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ABSTRACT OF THE DISSERTATION

Dispersive Measurement of Superconducting Qubits

by

Mostafa Khezri

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, June 2018
Professor Alexander Korotkov, Chairperson

Quantum computers have the capability to improve the efficiency and speed of

many computational tasks. Among different candidates for physical implementation of

quantum bits (qubits), superconducting qubits are currently one of the most promising

candidates due to their accessible fabrication process and recent rapid developments. Mea-

surement of these qubits is usually done in a circuit quantum electrodynamics (QED) setup,

for which experimental and theoretical research is conducted to improve the accuracy and

speed of the qubit readout. In this dissertation we study some aspects of the dispersive

readout of superconducting qubits, and introduce tools and methods for studying these

systems.

In Chapter 2 we show that in presence of neighboring qubits, the system is typi-

cally measured in the basis of joint eigenstates of qubits, in contrast to what is expected

from the textbook collapse postulate. In such setups, the excitation can switch between

the eigenstates, leading to measurement error. In Chapter 3 we study the joint state of

the qubit-resonator system during the measurement, and show that the qubit-induced non-
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linearity of the resonator squeezes its state, and within the rotating wave approximation

(RWA) the system mostly remains in the joint eigenladder that is associated with the qubit’s

initial state. In Chapter 4 we show that built-in energy resonances in the qubit-resonator

Jaynes-Cummings ladder occur at specific resonator populations, and the couplings be-

tween these resonant levels are provided by the usually neglected non-RWA terms. Such

resonances lead to measurement deterioration by exciting the qubit out of the computational

subspace. In Chapter 5 we provide a hybrid phase-space-Fock-space approach for studying

the evolution and squeezing of driven nonlinear resonators within Gaussian approximation,

which is numerically efficient and sufficiently accurate. In Chapter 6 we study the propa-

gating squeezed field that leaks out of the resonator, and write evolution equations for the

correlators of the measured field quadrature. These equations are easy to simulate and can

describe the squeezing of the propagating field during the transient, which can be used to

optimize the fidelity and speed of the quadrature measurement in the dispersive readout of

superconducting qubits.
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Chapter 1

Introduction

The idea to use quantum effects for computation was first proposed by Feynman

in 1959 [1]. Later Manin in 1980 [2] and Feynman himself in 1982 [3] realized that sim-

ulating quantum systems with a classical computer requires exponentially large resources,

while a quantum computer in principle could overcome this problem. Building on these

ideas, researchers have explored computational capabilities of quantum systems in more

detail. Bennet and Brassard laid the foundation of quantum cryptography [4]. Deutsch

described the idea of a universal quantum computer [5] and later with Jozsa proposed a

quantum algorithm to efficiently find balanced functions [6]. Shor introduced his landmark

algorithm for prime factorization [7, 8] which was later extended by Kitaev [9]. Grover

designed a quantum algorithm for faster search in unsorted databases [10]. Shor, Steane,

and Calderbank proposed the first methods for quantum error correction [11–13]. Lloyd

showed that quantum computers can be programmed to simulate quantum systems [14].

Bernstein and Vazirani studied the quantum computation from a complexity theory view
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[15]. Kitaev introduced topological quantum computing using anyons [16] (see Ref. [17] for

an overview of quantum algorithms and their application). Today, quantum computation

and quantum information is an active field in Physics, with research being conducted both

theoretically and experimentally. There are now a variety of other proposed applications

for quantum computers, such as adiabatic quantum computation [18, 19] that operates dif-

ferently from gate-based models, hybrid quantum-classical algorithms [20], simulation of

molecular energies [21], quantum machine learning [22], etc.

The building blocks of quantum computers are qubits. There are in principle many

different physical implementations of the qubits, since any two-level quantum system, or

even two lowest levels of a many-level quantum system, can be used as a qubit. However,

any physical implementation of a qubit requires a set of properties in order to be a viable

candidate for building a quantum computer. These properties are sometimes called the

DiVincenzo criteria [23], and consist of scalability, existence of a universal set of quantum

gates, qubit-specific measurement capabilities, etc. Given these criteria, trapped ions [24–

26] and superconducting qubits [27–30] are currently among the best candidates for physical

implementation of qubits, with superconducting qubits favored mostly because they can be

built using existing and well-developed fabrication processes of the semiconductor industry.

We should also note that semiconductor quantum computing schemes [31–33] are rapidly

advancing, with prospects for implementing traditional qubits [34] as well as topological

quantum computation using non-Abelian anyons [35–37].
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1.1 Superconducting qubits

Superconducting qubits are built somewhat similar to electrical circuits, by etching

away or growing layers of different materials on a substrate to form paths for current flow,

making linear elements such as capacitors and inductors, and most importantly non-linear

Josephson junctions [38]. This non-linearity is the key to making quantum systems with

non-equidistant levels that can be individually addressed and therefore used as a qubit.

Although there are a variety of different superconducting qubits, they can be generally

categorized into three types [27, 30]: charge qubit [39], flux qubit [40, 41], and phase qubit

[42, 43]. The main difference between the three types of qubits is the ratio of the Josephson

energy to the charging (capacitive) energy. A charge qubit consists of a Josephson junction

and a capacitor in parallel, yielding a shallow cosine potential where the Josephson energy is

∼ 10− 100 times smaller than the charging energy. A flux qubit has an additional parallel

inductor that gives it a double-well potential, with Josephson energy ∼ 10 − 1000 times

larger than the charging energy. A phase qubit is somewhat similar to the flux qubit, but

with an additional external flux bias into its loop that tilts the double well potential, with

Josephson energy tens of thousands of times larger than the charging energy. Each of these

qubits is designed with a specific task in mind, and is sensitive to different types of noise.

For example, flux qubits are currently mostly used in quantum annealers because they can

approximately realize the transverse Ising model Hamiltonian.

Currently, the preferred superconducting qubit type for gate-based quantum com-

putation is the transmon qubit [44], which was designed by making the charge qubit less

sensitive to the charge noise by having a smaller capacitive energy. In its simplest form,
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Figure 1.1: Transmon and its potential. Left: the circuit for transmon, with Josephson
junction critical current of Ic and superconducting phase ϕ across it. The capacitance is C,
and n is the number of Cooper pairs transferred across the junction. Middle: Frequency-
tunable transmon, showing an external flux Φext applied into the loop consisting of two
junctions. Right: Cosine potential of transmon with different energy levels, the two lowest
levels of which are used as states |0〉 and |1〉 of the qubit.

transmon is a Josephson junction with a large capacitor in parallel (Fig. 1.1). If instead of

a single junction, a loop of two junctions is used, then the qubit frequency can be tuned by

applying an external magnetic flux inside that loop (see Fig. 1.1), e.g., by having a current

line next to the loop (called dc flux bias). There are a variety of different flavors of transmon

made with different design choices and tasks in mind [45–57].

The Hamiltonian for a transmon can be written as

H = 4EC n̂− EJ cos ϕ̂, (1.1)

where EC = e2/2C is the charging energy, EJ = IcΦ0/2π is the Josephson energy, Φ0 =

h/2e is the magnetic flux quantum, ϕ̂ is the superconducting phase operator, and n̂ is

its canonically conjugate operator associated with the number of Copper pairs tunneled

through the junction, such that [ϕ̂, n̂] = i. A transmon operates in the regime where

EJ/EC ∼ 102−, therefore, its cosine potential acts as a slightly anharmonic oscillator,

where the two lowest energy levels are used as |0〉 and |1〉 states of a qubit (Fig. 1.1). The
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difference between |0〉 ↔ |1〉 transition frequency ω10 and |1〉 ↔ |2〉 transition frequencies

ω21 is called the anharmonicity, η = ω10 − ω21 > 0. Higher levels of a transmon are

sometimes used in practical operations, but they are more susceptible to charge noise. For

more details about energy levels and states of transmon, see Appendices A and C.

1.2 Quantum operations on transmons

Quantum gates (operations) [58] are applied to transmons using microwave pulses

and/or fast dc flux biases, i.e., nearby current lines that induce magnetic flux into super-

conducting loops. To implement single qubit X and Y gates (Pauli σx and σy), the qubit

is directly driven by a microwave tone via a coupled transmission line, or sometimes via a

coupled bus resonator. Naturally, if the frequency of the microwave drive is the same as the

frequency of the qubit, then it induces Rabi oscillations on the qubit. By properly adjusting

the envelope, amplitude, duration, and phase of these pulses, rotations around an arbitrary

axis in the x-y plane are performed (see Ref. [59] for a short review). For Z rotations, there

are a few methods that we briefly mention here. Note that these Z gates are better un-

derstood in the rotating frame of the qubit (which is usually used in practice), where the

qubit does not revolve around its z-axis with frequency ω10. A simple method is to apply

composite/consecutive X and Y gates to construct a Z gate, a natural property of Pauli

operators. However, faster gates with better control and fidelity can be made as well. For

tunable qubits, one can tune the qubit frequency away and then back to its original value,

which effectively induces a rotation around the z-axis in the rotating frame of the qubit, and

can be calibrated by adjusting the duration and magnitude of the frequency change [60].

5



Figure 1.2: Two transmon qubits coupled directly via a capacitor. This direct coupling
scheme is also referred to as capacitive or charge-charge coupling. The coupling is required
for implementing two-qubit entangling gates.

Another method is to just add a phase offset in the software controlling the x-y pulse line,

and redefine the rotation axis for all the subsequent X and Y rotations. This is equivalent

to redefining the rotating frame whenever a z-axis rotation is needed, and is called a virtual

Z gate [59, 61]. Single qubit gates are routinely implemented in superconducting qubits,

and can achieve fidelities of 99.9% or more [59, 62, 63].

Two-qubit entangling gates are generally harder to master and calibrate, with a

variety of methods for their implementation depending on the architecture, design choices,

and trade-offs. These gates require coupling between qubits, which can either be a direct

coupling (e.g., as in Fig. 1.2), or an indirect coupling through a coupler circuit. Below we

briefly discuss the two main approaches for implementing entangling gates, depending on

weather the qubit frequencies are tunable or not.

For frequency-tunable qubits, the main approach is to bring the |0〉 ↔ |1〉 transition

frequency of the control qubit close to the |1〉 ↔ |2〉 transition of the target qubit, and after
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allowing some time for interaction, tune it away to its initial frequency [64–66]. During

this operation (which can be performed relatively fast and yet adiabatic [66]), the target

qubit can acquire extra phase because of an avoided level crossing between |11〉 and |02〉

states, which is used to implement a controlled-phase (i.e., CZ) gate between the qubits 1.

Practical implementation of these gates have fidelities ranging from 90% [67] to more than

99% [62, 68].

The other widely-used type of entangling gate is used for frequency-fixed qubits,

and is called cross-resonance (CR) gate [69], where the control qubit is driven at the fre-

quency of the target qubit. Such a cross resonant drive rotates the target qubit along the

x-axis with a rate that depends on the state of the control qubit. Simply speaking, this

happens because of the eigenstate formation between the two qubits, and may be thought of

as a quantum (and unavoidably classical) crosstalk effect [70]. With addition of single-qubit

gates on the target qubit, the CR interaction is turned into common two-qubit gates such

as CNOT, implemented with fidelities reaching 99% [71].

Besides the two main types of entangling gates mentioned above, there are other

methods for implementing two-qubit gates, some of which require flux tunability of the

qubits [72, 73], and some use direct microwave pulses to activate desired coupling between

the qubits [74–77].

1With addition of some single-qubit gates, other two-qubit gates can be implemented as well.
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1.3 Dispersive measurement of superconducting qubits

The measurement of the state of the transmon is done in a circuit QED (cQED)

setup [78] as outlined below. The transmon is coupled to a detuned readout resonator

(i.e., a quantum harmonic oscillator), where the resonator can be pumped and its leaked

field can be amplified and measured [see Fig. 1.3(a)]. Because of the eigenstate formation

between the qubit and the resonator, the frequency of the resonator will depend on the

state of the qubit [Fig. 1.3(b)]. To distinguish the slightly different resonator frequencies

(associated with different qubit states), the resonator is pumped, and its leaked output field

is measured. This output field will have distinct amplitude and phase shift depending on

the resonator frequency [Fig. 1.3(c)], which is then used to infer the state of the qubit.

More formally, when the coupling between the qubit and resonator is much smaller

than the detuning between them, one can approximately calculate eigenenergies of the

system to approximatly write the interaction between the qubit and the resonator as

HI ≈ χσza†a, (1.2)

where σz = |0〉〈0|− |1〉〈1| is the qubit Pauli Z operator, and a (a†) is the resonator lowering

(raising) operators. We can see from Eq. (1.2) that the dispersive coupling changes the

resonator frequency by 2χ when the qubit goes from the excited to the ground state [see

Fig. 1.3(b)]. The total dispersive shift of the resonator frequency is (see Appendix A)

2χ ≈ 2
g2

∆

η

∆ + η

ωr
ωq
, (1.3)

where g is the coupling between the qubit and the resonator, ωr and ωq are bare frequencies

of the resonator and the qubit respectively, ∆ = ωr − ωq is the detuning between the two,
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Figure 1.3: (a) Schematic of the dispersive readout, where the qubit is coupled to a readout
resonator, the resonator is pumped with a coherent drive (RF), and the leaked field of
resonator is amplified (AMP) and passed through a mixer. (b) Schematic of the transmission
spectrum of the resonator. The two Lorentzians are centered around the resonator frequency

when the qubit is in the ground (ω
|0〉
r ) or excited (ω

|1〉
r ) state, with width of κ (resonator

energy decay rate). The total dispersive shift is 2χ. (c) Example of the intracavity state
of the resonator in the I-Q plane. The two blobs correspond to different qubit states. The
state becomes significantly squeezed for relatively large number of photons in the resonator.

and η > 0 is the anharmonicity of the qubit. When the readout resonator is pumped with

a coherent tone, we can write the approximate classical evolution equation (i.e., coherent

state evolution) for the resonator state [78]

α̇ = −i
(
ω|q〉r − ωd

)
α− κ

2
α− iε, (1.4)

where ω
|q〉
r is the resonator frequency when the qubit is in state |q〉, ωd is the drive frequency,

κ is the energy decay rate of the resonator, and ε is the drive amplitude. The coherent
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state approximation becomes inaccurate for sufficiently strong drive tones [79, 80], when

squeezing develops as shown in Fig. 1.3(c). The resonator field is then leaked, amplified, and

measured, which can be done in two ways. One approach is to use a phase-sensitive amplifier,

which amplifies only one quadrature of the signal, and then the amplified quadrature I is

measured. The other approach is to use a phase-preserving amplifier, which amplifies both

quadratures I and Q, then both quadratures are measured at the same time. Fig. 1.3(c)

depicts the phase-space representation of the intracavity resonator field, where the blobs

show the uncertainty in the measurement of α. In both amplification schemes, the signal

for when qubit is in the ground state is discriminated from the signal when the qubit

is in the excited state. Amplifiers are essential to the measurement of superconducting

qubits, and their development played an important role in achieving high-fidelity single-shot

readout [81–87]. The theoretical details of phase-preserving (heterodyne) or phase-sensitive

(homodyne) quadrature measurements are discussed in Refs. [88–90], and are out of the

scope of this chapter.

