2. Using the above formula for |B0/G(0)|2 we obtain

1 − ηe ≈ exp[−(tf − tm)/τe] τe/(τe + τr). Combining both contributions to the

inefficiency we find [119]

1− η ≈ τr exp(−tm/τr) + τe exp[−(tf − tm)/τr]

τe + τr

. (5.26)

Minimization of this inefficiency over tm for a fixed total duration tf gives the

condition

tm/τr = (tf − tm)/τe (5.27)

and the final result for the inefficiency [119],

1− η ≈ exp

(
− tf
τe + τr

)
, (5.28)

which generalizes Eq. (5.18).
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The required ON/OFF ratios for the couplers can be found from Eqs. (5.22)

and (5.24),

te,max

te(0)
≈

√
τe + τr

τe

exp

(
tm
τr

)
, (5.29)

tr,max

tr(tf)
≈

√
τe + τr

τr

exp

(
tf − tm
τr

)
, (5.30)

which in the optimized case corresponding to Eq. (5.28) become

te,max

te(0)
≈

√
1 + τr/τe

1− η
,

tr,max

tr(tf)
≈

√
1 + τe/τr

1− η
. (5.31)

Note that using two tunable couplers is crucial for our protocol. If only one

tunable coupler is used as in Ref. [118], then the procedure becomes much longer

and requires a much larger ON/OFF ratio. Assuming a fixed receiving coupling,

we can still use Eqs. (5.19)–(5.21) for the analysis and obtain the following result.

If the coupling of the emitting resonator is limited by a maximum value κmax of

the leakage rate, then the shortest duration of the procedure with efficiency η is

tf = LN/[κmax(1− η)], where LN ≈ ln e ln[(e/(1−η)]
1−η . For typical values of η we get

LN ≈ 3 + ln[1/(1− η)], and therefore the shortest duration for a procedure with

one tunable coupler is tf ≈ (1− η)−1κ−1
max {3 + ln[1/(1− η)]}. This is more than a

factor (1−η)−1/2 longer than the duration tf = 2κ−1
max ln[1/(1−η)] of our procedure

with two tunable couplers [see Eq. (5.18)]. The optimum (fixed) receiving coupling

is κr = (1 − η)κmax/(1 + 1/LN), which makes clear why the procedure is so
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long. The corresponding ON/OFF ratio for the emitting coupler is te,max/te(0) =√
κmax/κmin = (1 − η)−1

√
LN/(1− 2/LN) ≈ (1 − η)−1

√
3 + ln[1/(1− η)]. This

is more than a factor (1− η)−1/2 larger than what is needed for our procedure [see

Eq. (5.31)].

Note that we use the exponentially increasing and then exponentially decreas-

ing transmitted field A(t) [Eqs. (5.16) and (5.17)] because we wish to vary only

one coupling in each half of the procedure and to minimize the duration of the

procedure. In general, any “reasonable” shape A(t) can be used in our proce-

dure. Assuming for simplicity a real positive A(t), we see that a “reasonable”

A(t) should satisfy the inequality A2(t) ≤ κe,max[|G(0)|2 −
∫ t

0
A2(t′) dt′], so that it

can be produced by using κe(t) = A2(t)/[|G(0)|2−
∫ t

0
A2(t′) dt′] without exceeding

the maximum emitting coupling κe,max. We also assume that a “reasonable” A(t)

does not increase too fast, dA(t)/dt ≤ (κr,max/2)A(t), or at least satisfies a weaker

inequality A(t) ≤ √κr,max

√
κ−1

r,maxA
2(0) +

∫ t
0
A2(t′) dt′. In this case we can apply

the “pretend” method, which gives κr(t) = A2(t)/[κ−1
r,maxA

2(0) +
∫ t

0
A2(t′) dt′], not

exceeding the maximum receiving coupling κr,max. This leads to the inefficiency

contribution 1− ηe = 1−
∫ tf

0
A2(t′) dt′/|G(0)|2 due to the untransmitted field and

inefficiency contribution 1 − ηr = κ−1
r,maxA

2(0)/|G(0)|2 due to the back-reflection.

We see that for high efficiency we need a small A(t) at the beginning and at the

end of the procedure. Even though we do not have a rigorous proof, it is intu-

itively obvious that our procedure considered in this section is optimal (or nearly

optimal) for minimizing the duration of the protocol for a fixed efficiency and fixed

maximum couplings (see also the proof of optimality for a similar, but single-sided
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procedure in Ref. [118]). We think that it is most natural to design an experiment

exactly as described in this section [using Eqs. (5.16) and (5.17) and varying only

one coupling at a time]; however, a minor or moderate time-dependent tuning of

the other coupling (which is assumed to be fixed in our protocol) can be useful in

experimental optimization of the procedure.

In this section, we considered the ideal transfer protocol, assuming that the

transmission amplitudes are given exactly by Eqs. (5.22)–(5.25), and also assum-

ing equal resonator frequencies, fixed phases of the transmission amplitudes, and

absence of extra loss (T−1
1,e = T−1

1,r = 0, ηtl = 1). In the following sections we will

discuss the effect of various imperfections on the efficiency of the transfer protocol.

5.3 Imperfect pulse shapes

The high efficiency of the state transfer analyzed in the previous section relies

on precise calibration and control of experimental parameters, so that the needed

pulse shapes (5.22)–(5.25) for the transmission amplitudes te(t) and tr(t) are ac-

curately implemented. However, in a real experiment there will always be some

imperfections in the pulse shapes. In this section we analyze the robustness of the

transfer efficiency to the pulse shape imperfections, still assuming fixed phases and

the absence of detuning and dissipative loss. In particular, we will vary several

parameters used in the pulse shapes (5.22)–(5.25): the maximum transmission

amplitudes |te(r),max|, the buildup/leakage times τe(r), and the mid-time tm. By

varying these parameters we imitate imperfect experimental calibrations, so that
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the actual parameters of the pulse shapes are different from the designed ones.

We also consider distortion (“warping”) of the pulse shapes imitating a nonlinear

transfer function between the control pulses and amplitudes te(r). Imperfections

due to Gaussian filtering of the pulse shapes, additional noise, and dissipative

losses will also be discussed.

We analyze the effect of imperfections using numerical integration of the evo-

lution equations (5.1)–(5.3). As the ideally designed procedure we choose Eqs.

(5.22)–(5.25) with |te,max| = |tr,max| = 0.05, assuming the quarter-wavelength res-

onators with frequency ωe/2π = ωr/2π = 6 GHz, so that the round-trip time is

τrt,e = τrt,r = π/ωe(r) = 1/12 ns and the buildup/leakage time is τe = τr = τ = 33.3

ns. The duration of the procedure tf is chosen from Eq. (5.28), using two design

values of the efficiency: ηd = 0.99 and ηd = 0.999; the corresponding durations

are tf = 307.0 ns and 460.5 ns. The time tm is in the middle of the procedure:

tm = tf/2. In the simulations we use G(0) = 1, B(0) = 0, and calculate the effi-

ciency as η = |B(tf)/G(0)|2. Note that the values of |te(r),max| and ωe(r) affect the

duration of the procedure, but do not affect the results for the efficiency presented

in this section (except for the filtering effect).
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5.3.1 Variation of maximum transmission amplitudes te,max

and tr,max

Let us assume that the transmission amplitudes are still described by the pulse

shapes (5.22)–(5.25), but with slightly different parameters,

ta
e(t) =

ta
e,max

√
τ a

e /τ
a
r√

(1 + τ a
e /τ

a
r ) exp[(ta,em − t)/τ a

r ]− 1
, t ≤ ta,em , (5.32)

ta
r (t) =

ta
r,max

√
τ a

r /τ
a
e√

(1 + τ a
r /τ

a
e ) exp[(t− ta,rm )/τ a

e ]− 1
, t ≥ ta,rm , (5.33)

so that the “actual” parameters ta
e,max, ta

r,max, τ a
e , τ a

r , ta,em , and ta,rm are somewhat

different from their design values te,max, tr,max, τe, τr, and tm. The transmission

amplitudes are kept at their maxima ta
e,max and ta

r,max after/before the possibly

different mid-times ta,em and ta,rm . We will analyze the effect of inaccurate parameters

one by one.

First, we assume that only the maximum amplitudes are inaccurate, ta
e,max =

te,max + δte,max and ta
r,max = tr,max + δtr,max, while other parameters are equal

to their design values. (We change only the absolute values of te,max and tr,max,

because their phases affect only the correctable final phase ϕf but do not affect

the efficiency η.) In Fig. 5.3 we show the numerically calculated inefficiency 1 −

η of the state transfer as a function of the variation in maximum transmission

amplitude δtmax/tmax, with the solid lines corresponding to variation of only one

maximum amplitude, δte,max/te,max or δtr,max/tr,max (the results are the same),

and the dashed lines corresponding to variation of both of them, δte,max/te,max =
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Figure 5.3: Inefficiency 1 − η of the state transfer procedure as a function
of relative variation of the maximum transmission amplitudes δtmax/tmax =
(ta

e(r),max − te(r),max)/te(r),max for design efficiencies ηd = 0.99 (blue curves) and
0.999 (red curves). The maximum transmission amplitudes te,max and tr,max are
either varied simultaneously (dashed curves) or one of them is kept at the design
value (solid curves). The superscript “a” indicates an “actual” value, different
from the design value.

δtr,max/tr,max. The blue (upper) lines are for the case of design efficiency ηd = 0.99

and the red (lower) lines are for ηd = 0.999.

We see that deviations of the actual maximum amplitudes ta
e,max and ta

r,max from

their design values te,max and tr,max increase the inefficiency of the state transfer

[essentially because of the inconsistency between ta
e(r),max and τ a

e(r)]. However, the

effect is not very significant, with the additional inefficiency of less than 0.006

when one of the parameters deviates by ±5% and less than 0.02 when both of

them deviate by ±5%. The curves in Fig. 5.3 are approximately parabolic, with

a growing asymmetry for larger 1− ηd.
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For the case ηd ≈ 1 the numerical results for the additional inefficiency −δη =

ηd − η can be approximately fitted by the formula

−δη ≈
(
δte,max

te,max

)2

+

(
δtr,max

tr,max

)2

+ 1.25
δte,max

te,max

δtr,max

tr,max

, (5.34)

which we obtained by changing the maximum amplitudes symmetrically, anti-

symmetrically, and separately. Note that in the ideal procedure we assumed

|te,max| = |tr,max|.

The main result here is that the state transfer is quite robust against the

small variation of the transmission amplitudes. We expect that experimentally

these parameters can be calibrated with accuracy of a few per cent or better; the

related inefficiency of the transfer protocol is very small.