We note that in practice, the readout signal can be transmitted through the res-

onator, as depicted in Fig. 1.3(a), or it can be reflected from the resonator. The main

difference between these two schemes is that the reflected signal contains directly-reflected

pump microwave; nevertheless, both methods are the same from the perspective of the the-

ory of dispersive measurement. Also note that by coupling the qubit to the resonator, we

are indirectly coupling it to the environment, which unavoidably leads to energy decay in

the qubit, called Purcell decay [91]. Moreover, faster measurement requires stronger cou-

pling to the environment, which comes at the price of degrading the qubit lifetime. This
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problem can be mitigated by adding a Purcell filter [92–96] to the measurement chain, which

essentially prevents the photons at the qubit frequency from leaking to the environment,

but allows for the measurement signal at resonator frequency to pass, therefore increasing

qubit lifetime without sacrificing readout speed.

Practical quantum computation requires fast and accurate measurement of the

qubits [58], a task which is specifically important for the repetitive syndrome measurement

schemes of the error-corrected systems [97–99]. Consequently, dispersive cQED measure-

ment of superconducting qubits has been studied and improved in different aspects over

the years. Purcell filters are now used to suppress the qubit relaxation through the readout

resonator [93, 95], the resonator leftover photon population can be actively emptied for the

next measurement [100, 101], and machine learning techniques can be utilized to discrimi-

nate the qubit states in the I-Q plane [102] to name a few. The qubit readout fidelities are

now reaching 99% in under 100 ns [103], and the effort to increase the fidelities and decrease

the readout time still continues.

In this dissertation, we explore the dispersive measurement of the qubits, inves-

tigate some mechanisms that can deteriorate measurement of the superconducting qubits,

and introduce tools and methods for studying these systems. In Chapter 2 and briefly in

Chapter 4, we investigate how the presence of neighboring qubits affects the measurement of

the superconducting qubits. Such analysis is important since practical quantum computers

require an array of qubits to interact with each other, and at the same time they require

individual readout capability for each qubit. Chapter 3 studies the Jaynes-Cummings lad-

der of the qubit-resonator system to provide an approximate yet accurate model for the
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joint system in its eigenbasis. This chapter emphasizes the importance of the eigenba-

sis picture when studying the dispersive readout. In Chapter 4 we go beyond the usual

approximations made in the modeling of the dispersive readout, find the underlying rea-

son for mysterious readout deterioration at large photon numbers, and confirm our theory

with experimental observations. Such large photon-number regimes are essential for fast

measurement of qubits, and studying them helps us to understand the limitations of the

dispersive measurement and design more clever readout schemes. In Chapter 5 we study

the evolution of the pumped readout resonator and provide a simple yet accurate model for

the resonator field that is extremely efficient in numerical simulations. Chapter 6 extends

this model to study the propagating field that leaks out of the resonator. Such models can

be used to minimize the uncertainty (maximize SNR) in the phase-sensitive and/or phase-

preserving measurements, and can also be used for studying squeezed light. We conclude

in Chapter 7.
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Chapter 2

Qubit measurement error from

coupling with a detuned neighbor

in circuit QED

In modern circuit QED architectures, superconducting transmon qubits are mea-

sured via the state-dependent phase and amplitude shift of a microwave field leaking from

a coupled resonator. Determining this shift requires integrating the field quadratures for

a nonzero duration, which can permit unwanted concurrent evolution. In this chapter we

investigate such dynamical degradation of the measurement fidelity caused by a detuned

neighboring qubit. We find that in realistic parameter regimes, where the qubit ensemble-

dephasing rate is slower than the qubit-qubit detuning, the joint qubit-qubit eigenstates

are better discriminated by measurement than the bare states. Furthermore, we show that

when the resonator decays much more slowly than the qubit-qubit detuning, the measure-
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ment tracks the joint eigenstates nearly adiabatically. However, the measurement process

also causes rare quantum jumps between the eigenstates. The rate of these jumps becomes

significant if the resonator decay is comparable to or faster than the qubit-qubit detuning,

thus significantly degrading the measurement fidelity in a manner reminiscent of energy

relaxation processes.

2.1 Introduction

Recent years have witnessed the rapid evolution of superconducting circuit QED

technology for quantum computation [49, 68, 72, 78, 104–108] (reviewed in [28, 109, 110]).

The most recent developments have converged on charge-insensitive designs, based on trans-

mons [44], which can be dispersively measured with coupled microwave resonators. Multi-

qubit chips based on these designs have recently demonstrated high-fidelity entangling gates

[49, 68], which are now nearing the gate fidelity thresholds necessary for implementing

practical quantum error correction protocols [58, 98, 111]. Indeed, several groups have

recently demonstrated bit-flip error correction in such multi-qubit superconducting pro-

cessors [50, 62, 112, 113]. With the gate fidelity reaching such unprecedented levels, it is

now interesting to identify and address more subtle sources of error that can arise in such a

multi-qubit environment, such as the effect of non-tunable qubit-qubit or qubit-bus coupling

[114] on the dispersive measurement fidelity.

Unlike the textbook projective measurements usually assumed in the quantum

computing literature [58], which involve instantaneous state collapse, realistic measure-

ments occur over a nonzero duration of time. In the transmon-based circuits we consider
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here, each qubit is dispersively coupled to a pumped microwave resonator such that the

leaked field is phase-shifted (and, in general, amplitude-shifted) by a qubit-state-dependent

amount [78]. The leaked field is then passed through an amplifier and mixed with a local

oscillator to produce a noisy homodyne signal. This signal needs to be integrated until the

signal-to-noise ratio exceeds an acceptable discrimination threshold (more advanced signal

processing techniques can moderately increase the measurement fidelity [115]). For an iso-

lated qubit, the increase of the signal-to-noise ratio by longer integration is limited by the

energy relaxation (and excitation) processes. However, in circuits intended for quantum

computation, the qubits will also be coupled to frequency-detuned neighbors, which may

permit unwanted dynamics to additionally degrade the measurement fidelity. We wish to

better understand the detailed dynamics of a realistic transmon qubit measurement, and

minimize the dynamical measurement error that will arise from the coupling to a neighbor-

ing qubit (or bus, which plays a similar role).

In this chapter, we demonstrate that in typical experimental parameter regimes,

where the qubit ensemble-dephasing rate due to measurement is slower than the qubit-qubit

detuning, dynamical measurement error always exists when distinguishing the bare energy

states of coupled qubits. However, this measurement error can be decreased by distinguish-

ing not the bare energy states, but instead the qubit-qubit eigenstates that are stationary

under the effect of the qubit-qubit coupling and detuning (similarly to the measurement of

coupled phase qubits analyzed in [114]). Despite the fact that only the main qubit is being

measured, the relatively slow measurement process allows the two-qubit system to collapse

to these stationary eigenstates, in contrast to what may be naively expected from textbook
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projective measurements. Notably, these eigenstates have also been shown to be a natural

choice for the logical encoding of high-fidelity multi-qubit gates [114] (for similar reasons),

which makes multi-qubit eigenstates an unambiguously optimal choice for logical encoding

in realistic parameter regimes.

We further demonstrate for coupled transmon measurement that, in addition to the

ensemble-dephasing rate and the qubit-qubit detuning, the measurement fidelity depends

on a third important parameter: the readout resonator energy decay rate due to leakage

into a transmission line. For decay rates much slower than the qubit-qubit detuning (as is

typical in experiments, e.g., [50, 62, 113]), the leaked resonator field nearly adiabatically

follows the qubit-qubit eigenstate to produce little error. However, for decay rates that are

comparable to or larger than the qubit-qubit detuning, the resonator decays more rapidly

than it can equilibrate with the qubit-qubit eigenstates, causing frustrated dynamics during

the measurement. Such rapid resonator decay will primarily couple the leaked field to the

bare energy states, while the fast inter-qubit oscillations (compared to the measurement

rate) will relate the output signal to the joint qubit-qubit eigenstates. This frustrated

dynamics leads to random quantum jumps between the eigenstates. We derive the rate of

these quantum jumps (which we call a switching rate) using a model based on fluctuations of

the photon number in the resonator, which perturb the two-qubit eigenstates. We show that

the switching can be significant for rapid resonator decay, but becomes almost negligible

for realistically slow resonator decay. We also derive the measurement error probability

resulting from these quantum jumps, and show that it accumulates almost linearly with

integration time in an analogous way to the error from energy-decay (T1) processes.
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This chapter is organized as follows. In Section 2.2, we introduce the considered

system, formulate the problem, and discuss how to model the ensemble-averaged dynamics.

In Section 2.3, we identify three qualitatively distinct parameter regimes in the ensemble-

averaged dynamics: textbook, adiabatic, and frustrated. In Section 2.4, we study the

transition between the adiabatic and frustrated regimes as the resonator decay is varied,

by introducing a simple model of a semiclassically fluctuating field in the resonator that

produces random quantum jumps between the eigenstates. We derive the average switching

rate for these jumps, and numerically confirm this jump behavior by simulating quantum

trajectories in the fast resonator decay regime. In Section 2.5, we demonstrate that the

contribution of these jumps to the measurement error is nearly linearly increasing with

integration time, and find the error minimized over the integration time. We conclude in

Section 2.6.

2.2 Considered system and its ensemble-averaged evolution

The archetypal circuit QED system we consider here is shown in Fig. 2.1. A

superconducting transmon (main qubit) with frequency ωq (which includes the ac Stark

shift) is capacitively coupled to a driven readout resonator with bare frequency ωr, and

is also capacitively coupled to another transmon (neighboring qubit) with a detuned bare

frequency ωn, such that the qubit-qubit detuning ∆ ≡ ωq − ωn is much larger than the

qubit-qubit coupling g, |∆| � g. (The role of the neighboring qubit can be played by a

bus resonator; we consider a qubit for definiteness.) We assume that the Purcell decay

[91, 116, 117] of the main qubit through the resonator has been suppressed by a filter
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Figure 2.1: Analyzed system. A measured (main) transmon qubit (blue) with frequency ωq

has capacitive coupling g to a detuned neighboring qubit (red) with a frequency ωn such
that g � |∆|, where ∆ ≡ ωq−ωn (ωq includes the ac Stark shift). A readout resonator with
frequency ωr is dispersively coupled to the main qubit, and thus is frequency-shifted by ±χ
depending on the main qubit state. During measurement, this resonator is driven with a
coherent microwave ε at a frequency ωd. The field leaks from the resonator (with the energy
decay rate κ) to a transmission line, where it is amplified and mixed with a local oscillator
to measure the quadrature I(t) that is sensitive to the qubit-state-dependent phase and
amplitude shift. The coupling of the main qubit with the neighboring qubit contributes to
the qubit measurement error.

[92, 93, 95], and that the resonator and main qubit are sufficiently detuned to treat their

coupling as effectively dispersive (implying the rotating wave approximation) [78, 118]. We

also assume that the transmon energy levels outside of the qubit subspace are taken into

account through renormalization of the state-dependent dispersive shift ±χ of the resonator

frequency. The readout resonator is additionally driven by a coherent field ε at a microwave

frequency ωd, which then leaks to a transmission line at an energy-decay rate κ (the setup

can be either in transmission or in reflection). The leaked field is passed through an amplifier

and mixed with a local oscillator to perform a homodyne measurement, which isolates the

qubit-state-dependent phase and amplitude shift caused by the dispersive coupling; the
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information-carrying quadrature is denoted as I(t) in Fig. 2.1.

While this measurement procedure is largely understood for a single qubit cou-

pled to the readout resonator [78, 118–120], we investigate here how the addition of the

neighboring qubit will contribute to the measurement error. Specifically, we wish to find

out whether the wavefunction “tail” probability (g/∆)2 contributes to the measurement

error or not. In this chapter we focus on discriminating the bare states |10〉 and |00〉 (with

qubit ordering convention |main, neighbor〉) or the states |10〉 and |00〉, where |10〉 is the

eigenstate that accounts for the qubit-qubit interaction. We assume the logic state of zero

for the neighboring qubit for simplicity, without significant loss of generality, because the

discrimination of the states |11〉 and |01〉 (or |11〉 and |01〉) is a very similar problem. Also,

the discrimination of all four states in the case when both qubits are measured is a simple

generalization of our basic problem. Note that we do not consider another important ques-

tion: deterioration of a superposition α|00〉+ β|01〉 (or α|00〉+ β|01〉) after the main qubit

measurement; however, the mechanism of this deterioration is similar to what we consider.

Also note that in an architecture [114, 121], in which the zero state of the neighboring qubit

is used as a resource to decrease crosstalk, our assumption of discriminating |10〉 and |00〉

(or |10〉 and |00〉) is naturally satisfied. We will refer to the pair of states to be discriminated

as logical 1 and 0.

The logical states are discriminated by integrating the fluctuating output signal

I(t) over time and then comparing the result with a threshold. Therefore, the discrimination

error Perr (discussed in more detail in Sec. 2.5) can be calculated from the “overlap” of

the probability distributions of the integrated result for the two logical states. The error
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depends on the chosen threshold (in Sec. 2.5 we will consider the symmetric and optimal

thresholds) and on the integration time. As will be discussed later, the measurement error

Perr has a minimum as a function of the integration time, which is determined by the rate

of “switching” (quantum jumps) between the qubit states, resembling the energy relaxation

events.

Our final goal is to find such optimized measurement error for distinguishing the

bare-basis states |10〉 and |00〉, and for distinguishing the eigenbasis states |10〉 and |00〉, thus

finding which encoding basis is preferable in the circuit QED measurement. The analysis of

a similar question for the measurement of phase qubits showed [114] that using the eigenbasis

is preferable. In this chapter we will obtain a similar result for the parameter regime of

typical circuit QED measurements [50, 62, 113], even though the measurement dynamics

is significantly more complicated than for phase qubits. In particular, we will show that in

contrast to what is expected for a textbook projective measurement, the bare-basis error

exceeds (g/∆)2/2, while there is no such limitation for discriminating the eigenstates. For

the eigenbasis the limitation comes from the quantum jumps between the eigenstates |10〉

and |01〉; however, for typical experimental parameters this limitation is almost negligible.

To obtain these results, we first discuss how to model both the coherent and inco-

herent aspects of the evolution for the ensemble-averaged case. This ensemble-averaged dy-

namics will be sufficient to identify broad parameter regimes of interest for the coupled-qubit

measurement, and to identify which qubit-qubit bases are preserved by the measurement in

these regimes, but will be insufficient for understanding and quantifying the measurement

error for specific realizations. In Section 2.4, we will generalize the ensemble-averaged ap-

20



proach to model the individual quantum trajectories, which will allow us to understand and

derive the measurement error induced by the qubit-qubit coupling. Note that we consider

only one neighboring qubit, while in practical architectures (e.g., in surface codes) there are

several neighbors; however, the generalization of our theory to several neighboring qubits

is rather straightforward.

2.2.1 Coherent evolution

The total resonator-qubit-qubit Hamiltonian can be split into five terms,

H = Hr +Hq +Hd +Hqr +Hqq. (2.1)

The bare-energy contributions (~ = 1) are

Hr = ωr a
†a, Hq =

ωb
q

2
σ(1)
z +

ωn

2
σ(2)
z , (2.2)

where σ
(j)
z ≡ |1〉〈1|j − |0〉〈0|j are the Pauli z operators for each qubit (j = 1, 2), a† (a) are

the raising (lowering) operators of the coupled resonator mode that satisfy [a, a†] = 1, and

ωb
q , ωn, and ωr are the bare frequencies of the main qubit, neighboring qubit, and resonator.

The resonator drive contribution has the form

Hd(t) = ε e−iωdt a† + ε∗ eiωdt a. (2.3)

The bare energies are modified by the dispersive qubit-resonator coupling

Hqr = χσ(1)
z a†a, (2.4)

which shifts the resonator frequency by ±χ depending on the qubit state or, alternatively,

shifts the qubit frequency,

ωq = ωb
q + δωq, (2.5)
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by the ac Stark shift δωq, depending on the number of photons in the resonator (we include

the Lamb shift [78, 122, 123] into ωb
q). The qubit-qubit coupling Hamiltonian (assuming

the rotating wave approximation) is

Hqq = g (|01〉〈10|+ |10〉〈01|), (2.6)

and we are interested in the case of strongly detuned qubits, g � |ωq − ωn| (for simplicity

we assume g > 0).

Note that the qubit-qubit coupling in Eq. (2.6) coherently mixes the single-excitation

subspace {|01〉, |10〉} and produces the eigenstates of the qubit-qubit Hamiltonian Hq +Hqq

that are rotated from the bare states by an angle θ = 1
2 arctan(2g/∆),

|10〉 = cos θ|10〉+ sin θ|01〉 ≈
√

1−
( g

∆

)2
|10〉+

g

∆
|01〉,

|01〉 = cos θ|01〉 − sin θ|10〉 ≈
√

1−
( g

∆

)2
|01〉 − g

∆
|10〉,

(2.7)

where

∆ ≡ ωq − ωn (2.8)

is the (ac Stark-shifted) qubit-qubit detuning and the approximation is to lowest order in

g/|∆| � 1. If the measurement process occurs effectively in this eigenbasis, then an initially

bare state |10〉 will collapse into the incorrect eigenstate |01〉 with an error probability

(g/∆)2, resulting in additional measurement error. In Section 2.3 we will clarify which

parameter regimes of the measurement naturally select the eigenstates of Eq. (2.7) in this

manner. Note that for brevity of notations, in inequalities describing the parameter regimes

we will use ∆ instead of |∆|.
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2.2.2 Incoherent evolution

In addition to the coherent evolution given by the Hamiltonian in Eq. (2.1), the

energy in the resonator incoherently decays to a transmission line at the rate κ. Assuming

that all leaked photons may not later return to the resonator, we can model the ensemble-

averaged Markovian evolution of the joint qubit-qubit-resonator state with a master equa-

tion [122]

dρ = −i[H, ρ]dt+ (κ dt) aρa† − κ dt

2

(
a†aρ+ ρa†a

)
. (2.9)

Physically, we can interpret this equation as stating that in a small interval dt the system

does not only coherently evolve with the usual evolution operator

U = exp(−iHdt),

but additionally has one of two distinct incoherent processes happen (e.g., Ref. [124]):

(a) Each of N photons in the resonator may escape with probability κ dt, which modifies

the resonator state with the decay operator

Mdecay =
√
κ dt a.

(b) All N photons stay in the resonator with probability 1 − κ dtN , which modifies the

resonator state with the null result (no decay) operator

Mnull =
√

1− κ dt a†a.

These measurement (Kraus) operators for the incoherent part of the evolution satisfy the

usual completeness condition M †decayMdecay + M †nullMnull = 1, indicating that the proba-

bilities for each possibility to occur are correctly normalized [58]. Mixing together both
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possibilities (i.e., discarding any record of whether the decay happened or not) produces

the updated mixed state

ρ′ = MdecayρM
†
decay +MnullρM

†
null, (2.10)

= κ dt aρa† +
√

1− κ dt a†a ρ
√

1− κ dt a†a,

that describes the ensemble-averaged evolution for a duration dt. The Hamiltonian evolution

is then interleaved between these incoherent updates: ρ′ 7→ Uρ′U †. Expanding the full

increment dρ ≡ Uρ′U † − ρ to linear order in dt produces the standard master equation

form of Eq. (2.9). We note, however, that the update in Eq. (2.10) is not only conceptually

transparent, but (as we checked) is more numerically stable for simulation purposes and in

some regimes is faster than solving Eq. (2.9).

If additional decay channels are present, they can be added phenomenologically

to the incoherent sum in Eq. (2.10). For example, qubit energy-decay with rate 1/T1 and

environmental qubit dephasing with rate Γe have the forms

MT1 =

√
dt/T

(1)
1 σ

(1)
− +

√
dt/T

(2)
1 σ

(2)
− ,

Mdephase =

√
Γ

(1)
e dt σ(1)

z +

√
Γ

(2)
e dt σ(2)

z ,

which will modify the null result operator accordingly to include all decay channels Mk

Mnull =

√
1−∑kM

†
kMk.

These additional decay channels correspondingly modify the linear increment in Eq. (2.9)

in the standard way. For simplicity, we will neglect such additional decay channels in most

of what follows, in order to focus solely upon the effects of the neighboring qubit on the
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measurement fidelity. When we do add these effects, we will assume that T
(1)
1 = T

(2)
1 ≡ T1

and Γ
(1)
e = Γ

(2)
e ≡ Γe.

Now let us briefly review some results for measurement of a single qubit [78,

118–120], which we will use as a starting point and to introduce notations. For the

qubit in the state |1〉 or |0〉, the effective frequency of the resonator is ωr ± χ (the up-

per sign is for the state |1〉). Then the evolution of the resonator coherent state |α±〉 =

e−|α±|
2/2
∑

n α
n
±(n!)−1/2e−inωdt|n〉 (we use the rotating frame e−iωdt) is

α̇± = −i(∆r ± χ)α± −
κ

2
α± − iε, (2.11)

where ∆r ≡ ωr − ωd is the bare resonator-drive detuning. The steady-state solution of this

equation is

α± =
−iε

κ/2 + i(∆r ± χ)
, (2.12)

and the corresponding mean photon number is

n̄± = |α±|2 = n̄max
κ2

κ2 + 4(∆r ± χ)2
, (2.13)

which we expressed via the photon number at exact resonance, n̄max = 4|ε|2/κ2. The ac

Stark shift is then [118]

δωq = 2χRe(α∗+α−), (2.14)

and the measurement-induced ensemble dephasing rate is [118]

Γm = 2χ Im(α∗+α−) = κ
|α+ − α−|2

2
. (2.15)
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These results can be expressed in terms of n̄± and n̄max as

δωq = 2χ
n̄+n̄−
n̄max

[
1 +

4(∆2
r − χ2)

κ2

]
, (2.16)

Γm =
8χ2

κ

n̄+n̄−
n̄max

, (2.17)

which reduce to the simple formulas [78, 118] δωq ≈ 2χn̄, Γm ≈ 8χ2n̄/κ when n̄+ ≈

n̄− ≈ n̄max. One of the ways to interpret the measurement-induced dephasing process is

as being caused by fluctuations of the ac Stark shift that arise from the fluctuating photon

number. The total ensemble-dephasing rate Γ = Γm + Γe generally includes additional

environmental dephasing Γe, but we will mostly neglect Γe for simplicity. The measurement-

induced ensemble dephasing is related to the distinguishability time (sometimes called the

“measurement time”)

τ ≡ (2ηΓm)−1, (2.18)

needed for achieving unit signal-to-noise ratio in the quadrature output, where η ∈ [0, 1] is

the quantum efficiency of the detection circuit.

We emphasise that these standard results for δωq and Γm are for the measurement

of a single qubit; moreover, they implicitly assume the “bad cavity limit” in the sense that

the qubit evolution is much slower than κ (in this case it is sufficient to consider only

coherent states in the resonator, entangled with the qubit, which leads to relatively simple

formulas). Therefore, we should not expect that these results are directly applicable to our

problem, which focuses on evolution involving the neighboring qubit. In particular, when

the qubit-qubit detuning ∆ is larger than κ, the relatively slow fluctuations of the photon

number in the resonator will not produce the same dephasing Γm between the states |10〉
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and |01〉 (as would be expected for infinitely fast fluctuations). Similarly, for ∆ � κ the

ac Stark shift contribution to ∆ is supposed to be governed mainly by n̄+ (or n̄− if the

main state is |01〉) rather than given by Eq. (2.16). Even though Γm in Eq. (2.17) does not

in general describe the ensemble dephasing between |10〉 and |01〉, in this chapter we will

extensively use Γm defined in Eq. (2.17) as a notation.

2.3 Eigenstates vs. bare states

A master equation is incapable of describing the fidelity of the qubit measurement,

even in principle, so we will be forced to consider the individual quantum trajectories in

Section 2.4. Nevertheless, even without a more detailed trajectory description we can

already answer the most basic question about the qubit measurement: does the ensemble-

averaged evolution faithfully preserve a logical qubit basis?

To answer this question, we simulate the full master equation in Eq. (2.9) [equiva-

lently, Eq. (2.10) can be iterated] starting in either a bare state |10〉, or an eigenstate |10〉,

with the resonator in an initial ground state for simplicity (the simulation starting in the

state |00〉 is trivial). When starting in |10〉, we calculate the evolution of the bare state

population P10, and when starting in |10〉, we calculate the eigenstate population P10 (see

the left and right panels in Fig. 2.2). If one of these populations remains very close to

1, then we infer that the corresponding basis is faithfully preserved by the measurement

dynamics.

As shown in Fig. 2.2, from these simulations we identify three parameter regimes

that have qualitatively different behaviors (using g � ∆ and Γe = 0):
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Figure 2.2: Blue lines: ensemble-averaged evolution of the population P10 of the bare-basis
state |10〉 when the evolution starts in this state (left panels) and the population P10 of
the eigenstate |10〉 when starting in this state (right panels). The dashed red lines show
the initial value 1 of all blue lines for reference. The time is normalized by the ensemble-
dephasing rate Γm due to measurement; we assume fixed qubit-qubit coupling and detuning
with g/∆ = 1/10 for all regimes. (a) Textbook regime with ∆ � Γm � κ, using directly
applied qubit-dephasing of Γm/∆ = 20 for simplicity (i.e., assuming κ → ∞). The bare
state |10〉 is best preserved by the evolution, but slowly decays at the rate 2g2/Γm, while
the eigenstate population P10 additionally drops by approximately 2(g/∆)2. (b) Adiabatic
(experimental) regime with (Γm, κ) � ∆, using κ/∆ = 10−1 and Γm/∆ = 10−2, set by
assuming a weak response χ/κ = 3.5 × 10−2 and a resonator drive ωd = ωr with power
tuned to produce the steady-state photon number n̄ = 10. The eigenstate |10〉 is best
preserved by the evolution, but slowly decays (analogously to the textbook regime for P10),
while the bare population P10 additionally drops by 2(g/∆)2. (c) Frustrated regime with
Γm � ∆ � κ, using κ/∆ = 10 and Γm/∆ = 10−4, keeping the same χ/∆ and n̄ as in
the adiabatic regime. The bare state population P10 drops by 2(g/∆)2 compared to the
eigenstate population P10, and both populations show rapid decay. The decay rate seen in
regimes (b) and (c) matches the analytical results for averaged incoherent quantum jumps
between the eigenstates (see Fig. 2.4), an example of which is shown here in the bare (c)
plot as the overlaid dashed yellow curve.
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(a) ∆� (Γm, κ) : textbook — almost stable bare state,

(b) (Γm, κ)� ∆ : adiabatic — almost stable eigenstate,

(c) Γm � ∆� κ : frustrated — unstable eigenstate.

The parameters used for each of these regimes are detailed in the caption for Fig. 2.2. As

expected from the similar analysis for measurement of phase qubits [114], for Γm � ∆ the

measurement effectively occurs in the eigenbasis, while the traditional (textbook) bare-basis

measurement requires Γm � ∆. However, transmon qubits have an additional important

parameter that has no analogue in phase qubits: the resonator energy-decay rate κ. As we

will see, the relative magnitudes of κ and ∆ determine the “stability” of the eigenbasis.

In the regime (a), the resonator empties and the system dephases much faster

than the qubit-qubit evolution, so the bare states |10〉 and |00〉 are preserved as the optimal

logical basis, just as we would expect from a textbook projective measurement. That is, our

numerical simulation in Fig. 2.2(a) shows that the bare state population P10 is preserved

practically at 1, while the eigenstate population P10 (when starting with |10〉) drops by

roughly 2(g/∆)2 during the transient (collapse) evolution. [Here one factor of (g/∆)2 stems

from the physical collapse of the eigenstate to an incoherent mixture of the single-excitation

bare states |10〉 and |01〉, while the second factor (g/∆)2 comes from plotting the eigenstate

population.] At a much longer time scale the bare-basis population gradually decreases

because non-zero g makes the measurement not fully projective, leading to rare transitions

(jumps) between the states |10〉 and |01〉. Note that for numerical simplicity in the regime

(a) we simulated the evolution assuming κ� Γm, so that the qubits and resonator remain

effectively disentangled (qubit entanglement with the emitted field is not important for the
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master equation approach). With this approximation, we can simplify Eq. (2.9) by reducing

it to a two-qubit Hilbert space and taking into account the interaction with the resonator by

applying the dephasing with the rate Γm to the measured qubit. In this case the transient

evolution occurs on the time scale Γ−1
m and the population P10 decays with the rate 2g2/Γm.

The textbook regime (a) is most easy to understand and analyze. However, we emphasize

that this regime is not realized in realistic experiments with transmons, in which typically

∆� Γm.

In the adiabatic regime (b), which more closely describes recent experiments [50,

62, 113], the resonator empties and the system dephases more slowly than the qubit-qubit

evolution, so the eigenstates |10〉 and |00〉 are preserved as the optimal logical basis. That

is, our numerical simulation in Fig. 2.2(b) shows that the eigenstate population P10 is

preserved at almost 1, in contrast to the textbook regime, while the bare state population

P10 (when initially 1) drops by roughly 2(g/∆)2 within the collapse timescale (this timescale

is Γ−1
m if κ � Γm, while for κ � Γm everything is determined by transients). Again,

in this drop one factor of (g/∆)2 comes from the collapse into an incoherent mixture of

single-excitation eigenstates |10〉 and |01〉, while the second factor comes from plotting

the bare state population. At longer time scales, we also observe in Fig. 2.2(b) that the

eigenstate population P10 decays exponentially at a very slow rate. This occurs because

of rare transitions (jumps) between the eigenstates |10〉 and |01〉, discussed in more detail

later.