5.3.2 Variation of buildup/leakage times τe and τr

Now let us assume that in Eqs. (5.32) and (5.33) only the buildup/leakage time

parameters are slightly inaccurate, τ a
e = τ+δτe and τ a

r = τ+δτr (we assume that in

the ideal procedure τe = τr = τ), while other parameters are equal to their design

values. The transfer inefficiency as a function of the relative deviations δτe(r)/τ

is shown in Fig. 5.4 for the design efficiencies ηd = 0.99 (blue lines) and 0.999

(red lines). For the solid lines only one of the buildup/leakage times is varied (the

results coincide), while for the dashed lines both parameters are varied together,

δτe = δτr. As we see, ±5% variation of one of the buidup/leakage times increases
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Figure 5.4: Dependence of the inefficiency 1 − η on relative variation of the
buildup/leakage time δτe(r)/τ = (τ a

e(r) − τ)/τ for design efficiencies ηd = 0.99

(blue curves) and 0.999 (red curves), assuming τe = τr = τ . The buildup/leakage
times τ a

e and τ a
r are varied either simultaneously (dashed curves) or one of them

is kept at the design value (solid curves).

the inefficiency by less than 0.001, and by less than 0.0025 if both the times are

varied by ±5%.

The approximately parabolic dependences shown in Fig. 5.4 can be numerically

fitted by the formula for the additional inefficiency −δη,

−δη ≈ 0.34

[(
δτe

τ

)2

+

(
δτr

τ

)2
]

+ 0.12
δτe

τ

δτr

τ
, (5.35)

which was again obtained by varying δτe and δτr symmetrically, antisymmetrically,

and separately. Most importantly, we see that the transfer procedure is robust

against small deviations of the buildup/leakage times. (In an experiment we expect

not more than a few per cent inaccuracy for these parameters.)
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5.3.3 Variation of mid-times ta,em and ta,rm

Ideally, the pulse shapes te(t) and tr(t) should switch from increasing/decreasing

parts to constants at the same time tm, exactly in the middle of the procedure.

However, due to imperfectly calibrated delays in the lines delivering the signals

to the couplers, this change may occur at slightly different actual times ta,em and

ta,rm , which are also not necessarily exactly in the middle of the procedure. Let

us assume that te(t) and tr(t) are given by Eqs. (5.32) and (5.33) with slightly

inaccurate times ta,em and ta,rm , while other parameters are equal to their design

values.

Solid lines in Fig. 5.5 show the dependence of the transfer inefficiency 1− η on

the shift of the mid-time δtrm = ta,rm −tm, which is normalized by the buildup/leakage

time τ . Blue and red lines are for the design efficiencies ηd = 0.99 and 0.999,

respectively. The case when only ta,em is changed is similar to what is shown by the

solid lines up to the mirror symmetry, δtrm ↔ −δtem. The dashed lines show the

case when both mid-times are shifted simultaneously, ta,em = ta,rm .

We see that when ta,em and ta,rm coincide, there is practically no effect of the shift.

This is because in this case the change is only due to slightly unequal durations

tam and tf − tam. A non-zero time mismatch ta,em − ta,rm has a much more serious

effect because the reflection cancellation (5.13) becomes significantly degraded in

the middle of the procedure, where the propagating field is at its maximum.

The numerical fit to a quadratic dependence gives

− δη ≈ 0.25

(
δta,em − δta,rm

τ

)2

. (5.36)
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Figure 5.5: Inefficiency 1 − η as a function of the mid-time shift δtrm = ta,rm − tm
normalized by the buildup/leakage time τ . The mid-time ta,em is either varied
equally (dashed curves) or kept constant (solid curves). The results for varying
only ta,em are the same as the solid curves up to the sign change, δtrm ↔ −δtem.

For τ = 33.3 ns this means that ∼3 ns time mismatch leads to only 2 × 10−3

increase in inefficiency. Such robustness to the time mismatch is rather surprising.

It can be qualitatively explained in the following way. The relative imperfection

of the back-reflection cancellation (5.13) is approximately (δta,em − δta,rm )/τ in the

middle of the procedure; however, the lost energy of the back-reflected field scales

quadratically. Therefore, we can explain Eq. (5.36) up to a numerical factor. In

an experiment we expect that the time mismatch can be made smaller than 1 ns;

the corresponding inefficiency is almost negligible.
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5.3.4 Pulse-shape warping

As another possible imperfection of the ideal time-dependences te(t) and tr(t),

we consider a nonlinear deformation (“warping”) with the form

ta
j(t) = tj(t)

[
1 + αj

tj(t)− tj,max

tj,max

]
, j = e, r, (5.37)

where αe and αr are the warping parameters, which determine the strength of the

deformations. Note that this deformation does not affect maximum values te(r),max

and the values close to zero; it affects only intermediate values. The deformation

imitates nonlinear (imperfectly compensated) conversion from experimental con-

trol signals into transmission amplitudes.

The inefficiency increase due to the warping of the transmission amplitude

pulse shapes is illustrated in Fig. 5.6. Solid lines show the case when only αe or

αr is non-zero (the results coincide), while the dashed lines show the case αe = αr.

We see that for αe = αr = 0.05 the inefficiency increases by ∼ 10−3 for both design

efficiencies ηd = 0.99 and 0.999. Similar to the variation of other parameters, the

inefficiency due to the warping effect has a quadratic dependence on the warping

parameters αe and αr. The numerical fitting for small |αe(r)| and η ≈ 1 gives

− δη ≈ 0.22(α2
e + α2

r ) + 0.12αeαr. (5.38)

Again, this result shows that the state transfer is robust to distortion of the

couplers’ transmission amplitude pulse shapes. We do not expect that uncompen-
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Figure 5.6: Dependence of the inefficiency 1 − η on the warping parameters αe

and αr, introduced in Eq. (5.37) to describe the pulse shape distortion, for design
efficiencies ηd = 0.99 (blue curves) and 0.999 (red curves). The solid curves show
the case when only one warping parameter is non-zero (the results coincide); the
dashed curves are for the case αe = αr.

sated experimental nonlinearities will follow Eq. (5.37) exactly, since this equation

only imitates a nonlinear conversion. However, very crudely, we would expect that

|αe(r)| < 0.05 is a realistic experimental estimate.

5.3.5 Smoothing by a Gaussian filter

In an actual experiment the designed pulse shapes for the transmission am-

plitudes of the tunable couplers given by Eqs. (5.22)–(5.25) will pass through a

filter. Here we convolve the transmission amplitudes with a Gaussian function to

simulate the experimental filtering, so the actual transmission amplitudes are

ta
j(t) =

1√
2π σ

∫ ∞
−∞

e−(t−t′)2/2σ2

tj(t
′) dt′, j = e, r, (5.39)
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Figure 5.7: Inefficiency 1− η as a function of the width of a Gaussian filter σ (in
ns) for design efficiencies ηd = 0.9 (green dashed curve), 0.99 (blue dot-dashed
curve), and 0.999 (red solid curve). We use τ = 33.3 ns, as in Fig. 5.2. The upper
horizontal axis shows the normalized value σ/τ .

where σ is the time-width of the Gaussian filter. The filtering smooths out the

kinks at the middle of the procedure and slightly lowers the initial and final values

of te and tr. The change in transmission amplitudes translates into a decrease in

the state transfer efficiency. Note that the smoothing reduces the energy loss at

the beginning and end of the procedure, but causes an increased energy loss at

the middle of the procedure, thus increasing the procedure inefficiency overall.

The procedure inefficiency with the effect of the Gaussian filtering of transmis-

sion amplitudes is shown in Fig. 5.7 for the design efficiencies ηd = 0.9, 0.99, and

0.999. Rather surprisingly, the effect is very small, so that filtering with σ = 10 ns

does not produce a noticeable increase of the inefficiency, and even with σ = 30

ns (which is close to the buildup/leakage time) the effect is still small. Such ro-
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bustness to the filtering can be qualitatively understood in the same way as the

robustness to the mismatch between the mid-times te(t) and tr(t) discussed above.

Note that experimentally [148] σ is on the order of 1 ns, so the effect of the filter

on the efficiency should be negligible.

5.3.6 Noisy transmission amplitudes

In experiment the pulse shapes te(t) and tr(t) may contain noise. We model

this noise by replacing the designed pulse shapes te(t) and tr(t) with “actual”

shapes as

ta
j(t) = tj(t)[1 + a ξj(t)], j = e, r, (5.40)

where a corresponds to the dimensionless noise amplitude and ξe(t) and ξr(t) are

mutually uncorrelated random processes. We generate each ξ(t) numerically in the

following way. First, we choose a time step dt and generate ξ(t) at discrete time

moments t = n dt (with integer n) as Gaussian-distributed random numbers with

zero mean and unit standard deviation. After that we create a smooth function

ξ(t) passing through these points by polynomial interpolation. Since the noise

contribution in Eq. (5.40) scales with the transmission amplitude tj, we call it a

multiplicative noise. Besides that, we also use a model of an additive noise defined

as

ta
j(t) = tj(t) + a tj,max ξj(t), j = e, r, (5.41)

where the relative amplitude a is now compared with the maximum value tj,max,

while each ξ(t) is generated in the same way. Note that for sufficiently small dt
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Figure 5.8: Solid lines: inefficiency 1− η averaged over 100 random noise realiza-
tions, as a function of the dimensionless noise amplitude a, for the multiplicative
noise (red lines, bottom), Eq. (5.40), and the additive noise (blue lines, top), Eq.
(5.41); both with ξ2 = 0.78. The error bars show the standard deviation for some
values of a. The results are shown for ηd = 0.99 and 0.999. In the simulation
we used the time step dt = 1 ns and parameters of the procedure in Fig. 5.2
(τ = 33.3 ns). Black dotted lines (practically coinciding with the solid lines) are
calculated by replacing the noise with the effective increase of the leakage rates
κe(r) (see text).

the noise ξ(t) is practically white at low frequency; its variance ξ2 does not depend

on dt, and therefore the low frequency spectral density is proportional to dt (the

effective cutoff frequency scales as dt−1). Also note that the variance ξ2 somewhat

depends on the method of interpolation used to generate ξ(t). For the default

interpolation method in Mathematica, which we used (polynomial interpolation

of order three), ξ2 ≈ 0.78.

The numerical results for the transfer inefficiency 1−η in the presence of noise

are shown in Fig. 5.8 as a function of the dimensionless amplitude a. We used

the time step dt = 1 ns and design efficiencies ηd = 0.99 and ηd = 0.999. The
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results are averaged over 100 random realizations; we show the average values by

the solid lines and also show the standard deviations at some values of a. Red

lines correspond to the multiplicative noise, while blue lines correspond to the

additive noise. As expected, the additive noise leads to larger inefficiency than

the multiplicative noise with the same amplitude, because of larger noise at the

non-constant part of the pulse shape.