The frustrated regime (c) differs from the adiabatic regime (b) only by the relative

magnitude of the resonator decay κ and the qubit-qubit detuning ∆, κ� ∆. Nevertheless,
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this regime dramatically amplifies the exponential decay process observed at long times in

the adiabatic regime (b). The rapid decay seen in Fig. 2.2(c) occurs for both bare and

eigenstates, so that neither of these bases is good for preserving a logical state. This occurs

because fast oscillations ∆ (compared to dephasing Γm) favor the eigenbasis, while even

faster decay κ makes the outgoing photons sensitive to the bare basis.

In both regimes (b) and (c), the system collapses to the eigenstates, after which the

state may jump between the eigenstates. This behavior is evidenced in Fig. 2.3, showing the

ensemble-averaged evolution in the Bloch sphere representation of the qubit-qubit single-

excitation subspace. The ratio κ/∆ = 1 is chosen in between the regimes (b) and (c). The

initially bare state rapidly oscillates around the eigenstate axis as it spirals into this axis

on average, indicating that the initially bare state collapses to an incoherent mixture of the

eigenstates. After that the exponential decay occurs along the eigenstate axis of the Bloch

sphere, indicating that it arises solely from a classical mixing process that scrambles those

eigenstates.

The physical origin of the exponential decay seen in regimes (b) and (c) is not

apparent from examining the ensemble-averaged behavior of the master equation alone, but

we shall see that this decay can be interpreted as arising from averaging random quantum

jumps between the eigenstates that occur during the continuous measurement process. For

the remainder of this chapter we will mostly focus on understanding the transition between

the adiabatic regime (b) and the frustrated regime (c) as κ is varied with respect to ∆.

We also briefly note that in principle there is a fourth parameter regime: (d)

κ � ∆ � Γm. We do not consider this regime here, since in this case it is difficult to
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Figure 2.3: Qubit-qubit single-excitation ensemble-averaged evolution, using bare Bloch
sphere coordinates defined by x = |10〉〈01| + |01〉〈10|, y = −i(|10〉〈01| − |01〉〈10|) and
z = |10〉〈10| − |01〉〈01|, and parameters g/∆ = 1/10, κ/∆ = 1, and Γm/∆ = 1/100
(with n̄ = 2 and correspondingly χ/κ = 1/40). An initially bare state |10〉 ≡ (0, 0, 1)
oscillates rapidly around the tilted axis corresponding to the eigenbasis {|10〉, |01〉}, and
approaches this axis, indicating the gradual collapse, which produces an incoherent mixture
of the eigenstates. At longer times, the ensemble averaged state continues moving along the
eigenstate axis at a slow rate, indicating an additional classical mixing process. (top) 3D
plot of (x, y, z) evolution, showing the spiraling evolution to the eigenstate axis and then
along the axis, simulated for Γmt ∈ [0, 40]. (bottom) Slice of x-z plane, with sphere surface
shown as the dashed gray curve and the eigenstate axis shown as the dashed red line tilted
from the bare z axis by the angle 2θ = arctan(2g/∆). Black dots show time intervals of
Γmt = 5.
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clearly pose the problem of finding a preferable measurement basis without focusing solely

on the ring up evolution for the resonator, and since this regime is not relevant to actual

experiments.

2.4 Quantum jumps in eigenbasis

In this section we focus on understanding the exponential decay at long times

in Figs. 2.2 and 2.3 for the adiabatic and frustrated regimes (b) and (c). The ensemble-

averaged simulation suggests that after an initial state collapses to one of the two eigenstates

{|10〉, |01〉}, these eigenstates then become further mixed at a rate that depends on the

relative magnitude of the resonator decay κ and the qubit-qubit detuning ∆. As we will

soon see using quantum trajectory simulations, this mixing process can be identified as

stochastic quantum jumps between otherwise stabilized eigenstates.

Treating these jumps semiclassically as telegraph noise, we surmise there must

exist two unidirectional switching rates Γ±sw for randomly transitioning from the state |10〉

to |01〉 (−) or vice versa (+). The eigenstate population therefore should obey the simple

ensemble-averaged rate equation

Ṗ10 = −Γ−sw P10 + Γ+
sw (1− P10), (2.19)

where we used P10 + P01 = 1. In particular, the solution of this equation starting with

P10(0) = 1 is

P10(t) =
Γ+

sw

Γ+
sw + Γ−sw

+
Γ−sw

Γ+
sw + Γ−sw

e−(Γ+
sw+Γ−sw)t, (2.20)

it eventually saturates at the population Γ+
sw/(Γ

+
sw + Γ−sw), and has an initial decay slope
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of Γ−sw. If the switching rates are equal, the solution will eventually reach the maximally

mixed eigenpopulation of 1/2 (i.e., the center of the Bloch sphere in Fig. 2.3). We derive

the switching rates for this model in the next section, after which we will describe how to

simulate the quantum trajectories that show this switching behavior explicitly.

2.4.1 Switching rate

In order to calculate the rates Γ±sw of jumps between the eigenstates |10〉 and |01〉 in

the slow dephasing regime Γm � ∆ of Fig. 2.2(b,c), we will take literally the interpretation

of the ensemble dephasing Γm in Eq. (2.17) as being due to a fluctuating number of photons

in the resonator, causing a fluctuating ac Stark shift. Moreover, we will treat the fluctuating

photon numbers n±(t) = n̄± + δn±(t) as classical variables, with the means n̄± given in

Eq. (2.13) and fluctuations δn±(t) having temporal correlations [78, 90]

〈δn±(t) δn±(0)〉 = n̄± e
−κ|t|/2. (2.21)

Here the upper sign corresponds to the state |10〉, for which the main qubit is practically in

the state |1〉, while the lower sign is for |01〉. We will be mostly interested in the switching

rate Γ−sw for the process |10〉 → |01〉, which is caused by fluctuations of n+(t); however,

for completeness we calculate both switching rates (the upper sign in all equations below

is sufficient to find Γ−sw). Note that the decay rate of κ/2 in Eq. (2.21) is consistent with

the decay of classical energy fluctuations in a pumped resonator (in contrast to the energy

decay κ in an unpumped resonator). Also note that here we neglected the oscillations of

the correlator with frequency ∆r ± χ (discussed later).

The fluctuating number of photons n±(t) causes a fluctuating ac Stark shift 2χn±(t)
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[as follows from the dispersive coupling of Eq. (2.4)], which leads to a fluctuating qubit-qubit

detuning ∆ + δ∆, with δ∆(t) = 2χ δn±(t). This in turn produces a fluctuating effective

coupling g̃(t) between the stationary eigenstates |10〉 and |01〉, since they are no longer true

eigenstates for the detuning ∆ + δ∆. The fluctuations δn+(t) for the state |10〉 produce the

coupling

g̃+(t) = 〈01|δH|10〉 = − g
Ω
δ∆(t) = −2

g

Ω
χ δn+(t), (2.22)

while for the state |01〉 the fluctuations δn−(t) are somewhat different, producing

g̃−(t) = 〈10|δH|01〉 = −2
g

Ω
χ δn−(t), (2.23)

where in the single-excitation subspace δH = (δ∆/2) (|10〉〈10| − |01〉〈01|) and

Ω = ∆
√

1 + (2g/∆)2 ≈ ∆ (2.24)

is energy difference between |10〉 and |01〉 (we omit the subscripts in ∆±, Ω± and δ∆± for

brevity). The derivation of Eq. (2.22) is very simple when g � ∆. Then the true eigenstates

should correspond to the rotation angle θ ≈ g/(∆ + δ∆) from the bare basis instead of the

angle θ ≈ g/∆ for |10〉 and |01〉. The additional angle, δθ ≈ −g δ∆/∆2, is the rotation

g̃/∆ between the true and stationary eigenbases. Thus we obtain g̃ = −(g/∆) δ∆, which is

Eq. (2.22) with Ω ≈ ∆. In the exact derivation we can use θ = arctan(2g/∆)/2, then the

derivative is dθ/d∆ = −g/Ω2, which should be equal to (g̃/Ω)/δ∆; this gives Eq. (2.22).

The fluctuating effective coupling g̃ between the eigenstates |10〉 and |01〉 leads to a

gradual mixing between them, which corresponds to random jumps between the eigenstates

in the approach of quantum trajectories. We can find the rate Γsw of these jumps by starting

with one of the eigenstates and equating Γswt with the population of the other eigenstate,
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which follows from the solution of the Schrödinger equation with the coupling g̃. Thus, to

lowest order in g̃ we find the switching rate

Γ∓sw =

〈
1

t

∣∣∣∣∫ t

0
g̃±(t′) e±iΩ(t−t′) dt′

∣∣∣∣2
〉
, (2.25)

where the brackets mean averaging over the random realizations of g̃(t). This equation

formally depends on time t; however, there is actually no time dependence for sufficiently

long t, for which the evolution can be physically described by a switching rate. This can be

seen by expressing the square of the windowed Fourier transform in Eq. (2.25) via the (two-

sided) spectral density Sg̃±(ω) of g̃±(t): Γ∓sw =
∫∞
−∞ Sg̃±(±Ω + ω)[1 − cos(ωt)](πtω2)−1dω.

Therefore, at sufficiently long times Γ∓sw = Sg̃±(±Ω), which does not depend on time.

Because of the linear relations (2.22) and (2.23) between g̃±(t) and δn±(t), their spectral

densities are related as Sg̃±(Ω) = (2χg/Ω)2Sδn±(Ω), therefore

Γ∓sw = (2χg/Ω)2Sδn±(±Ω). (2.26)

[Note that for classical fluctuations δn±(t) the spectral density is symmetric, Sδn±(−Ω) =

Sδn±(Ω); however, we keep the sign of Ω in Eq. (2.26) to discuss the asymmetric case later.]

The (two-sided) spectral density Sδn± can be found via the Wiener-Khinchin theorem [125]

Sδn±(Ω) =
∫∞
−∞〈δn±(t) δn±(0)〉 e−iΩt dt, so that using Eq. (2.21) we obtain the switching

rate

Γ∓sw =
2g2

Ω2

8χ2n̄±
κ

κ2

κ2 + 4Ω2
. (2.27)

This result obviously assumes Γ∓sw � |Ω| and is not applicable during the initial transient

evolution due to collapse.

Note that the term 8χ2n̄±/κ in Eq. (2.27) is similar to the measurement-induced

dephasing Γm given by Eq. (2.17), but it depends on n̄+ for Γ−sw (or on n̄− for Γ+
sw) rather
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Figure 2.4: Switching rate vs. cavity decay rate. Blue solid line: switching rate analytics
Γsw/Γm = 2(g/Ω)2/[1 + (2Ω/κ)2] as a function of the ratio κ/∆. Red boxes: numerical
switching rate obtained from solving the master equation and extracting the decay rate Γsw

from fitting P10(t) [as shown in the right panels of Figs. 2.2(b,c)] with Eq. (2.20), assuming
Γ+

sw = Γ−sw. A typical relative difference between the numerical and analytical results is
about 10−3, which is comparable to an inaccuracy from the fitting procedure. The used
parameters are: g/∆ = 1/10 and 1/20, n̄ = 10, ∆r = 0, and χ/∆ = 10−3.

than the combination n̄+n̄−/n̄max in Eq. (2.17). In the case when n̄+ ≈ n̄− ≈ n̄max (which

occurs when |∆r ± χ| � κ) we obtain Γ+
sw ≈ Γ−sw ≡ Γsw with

Γsw ≈ 2Γm
g2

∆2

κ2

κ2 + 4∆2
, (2.28)

where we also used Ω ≈ ∆ since g � ∆. Note that in the regime κ � ∆ [as in Fig.

2.2(c)] the last factor in Eq. (2.28) is close to 1, and the switching rate is rather large,

Γsw ≈ 2Γm(g/∆)2, while in the regime κ � ∆ [as in Fig. 2.2(b)] the switching rate is

additionally suppressed by the factor (κ/2∆)2.

We have numerically verified Eq. (2.27) for the switching rates by comparing the

telegraph noise solution of Eq. (2.20) to the ensemble-averaged population decay obtained
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from simulating the full master equation (2.9) for a range of κ/∆. The comparison is plotted

in Fig. 2.4, showing excellent agreement. A typical mismatch between the analytics and

numerics is on the order of 0.1%, which is comparable to the inaccuracy from the numerical

fitting procedure. Most importantly, in Fig. 2.4 we see a strong suppression of the switching

rate at κ/∆� 1.

Solution of Eq. (2.19) with the switching rates given by Eq. (2.27) is sufficient to

describe the ensemble-averaged evolution when the initial state is an eigenstate. If this is not

the case, we need to include collapse of the initial state into the eigenbasis. In particular, for

the bare initial state |10〉, the evolution in Eq. (2.19) effectively starts with P10(0) = cos2 θ.

As an example, the yellow line in the left panel of Fig. 2.2(c) shows such evolution, which

is then converted back into the bare basis. While this simple approach does not describe

the transient (collapse) dynamics, it accurately describes the evolution after that.

Our derivation for the switching rates Γ∓sw in this section has been based on treating

fluctuations δn±(t) as classical fluctuations. The quantum nature of these fluctuations leads

to an asymmetric spectral density [90] Sδn±(Ω) = n̄±κ/[(κ/2)2 + (Ω−∆r ∓ χ)2]. Inserting

this formula into Eq. (2.26), we obtain Γ∓sw = 2(g/Ω)2(8χ2n̄±/κ)κ2/[κ2 + 4(±Ω − ∆r ∓

χ)2], which introduces a slight correction compared to Eq. (2.27). Physically, this formula

says that if the extra photon energy −∆r ∓ χ is positive, this helps the switching process

with increase of energy, and vice versa. Even though this correction is very minor in

the typical case, our numerical results using the master equation confirm the presence of

this correction. However, our numerical results are more consistent with the combination

κ2 +4(±Ω−∆r±χ)2 in the denominator of the equation. This combination means that the
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process depends on the extra photon energy −∆r ± χ after the switching (which changes

the resonator frequency by ±2χ) instead of the extra energy −∆r∓χ before the switching.

Note that the logic of our derivation cannot correctly take into account the change of the

resonator frequency during switching. Also, numerical results for some parameters are

not consistent with the combination −∆r ± χ as well (indicating a possible presence of a

parameter-dependent coefficient in front of ±χ). Therefore, we are confident only in the

correction of Eq. (2.27) due to ∆r,

Γ∓sw =
2g2

Ω2

8χ2n̄±
κ

κ2

κ2 + 4(±Ω−∆r)2
, (2.29)

omiting the dependence on χ in the denominator.

Note that if additional environmental dephasing Γe is included in the master equa-

tion, it will contribute a similar term of (2Γe)(g/Ω)2 to both the up and down switching

rates equally. Environmental energy-decay will also effectively contribute a term (1/T1) to

only the down switching rate Γ−sw. However, while such energy decay may be qualitatively

similar in its effect on the excited population P10, it is intrinsically different from the eigen-

state switching behavior derived here since it transfers the excitation to the ground state

|00〉 outside the single-excitation subspace, instead of switching to |01〉.

We also note that the mechanism discussed here of switching between the eigen-

states |10〉 and |01〉 is physically similar to the mechanism of “dressed dephasing” [126, 127],

in which the role of the two-qubit coupling is played by the Jaynes-Cummings coupling be-

tween the qubit and resonator.
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2.4.2 Quantum trajectory simulations

In order to justify our understanding of the exponential decay in Fig. 2.2(b,c) as

resulting from quantum jumps, we must go beyond the master equation in Eq. (2.9) and

consider more detailed quantum trajectories [119, 128–131] (which have been confirmed

experimentally with superconducting qubits [132–135]). In this approach we simulate in-

dividual realizations of the evolution due to measurement, rather than ensemble-averaged

dynamics. In particular, in this case there is no measurement-induced dephasing (i.e., a

change of the qubit phase); instead, the gradually-acquired information obtained from mea-

surement causes continuous stochastic “attraction” to the states |0〉 and |1〉 of the measured

qubit (random motion along the meridians on the Bloch sphere). After ensemble averaging,

these two evolutions produce the same effect, but in each individual measurement the effects

are drastically different. Most importantly, using the approach of trajectories we simulate

actual experimental realizations, which is impossible using the master equation.

Since the full quantum trajectory simulation [119, 129] of our system is very diffi-

cult computationally, we performed the simulation only in the regimes of Figs. 2.2(a) and

2.2(c), i.e., assuming the “bad cavity limit”, κ� (∆,Γ). In this case the full simulation can

be replaced with the simple quantum Bayesian approach [120, 130]. For further simplifica-

tion we assumed that the resonator is driven practically on resonance, |∆r±χ| � κ, and the

setup in Fig. 2.1 uses a phase-sensitive amplifier, which amplifies and outputs the optimal

quadrature I(t), carrying information about the qubit state (the use of a phase-preserving

amplifier can be described by introducing a limited quantum efficiency, η ≤ 1/2).

The simulations have been performed in the standard quantum Bayesian way
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[106, 120, 130, 132, 136], restricted to the two-qubit single-excitation subspace, i.e., we

simulate evolution of the density matrix with elements ρ10,10, ρ01,01, and ρ10,01, using the

bare basis. In brief, at each (small) time step dt, the unitary evolution due to the two-qubit

Hamiltonian Hq + Hqq [see Eqs. (2.2) and (2.6)] is interleaved with the evolution due to

measurement, calculated in the following way. First, the value of the output signal I(t)

(averaged over the duration dt) is picked randomly from the probability distribution

p(I) =ρ10,10(t)
e−(I−I1)2/2D

(2πD)1/2
+ ρ01,01(t)

e−(I−I0)2/2D

(2πD)1/2
, (2.30)

where I1 = 1 and I0 = −1 correspond to the bare qubit states |10〉 and |01〉, and the

variance of the Gaussians is D = τ/dt with the distinguishability time τ = (2ηΓm)−1

defined in Eq. (2.18). After picking a random value of I, the density matrix is updated

using the relations

ρ10,10(t+ dt)

ρ01,01(t+ dt)
=
ρ10,10(t)

ρ01,01(t)

exp[−(I − I1) dt/2τ ]

exp[−(I − I0) dt/2τ ]
, (2.31)

ρ10,01(t+ dt)√
ρ10,10(t+ dt)ρ01,01(t+ dt)

=
ρ10,01(t) e−(Γ−ηΓm)dt√

ρ10,10(t)ρ01,01(t)
,

where ρ10,10 + ρ01,01 = 1 and Γ = Γm + Γe may include additional environmental dephasing

Γe. For clarity, in what follows we assume η = 1 and Γ = Γm. For a sufficiently small

dt, this random sampling and state update procedure approximates continuous stochastic

trajectories for the two-qubit state ρ(t), as well as for the normalized readout I(t) = z(t) +

ξ(t) that tracks the bare population difference z(t) = ρ10,10(t) − ρ01,01(t), up to additive

white noise ξ(t) with a constant (two-sided) spectral density S = τ . While the simulations

are performed in the bare basis, the resulting density matrix ρ can be easily converted into

the eigenbasis. In particular, we are interested in tracking the eigenbasis populations P10 =
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Figure 2.5: An example of quantum jump (switching event) between eigenstates |10〉 and
|01〉, obtained in the quantum trajectory simulation for g/∆ = 1/20, Γm/∆ = 2.5 × 10−4

and κ � ∆ (bad cavity regime). The eigenstate Bloch coordinate ze = P10 − P01 noisily
hovers near ±1, except when it rapidly jumps between the eigenstates on the timescale of
Γ−1

m . Averaging these random jumps produces the decay observed in Fig. 2.2(b,c). The
physical picture of these jumps is used later to calculate the measurement error.

ρ10,10 and P01 = ρ01,01 besides the bare basis populations P10 = ρ10,10 and P01 = ρ01,01.

With these simulations, we can analyze transition between the regimes of Fig.

2.2(a) and 2.2(c), discussed in Sec. 2.3. In the textbook regime (a), Γm � ∆, we observe

that an initial state (in the single-excitation subspace) gradually collapses to either the bare

state |10〉 or |01〉 within the time scale of (few times) Γ−1
m , with rare transitions between

the bare states at long time (note that η = 1 and κ � ∆,Γm). In contrast, in the regime

(c), Γm � ∆, we find from the simulations that the individual trajectories indeed collapse

to the eigenstates |10〉 and |01〉 at the same time scale Γ−1
m , as expected from the master

equation simulations. We also observe the expected random quantum jumps between these

eigenstates at longer time scales. An example of such a quantum jump obtained from the

simulations is presented in Fig. 2.5, showing the eigenpopulation difference ze = P10 − P01
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switching from 1 to −1. The typical “width” of the jump is comparable to Γ−1
m , though

its central part can be significantly shorter. In between these random jumps the states

remain close to eigenstates (though sometimes with “attempts” of jumps), confirming the

assumptions made in the telegraph noise model of the switching.

Ensemble averaging of the jumps produces the gradual decay of the population

shown in Fig. 2.2(c). We have checked numerically that the averaging of the quantum tra-

jectory results coincides with the master equation results, thus also confirming the formula

(2.28) for the switching rate in the regime κ� ∆. Note that in our trajectory simulations

Γ+
sw = Γ−sw, so the switching can be characterized by a single rate Γsw.

We thus numerically confirm our intuitive understanding of the collapse to the

eigenstates and rare switching between them when Γm � ∆. Note that in the simulated

regime when also ∆� κ, the switching rate is relatively large, Γsw ≈ 2Γm(g/∆)2, as follows

from Eq. (2.28). This can be understood as because the fast resonator decay κ allows each

pump photon to probe only the bare states of the first qubit before escaping to be collected.

In other words, the “incremental” measurement information is still sensitive to the bare

basis, even though the relatively fast interqubit dynamics, ∆� Γm, causes the collapse to

occur in the eigenbasis (this is because by the time “significant” information is collected, the

eigenbasis emerges as more relevant physically). The tension between the different bases for

the measurement in this “frustrated” regime leads to a relatively large switching rate. In

contrast, when κ� ∆ (and still Γm � ∆), each photon in the resonator has sufficient time

to feel the two-qubit dynamics averaged over the fast oscillations ∆. Therefore, even the

“incremental” information in the measurement is sensitive to the eigenbasis, thus making
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it very stable and correspondingly reducing the switching rate Γsw. This is a qualitative

physical interpretation of the reduction factor κ2/(κ2 + 4∆2) in Eq. (2.28) from the point

of view of quantum trajectories.

Note that this interpretation is very different from the physical picture used in our

derivation of Γsw in Sec. 2.4.1, in which the reduction factor κ2/(κ2 + 4∆2) came from non-

zero correlation time of the fluctuations δn(t). Actually, that picture was based on “fake”

trajectories for δn(t) and was not capable of producing collapse and switching. However, it

was capable of describing the ensemble-averaged dynamics, from which we derived Γsw in-

directly, by associating the ensemble-averaged dynamics with the physically correct picture

of quantum jumps. The difference between the two pictures is that quantum trajectories

in this section describe actual homodyne measurement, while in Sec. 2.4.1 we implicitly

assumed a power (photon number) measurement right after the resonator. The two pic-

tures produce the same ensemble-averaged dynamics because of the causality principle, but

describe very different evolutions in individual realizations of the measurement.

Since the causality principle is not entirely trivial, let us discuss it in a little more

detail. Classical causality requires that an experimenter’s action at the present time can-

not affect anything in the past. More specifically, the choice of a particular action cannot

affect the past. For example, such a choice cannot affect the evolution of an object that

has interacted in the past with another object, which is now accessible to the experimenter.

However, as we know from the Einstein-Podolsky-Rosen-Bell paradox, this classical causal-

ity principle does not work in quantum mechanics, leading in particular to subtle “delayed

choice” experiments. As a recent example, for a qubit continuously measured in a circuit
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QED setup, the choice of a measured microwave quadrature (selected with a phase-sensitive

amplifier) can dictate the qubit evolution either along meridians or along parallels of the

Bloch sphere [120], even though this choice affects the microwave only after its interaction

with the qubit (this prediction has been confirmed experimentally [132]). Thus, an exper-

imenter’s choice in the present may affect the past. However, such passing of information

into the past cannot be “useful”, in the sense that another experimenter in the past cannot

extract information about the later choice (otherwise it would be possible to send classi-

cal information to yourself in the past; this requirement is often called “no signaling”).

Technically, this limitation is caused by necessarily random results of the measurement:

randomness saves causality. In the above example, we can force the qubit retroactively

to move along meridians or along parallels, but we cannot control whether the qubit will

move right or left (up or down), making it impossible to distinguish the two cases (without

using additional information about the microwave measurement result). Because of the no

signaling requirement, the choice of the measurement cannot affect the ensemble-averaged

evolution in the past (i.e., averaged over the random measurement result in the present),

because otherwise it would be possible to extract classical information about the choice. (A

similar argument leads to the no-cloning theorem [137, 138].) Thus, the causality princi-

ple in quantum mechanics does not forbid an experimenter to affect evolution in the past;

however, the ensemble-averaged evolution in the past (averaged over randomness) cannot

be affected by an experimenter’s choice (see also [120]).
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2.5 Qubit measurement error

The switching events (quantum jumps) contribute to the measurement error, which

we discuss in this section. Here we consider only the realistic case Γm � ∆, when the

eigenbasis is preferred for logical encoding over the bare basis. The goal of this section is to

find the minimum error, determined by the switching rate Γ−sw (the analysis is very similar

to the error limited by the energy relaxation time T1). For simplicity we do not consider

transients, assuming that the measurement occurs in the steady state.

We assume that for the readout the information-carrying quadrature I(t) of the

output signal is integrated over the measurement duration t, producing the averaged output

Ī(t) =
1

t

∫ t

0
I(t′) dt′, (2.32)

and then this value is compared with the threshold Ith to produce a binary readout of “0”

or “1.” (More advanced signal processing of I(t) can moderately improve the measurement

fidelity [102, 115]; we consider the straightforward integration (2.32) for simplicity.) If our

goal is to distinguish the states |10〉 and |00〉, then the probabilities of misidentifying these

states are

P (1)
err =

∫ Ith

−∞
P (Ī | 10) dĪ, P (0)

err =

∫ ∞
Ith

P (Ī | 00) dĪ, (2.33)

respectively, where P (Ī | 10) is the probability density of obtaining the result Ī when the

initial state is |10〉 and P (Ī | 00) is the analogous probability for the initial state |00〉. The

total measurement error is the average of the two errors,

Perr =
1

2
[P (1)

err + P (0)
err ]. (2.34)
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Figure 2.6: Signal histograms P (Ī | 00) and P (Ī | 10) for the integrated quadrature Ī, given
the initial logical eigenstates |00〉 and |10〉. Shown are the binned readouts for 100, 000
trajectories simulated as in Fig. 2.5 for duration t/τ = 7, with g/∆ = 1/10, Γm/∆ = 10−3,
and η = 1. Note that P (Ī | 00) is a Gaussian centered at I0 = −1, but P (Ī | 10) is a slightly
shifted Gaussian [centered at 1 − 2(g/∆)2 instead of I1 = 1], with a significant extended
“tail” (red shaded region) caused by quantum jumps. The overlap of the two Gaussians
decreases with integration time t, but the histogram overlap due to the tail increases with
t, thus preventing perfect discrimination.

Figure 2.6 shows example histograms for P (Ī | 00) and P (Ī | 10), obtained by sim-

ulating 100,000 quantum trajectories, as discussed in the previous section for t/τ = 7,

g/∆ = 1/10, Γm/∆ = 10−3, and η = 1 (in this case Γswτ = 9.6× 10−3). As in the previous

section, we use the normalization in which an ideal single-qubit measurement corresponds

to Ī = I1 = 1 for the state |1〉 and Ī = I0 = −1 for the state |0〉. As seen from Fig. 2.6, the

probability distribution P (Ī | 00) is a Gaussian centered at Ī = −1, while P (Ī | 10) has a

significant “tail” (red shaded region), caused by switching events. Also, the Gaussian part

of P (Ī | 10) is centered at a value slightly smaller than 1 (this shift is practically not visible)
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because the eigenstate |10〉 has a small contribution from |01〉. The shape of the histograms

is discussed in Appendix D.

The errors P
(1)
err , P

(0)
err , and Perr depend on the choice of the threshold Ith. Obviously,

the total error Perr is minimized when the threshold is set such that P (Ith | 10) = P (Ith | 00).

However, in most of this section we will assume the symmetric threshold, Ith = 0. This is

done for simplicity and also because, as we will see later, the use of the optimal threshold

decreases the error insignificantly (with a typical relative improvement of . 3%). Also note

that we will discuss the error for distinguishing the eigenstates |10〉 and |00〉 as optimal for

logical encoding; the corresponding error for distinguishing the bare states |10〉 and |00〉 has

an additional contribution,

P
(1)
err,bare ≈ P (1)

err + (g/∆)2, (2.35)

because of the initial collapse of the bare state |10〉 into either the eigenstate |10〉 or |01〉.

2.5.1 Error contributions

In the absence of switching, Γ−sw = 0, the error steadily decreases with integration

time because the variance σ2 = τ/t of the Gaussians in Fig. 2.6 decreases with time t [the

distinguishability time τ is given by Eq. (2.18)]. In particular, for Ith = 0 this “separation”

error is

P (0)
err,sep =

1

2

[
1− erf(

√
t/2τ)

]
, (2.36)

P (1)
err,sep =

1

2

[
1− erf(cos(2θ)

√
t/2τ)

]
, (2.37)

where cos(2θ) ≈ 1−2(g/∆)2 comes from the difference between the eigenbasis and the bare

basis. (For the optimal threshold both errors will contain erf[
√
t/2τ(1 + cos 2θ)/2].) For a
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small g/∆ this correction is small, and we will neglect it below.