It is somewhat surprising that, as we checked numerically, the average results

shown in Fig. 5.8 by the solid lines practically do not depend on the choice of

the time step dt, as long as dt � τe(r) (even though in our simulations dt affects

the noise spectral density). The error bars, however, scale with dt as
√
dt. This

behavior can be understood in the following way. In the evolution equations

(5.1)–(5.3), the noise in te(t) and tr(t) affects the leakage rates κe ∝ |te|2 and

κr ∝ |tr|2 of the two resonators, and also affects the transfer term
√
κeκrA ∝

|tetr|. On average the transfer term does not change (because the noises of te(t)

and tr(t) are uncorrelated); however, the average values of |te|2 and |tr|2 change

as 〈|ta
e(r)|2〉 = |te(r)|2(1 + a2 ξ2) for the model of Eq. (5.40) and as 〈|ta

e(r)|2〉 =

|te(r)|2 + a2 |te(r),max|2 ξ2 for the model of Eq. (5.41). Therefore, on average we

expect dependence on a2 ξ2 (a second-order effect), but no dependence on dt, as

long as it is sufficiently small. In contrast, the error bars in Fig. 5.8 should depend

on dt because the transfer term
√
κeκrA fluctuates linearly in ξ. Since the low-

frequency spectral density of ξ(t) scales as dt, the typical fluctuation should scale

as
√
dt, thus explaining such dependence for the error bars in Fig. 5.8. Simply

speaking, for a wide-bandwith noise the average value of 1 − η depends on the
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overall r.m.s. value of the noise, while the fluctuations of 1 − η (from run to

run) depend on the spectral density of the noise at relatively low frequencies

(. τ−1). Note that the noise can increase or decrease the inefficiency compared to

its average value; however, it always increases the inefficiency in comparison with

the case without noise (as we see from Fig. 5.8, even if we increase dt from 1 ns to

about the buildup/leakage time of 33.3 ns, the error bars, increased by the factor

√
33.3, are still significantly less than the increase of inefficiency compared with

the design value).

We have checked this explanation of the noise effect on the average inefficiency

by replacing the fluctuating evolution equations (5.1)–(5.3) with non-fluctuating

equations, in which the transfer term
√
κeκrA does not change, while the leakage

rates κe and κr are multiplied either by 1 + a2 ξ2 (for multiplicative noise) or by

1 + a2 ξ2(te(r),max/te(r))
2 for the additive noise. The results are shown in Fig. 5.8

by the dotted lines; we see that they almost coincide with the solid lines, thus

confirming our explanation. We have also used several interpolation methods,

which give somewhat different ξ2, and checked that the direct simulation with

fluctuations and use of the non-fluctuating equations still give the same results.

As can be seen from Fig. 5.8, the average inefficiency depends approximately

quadratically on the noise amplitude a for both additive and multiplicative noise.

The additional inefficiency −δη can be fitted numerically as

− δη ≈ cna
2 ξ2, (5.42)
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where cn ≈ 2 for the multiplicative noise and cn ≈ 2 ln 1
1−ηd

for the additive noise.

Note that for the additive noise cn increases with decreasing design inefficiency

1 − ηd, so the blue lines in Fig. 5.8 intersect. This is because a smaller 1 − ηd

requires a longer procedure duration tf , causing more loss due to additional leakage

of the resonators caused by fluctuating te(r).

The value of cn for the additive noise can be derived analytically in the following

way. As discussed above, the noise essentially increases the resonator leakages,

κa
e(r)(t) = κe(r)(t) +a2 ξ2/τ , without increasing the transferred field; therefore, it is

equivalent to the effect of energy relaxation with T1 = τ/(a2 ξ2). Consequently (see

below), the efficiency decreases as η = ηd exp(−tf/T1) = ηd exp(−2a2 ξ2 ln 1
1−ηd

)

[see Eq. (5.18) for tf ], and the linear expansion of the exponent in this formula

reproduces Eq. (5.42) with cn = 2 ln 1
1−ηd

.

The value of cn for the multiplicative noise can be derived in a somewhat

similar way. Now κa
e(t) = κe(t)(1 + a2 ξ2), so the additional leakage of the emit-

ting resonator consumes the fraction a2 ξ2 of the transmitted energy. Using the

time-reversal picture, we see that an analogous increase of the receiving resonator

leakage, κa
r (t) = κr(t)(1+a2 ξ2), emits (back-reflects) into the transmission line the

fraction a2 ξ2 of the final energy |B(tf)|2. Combining these two losses, we obtain

η = ηd(1− 2a2 ξ2), which for ηd ≈ 1 reproduces Eq. (5.42) with cn = 2.

Overall, the efficiency decrease due to the multiplicative noise is not strong;

for example, to keep −δη < 0.01 we need the relative r.m.s. fluctuations of te(r) to

be less than 7%. The (additive) fixed-amplitude fluctuations of te(r) can be more

problematic, because the inability to keep te(r) near zero at the initial or final stage
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of the procedure leads to loss during most of the (relatively long) procedure. For

example, for ηd = 0.99 and −δη < 0.01, we need the r.m.s. fluctuations of te(r) to

be less than 3% of te(r),max.

5.3.7 Effect of dissipation

For completeness let us discuss here the effect of dissipation by assuming im-

perfect transfer through the transmission line, ηtl 6= 1, and finite energy relaxation

times T1,e and T1,r in the evolution equations (5.1)–(5.3), while the pulse shapes

te(t) and tr(t) are assumed to be ideal.

The effect of imperfect ηtl is easy to analyze, since the transmitted (classical)

field is simply multiplied by
√
ηtl. Therefore, the transfer procedure efficiency

is simply multiplied by ηtl, so that η = ηtlηd. (Recall that we neglect multiple

reflections.)

The effect of energy relaxation in the resonators is also very simple if T1,r =

T1,e = T1. Then the (classical) field decays equally everywhere, and therefore,

after the procedure duration tf , the energy acquires the factor exp(−tf/T1), so that

η = ηd exp(−tf/T1). The analysis of the case when T1,r 6= T1,e is not so obvious.

We have analyzed this case numerically and found that the two resonators bring

the factors exp(−tf/2T1,e) and exp(−tf/2T1,r), respectively.

Combining the effects of dissipation in the resonators and transmission line,

and assuming everything else is ideal, we obtain

η = ηdηtl exp(−tf/2T1,e) exp(−tf/2T1,r). (5.43)
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5.4 Multiple reflections

So far we have not considered multiple reflections of the field that is back-

reflected from the receiving end, by assuming either a very long transmission line

or the presence of a circulator [see Fig. 5.1(b)]. If there is no circulator and

the transmission line is not very long (as for the state transfer between two on-

chip superconducting resonators), then the back-reflected field bounces back and

forth between the couplers and thus affects the efficiency of the state transfer.

To describe these multiple reflections, we modify the field equations (5.1)–(5.3)

by including the back-propagating field F (t) into the dynamics, for simplicity

assuming in this section ∆ωr = ∆ωe = 0, ηtl = 1, and T−1
1,e(r) = 0:

Ġ(t) = −κe

2
G(t) +

te

|te|
|re|
rin

e

√
κe e

iϕF (t− td), (5.44)

Ḃ(t) = −κr

2
B(t) +

tr

|tr|
√
κrA(t), (5.45)

A(t) =
te

|te|
√
κeG(t) +

rout
e

|re|
eiϕF (t− td). (5.46)

Here td is the round-trip delay time (td = 2ltl/v, where ltl is the transmission

line length and v is the effective speed of light), ϕ = ωe(r)td is the corresponding

phase acquired in the round trip, F (t) is given by Eq. (5.14), rout
e is the reflection

amplitude of the emitting resonator coupler from the transmission line side, and

rin
e is the same from the resonator side. Note that we use shifted clocks, so the

propagation is formally infinitely fast in the forward direction and has velocity

v/2 in the reverse direction; then the round-trip delay td and phase shift ϕ are

accumulated in the back-propagation only; the field F (t) is defined at the receiving
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resonator, and it comes to the emitting resonator as eiϕF (t− td). Also note that

even though ϕ is proportional to td, it is better to treat ϕ as an independent

parameter, because the time-delay effects are determined by the ratio td/τ , which

has a very different scale from ϕ = (td/τ)ωe(r)τ , since ωe(r)τ ∼ 103.

There is some asymmetry between Eqs. (5.44) and (5.45) and also between

Eqs. (5.46) and (5.13), which involves factors rin
e(r). This is because in order to

keep a simple form of the evolution equations (5.1)–(5.3), we essentially defined G

as the field propagating towards the transmission line, while B propagates away

from the transmission line. In this section we still assume that the phases of the

transmission and reflection amplitudes (te(r) and r
in(out)
e(r) ) do not change with time.

For the tunable couplers of Refs. [106, 107] (see Appendix B) the transmission

amplitudes te(r) are mostly imaginary, the reflection amplitudes rin
e(r) are close to

−1, and rout
e(r) are somewhat close to −1 (recall that t2

e/r
in
e rout

e and t2
r/r

in
r rout

r must

be real and negative from unitarity). In simulations it is easier to redefine the

phases of the fields in the resonators and transmission line, so that te and tr are

treated as real and positive numbers, rin
e and rin

r are also real and positive (close

to 1), while rout
e and rout

r are real and negative (close to −1). In this case Eqs.

(5.14) and (5.46) become F =
√
κrB − A and A(t) =

√
κe G(t)− e−iϕF (t− td).

As an example of the dynamics with multiple reflections, in Fig. 5.9 we show

the absolute value of the reflected field F (t − td) (at the emitting resonator) for

the procedure shown in Fig. 5.2 (ηd = 0.999, tf = 460 ns) for the round-trip

delays td = tf/2 (blue dashed curve) and td = tf/5 (red solid curve), assuming

ϕ = π/8. The kinks represent the successive reflections of the field emitted at
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Figure 5.9: Illustration of the back-reflected field |F (t− td)| reaching the emitting
resonator at time t, for the round-trip delay time td = tf/2 (blue dashed curve)
and td = tf/5 (red solid curve), assuming the round-trip phase shift ϕ = π/8. The
kinks represent multiple reflections of the field emitted at t = 0. We assumed
parameters of Fig. 5.2 (ηd = 0.999, τ = 33.3 ns, tf = 460 ns).

t = 0. Note that depending on the phase shift ϕ, the resulting contribution of

the reflected field into B(tf) can either increase or decrease |B(tf)|2, thus either

decreasing or increasing the transfer efficiency η (recall that the efficiency η is

defined disregarding the resulting phase ϕf , because it can be easily corrected in

an experiment). The effect of multiple reflections should vanish if td ≥ tf , i.e.

when the transmission line is sufficiently long.