The separation error rapidly becomes very small: 10−2 for t = 5.4 τ , 10−3 for

t = 9.5 τ , and 10−4 for t = 13.8 τ . However, the switching process |10〉 → |01〉, occurring

with the rate Γ−sw, adds a contribution to the error P
(1)
err that increases in time nearly linearly,

P (1)
err ≈ P (1)

err,sep +
1

2
Γ−swt, (2.38)

so that the total error becomes

Perr ≈
1− erf(

√
t/2τ)

2
+

1

4
Γ−swt, (2.39)

where we used cos(2θ) ≈ 1, Ith = 0, and (Γ−sw + Γ+
sw)t � 1. More accurate calcula-

tions (in particular, taking into account double-switching trajectories, proper convolution

of switching and noise, and effects of θ) are presented in Appendix D. Note that it is easy to

understand the factor 1/2 in Eq. (2.38) by saying that the initial state |10〉 will be misiden-

tified only if the switching event occurs before the middle of the integration time, so that

the erroneous state is integrated for a longer time than the correct state. (A better interpre-

tation of this factor via symmetry of the convolution is discussed in Appendix D.) We also

note that Eqs. (2.38) and (2.39) can also describe the error for a single-qubit measurement

that accounts for energy relaxation, with Γ−sw replaced by T−1
1 .

In Fig. 2.7 we illustrate the decomposition of the eigenbasis measurement error

Perr of Eq. (2.39) into its two parts for Γ−swτ = 10−3. The orange dashed line shows the

error contribution from the integrated white noise (separation error), which monotonically

decreases with integration time. The green dashed line shows the error from switching

events, which linearly increases with integration time. The combination of these two op-
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Figure 2.7: Simple analytics for the measurement error Perr as a function of an integration
duration t, normalized by the distinguishability time τ . Orange dashed line shows the
monotonically decreasing separation error from integrated white noise. Green dashed line
shows the linearly increasing error Γ−swt/4 from switching events, for which we choose Γ−sw τ =
10−3. The blue solid line shows the total measurement error, which has a minimum of
Pmin

err ≈ (Γ−swτ/2) ln(0.6/Γ−swτ) at the optimum time topt/τ ≈ 2 ln(1/4Γ−swτ).

posing effects in the total measurement error (blue solid line) produces a minimum error

Pmin
err at an optimum time topt, which we discuss in the following section.

To verify that this simple approach adequately models the measurement error,

Fig. 2.8 shows a comparison of the measurement error P
(1)
err for the initial state |10〉 calculated

in three ways: using quantum trajectories, using the simplified description (2.38), and using

the more accurate analytics discussed in appendix D. The quantum trajectory method has

used M = 1, 500, 000 individual trajectories initialized in the eigenstate |10〉 for g/∆ = 1/20,

∆/Γm = 2000, and η = 1. Each trajectory consists of 2×105 time steps of size dt/τ = 10−4.

For each trajectory we calculate Ī(t) via Eq. (2.32) and compare it with the threshold
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Figure 2.8: Simulated measurement error P
(1)
err for misidentifying the initial state |10〉, using

the discrimination threshold of Ith = 0. Red solid line: measurement error obtained by
binning the integrated readouts for M = 1, 500, 000 individual quantum trajectories, with
g/∆ = 1/20, ∆/Γm = 2000, and η = 1, in the bad cavity regime (κ� ∆). Error bars show

the standard deviation of [P
(1)
err (1 − P (1)

err )/M ]1/2. Green dashed line: simple analytics that
includes only single quantum jumps, Eq. (2.38). Blue dot-dashed line: refined analytics
that includes single and double quantum jump events (see Appendix D).

Ith = 0. The error P
(1)
err is then the fraction of trajectories with Ī < Ith, which is shown by

the solid red line in Fig. 2.8. Error bars show the standard deviation [P
(1)
err (1−P (1)

err )/M ]1/2

for a few representative points. For comparison, the dashed green line shows the simple

analytics (2.38) with Γ−sw = 2Γm(g/Ω)2 [see Eqs. (2.27) and (2.28)], so that Γ−swτ = 1/404.

The dot-dashed blue line shows the more refined analytics described in Appendix D that

include double switching events, as well as the proper offset of the Gaussian by cos(2θ). This

offset slightly shifts the curve up at times before and near the minimum, while the more

accurate account of jumps noticeably shifts the curve down at times after the minimum.

[Most of the difference between the green and blue lines at the times after the minimum
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can be obtained by simply replacing Γ−swt in Eq. (2.38) with 1− exp(−Γ−swt); the remaining

difference is mainly due to double switching events.] As we see, the analytics of Appendix D

is closer to the numerical results than the simple analytics, but the difference is minor. This

difference becomes even smaller for smaller ratios Γ−sw/Γm.

2.5.2 Error minimized over time

The simplified model (2.39) for the measurement error has a first contribution

that is rapidly decreasing in time, and a second contribution that is slowly increasing in

time (Fig. 2.7). Therefore, it has a minimum that is reached at an optimal time topt. The

minimum error Pmin
err at this optimal time should be determined by the product Γ−swτ , since

this is the only dimensionless parameter in the model. The optimal measurement duration

can be found via the equation dPerr/dt = 0, whose solution is a product-log function, which

has the recursive form

topt = τ ln
2/π

(Γ−swτ)2(topt/τ)
. (2.40)

The corresponding minimum error is

Pmin
err ≈

Γ−swτ

2
+

Γ−swtopt

4
≈ Γ−swτ

2
ln

C

Γ−swτ
, C ' 0.6, (2.41)

where C ≈ e
√

2/π
√
τ/topt actually depends on Γ−swτ , but sufficiently weakly: C ∈ [0.43, 0.74]

for τΓ−sw ∈ [10−6, 10−2]. In deriving the first relation in Eq. (2.41) we used the approxima-

tion

1− erf(x)

2
≈ exp(−x2)

2
√
π x

, x� 1. (2.42)

Note that in the usual case τΓ−sw � 1, the main contribution to Pmin
err comes from the second

term in Eq. (2.39), with the relative contribution from the first term being 2τ/topt. The
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ratio topt/τ can be estimated as topt/τ ≈ 2 ln(C/eΓ−swτ) ≈ 2 ln(1/4Γ−swτ).

Note that at very long times, t & (Γ−sw + Γ+
sw)−1, the simplified model in Eq.

(2.39) becomes inapplicable. Moreover, the reverse switching events with the rate Γ+
sw will

eventually produce the integrated output signal Ī → (Γ+
sw−Γ−sw)/(Γ+

sw + Γ−sw) for the initial

state |10〉, which thus can be distinguished with certainty from the initial state |00〉 (a similar

situation was discussed for the measurement of phase qubits in Ref. [114]). However, such

long integration times, t� 1/(Γ+
sw + Γ−sw), are impractical even if we assume the absence of

the energy relaxation, so we do not consider Perr(t) for these long times.

2.5.3 Optimized threshold

Let us augment the simplified model (2.39) by introducing an arbitrary threshold

Ith; then the error becomes

Perr ≈
1− erf[(1 + Ith)

√
t/2τ ]

4

+
1− erf[(1− Ith)

√
t/2τ ]

4
+

1 + Ith

4
Γ−swt. (2.43)

Choosing a slightly negative Ith decreases the error because of the contribution from the

last term (this is also obvious from Fig. 2.6 since the histogram for the initial state |10〉 has

a long tail). The optimal threshold Iopt
th and optimal time topt can now be found from the

system of equations, dPerr/dIth = 0 and dPerr/dt = 0. These equations are rather lengthy,

but in the case topt/τ � 1 lead to a simple relation exp(−Ithtopt/τ) =
√

3. Therefore, the

optimal threshold is only slightly different from zero

Iopt
th ≈ −

ln 3

2

τ

topt
≈ −0.55

τ

topt
, (2.44)

while the optimal time topt does not change significantly compared with Eq. (2.40).
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The optimal threshold Iopt
th can also be obtained in the following crude way. Using

Eq. (2.43), let us calculate the first and second derivatives of Perr over Ith at the point Ith =

0. This is simple and gives dPerr/dIth = Γ−swt/4, d2Perr/dI
2
th = (2π)−1/2(t/τ)3/2 exp(−t/2τ).

Then, assuming a parabolic dependence Perr(Ith), we find the optimal threshold as Iopt
th =

−(dPerr/dIth)/(d2Perr/dI
2
th), which, also using Eq. (2.40), gives Iopt

th = −τ/2topt. Therefore,

this crude derivation does not reproduce the result (2.44) exactly, but is still quite accurate.

The error decrease due to optimization of Ith can then be found from the same parabolic

approximation as δPmin
err = (dPerr/dIth)Iopt

th /2, which gives

Pmin
err (Ith = Iopt

th )− Pmin
err (Ith = 0) ≈ −Γ−swτ

16
. (2.45)

Since we do not expect a significant change of Perr due to a slight shift of topt in this

double-optimization procedure, we can simply replace the term (1/2) Γ−swτ in Eq. (2.41)

with (7/16) Γ−swτ . Therefore, in this crude derivation the error Pmin
err optimized over both

time and threshold is still given by Eq. (2.41) with a modified value of C,

Copt = e−1/8C ≈ 0.88C ' 0.5. (2.46)

The relative decrease of Pmin
err due to the threshold optimization is approximately [8 ln(C/Γ−swτ)]−1,

which is about 3% for Γ−swτ = 10−2 and smaller for smaller values of Γ−swτ .

By solving the optimization problem numerically over a wide parameter range

Γ−swτ ∈ [10−6, 10−2], we have confirmed that the threshold optimization changes C [defined

via Eq. (2.41)] by a nearly constant factor Copt/C ≈ 0.88, producing the range Copt ∈

[0.37, 0.65]. Correspondingly, this produces a nearly insignificant relative correction of

[1.0%, 3.2%] in the minimum error Pmin
err over this parameter range. The denominator 16 in
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Eq. (2.45) in numerical results is found to be close to 15. Similarly, we confirmed that Eq.

(2.44) is satisfied quite well: instead of the factor 0.55, we numerically find 0.55–0.58. This

leads to the numerically optimal threshold Ith varying only within [−0.023, −0.081] over

this same parameter range.

Besides using Eq. (2.43) for the numerical optimization, we also used a modified

equation, in which the second term is multiplied by exp(−Γ−swt), and in the third term Γ−swt

is replaced with 1 − exp(−Γ−swt). This practically does not change the above mentioned

results, except that it slightly lowers C: for the same parameter range Γ−swτ ∈ [10−6, 10−2]

it is C ∈ [0.43, 0.64] and correspondingly Copt ∈ [0.37, 0.57]. Note that the factor 4 in the

mentioned above approximation topt/τ ≈ 2 ln(1/4Γ−swτ) varies within the range [6.1, 3.1]

for zero threshold and the same parameter range, and within [5.3, 2.7] for the optimal

threshold, increasing topt by about 0.3τ compared with the zero-threshold case.

We emphasize that the main result of our analysis of the threshold optimization is

that the optimal threshold Iopt
th is close to the symmetric point Ith = 0 and that the benefit

of the optimization in decreasing the measurement error is insignificant. This justifies the

use of Ith = 0 in the analysis. This also shows that it is meaningful not to perform the

threshold optimization in an experiment and instead use the symmetric point. Note that

this conclusion also applies to the case of qubit energy relaxation, which is analyzed in the

same way.
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2.5.4 Measurement error due to neighboring qubit

As discussed above, the minimized measurement error can be approximated as

Pmin
err ≈

Γ−swτ

2
ln

C

Γ−swτ
, (2.47)

where C ' 0.6 for the symmetric threshold or ' 0.5 for the optimal threshold, τ = (2ηΓm)−1

is the distinguishability time, and

Γ−sw ≈
1

T1
+

2g2

∆2 + 4g2

8χ2n̄+

κ

κ2

κ2 + 4∆2 + 16g2
(2.48)

is the switching rate [see Eq. (2.27)]. Since in this chapter we are interested in the effect

of the neighboring qubit, let us neglect the energy relaxation rate 1/T1. Also, let us use

|g/∆| � 1 and assume |∆r ± χ| . κ, so that 8χ2n̄+/κ ≈ Γm. In this case Γ−sw is given by

Eq. (2.28) and the measurement error is

Pmin
err ≈

1

2η

( g
∆

)2 κ2

κ2 + 4∆2
ln

[
Cη

κ2 + 4∆2

κ2(g/∆)2

]
. (2.49)

Note that this is the error for distinguishing the states |10〉 and |00〉, while the error for

distinguishing the bare-basis states |10〉 and |00〉 is larger because of the collapse occuring

in the eigenbasis when |∆| � Γm,

Pmin
err,bare ≈

1

2

( g
∆

)2
+ Pmin

err . (2.50)

As we see, in the “bad cavity limit”, κ � |∆|, the eigenbasis error, Pmin
err ≈

(1/2η)(g/∆)2 ln(Cη∆2/g2), is quite large, for example, for g/∆ = 1/10 and η = 0.2 we

obtain Pmin
err ≈ 6%. The bare-basis error Pmin

err,bare is bigger by 0.5%, which is not significant

because Pmin
err is so big.
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This may look dangerous for the quantum processors based on superconducting

qubits with “always-on” interaction between the neighbors. Fortunately, typical experi-

mental systems do not operate in this bad cavity limit; in more realistic parameter regimes

the switching process is strongly suppressed and therefore the measurement error due to

the presence of a neighboring qubit is relatively small. For example, for κ−1 = 20 ns

and ∆/2π = 0.5 GHz, the switching rate is approximately 10−4 Γm (g/∆)2, so that for

g/∆ = 1/10 and η = 0.2 we obtain a very small measurement error from the neighboring

qubit, Pmin
err ≈ 2 × 10−5. However, the bare-basis error is still significant, Pmin

err,bare ≈ 0.5%,

which means that the bare basis is inappropriate for encoding the logical information. Since

the eigenbasis is also beneficial for logic operations and idling [114], this makes it an unam-

biguously optimal choice for encoding quantum information.

Note that since the switching processes are strongly suppressed in the regime when

κ� |∆|, the qubit measurement remains accurate even when a neighboring qubit is detuned

only moderately, |∆/g| ' 3, as long as the eigenstates are used for encoding. This fact may

simplify the design of quantum processors in which “frequency crowding” may present a

problem.

The switching between the eigenstates |10〉 and |01〉 can be observed experimen-

tally. (For this purpose it is better to use the jumps |01〉 → |10〉, which can be easily dis-

tinguished from energy relaxation events.) For example, for κ−1 = 10 ns, g/2π = 30 MHz,

∆/2π = 100 MHz, and Γm/2π = 20 MHz (corresponding to |χ|/2π = 2 MHz and n̄ = 10),

the expected switching time is about Γ−1
sw ' 10µs.
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2.6 Summary

In this chapter we have investigated the measurement error of a superconducting

transmon qubit in a circuit QED setup caused by the coupling g to a detuned neighboring

qubit (or a bus resonator), focusing on the effects of the corresponding “tail” population

(g/∆)2. When the ensemble-dephasing rate due to measurement is much faster than the

qubit-qubit detuning, the system collapses to the bare energy states as one would expect for

a textbook projective measurement. However, in the more physically relevant regime with

the ensemble-dephasing rate much slower than the detuning, the system instead collapses

to the joint qubit-qubit eigenstates, which are also favorable for quantum operations and

idling. As such, these qubit-qubit eigenstates are the most appropriate states for high-

fidelity logical encoding in realistic parameter regimes.