Figure 5.10 shows the numerically calculated inefficiency 1−η of the state trans-

fer as a function of the round-trip delay time td, normalized by the buildup/leakage

time τe = τr = τ . Different curves represent different values of the phase ϕ. The

design efficiency is ηd = 0.999. (In the simulations we also used ω0/2π = 6 GHz,

and te,max = tr,max = 0.05; however, the presented results do not depend on these

120



parameters). We see that the inefficiency shows an oscillatory behavior as a func-

tion of the delay time, but it is always within the range 0 ≤ 1 − η ≤ 2(1 − ηd).

This important fact was proved in Ref. [119] in the following way. In the case

with the circulator, the losses are 1 − ηd = lcirc
G + lcirc

F , where lcirc
G = |Gcirc(tf)|2 is

due to the untransmitted field [we assume here G(0) = 1] and lcirc
F is the dimen-

sionless energy carried away by the reflected field F circ(t). In the case without

circulator, we can simply add the multiple reflections of the field F circ(t) to the

evolution with the circulator. At the final time tf the field F circ(t) will linearly

contribute to B(tf), G(tf), and the field within the transmission line [F (t) for

tf − td ≤ t ≤ tf ]. In the worst-case scenario the whole energy lcirc
F is added in-

phase to the untransmitted field Gcirc(tf), resulting in 1 − η = (
√
lcirc
G +

√
lcirc
F )2.

Since (
√
lcirc
G +

√
lcirc
F )2 ≤ 2(lcirc

G + lcirc
F ) always, we obtain the upper bound for the

inefficiency, 1− η ≤ 2(1− ηd). The lower bound 1− η ≥ 0 is obvious. Figure 5.10

shows that both bounds can be reached (at least approximately) with multiple

reflections at certain values of td/τ and ϕ (this fact is not obvious and is even

somewhat surprising).

The dependence η(td) shown in Fig. 5.10 is quite complicated and depends on

the phase ϕ. We show only phases 0 ≤ ϕ ≤ π, while for π ≤ ϕ ≤ 2π the results

can be obtained from the symmetry η(td, ϕ) = η(td, 2π − ϕ). As we see from Fig.

5.10, the oscillations of η(td) generally decrease in amplitude when td/τ → 0, so

that we expect a saturation of the dependence at td/τ → 0. The exception is the

case ϕ = 0, when the oscillation amplitude does not significantly decrease at small

td/τ (numerical simulations become increasingly more difficult at smaller td/τ).
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This can be understood as due to the fact that for ϕ = 0 the transmission line is

a resonator, which is resonant with the frequency ωe = ωr of the resonators.

Note that for an experiment with on-chip state transfer between superconduct-

ing resonators, the round-trip delay time td is comparable to ω−1
e(r) and therefore

much smaller than τ , td/τ ∼ 10−2. This regime is outside of the range accessible

to our direct simulation method, which works well only when td/τ & 10−1. Never-

theless, we expect that the results presented in Fig. 5.10(b) can be approximately

used in this case as well, because of the apparent saturation of η(td) at td → 0,

except when the phase ϕ is close to zero.

The most important result of this section is that multiple reflections cannot

increase the inefficiency 1− η by more than twice compared with the design inef-

ficiency 1− ηd (as obtained analytically and confirmed numerically).

5.5 Mismatch of the resonator frequencies

The main idea of the state transfer protocol analyzed here is to use destruc-

tive interference to suppress the back-reflection into the transmission line, thus

providing a high-efficiency transfer. This is why it is crucial that the emitting

and receiving resonators have almost the same frequency. Therefore, a mismatch

between the two resonator frequencies should strongly decrease the transfer effi-

ciency. In this section we analyze the effect of the frequency mismatch using two

models. First, we assume a constant-in-time mismatch. Second, we consider the

time-dependent detuning of the resonator frequencies due to the changing trans-

122



mission amplitudes of the couplers, which lead to a changing complex phase of

the reflection amplitudes (see Appendix B) and thus to the resonator frequency

change.

5.5.1 Constant in time frequency mismatch

We first consider the case when the two resonator frequencies are slightly dif-

ferent, ∆ω ≡ ωe − ωr 6= 0, and they do not change in time. Everything else is

assumed to be ideal. It is easy to understand the effect of detuning by using

the evolution equations (5.1)–(5.3) and choosing ω0 = ωr, so that ∆ωe = ∆ω

and ∆ωr = 0. Then, compared with the case ∆ω = 0, the emitting resonator

field G(t) acquires the phase factor e−i∆ωt; the same phase factor is acquired by

the transmitted field A(t) in Eq. (5.2), and this changing phase destroys the per-

fect phase synchronization between A(t) and B(t) that is needed to cancel the

back-reflection.

The numerically calculated inefficiency 1−η is shown in Fig. 5.11 as a function

of the detuning ∆ω, normalized by the inverse buildup/leakage time τ−1 (we

assumed τe = τr = τ). We show the lines for the design inefficiencies ηd = 0.9,

0.99, and 0.999. The results do not depend on ωr and |te(r),max|. However, to

express ∆ω/2π in MHz on the upper horizontal axis, we use a particular example

of ωr/2π = 6 GHz and |te(r),max| = 0.05, for which τ = 33.3 ns (as in Fig. 5.2).

For small |∆ω τ | and ηd ≈ 1, the additional inefficiency due to frequency

mismatch can be fitted as
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− δη ≈ cfm (∆ω τ)2, cfm ≈ 2. (5.47)

For smaller ηd the coefficient cfm decreases, so that cfm ≈ 1.94 for ηd = 0.999,

cfm ≈ 1.68 for ηd = 0.99, and cfm ≈ 0.81 for ηd = 0.9.

It is interesting that the value cfm = 2 for ηd ≈ 1 exactly coincides with the

estimate derived in Ref. [119], which we rederive here. Comparing the case ∆ω 6= 0

with the ideal case ∆ω = 0, we can think that A(t) acquires the extra phase factor

e−i∆ω(t−tm), where tm is the mid-time of the procedure (see Fig. 5.2); the overall

factor ei∆ωtm is not important, affecting only the final phase ϕf . Then we can

think that at t = tm we still have an almost perfect cancellation of the back-

reflection, F (tm) ≈ 0; however, at t 6= tm the extra phase causes the back-reflected

wave |F (t)| ≈ |A(t)(e−i∆ω(t−tm) − 1)|. Now using |A(t)| = |A(tm)|e−|t−tm|/2τ and

assuming |∆ω|τ � 1 (so that we can expand the exponent in the relevant time

range), we find |F (t)| ≈ |A(tm)| e−|t−tm|/2τ |∆ω(t−tm)|. Finally integrating the loss,∫
|F (t)|2dt, and normalizing it by the transferred “energy”

∫
|A(tm)|2e−|t−tm|/τdt,

we obtain the added inefficiency −δη ≈ 2 (∆ω τ)2.

Using this derivation, it is easy to understand why the coefficient cfm in Eq.

(5.47) decreases with decreasing ηd. This occurs because the integration of |F (t)|2

is limited by the range 0 < t < tf = −2τ ln(1 − ηd), which becomes shorter for

smaller ηd. Thus we can estimate cfm as cfm ≈
∫ − ln(1−ηd)

0
x2e−xdx = 2 − (1 −

ηd)[2− 2 ln(1− ηd) + ln2(1− ηd)], which fits the numerical results very well.

As expected, even small detuning significantly decreases the transfer efficiency.

For example, to keep the added inefficiency under 1%, −δη < 0.01, we need the
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detuning to be less than 0.4 MHz in the above example (τ = 33.3 ns), which is

not very easy to achieve in an experiment.

5.5.2 Time-dependent detuning due to changing coupling

In an actual experimental coupler, the parameters are interrelated, and a

change of the coupling strength by varying |t| may lead to a change of other pa-

rameters. In particular, for the coupler realized experimentally in Refs. [106, 107],

the change of |t| causes a small change of the complex phases of the transmis-

sion and reflection amplitudes t and rin(out). The phase change of rin (from the

resonator side) causes a change of the resonator frequency. Thus, changing the

coupling causes the frequency detuning, as was observed experimentally [106].

Since the frequency mismatch between the two resonators strongly decreases the

efficiency of the state transfer, this is a serious problem for the protocol discussed

in this chapter. Here we analyze this effect quantitatively and discuss with which

accuracy the detuning should be compensated (e.g. by another tunable element)

to preserve the high-efficiency transfer.

Physically, the resonator frequency changes because the varying coupling changes

the boundary condition at the end of the coplanar waveguide resonator (see Fig.

B.1 in Appendix B). Note that a somewhat similar frequency change due to chang-

ing coupling with a transmission line was studied in Ref. [149].

As discussed in Appendix B, if we use the tunable couplers of Ref. [106, 107],

then the transmission and refection amplitudes tj and r
in(out)
j for the two resonators
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(j = e, r) are given by the formulas

tj = −i2ωjMj

1 + bj

√
Rj

Rtl

(
1

Rj

+
−ibj
ωjLe,j

)
1

1− iωjL2,j/Rtl

, (5.48)

rin
j = −1− bj

1 + bj
, rout

j = −(rin
j )∗

tj
t∗j
, (5.49)

where

bj =
iωL1,j/Rj

L1,j

Le,j
+

[
1−

iωjM
2
j

RtlL1,j(1 + iωjL2,j/Rtl)

]−1 , (5.50)

Mj is the effective mutual inductance in jth coupler (the main tunable param-

eter controlled by magnetic flux in the SQUID loop), Rj and Rtl are the wave

impedances of the resonators and the transmission line, ωj are the resonator fre-

quencies, and L1,j, L2,j, and Le,j are the effective inductances used to describe the

coupler (see details in Appendix B). Note that Eqs. (5.48) and (5.50) are slightly

different from the equations in the Supplementary Information of Ref. [106] and

the derivation in Appendix B: the difference is that the imaginary unit i is replaced

with −i to conform with the chosen rotating frame definition e−iωt in Eqs. (5.1)

and (5.2).

For the typical experimental parameters, |bj| � 1, so that rin
j ≈ −1, while tj

is mostly imaginary. Note that ωe ≈ ωr ≈ ω0, so in Eqs. (5.48) and (5.50) we can

replace ωj with ω0. Also note that there is no coupling, tj = 0, when Mj = 0, and

the coupling changes sign when Mj crosses zero.

Tuning Mj, we control |tj|. However, the complex phase of tj slightly changes

with changing Mj because bj in Eq. (5.48) depends on Mj and also L1,j and L2,j
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depend on Mj – see Appendix B. Changing the phase of tj leads to the phase

mismatch in the state transfer protocol, degrading its efficiency. However, this is

a relatively minor effect, while a much more serious effect is the dependence of the

complex phase of rin
j on Mj via its dependence on bj in Eq. (5.49), leading to the

resonator frequency change.

For the rotating frame e−iωt and quarter-wavelength resonator (which we as-

sume here) the change δ(arg rin
j ) of the phase of rin

j changes the resonator frequency

by

δωj ≈ −(ω0/π) δ(arg rin
j ), (5.51)

where we used ωj ≈ ω0. Assuming for simplicity that the resonators are exactly

on resonance (ωe = ωr = ω0) when there is no coupling (Me = Mr = 0), we can

write the variable detunings to be used in the evolution equations (5.1) and (5.2)

as

∆ωj = ωj − ω0 = −ω0

π

[
arg rin

j (Mj)− arg rin
j (0)

]
, (5.52)

where rin
j (Mj) describes dependence on Mj. Since |tj| also depends on Mj (linearly

to first approximation), we have an implicit dependence ∆ωj(|tj|), which is linear

for small |tj| [see Eq. (B.17) in Appendix B] and becomes nonlinear for larger |tj|

.

This dependence ∆ωe(r)(|te(r)|) is shown in Fig. 5.12 by the solid line for the

parameters of the coupler similar (though not equal) to the parameters of the

experimental coupler [106]: Re(r) = 80 Ω, Rtl = 50 Ω, ω0/2π = 6 GHz, L1,j −Mj =

L2,j − Mj = 620 pH, and Le,j = 180 pH (see Appendix B). In particular, Fig.
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5.12 shows that |te(r)| = 0.05 corresponds to the frequency change by −18.6 MHz,

which is a very big change compared to what is tolerable for a high-efficiency state

transfer (see Fig. 5.11). The same detuning normalized by κe(r) = |te(r)|2ωe(r)/π is

shown in Fig. 5.13 by the dashed line.

The value of Me(r) needed to produce a given |te(r)| is shown in Fig. 5.12 by

the dashed line. It is interesting that the dependence M(|t|) is significantly more

nonlinear than the dependence ∆ω(|t|), indicating that the nonlinearities of |t(M)|

and ∆ω(M) in Eqs. (5.48) and (5.52) partially cancel each other (see Appendix

B).

The solid line in Fig. 5.13 shows dependence of the phase arg[te(r)] on the

absolute value |te(r)|. Even though the phase change looks significant, it produces

a relatively minor decrease in the protocol inefficiency (as we will see later) because

the loss is quadratic in the phase mismatch.

We numerically simulate the state transfer protocol, accounting for the fre-

quency change of the resonators and phase change of te(r) in the following way.

First, we use the ideal pulse shapes |te(t)| and |tr(t)| from Eqs. (5.22)–(5.25),

assuming a symmetric setup (τe = τr). Then we calculate the corresponding de-

pendences Me(t) and Mr(t) using Eq. (5.48) and find te(t) and tr(t) (now with

time-dependent phases) using the same Eq. (5.48), and also find the detunings

∆ωe(t) and ∆ωr(t) using Eq. (5.52). After that we solve the evolution equations

(5.1)–(5.3), neglecting multiple reflections. Note that we convert |tj(t)| into Mj(t)

by first numerically calculating |tj(Mj)| from Eq. (5.48), then fitting the inverse
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dependence Mj(|tj|) with a polynomial of 40th order, and then using this polyno-

mial for the conversion.

Figure 5.14 shows the numerically calculated inefficiency 1− η of the transfer

protocol as a function of the maximum transmission amplitude |te,max| = |tr,max|

for the above example of the coupler parameters and design efficiencies ηd = 0.99

and 0.999. Besides showing the results for the usual protocol (red lines), we

also show the results for the cases when the frequency detuning [Eq. (5.52)] is

reduced by a factor of 10 (90% compensation, blue lines), 20 (95% compensation,

green lines), 100 (99% compensation, magenta lines) and fully eliminated (100%

compensation, black lines). Such compensation can be done experimentally by

using another circuit element, affecting the resonator frequency, e.g., tuning the

phase of the reflection amplitude at the other end of the resonator by a SQUID-

controlled inductance.

We see that without compensation of the frequency detuning the state transfer

protocol cannot provide a high efficiency: η = 0.33 for |tmax| = 0.05 and η = 0.58

for |tmax| = 0.1. However, with the detuning compensation the high efficiency

may be restored. As we see from Fig. 5.14, the state transfer efficiency above 99%

requires the detuning compensation at least within 90%–95% range (depending

on |tmax|). Note that even with 100% compensation, the efficiency is less than in

the ideal case. This is because of the changing phases of te(t) and tr(t). However,

this effect is minor in comparison with the effect of detuning.
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It is interesting that the curves in Fig. 5.14 decrease with increasing |tmax| when

|tmax| is not too large. This may seem counterintuitive, since larger |t| leads to

larger detuning, and so we would naively expect larger inefficiency at larger |tmax|.

The numerical result is opposite because the duration of the procedure decreases,

scaling as τ ∝ |tmax|−2. Therefore if the largest detuning scales linearly, |∆ωmax| ∝

|tmax|, then the figure of merit |∆ωmaxτ | scales as |tmax|−1, thus explaining the

decreasing part of the curves in Fig. 5.14. The upper horizontal axis in Fig. 5.14

shows |∆ωmaxτ |, which indeed decreases with increasing |tmax| (see also the dashed

line in Fig. 5.13).

More quantitatively, let us assume a linear detuning, ∆ωe(r) = k |te(r)|, where

the coefficient k is given by Eq. (B.17) multiplied by the uncompensated frac-

tion of the detuning. Assuming a small deviation from the ideal protocol, the

transmitted wave is |A(t)| = |A(tm)| e−|∆t|/2τ , where ∆t = t − tm. At the mid-

time tm the resonator frequencies coincide, but at t > tm the receiving res-

onator frequency changes so that ∆ω = ωe − ωr = k(|tr(tm)| − |tr(t)|). Us-

ing Eq. (5.24) we find ∆ω = k |tmax| [1 − (2e∆t/τ − 1)−1/2]. The accumulated

phase mismatch is then φ(t) =
∫ t
tm

∆ω(t′) dt′, which produces the reflected wave

|F | ≈ |Aφ|, assuming small φ. The inefficiency due to the reflected wave loss is

then 1 − η ≈
∫∞
tm
|F (t)|2 dt/

∫∞
tm
|A(t)|2 dt (note that due to symmetry the same

relative loss is before and after tm). Therefore 1 − η ≈ τ−1k2|tmax|2
∫∞

0
{
∫ x

0
[1 −

(2e∆t/τ − 1)−1/2] d∆t}2e−x/τdx, and calculating the integral numerically we ob-

tain 1 − η = 0.63 k2τ 2|tmax|2 [the numerical value of the integral is somewhat
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smaller than 0.63 if we limit the outer integration by −τ ln(1− ηd)]. Finally using

τ = π/ω0|tmax|2, we obtain 1− η ≈ 0.6 (kπ/ω0|tmax|)2.

Numerical results in Fig. 5.14 reproduce the scaling 1 − η ∝ (k/|tmax|)2 for

the significant part of the curves for ηd = 0.999 (when plotted in log-log scale);

however, the prefactor in the numerical fitting is somewhat different from what we

obtained above: 1 − η ≈ 0.4 (kπ/ω0|tmax|)2. Note that at sufficiently large |tmax|

the green and red curves in Fig. 5.14 reach a minimum and then start to increase.

This occurs because the inefficiency due to changing phase of te(r) increases with

increasing |tmax|, in contrast to the effect of frequency detuning.

Actually, our analysis of the transfer process in the case of complete com-

pensation of detuning is not fully accurate. The reason is that in the evolution

equations (5.1)–(5.3) we took into account the frequency change due to changing

rin
e(r), but we did not take into account another (very small) effect due to chang-

ing rin
e(r). It is easy to understand the origin of this effect in the following way.

There is a phase difference arg(rin
r ) between the field B propagating away from

the transmission line and the similar field propagating towards the transmission

line [see Eq. (5.13) and discussion below it]. Changing arg(rin
r ) alters this phase

difference, thus affecting both fields and correspondingly leading to an extra term,

neglected in Eq. (5.2). Similarly, changing arg(rin
e ) leads to an extra term in Eq.

(5.1) for G. However, as can be seen from Fig. 5.12 and Eq. (5.51), the change of

arg(rin
e(r)) is less than 0.02 for |te(r)| varying between 0 and 0.1, which is much less

than the change of arg(te(r)) in Fig. 5.13. Therefore, the neglected effect is much

less than the effect due to changing arg(te(r)), which by itself is almost negligible,
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as seen in Fig. 5.14. Note that the compensation for changing phases can be done

experimentally in the same way as the compensation for the detuning, so that in

principle the efficiency decrease analyzed in this section can be fully avoided.

Overall, we see that the detuning of the resonator frequencies due to a changing

coupling is a serious problem for the state transfer protocol. A high-efficiency state

transfer is possible only with additional experimental effort to compensate for this

detuning. The required compensation accuracy is crudely within 90%–95% range.

The use of a shorter protocol (by using a stronger coupling) helps to increase the

efficiency. Note that the frequency compensation is done routinely for the tunable

coupler of Refs. [124, 125]; similarly, the phase compensation can be naturally

realized in the tunable coupler of Refs. [138, 139].

5.6 Summary

In this chapter, we have analyzed the robustness of the quantum state transfer

protocol of Ref. [119] for the transfer between two superconducting resonators

via a transmission line. The protocol is based on destructive interference, which

cancels the back-reflection of the field into the transmission line at the receiving

end (we believe this explanation is more natural than the terminology of time

reversal, introduced in Ref. [108]). This is achieved by using tunable couplers

for both resonators and properly designed time-dependences (pulse shapes) of the

transmission amplitudes te(t) and tr(t) for these couplers. Nearly-perfect transfer
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efficiency η can be achieved in the ideal case. We have focused on analyzing

additional inefficiency due to deviations from the ideal case.