We have shown that in regime where joint eigenstates are preferred, the excitation

can randomly jump between these eigenstates while the qubit is being measured. In between

these random jumps, the two-qubit state is practically pinned to one of the eigenstates.

We have derived the rate of the jumps by using a semiclassical model of fluctuating ac

Stark shift. The obtained analytical result for the switching rate has been confirmed by

comparison with numerical solution of the master equation, for which the ensemble-averaged

jumps lead to a gradual decay of the initial eigenstate population. The random jumps

produce a contribution to the measurement error probability that increases almost linearly

with integration time in a way qualitatively similar to the error from energy-decay processes.

The switching rate for these random jumps depends on the relative magnitude

of the resonator decay and the qubit-qubit detuning. For quickly decaying resonators, the
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switching rate is significant and produces the measurement error exceeding (g/∆)2 by several

multiples. However, for more slowly decaying resonators, as is more typical experimentally,

the minimized measurement error becomes essentially negligible for eigenstate encoding,

while the error for bare basis encoding is still significant and exceeds 1
2(g/∆)2.

For the purposes of this study, we have used a static threshold for digitizing the con-

tinuous quadrature readout. We note that more sophisticated discrimination schemes may

be able to take advantage of the additional information contained in the continuous readout

to partially correct for the switching contribution to the measurement error. Generalizing

our analysis to multiple neighboring qubits with simultaneous multi-qubit measurement

may also be interesting for future research. Another possible generalization is the analy-

sis of decoherence for multiqubit states that involve the neighboring qubit, which are not

supposed to be affected by the measurement, but are actually influenced by the switching

dynamics. We emphasize that the quantum jumps between the eigenstates predicted in this

chapter could be measured experimentally using existing superconducting qubit technology.

A Python implementation of the quantum Bayesian approach to cQED measure-

ment with moderate bandwidth [139] is available at https://github.com/MostafaKhezri/

Bayesian-cQED.
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Chapter 3

Measuring a transmon qubit in

circuit QED: dressed squeezed

states

In this chapter, we consider the circuit QED measurement of a superconducting

transmon qubit via a coupled microwave resonator. For an ideal dispersive coupling, ring-

ing up the resonator produces coherent states with frequencies matched to transmon energy

states. Realistic coupling is not ideally dispersive, however, so transmon-resonator energy

levels hybridize into joint eigenstate ladders of the Jaynes-Cummings type. Previous work

has shown that ringing up the resonator approximately respects this ladder structure to

produce a coherent state in the eigenbasis (a dressed coherent state). We numerically in-

vestigate the validity of this coherent state approximation to find two primary deviations.

First, resonator ring-up leaks small stray populations into eigenstate ladders corresponding
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to different transmon states. Second, within an eigenstate ladder the transmon nonlinearity

shears the coherent state as it evolves. We then show that the next natural approxima-

tion for this sheared state in the eigenbasis is a dressed squeezed state, and derive simple

evolution equations for such states using a hybrid phase-Fock-space description. Note that

Sections 3.1-3.3.2 have been previously discussed in the Ph.D. dissertation of Eric Mlinar,

UCR (2017) [140].

3.1 Introduction

Qubit technology using superconducting circuit quantum electrodynamics (QED)

[78, 104] has rapidly developed over the past decade to become a leading contender for

realizing a scalable quantum computer. Most recent qubit designs favor variations of the

transmon [44, 46, 132, 141–144] due to its charge-noise insensitivity, which permits long

coherence times while also enabling high-fidelity quantum gates [49, 68, 145] and high-

fidelity dispersive qubit readout [85, 93, 146] via coupled microwave resonators. Transmon-

based circuit operation fidelities are now near the threshold for quantum error correction

protocols, some versions of which have been realized [50, 62, 112, 113].

The quantized energy states of a transmon are measured in circuit QED by cou-

pling them to a detuned microwave resonator. For low numbers of photons populating the

readout resonator, the coupling is well-studied [44, 78, 118] and approximates an idealized

dispersive quantum non-demolition (QND) measurement [147]. Each transmon energy level

dispersively shifts the frequency of the coupled resonator by a distinct amount, allowing

the transmon state to be determined by measurement of the microwave field transmitted
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through or reflected from the resonator. However, nondispersive effects become important

when the number of resonator photons becomes comparable to a characteristic (“critical”)

number set by the detuning and coupling strength [78, 126, 148]; present-day experiments

often operate in this nondispersive (or nonlinear dispersive) regime [93, 149–151].

In this chapter, we analyze and model the nondispersive effects that occur during

the ring-up of a readout resonator coupled to a transmon. These effects arise from the

hybridization of the resonator and transmon states into joint resonator-transmon eigen-

states. While ringing up the resonator from its ground state, the joint state remains largely

confined to a single Jaynes-Cummings eigenstate ladder that corresponds to the initial

transmon state. As pointed out in Refs. [152–154], this joint state can be approximated

by a coherent state in the eigenbasis (recently named a dressed coherent state [154]). Here

we refine this initial approximation and provide a more accurate model for the hybridized

resonator-transmon state.

We numerically simulate the ring-up process for a resonator coupled to a transmon,

then use this simulation to develop and verify our analytical model. We find two dominant

deviations from a dressed coherent state. First, we show that the ring-up process allows a

small population to leak from an initial transmon state into neighboring eigenstate ladders,

and find simple expressions that quantify this stray population. Second, we show that the

transmon-induced nonlinearity of the resonator distorts the dressed coherent state remaining

in the correct eigenstate ladder with a shearing effect as it evolves, and show that this effect

closely approximates self-squeezing of the dressed field at higher photon numbers. We then

use a hybrid phase-Fock-space method to find equations of motion for the parameters of an

62



effective dressed squeezed state that is formed during the ring-up process. Our improved

model is satisfyingly simple yet quite accurate.

To simplify our analysis and isolate the hybridization effects of interest, we re-

strict our attention to a transmon (modeled as a seven-level nonlinear oscillator) coupled to

a coherently pumped but non-leaking resonator (using the rotating wave approximation).

The simplification of no resonator leakage may seem artificial, but it is still a reasonable

approximation during the resonator ring-up and it is also relevant for at least two known

protocols. First, the catch-disperse-release protocol [152] encodes qubit information into

resonator states with minimal initial leakage, then rapidly releases the resonator field to a

transmission line. Second, a recently proposed readout protocol [155] similarly encodes qubit

information into bright and dark resonator states with minimal leakage, then rapidly distin-

guishes them destructively using Josephson photomultipliers [156]. Our dressed squeezed

state model should describe the ring-up process of these and similar protocols reasonably

well. Additional effects arising from a more realistic treatment of the resonator decay will

be considered in future work.

Our assumption of negligible resonator damping automatically eliminates qubit

relaxation (and excitation) due to the Purcell effect [116, 117, 126, 153], which in the

present-day experiments is often strongly suppressed by Purcell filters [92, 93, 95]. We

also neglect energy relaxation and dephasing of the qubit (thus also eliminating dressed

dephasing [126, 127]).

We note that squeezing of the resonator field may significantly affect fidelity of the

qubit measurement [157, 158], which can be either increased or decreased, depending on the
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squeezing axis direction. A significant improvement of the fidelity due to self-developing

quadrature squeezing was predicted for the catch-disperse-release protocol [152]. (An ex-

treme regime of the self-developing squeezing, with revival and formation of “cat” states

was experimentally observed in [159].) The use of a squeezed input microwave for the qubit

measurement was analyzed in [160]. A Heisenberg-limited scaling for the qubit readout

was predicted for the two-resonator measurement scheme based on two-mode squeezed mi-

crowave in [161]. The significant current interest in various uses of squeezed microwave

states [160–163] is supported by a natural way of producing them with Josephson para-

metric amplifiers [81–83, 164–166]. All this motivates the importance of studying squeezed

microwave fields in superconducting circuits containing qubits.

This chapter is organized as follows. In Sec. 3.2 we describe the resonator-transmon

system and how the numerical simulations are performed. In Sec. 3.3 we discuss the dressed

coherent state model and focus on analyzing the inaccuracy of this model relative to numer-

ical simulation. We quantify two deviations from the dressed coherent state model: stray

population leakage to incorrect eigenstate ladders (Sec. 3.3.2), and distortion of the remain-

ing dressed state during evolution into a dressed sheared state (Sec. 3.3.3). In Sec. 3.4, we

prove that a dressed sheared state approximates a dressed squeezed state and then derive

hybrid phase-Fock-space evolution equations for such states. Comparison with the simula-

tion results shows that the accuracy of the dressed squeezed state approximation is much

better than accuracy of the dressed coherent state approximation. We conclude in Sec. 3.5.

In Appendix E we show that, somewhat unexpectedly, dressed coherent states and dressed

squeezed states are practically unentangled despite the strong entanglement of the dressed
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Fock states from which they are composed.

3.2 Model

Following the circuit QED paradigm of measurement [78], we consider a transmon

coupled to a detuned readout resonator (Fig. 3.1). We do not simplify the transmon to a

2-level qubit, but instead include the lowest 7 energy levels confined by the cosine potential

of the transmon. Though the transmon eigenstates may be written explicitly as Mathieu

functions [27, 44], we have checked that a perturbative treatment of the transmon as an

approximate oscillator with quartic anharmonicity [44] is sufficiently accurate for our pur-

poses. We assume a transmon-resonator coupling of Jaynes-Cummings type [167], using

the rotating wave approximation (RWA) for simplicity. (Notably, this approximation fails

at very high photon numbers, leading to important effects [151].)

3.2.1 Pumped resonator-transmon Hamiltonian

In our model the resonator Hamiltonian is

Hr = ωr a
†a =

∑
n,k

nωr |n, k〉〈n, k|, (3.1)

with ~ = 1, bare resonator frequency ωr, lowering (raising) operator a (a†) for the resonator

mode satisfying [a, a†] = 1, and resonator index n = 0, 1, . . . for successive energy levels.

For completeness we included the transmon index k = 0, 1, . . . , 6 for the 7 lowest levels to

emphasize the matrix representation in terms of the joint product states |n, k〉 ≡ |n〉r⊗|k〉q

for the bare energy states.
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Figure 3.1: (a) Considered system: a transmon coupled to a pumped resonator. The
resonator damping is neglected, since we focus on the resonator ring-up and/or setups with
a tunable coupler. (b) Jaynes-Cummings ladder of states. Bare states are shown by solid
black lines. Eigenlevels are shown by red dashed lines. When n & nc, the eigenlevels are
significantly different from bare levels.
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Similarly, the transmon Hamiltonian has the form

Hq =
∑
n,k

Ek |n, k〉〈n, k|, (3.2)

Ek = E0 + ωqk − η
k(k − 1)

2
. (3.3)

The dominant effect of the nonlinearity of the cosine potential for the transmon is the quartic

anharmonicity η ≡ ω10−ω21 > 0 of the upper level frequency spacings relative to the qubit

frequency ωq ≡ ω10, where each frequency ωk` ≡ Ek − E` denotes an energy difference. At

this level of approximation, the transmon has the structure of a Duffing oscillator with a

linearly accumulating anharmonicity ω(k+1)k = ωq− k η. [This approximation is sometimes

extended to an infinite number of levels, Hq = E0 +ωq b
†b− (η/2) b†b(b†b− 1) [77], with an

effective oscillator lowering (raising) operator b (b†) satisfying [b, b†] = 1, but we explicitly

keep only the 7 lowest levels here.]

The excitation-preserving interaction (within RWA) is

HI =
∑
n,k

g
√
n(k + 1) |n− 1, k + 1〉〈n, k|+ H.c., (3.4)

where g is the coupling strength between levels |0, 1〉 and |1, 0〉. As in Ref. [44], we neglect

the effects of the anharmonicity η in the coupling for simplicity. [Extending this coupling

to an infinite number of transmon levels yields HI = g (ab† + a†b).]

Finally, the Hamiltonian for coherently pumping the resonator with a classical

field ε(t) e−iωdt is (within RWA)

Hd = ε(t) e−iωdt a† + ε∗(t) eiωdt a

= ε(t) e−iωdt
∑
n,k

√
n+ 1 |n+ 1, k〉〈n, k|+ H.c., (3.5)
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where ε(t) is a complex envelope for the drive.

Combining Eqs. (3.1)–(3.5) into the total Hamiltonian H = Hr + Hq + HI + Hd,

and rewriting it in the rotating frame of the drive frequency ωd yields

Hrot =
∑
n,k

{
[n (ωr − ωd) + (Ek − k ωd)] |n, k〉〈n, k|

+ g
√
n(k + 1) |n− 1, k + 1〉〈n, k|+ H.c.

+ ε(t)
√
n+ 1 |n+ 1, k〉〈n, k|+ H.c.

}
. (3.6)

This simplified Hamiltonian will be sufficient in what follows to observe the dominant non-

dispersive effects that affect the resonator ring-up. Note that we use the rotating frame in

numerical simulations, but physics related to Jaynes-Cummings ladders of states is easier

to understand in the lab frame, so we will often imply the lab frame for clarity in the

discussions below.

3.2.2 Numerical simulation and diagonalization

For numerical simulation, the Hamiltonian in Eq. (3.6) is represented by a 7N×7N

matrix using the bare energy basis |n, k〉, where N = 200–800 is the maximum number

of simulated levels for the resonator. We choose experimentally relevant resonator and

transmon parameters, which in most simulations are ωr/2π = 6 GHz, ωq/2π = 5 GHz,

η/2π = 200 MHz, and g/2π = 100 MHz. For the drive, we change the frequency ωd to be

resonant with specific eigenstate transition frequencies of interest (detailed later) and use

drive amplitudes typically in the range ε/2π = 10–60 MHz.

The hybridization of the joint eigenstates [see Fig. 3.1(b)] is significant when the

number of photons n in the resonator is comparable to or larger than the so-called critical
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photon number [78, 126, 148],

nc =
(ωr − ωq)2

4g2
. (3.7)

For the above parameters nc = 25. This defines the scale at which we expect significant

deviations from the ideal dispersive model.

We use the following numerical procedure for identifying the joint hybridized eigen-

states |n, k〉 of Eq. (3.6) without a drive—we will distinguish dressed (eigen) states (and

operators) from bare states by an overline throughout. After setting ε = 0 to eliminate the

drive, the matrix representation of Eq. (3.6) is numerically diagonalized to obtain an initially

unsorted list of matched eigenenergy/eigenstate pairs {En,k, |n, k〉} for the qubit-resonator

system. The one-to-one correspondence between these pairs and the bare energy/state pairs

{En,k, |n, k〉} may be found by examining the structure of the RWA interaction Hamil-

tonian in Eq. (3.4): Since excitation number is preserved, there exist closed subspaces

{|n, k〉 : (n + k) = nΣ} with constant excitation number nΣ = 0, 1, . . ., which we name

RWA strips [151] [see Fig. 3.1(b)]. Crucially, since energy levels repel during interaction

and avoid crossing, the order of the eigenenergies within a strip is the same as for bare

energies. Thus, for each strip with nΣ excitations we first identify the eigenstates |n, k〉

that lie within the span of that strip; next, we order the eigenenergies En,k to match the

bare energies En,k, which uniquely identifies each hybridized eigenenergy/eigenstate pair.