The ideal pulse shapes of the transmission amplitudes [Eqs. (5.22)–(5.25)] de-

pend on several parameters; we have studied additional inefficiency due to de-

viations of these parameters from their design values. Below, we summarize

our results by presenting the tolerable deviations for a fixed additional ineffi-

ciency of −δη = 0.01 (because of quadratic scaling, the tolerable inaccuracies

for −δη = 0.001 are about 3.2 times smaller). For the relative deviations of the

maximum transmission amplitudes |te,max| and |tr,max|, the tolerable ranges are

±10% if only one of them is changing and ±5% if both of them are changing

simultaneously [see Fig. 5.3 and Eq. (5.34)]. For the relative deviations of the

time scale parameters τe and τr describing the exponential increase/decrease of

the transmitted field, the tolerable ranges are ±17% if only one of them is chang-

ing and ±11% if both of them are changing simultaneously [see Fig. 5.4 and Eq.

(5.35)]. For the mismatch between the mid-times tm of the procedure in the two

couplers, the tolerable range is ±0.2τ ' ±6 ns [see Fig. 5.5 and Eq. (5.36)]. For a

nonlinear distortion described by warping parameters αe and αr [see Eq. (5.37)],

the tolerable parameter range is ±0.2 if the distortion affects only one coupler and

±0.13 if the distortion affects both couplers. Our results show that smoothing of

the pulse shapes by a Gaussian filter practically does not affect the inefficiency;

even filtering with the width σ ' τ ' 30 ns is still tolerable. When the pulse

shapes are distorted by an additional (relatively high-frequency) noise, the tolera-
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ble range for the standard deviation of |te(r)| is 7% of the instantaneous value and

3% of the maximum value [see Fig. 5.8 and Eq. (5.42)]. Overall, we see that the

state transfer procedure is surprisingly robust to various distortions of the pulse

shapes.

We have also analyzed the effect of multiple reflections and found that it can

both increase or decrease the transfer efficiency. However, even in the worst case,

this effect cannot increase the inefficiency 1 − η by more than a factor of 2 (see

Fig. 5.10). The energy dissipation in the transmission line or in the resonators

can be a serious problem for the state transfer protocol. The description of the

effect is simple [see Eq. (5.43)]; for a high-efficiency transfer we can tolerate only

a weak dissipation 1− ηtl in the transmission line, and we also need the procedure

duration tf to be much shorter than the energy relaxation time T1. In particular,

for −δη = 0.01 we need ηtl > 0.99 and T1 > 100 tf .

The major problem in realizing the state transfer protocol is the frequency

mismatch between the two resonators, since the destructive interference is very

sensitive to the frequency mismatch. For a fixed detuning, the tolerable frequency

mismatch (ωe−ωr)/2π for −δη = 0.01 is only ±0.01/τ ' ±0.4 MHz [see Fig. 5.11

and Eq. (5.47)]; the tolerable range is a factor of
√

10 smaller for −δη = 0.001. An

even more serious problem is the change of the resonator frequencies caused by

changing couplings, which for the coupler of Ref. [106] is on the order of 20 MHz

[see Fig. 5.12 and Eq. (B.17) in Appendix B]. Without active compensation for

this frequency change, a high-efficiency state transfer is impossible. Our numerical

results show (see Fig. 5.14) that to realize efficiency η = 0.99, the accuracy of
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the compensation should be at least 90% (i.e., the frequency change should be

decreased by an order of magnitude). It is somewhat counterintuitive that a

better efficiency can be obtained by using a higher maximum coupling, which

increases the frequency mismatch but decreases duration of the procedure (see Fig.

5.14). Another effect that decreases the efficiency is the change of the phase of

the transmission amplitude with changing coupling. However, this effect produces

a relatively minor decrease of the efficiency (see Fig. 5.14).

In most of the chapter we have considered a classical state transfer, character-

ized by the (energy) efficiency η. However, all the results have direct relation to

the transfer of a quantum state (see Appendix A). In particular, for a qubit state

transfer, the quantum process fidelity Fχ is Fχ ≈ 1− (1− η)/2 for η ≈ 1 [see Eq.

(5.12)].

The quantum state transfer protocol analyzed here has already been partially

realized experimentally. In particular, the realization of the proper (exponentially

increasing) waveform for the quantum signal emitted from a qubit has been demon-

strated in Ref. [125] (a reliable frequency compensation has also been demon-

strated in that paper). The capture of such a waveform with 99.4% efficiency has

been demonstrated in Ref. [107]. We hope that the full protocol that combines

these two parts will be realized in the near future.
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Figure 5.10: (a) Dependence of the inefficiency 1 − η on the normalized delay
td/τ due to the round trip along the transmission line, for the design efficiency
ηd = 0.999 and several values of the phase shift ϕ accumulated in this round trip.
The kinks at td/τ = 13.8/n correspond to the integer number n of the round
trips within the procedure time tf . (b) The same as in (a) for a smaller range of
td/τ (the results for td/τ < 0.1 were not calculated). Notice that the inefficiency
accounting for multiple reflections does not exceed twice the design inefficiency,
1− η ≤ 2(1− ηd).
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Figure 5.11: Inefficiency 1 − η as a function of normalized detuning ∆ω τ (lower
horizontal axis) for three design efficiencies, ηd = 0.9, 0.99, and 0.999. The upper
horizontal axis shows the unnormalized detuning ∆ω/2π in MHz, using the values
ω/2π = 6 GHz and |te,max| = |tr,max| = 0.05, so that τ = 33.3 ns.

Figure 5.12: Red solid line: the resonator frequency detuning −∆ωe(r)/2π caused
by changing |te(r)| for a particular set of parameters of the coupler (see text). Blue
dashed line: the corresponding value of the coupler mutual inductance Me(r). The
arrows indicate the corresponding vertical axes.
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Figure 5.13: Solid line: the phase of the transmission amplitude, arg(te(r)),
as a function of its absolute value |te(r)| for a particular set of coupler pa-
rameters (see text). Dashed line: the normalized detuning −∆ωe(r)/κe(r) =
−π∆ωe(r)/ωe(r)|te(r)|2.
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Figure 5.14: Inefficiency 1 − η as a function of |te,max| = |tr,max| for the couplers
with parameters described in the text. The solid lines are for the design effi-
ciency ηd = 0.999, while the dashed lines are for ηd = 0.99. The red lines show
the results without compensation of the frequency detuning ∆ωe(r)(t) caused by
changing |te(r)(t)| and correspondingly changing arg(rin

e(t)). The blue lines assume

90% compensation of this detuning, 95% compensation for the green lines, 99%
compensation for the magenta lines, and full 100% compensation for the black
lines. For the black lines the extra inefficiency is caused only by changing phases
of te(r). The upper horizontal axis shows the product ∆ωmax τ , corresponding to
|tmax|.
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Chapter 6

Conclusion

In this thesis, we studied theoretically the transmon-resonator system that is

currently the most promising setup for superconducting qubits. We introduced

dressed coherent states to describe the state that results from, for instance, apply-

ing a microwave drive to the resonator. In addition, we considered the transmon

as a multi-level quantum system and analyzed the consequences of this model. On

the practical side, we proposed a new measurement scheme which has the advan-

tages of protecting the qubit from the Purcell effect, fast realization, and small

measurement error. We also analyzed the performance of a protocol for quantum

information transfer, which is a necessary feature of quantum networks.

In Chapter 1, we briefly outlined the field of quantum computing as a moti-

vation for the present work. In Chapter 2, we discussed some aspects of super-

conducting qubits: Josephson junctions, transmon qubits, the Jaynes-Cummings

model and dispersive readout of qubits in cQED setups, and the Purcell effect.
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In Chapter 3, we proposed a novel measurement technique that utilizes the

tunability of both the qubit frequency and the resonator coupling to the outgoing

transmission line in order to isolate and protect the qubit from the Purcell effect.

This fast and high-fidelity readout was accomplished by the controlled capture, dis-

persion, and release of microwave photons. We showed that, if the qubit frequency

tuning is sufficiently adiabatic, readout is possible even in the strongly nonlinear

dispersive regime. We also showed that the Jaynes-Cummings nonlinearity leads

to self-developing field squeezing, which results in a significant reduction of the

measurement error and may be useful as a tool to beat the standard quantum

limit.

In Chapter 4, we generalized the dressed coherent states employed in Chapter

3 (where the qubit was assumed to be a two-level system) to also include higher

energy levels of transmon qubits. Using these new dressed coherent states, we

found that applying a microwave drive to the system leads to a stray population

in the non-target qubit levels. We developed a qualitative and analytical under-

standing of such deviations and concluded that they were small and unnecessary

to account for in experiments at present.

In Chapter 5, we examined the state-of-the-art protocol for the transfer of

quantum states from one superconducting resonator to another along a transmis-

sion line. A number of parameter variations were considered to test the protocol

under nonideal conditions, and the resulting inefficiencies were analyzed. We

found that the protocol is surprisingly robust against all tested imperfections, ex-
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cept those involving frequency mismatch between the two resonators. A scheme

to compensate for one source of frequency mismatch was proposed; without this

compensation, any meaningful state transfer is impossible.

We hope that the novel ideas presented in this dissertation can advance the

field of quantum computing based on superconducting circuits towards its ultimate

goal: the realization of a quantum computer.
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Appendix A

Beam Splitter Approach to State

Transfer Setup

In this Appendix we discuss the quantum theory of state transfer using the

optical language of beam splitters. The starting point is Eq. (5.7), in which the

resulting classical field B(tf) has the contribution
√
η eiϕfG(0) from the trans-

ferred field G(0) and also contributions from other fields. This equation describes

a unitary transformation, which can be modeled as a result of adding the (infi-

nite number of) fields [B(0) and time-binned V (t)] by using a system of (infinite

number of) beam splitters. Then using linearity of the evolution, we can sim-

ply replace the classical fields with the corresponding annihilation operators for

quantum fields, thus developing the quantum theory of the state transfer.

In the case when all other fields in Eq. (5.7) except G(0) correspond to vacuum,

it is sufficient to consider one beam splitter because a linear combination of vacua

is still vacuum. This is why in this Appendix we mainly discuss one beam splitter
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Figure A.1: A beam splitter with input classical fields A and B transformed into
the output fields Ã and B̃, with the main transformation A → Ã characterized
by the amplitude

√
η and phase shift ϕf . In the quantum formulation the input

state |Ψin〉 is transformed into the output state |Ψout〉. In particular, in Sec. A.1
we consider the input state |Ψin〉 = |ψin〉|0〉, calculate |Ψout〉, and then reduce it to
the density matrix ρfin of the main output arm, by tracing over the other output
arm.

(characterized by the amplitude
√
η and phase ϕf in the main path), with the

initial state to be transferred at one arm and vacuum state at the other arm.

Note that notations in this Appendix are different from the notations in the main

text.

Let us start with revisiting the quantum theory of a beam splitter [143] (Fig.

A.1). The quantum theory follows the classical description of the beam splitter,

which is characterized by the following relations between the input classical fields
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A and B, and the output classical fields Ã and B̃:

Ã =
√
η eiϕ1A+

√
1− η eiϕ2B, (A.1)

B̃ =
√
η eiϕ3B −

√
1− η ei(ϕ1−ϕ2+ϕ3)A, (A.2)

where ϕ1 = ϕf and other phases are introduced to describe a general unitary

transformation (these phases can include phase shifts in all four arms). Exactly

the same relations also apply in the quantum case for the annihilation operators

ã and b̃ of the fields at the output arms and the annihilation operators a and b of

the fields at the input arms.

In general, we want to find an output quantum state |Ψout〉 for a given input

state |Ψin〉, which in principle can be an entangled state of the two input modes.

This can be done [143] by applying the following steps:

1. Express the input state |Ψin〉 in terms of the input creation operators a† and

b†, and vacuum.

2. Using Eqs. (A.1) and (A.2), express A and B via Ã and B̃. These are the

equations expressing a and b in terms of ã and b̃. Conjugate these equations

to express a† and b† in terms of ã† and b̃†.

3. Substitute the operators a† and b† used in the step 1 by their expressions in

terms of ã† and b̃† obtained in step 2. This substitution gives |Ψout〉.

Now let us apply this substitution method to find the resulting state in the re-

ceiving resonator when an arbitrary quantum state is transferred from the emitting

resonator.
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A.1 Transfer of an arbitrary quantum state

Let us assume that the initial state |ψin〉 in the emitting resonator is

|ψin〉 =
∑
n

αn|n〉 =
∑
n

αn(a†)n√
n!
|0〉,

∑
n

|αn|2 = 1, (A.3)

while all other fields involved in the transfer procedure are vacua (in particular,

this assumes zero temperature). Then the two-arm input state |Ψin〉 for the beam

splitter is the same, except the vacuum |0〉 in Eq. (A.3) is now understood as the

vacuum |0〉 for all possible modes.

The transfer procedure is characterized only by the efficiency η and the phase

ϕf = ϕ1, while other phases ϕ2 and ϕ3 in Eqs. (A.1) and (A.2) are undefined.

However, even though the resulting state |Ψout〉 will depend on ϕ2 and ϕ3, the

resulting density matrix ρfin, obtained from |Ψout〉 by tracing over the other output

arm, will not depend on ϕ2 and ϕ3. This is because arbitrary ϕ2 and ϕ3 can be

produced by placing phase shifters in the ancillary input and output arms (B-

arm and B̃-arm in Fig. A.1); shifting the phase of vacuum in the B-arm does

not produce any effect, while shifting the phase in the B̃-arm cannot affect ρfin

by causality. We have also checked independence of ρfin on ϕ2 and ϕ3 by explicit

calculations. Therefore, we can choose any values of ϕ2 and ϕ3. For convenience,

let us choose ϕ2 = π and ϕ3 = 0. Then using step 2 of the substitution method
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we obtain

a† =
√
η eiϕf ã† +

√
1− η eiϕf b̃†, (A.4)

b† =
√
η b̃† −

√
1− η ã†, (A.5)

while step 1 was Eq. (A.3). Now substituting a† in Eq. (A.3) with the expression

in Eq. (A.4) (step 3), we obtain

|Ψout〉 =
∑
n,k

αn+k

√
(n+ k)!/(n!k!) ηn/2(1− η)k/2

× ei(n+k)ϕf |n〉|k〉, (A.6)

where in the notation |n〉|k〉 = [(ã†)n(b̃†)k/
√
n!k! ] |0〉 the second state corresponds

to the ancillary second arm (upper arm in Fig. A.1).

The final state at the receiving resonator can be calculated by tracing |Ψout〉〈Ψout|

over the ancillary state |k〉, thus obtaining the density matrix

ρfin =
∑
j,n,m

αn+jα
∗
m+j

√
(n+ j)!(m+ j)!/(j!

√
n!m!)

× η(n+m)/2(1− η)jei(n−m)ϕf ) |n〉〈m|, (A.7)

where the sums over j, n, and m are all from 0 to ∞. Note that this result has

been derived for a pure initial state (A.3) in the emitting resonator. However, it is

easy to generalize Eq. (A.7) to an arbitrary initial state ρin by replacing αn+jα
∗
m+j

with (ρin)n+j,m+j.
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To find the fidelity of the quantum state transfer for the initial state (A.3), we

calculate the overlap 〈ψin|ρfin|ψin〉, thus obtaining

Fst =
∑
j,n,m

√
(n+ j)!(m+ j)!

j!
√
n!m!

α∗nαmαn+jα
∗
m+j

× η(n+m)/2(1− η)jei(n−m)ϕf , (A.8)

which is Eq. (5.9) in the main text. For a mixed input state ρin we can find the

resulting state ρfin as discussed above and then use the Uhlmann fidelity definition

[1] Fst = [Tr
√√

ρin ρfin
√
ρin]2.

If instead of an arbitrary state (A.3) we transfer a qubit state |ψin〉 = α0|0〉+

α1|1〉, then in Eq. (A.6) there are only three terms because αn+k = 0 if n+ k > 1.

This reduces Eq. (A.6) to Eq. (5.10) in the main text. Similarly, Eq. (A.7) reduces

to Eq. (5.11) and Eq. (A.8) reduces to

Fst = |α0|4 + η|α1|2 + |α0|2|α1|2(1− η + 2
√
η cosϕf). (A.9)

To average this fidelity over the Bloch sphere of the initial state, we can either

average it over 6 points at the ends of the three axes (±X, ±Y, ±Z) or use the

averaging formulas |α0|4 = |α1|4 = 1/3, |α0|2|α1|2 = 1/6, thus obtaining average

state fidelity

F st =
3 + η + 2

√
η cosϕf

6
, (A.10)

which can be converted into the process fidelity Fχ using the standard rule, Fχ =

1− (3/2)(1− F st).
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A.2 Decrease of the average state fidelity due to

photons in the environment

So far we have assumed the initial state of the receiving resonator and all

environmental modes in Eq. (5.7) to be vacuum. A natural question is what

happens when there are some photons in the environment (including the initial

state of the receiving resonator). In particular, it is interesting to determine

whether the average fidelity F st of the qubit state transfer can increase, or always

decreases. Below we show that the average fidelity always decreases due to a

non-vacuum state of the environment.

We consider a simplified model, in which the main input of the beam splitter in

Fig. A.1 is in a qubit state |ψin〉 = α0|0〉+α1|1〉, while the second input (modeling

the environment) is in an arbitrary state, so that the total state is

|Ψin〉 = (α0|0〉+ α1|1〉)
∑
n

βn|n〉, (A.11)

where |α0|2 + |α1|2 = 1 and
∑

n |βn|2 = 1. Neglecting for simplicity the transfer

phase, ϕf = 0, choosing the other phases as ϕ2 = π and ϕ3 = 0, and using the

substitution method described above, we find the output state

|Ψout〉 =
∑
k,m

√
(k +m)!√
k!m!

βk+m(−
√

1− η)m(
√
η)k

×
[
α0|m〉|k〉+ α1

√
η
√
m+ 1 |m+ 1〉|k〉

+ α1

√
1− η

√
k + 1 |m〉|k + 1〉

]
. (A.12)
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We then trace over the ancillary arm state to find the resulting density matrix ρfin,

which can now contain non-zero elements (ρfin)mn for arbitrary m and n. However,

the state fidelity for the qubit transfer depends only on the elements within the

qubit subspace, Fst = |α0|2(ρfin)00 + |α1|2(ρfin)11 + 2 Re[α∗0α1(ρfin)01]. Averaging

Fst over the initial qubit state [145, 146, 147], we obtain after some algebra

F st =
1

6
(3 + η + 2

√
η)−

∞∑
n=1

Cn(η) |βn|2, (A.13)

Cn(η) =
1

6

{
(3 + η + 2

√
η)(1− ηn)

+n(1− η)ηn−1[2η + 2
√
η − (1− η)(2n+ 1)]

}
. . (A.14)

The first term in Eq. (A.13) is the average fidelity when there are no photons

in the environment [see Eq. (A.10) with ϕf = 0], while the second term is due

to the environmental photons (|βn|2 is the probability of having n photons). We

numerically checked that the coefficients Cn(η) are always positive for n ≥ 1 and

η ∈ [0, 1]. Therefore, the presence of photons in the environment always decreases

the average fidelity of a qubit transfer. Note that Eq. (A.13) does not depend

on the choice of ϕ2 and ϕ3, since these phases can be produced by phase shifters

in the ancillary B-arm and B̃-arm in Fig. A.1. The phase shifter in the B̃-arm

cannot affect ρfin, while the phase shifter in the B-arm changes only the phase of

the ancillary input state and therefore does not change |βn|2 in Eq. (A.13).

In the case when η ≈ 1, we can approximate Eq. (A.14) as Cn(η) ≈ (5/3)(1−

η)n. The average fidelity is then
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F st ≈ 1− 1− η
3
− 5

3
(1− η)ne, (A.15)

where ne =
∑

n n|βn|2 is the average number of photons in the environmental

mode. Note that the effect of non-zero ne is suppressed at 1 − η � 1. Equation

(A.15) can be used for an estimate of the effect of finite temperature. However, we

emphasize that modeling of the environmental noise with a single beam splitter

is an oversimplification, so Eq. (A.15) gives a qualitative description, but is not

intended to accurately describe the effect of environmental noise on the quantum

state transfer protocol.

164



Appendix B

Tunable Coupler Theory

In this Appendix we consider the tunable coupler realized experimentally in

Refs. [106, 107], and derive formulas for the transmission and refection ampli-

tudes t and rin used in Sec. 5.5.2. We also discuss the change of the resonator

frequency due to the changing complex phase of rin. Since the theory is the same

for both resonators, we omit the resonator index, assuming, e.g., the receiving

resonator. The discussion in this Appendix follows the discussion in Sec. III of

the Supplementary Information of Ref. [106].

There will be a difference in the choice of rotating frame between the main

text and this Appendix. In the main text we use the rotating frame e−iωt, which

is standard in optics. However, in this Appendix we will need a language of

impedances, which traditionally assumes the rotating frame eiωt. Therefore, we

will have to derive formulas for t and r in the rotating frame eiωt, and then we

will need to conjugate the final results to convert them into for t and r for the

rotating frame e−iωt.
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Figure B.1: Schematic of the tunable coupler of Refs. [106, 107] between the λ/4
microwave resonator (at the left) and the transmission line (at the right). A voltage
taken at the distance d from the resonator end is applied to a transformer with
a negative mutual inductance −Mg and a SQUID providing positive Josephson
inductance LJ . External flux Φext controls LJ , thus controlling the effective mutual
inductance M = −Mg + LJ . The wave impedances of the lines are Rr and Rtl.

The schematic of the tunable coupler is shown in Fig. B.1. A quarter-wavelength

(λ/4) microwave resonator is divided into two unequal parts, and the voltage sig-

nal for the coupler is taken at the distance d (d � λ/4) from the end, which

is shorted to the ground, while the other end is terminated with a break so

that the total length is l + d ≈ λ/4. The coupler consists of a transformer

with geometrical inductances L1g and L2g and negative mutual inductance −Mg,

which is in series with a dc SQUID, providing a positive Josephson inductance

LJ . This inductance is controlled by an external magnetic flux Φext, LJ =

Φ0/[2π
√
I2
c1 + I2

c2 + 2Ic1Ic2 cos(2πΦext/Φ0)], where Φ0 = h/2e is the magnetic

flux quantum and Ic1, Ic2 are the critical currents of two Josephson junctions,

forming the SQUID. Thus the external flux controls the total mutual inductance
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Figure B.2: The simplified schematic of Fig. B.1, with the d-long piece of the
resonator replaced by inductance Le, and the transformer in series with SQUID
replaced by an effective transformer with mutual inductance M . An incident wave
with voltage amplitude B creates voltages V and x across the inductors L1 and
L2. The wave is reflected as rinB and transmitted as t̃inB (the superscript “in”
indicates the wave coming from inside the resonator and the tilde sign indicates
the actual transmission amplitude, as opposed to the effective amplitude t). In
our case rin ≈ −1 and |t̃in| � 1.

M = −Mg +LJ , which determines the coupling between the resonator and trans-

mission line; in particular, there is no coupling when M = 0. Note that the wave

impedance Rr of the resonator may be different from the impedance Rtl of the

transmission line.

For the analysis let us first reduce the schematic of Fig. B.1 to the schematic of

Fig. B.2 by replacing the d-long part of the resonator with an effective inductance

Le and also replacing the transformer and SQUID with an effective transformer

with inductances L1, L2, and mutual inductance M ,

L1 = L1g + LJ , L2 = L2g + LJ , M = −Mg + LJ . (B.1)

We emphasize that M can be both positive and negative, so the coupling changes
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sign when M crosses zero (the coupler is OFF when M = 0). Note that by varying

M we also slightly change L1 and L2,

L1 = L1g +Mg +M, L2 = L2g +Mg +M. (B.2)

It is easy to calculate the effective inductance Le. If there is no coupler

(L1 = ∞) and a voltage wave Beiωt comes from the resonator side (from the

left in Fig. B.1), then it is reflected as −Beiωt, and the voltage at a distance d

is then V = Beiωt[exp(iωd/v) − exp(−iωd/v)] = 2iBeiωt sin(ωd/v), where v is

the speed of light in the resonator. The current (to the right) at this point is

I = (B/Rr)e
iωt[exp(iωd/v) + exp(−iωd/v)] = 2(B/Rr) cos(ωd/v). Therefore, the

wave impedance is Z = V/I = iRr tan(ωd/v), which is the same, Z = iωLe, as for

an inductance

Le =
Rr

ω
tan

ωd

v
=
Rr

ω
tan

2πd

λ
. (B.3)

Next, let us calculate the transmission and reflection amplitudes t̃in and rin for

the effective circuit shown in Fig. B.2. (Here the superscript “in” reminds us that

the wave is incident from inside of the resonator, and the tilde sign in t̃in means

that we consider the actual transmission amplitude, which is different from the

effective amplitude t). Assume that a voltage wave with amplitude B is incident

onto the coupler from the resonator (we omit the exponential factor eiωt). The

wave is reflected as rinB and transmitted as t̃inB. For a weak coupling, which

we consider in this work (as continued from Ch. 5, rin ≈ −1 and |t̃in| � 1. The

voltage across L1 is V = (1 + rin)B, while the voltage across L2 is denoted by x.
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The current flowing into L1 is I1 = (1 − rin)B/Rr − V/(iωLe), while the current

flowing (down) into L2 is I2 = −x/Rtl. Using the currents I1 and I2, we write

transformer equations for voltages x and V as

x = iωM

[
(1− rin)B

Rr

− (1 + r)inB
iωLe

]
− iωL2

x

Rtl

, (B.4)

(1 + rin)B = iωL1

[
(1− rin)B

Rr

− (1 + rin)B
iωLe

]
−iωM x

Rtl

. (B.5)

From these two equations we can find the reflection amplitude rin and the trans-

mission amplitude t̃in = x/B (note that |t̃in|2Rr/Rtl + |rin|2 = 1):

rin = −1− b
1 + b

, (B.6)

t̃in = i
2ωM

1 + b

(
1

Rr

+
ib

ωLe

)
1

1 + iωL2/Rtl

, (B.7)

where

b =

iωL1

Rr

+
ω2M2

RrRtl(1 + iωL2/Rtl)

1 +
L1

Le
− iωM2

RtlLe(1 + iωL2/Rtl)

(B.8)

=
iωL1/Rr

L1

Le
+

[
1− iωM2

RtlL1(1 + iωL2/Rtl)

]−1 . (B.9)

Note that the transmission and reflection amplitudes for the wave incident from
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outside of the resonator are

t̃out =
Rr

Rtl

t̃in, rout = − t̃in

(t̃in)∗
rin. (B.10)

Since the transmission amplitude depends on the direction, it is convenient to

introduce the effective amplitude t, which does not depend on the direction,

t =

√
Rr

Rtl

t̃in =

√
Rtl

Rr

t̃out, |t|2 + |rin(out)|2 = 1. (B.11)

Equations (B.6)–(B.9) and (B.11) give us t and r in the rotating frame eiωt.

For the rotating frame e−iωt we need to conjugate t and r (and b), thus obtaining

Eqs. (5.48)–(5.50) in the main text.

For an estimate let us use the following parameters (similar to the parameters of

Ref. [106]): Rr = 80 Ω, Rtl = 50 Ω, L1g = L2g = 480 pH, Mg = 140 pH, ω/2π = 6

GHz, and Le = 180 pH (corresponding to d/λ = 0.013). Then Eqs. (B.6)–(B.9)

and (B.11) for small M give b ≈ 0.066i, rin ≈ −e−0.13i, and t ≈ 0.034ie−0.5iM/Mg.

The resonator leakage time is then τ ≈ (Mg/M)2 × 72 ns.

Note that in the case when ωM � Rtl, we can replace the denominator of Eq.

(B.9) with L1/Le + 1. Then

b ≈ i
ωLe/Rr

1 + Le/L1

, (B.12)

and if ωLe � Rr (which means d� λ/4), then |b| � 1. In this case the reflection

and effective transmission amplitudes (B.6) and (B.11) can be approximated (for
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the rotating frame eiωt) as

rin ≈ − exp

[
− 2ωLeL1

Rr(L1 + Le)
i

]
(B.13)

t ≈ i
2ωLeM√

RrRtl (L1 + Le)

1

1 + iωL2/Rtl

. (B.14)

The latter equation shows that in the first approximation the phase of t does

not change with M , and for the case ωL2 � Rtl the value of t is close to being

purely imaginary. Note that Eq. (B.14) uses the approximation 1 + b ≈ 1 in

the denominator of the first factor in Eq. (B.7). Without this approximation (still

using the above formula for b), the factor L1 +Le in the denominator of Eq. (B.14)

should be replaced with a more accurate term L1 +Le+iωL1Le/Rr. As we checked

numerically, this gives a much better approximation for small M (mostly for the

phase of t), but there is no significant improvement of accuracy for intermediate

values of M , corresponding to |t| ' 0.05.

The resonator frequency ωr slightly changes when the mutual inductance M

is varied, because this slightly changes the phase of the reflection amplitude rin.

The frequency change can be calculated as

δωr ≈ 2ω0
δ(arg rin)

2π
, (B.15)

where the factor of 2 comes from the assumption of a λ/4 resonator, and as ω0

we choose the resonator frequency at M = 0. [Note the sign difference compared

with Eq. (5.51) because of the different rotating frame.]
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To estimate the frequency change ∆ωr = ωr(M)− ωr(0) to first order, we can

expand Eq. (B.9) to linear order in M [which comes from changing L1 in Eq.

(B.12) – see Eq. (B.2)] and then use δ(arg rin) = −[2/(1 + |b|2)] δ|b|, which follows

from Eq. (B.6) for a positive-imaginary b. Thus we obtain

∆ωr ≈ −
ω0

π

2

1 + |b|2
ω0L

2
e

Rr(L1 + Le)2
M, (B.16)

where b is given by Eq. (B.12), and L1 should be evaluated at M = 0. Since t

is also proportional to M in the first order [see Eq. (B.7)], the ratio ∆ωr/|t| is

approximately constant,

∆ωr

|t|
≈ −ω0

π

√
1 + (ω0L2/Rtl)2√

1 + |b|2

√
Rtl

Rr

Le
L1 + Le

, (B.17)

where L1 and L2 should be evaluated at M = 0, and for typical experimental

parameters |b|2 can be neglected [we keep the very small terms with |b|2 in Eqs.

(B.16) and (B.17) to have exact formulas at M → 0]. This formula describes the

numerical dependence ∆ωr(|t|) shown in Fig. 5.12 very well, giving an exact result

at |t| → 0 and a relative deviation of 3.2% at |t| = 0.1. It is interesting that the

dependences of |t| and ∆ωr on M are both significantly nonlinear (see, e.g., the

dashed line in Fig. 5.12); however, these nonlinearities partially compensate each

other to produce a smaller nonlinearity in ∆ωr(|t|).

While Eq. (B.16) gives only the linear component of the dependence ∆ωr(M),

a better approximation can be based on using Eq. (B.12) to find b(M)− b(0) and
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then convert it into ∆ωr via Eq. (B.15). In this way we obtain

∆ωr ≈ −
2ω2

0L
2
e/(1 + |b|2)

πRr(L1g +Mg + Le)(L1g +Mg + Le +M)
M, (B.18)

in which the term |b|2 can be neglected. This formula gives a nonlinear dependence

∆ωr(M) due to the presence of M in the denominator. We checked that this

formula correctly describes about 80% of the numerical nonlinearity of the ∆ωr(M)

dependence for the parameters of Fig. 5.12. There is a similar dependence on

M in the denominator of Eq. (B.14) for t(M) dependence, thus explaining why

the two nonlinearities partially cancel each other to produce a much more linear

dependence ∆ωr(|t|) in Fig. 5.12.
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