We then set the overall sign of each eigenstate such that it does not flip with changing n.

After performing this identification, we construct a basis-change matrix

U ≡
∑
n,k

|n, k〉〈n, k| (3.8)
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to easily switch between representations numerically. Note that without proper identi-

fication (sorting) of the eigenstates, the numerical analysis at large photon numbers is

practically impossible.

The eigenstates |n, k〉 form the Jaynes-Cummings ladders of effective resonator

levels that correspond to a fixed nominal qubit level k. For brevity we will call them

eigenladders of dressed resonator Fock states. Each eigenladder behaves like a nonlinear

resonator, with an n-dependent frequency

ω(k)
r (n) = En+1,k − En,k. (3.9)

Note that in this formula both sides are numerically calculated in the rotating frame; how-

ever, the equation in the lab frame is the same. Conversion to the lab frame involves adding

the drive frequency: ωd+ω
(k)
r (n) for the resonator frequency and (n+k)ωd+En,k for energy.

At large photon numbers, n & nc, each |n, k〉 spans a significant fraction of all

bare transmon levels. Nevertheless, as we will see, ringing up the resonator from its ground

state with an initial transmon level k will primarily excite the states within the eigenlad-

der corresponding to k. This behavior closely mimics that of the ideal dispersive case,

where a pump excites the bare resonator states |n〉r while keeping the transmon state |k〉q

unperturbed. However, we will also show that there are small but important dynamical

differences between our RWA Jaynes-Cummings model and ideal dispersive coupling in the

eigenbasis.
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3.3 Dressed coherent state model

We now define an ideal coherent state in the eigenbasis [152–154] (a dressed co-

herent state) corresponding to a nominal transmon state k as

|α〉k = e−|α|
2/2
∑
n

αn√
n!
|n, k〉, (3.10)

so that the only difference from the standard coherent state of the resonator is that we use

eigenstates instead of the bare states. Perhaps surprisingly given the eigenstate hybridiza-

tion, such a dressed coherent state is practically unentangled even for |α|2 � nc, in contrast

to what one might initially guess [154]—see Appendix E.

A dressed coherent state is not an eigenstate of the bare lowering operator a of

the resonator. Instead, it is an eigenstate of the dressed lowering operator [127, 153]

a ≡ UaU † =
∑
n,k

√
n+ 1 |n, k〉〈n+ 1, k| (3.11)

that removes a collective excitation within the same eigenladder. The parameter α is the

expectation value of the dressed lowering operator, α = k〈α|a|α〉k, which will be useful in

what follows.

Note that for a dressed coherent state |α〉k, |α|2 is not exactly equal to the average

number n̄ of photons in the resonator. (Instead, |α|2 = k〈α|a†a|α〉k is the average dressed

excitation number within eigenladder k.) However, the difference is very small and will be

mostly neglected below, so that we will use n̄ = |α|2. In the cases when the difference may

be important, we will specify the meaning of n̄ explicitly.
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3.3.1 Model inaccuracy contributions

During resonator ring-up, we expect the joint qubit-resonator state to approximate

such a dressed coherent state, rather than a bare coherent state as is usually assumed with

ideal dispersive coupling. As such, we quantify the fidelity of a numerically simulated state

|ψ〉 compared to a dressed coherent state |α〉k as the overlap

F = |〈ψ|α〉k|2, (3.12)

where the parameter α is chosen to maximize the fidelity. In practice, we find that an initial

guess of α = 〈ψ|a|ψ〉 is very close to the optimal α, producing nearly indistinguishable

fidelity.

Note that we can expand a numerically calculated state |ψ〉 =
∑

n,` cn,` |n, `〉 as

|ψ〉 =
√

1− Pstray |ψ〉k +
√
Pstray |ψ〉⊥, (3.13)

splitting it into a part |ψ〉k ∝
∑

n cn,k |n, k〉 within the “correct” eigenladder k, and a part

|ψ〉⊥ ∝
∑

n,` 6=k cn,` |n, `〉 orthogonal to that eigenladder, where Pstray =
∑

n,` 6=k |cn,`|2 is

the stray population that leaked out of the eigenladder k, and both |ψ〉k and |ψ〉⊥ are

normalized. As such, if we define the overlap fidelity within the correct eigenladder Fc =

|k〈α|ψ〉k|2, then we can write the total fidelity as F = (1− Pstray)Fc, and thus decompose

the infidelity

1− F = Pstray + (1− Pstray)(1− Fc) (3.14)

into two distinct sources: (i) the stray population Pstray outside the correct eigenladder,

and (ii) the infidelity 1−Fc compared with a coherent state within the correct eigenladder.
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To test the infidelity of the dressed coherent state model, we numerically simulate

the resonator ring-up with a (sudden) constant drive amplitude ε/2π = 10 MHz, and then

calculate the infidelity according to Eq. (3.14) as a function of time, yielding the results

presented in Fig. 3.2. First, we confirm that the infidelity 1 − F for a dressed coherent

state (black dashed line) is typically orders of magnitude better than the infidelity 1 − Fb

for a bare coherent state (red dotted line); as expected, 1− Fb becomes very significant at

n & nc. Second, we can clearly separate the effects of the stray population leakage Pstray

(thin solid blue line) from the infidelity 1− Fc of the renormalized state within the correct

eigenladder (thick solid orange line). At short times, the dominant effect is a small (∼10−5)

stray population leakage that rapidly oscillates and then stays approximately constant. (For

clarity we do not show oscillations for the black dashed line, showing only the maxima.)

However, at longer times the contribution 1−Fc becomes the dominant source of infidelity

(eventually reaching ∼10−1). In the next two subsections, we quantify these two sources of

infidelity in more detail.

3.3.2 Infidelity from stray population

A dressed coherent state is naturally produced by a drive which is acting in the

eigenbasis, while the drive term in Eq. (3.6) acts on the bare basis of the system. This

mismatch between the bare and eigenstates in the drive is crudely proportional to g/∆, and

leads to the stray population outside of the correct eigenladder. For typical experimental

parameters this leakage is quite small, particularly in comparison with qubit energy relax-

ation, dressed dephasing, Purcell relaxation, and non-RWA effects. For a more detailed
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Figure 3.2: Infidelity of coherent-state approximations during resonator ring-up [140]. The
infidelity 1 − Fb of a bare coherent state (dotted red line) is compared with the infidelity
1 − F of a dressed coherent state (dashed black line). The latter displays two distinct
effects: at short time (and small photon number n̄) the dominant effect is the leakage
of a stray population Pstray (thin solid blue line) out of the correct eigenladder; however,
at longer time (and larger n̄) the infidelity 1 − Fc of the renormalized state within the
correct eigenladder (thick solid orange line) significantly increases during evolution. Here
the system, with parameters ωr/2π = 6 GHz, ωq/2π = 5 GHz, η/2π = 200 MHz, g/2π =
100 MHz, is resonantly pumped from its ground state |0, 0〉 with a constant drive envelope
ε/2π = 10 MHz.

analysis of this stray population, including a phenomenological model and comparison with

numerical simulations, see Refs. [79] and [140].

3.3.3 Infidelity from shearing

The second contribution to the infidelity of the dressed coherent state approxi-

mation in Eq. (3.14) is due to infidelity 1 − Fc within the correct eigenladder. As seen

in Fig. 3.2, it becomes increasingly important at longer evolution times, when the number
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of photons n̄ becomes large. As discussed below, this infidelity arises from the effective

nonlinearity of the resonator due to its interaction with the transmon. This nonlinearity

produces a shearing effect on the evolution of the dressed coherent state that squeezes the

state.

Numerically, this distortion is clearly seen by plotting the Husimi Q-function of the

renormalized state |ψ〉k [defined as in Eq. (3.13)] that remains within the correct eigenladder,

Qψ(α) =
1

π
|k〈α|ψ〉k|2 , (3.15)

where |α〉k is a dressed coherent state as in Eq. (3.10). The contour plots of Qψ(α) in the

complex plane of α are shown in Fig. 3.3(a) for a numerically simulated ring-up evolution,

starting with the state |0, 0〉 (there are five snapshots at time moments separated by 50 ns).

If the state |ψ〉k were a perfect dressed coherent state |ψ〉k = |β〉k centered at β = k〈ψ|ā|ψ〉k,

it would have a Q-function Qψ(α) = e−|α−β|
2
/π with circular contours. However, Fig. 3.3(a)

clearly shows a progressive distortion of the initial circular profile into a squeezed ellipse

as the average photon number increases. We will prove later that |ψ〉k is indeed a close

approximation of a (minimum-uncertainty) squeezed state in the eigenbasis |n, k〉 – see Fig.

3.3(b).

The squeezing distortion in Fig. 3.3 is similar to the self-developing quadrature

squeezing discussed in Ref. [152] for the catch-disperse-release measurement protocol (e.g.,

compare Fig. 3.3 with the figures in the Supplemental Material of [152]). In that protocol,

the squeezing was shown to significantly decrease the measurement error. In general, the

self-developing squeezing can either increase or decrease the measurement error depending

on the angle of the squeezing axis, and the analysis is clearly important for practical qubit
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Figure 3.3: (a) Numerically simulated evolution of the dressed Husimi Q-function for the
state remaining in the correct eigenladder, given an initial state of |0, 0〉 and a resonant
drive. Snapshots taken at 50 ns intervals show the progressive shearing of the state caused

by resonator nonlinearity. Inset: n-dependence of the difference ∆ω
(k)
r = ω

(k)
r −ωr between

the effective and bare resonator frequencies. The solid blue (upper) line shows ∆ω
(0)
r (n) for

the ground-state eigenladder, the solid orange (lower) line shows ∆ω
(1)
r (n) for the excited-

state eigenladder, and the red dashed line indicates the applied drive frequency. (b) Detail
of the Q-function at 200 ns. The analytical result for a dressed squeezed state (dashed red)
shows good agreement with the numerically simulated state (solid black). The agreement
is significantly better for earlier times (not shown). Parameters are: ωr/2π = 6 GHz,
ωq/2π = 5 GHz, η/2π = 200 MHz, g/2π = 100 MHz, and ε/2π = 10 MHz. The contours of
the Q-function are drawn at the levels of 0.1/π, 0.2/π, . . . 0.8/π.

measurements. A strong self-developing squeezing has been observed experimentally in Ref.

[159].

The reason for the self-developing squeezing is the nonlinearity of the transmon,

which makes the effective resonator frequency ω
(k)
r (n) dependent on the number of photons

n – see Eq. (3.9) and the inset of Fig. 3.3(a). Qualitatively, this n-dependence causes parts

of the circles in Fig. 3.3(a) with different distances |α| from the origin to rotate with slightly
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different angular velocities, thus shearing the circular profile of an initially coherent state

as it evolves. Note that in the case of a constant derivative dω
(k)
r (n)/dn, the shearing rate

should grow with |α| because dn = 2|α| d|α|; thus, the effect becomes more important for

larger photon numbers. Also note that the drift of the resonator detuning from the drive

with n could be compensated for by changing the drive frequency (chirping); however, this

does not affect the shearing, since it originates from the frequency variation within the

photon number uncertainty n̄±
√
n̄.

It is easy to analyze the shearing effect in the absence of the drive. If at t = 0 we

have a dressed coherent state given by Eq. (3.10) (with notation α replaced by β), then it

obviously evolves as

|ψ(t)〉k = e−|β|
2/2
∑
n

βn√
n!
e−iEn,k t |n, k〉, (3.16)

where the eigenenergies En,k are in the rotating frame ωd, i.e., with subtracted terms

(n + k)ωd. Let us expand these energies up to the second order in the vicinity of n̄ = |β|2

as En,k ≈ En̄,k + ω
(k)
r (n̄) (n− n̄) + 1

2(dω
(k)
r /dn)|n̄(n− n̄)2, where the resonator frequencies

ω
(k)
r (n) are also in the rotating frame (i.e., with subtracted ωd) and we neglect discreteness

of n by assuming n̄� 1 and sufficiently small nonlinearity. This gives

|ψ(t)〉k ≈ e−|β|
2/2
∑
n

[β(t)]n√
n!

e−iq (n−n̄)2 |n, k〉, (3.17)

β̇ = −iω(k)
r (n̄)β, q̇ =

1

2
(dω(k)

r /dn)|n̄, (3.18)

where we neglected the overall phase of |ψ(t)〉k. Thus, to leading order in |n − n̄|, the

effect is an appearance of the quadratic phase factor e−iq (n−n̄)2 and an obvious rotation of

β(t) when the effective resonator frequency ω
(k)
r (n̄) is not exactly on resonance with the

drive. The presence of the growing quadratic-term coefficient q in the phase factor leads
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to a deviation from the dressed coherent state, for which q = 0. (We restrict our attention

to the case q � 1; very interesting effects beyond this regime, including state revival and

formation of “cat” states, have been observed in [159].)

It is easy to see that the infidelity of the sheared state (3.17) compared with the

dressed coherent state |β〉k is

1− Fc ≈ q2 (n− n̄)4 ≈ 3(q |β|2)2, (3.19)

assuming 1 − Fc � 1 and n̄ � 1. This infidelity grows in time because of the q-evolution

(3.18) due to the nonlinearity. However, the state evolution due to drive (in a locally linear

system) should preserve 1 − Fc because both states (|ψ〉k and |β〉k) are equally displaced

within the complex plane of α (mathematically, because the standard displacement operator

is unitary). Therefore, if the state remains in the form (3.17), then

d

dt
(q |β|2) = q̇ |β|2 =

n̄

2
(dω(k)

r /dn)|n̄. (3.20)

In particular, if n̄ ≈ (εt)2 for a resonant drive and the derivative dω
(k)
r /dn does not signifi-

cantly depend on n [see inset in Fig. 3.3(a)], then qn̄ ' (dω
(k)
r /dn) ε2t3/6, and the infidelity

is

1− Fc '
1

12
[ε2t3 (dω(k)

r /dn)]2. (3.21)

This is a very crude estimate because dω
(k)
r /dn depends on n, the approximation

n̄ ≈ (εt)2 works only at small t and, most importantly, the state during the evolution does

not remain in the form (3.17), as discussed in the next section. [The form (3.17) is no longer

applicable when the motion of the Q-function center shown in Fig. 3.3(a) deviates from a

straight line.] Nevertheless, comparison with numerical results in Fig. 3.4 shows that Eq.
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(3.21) gives a reasonable estimate of the infidelity. The blue (upper) solid line in Fig. 3.4

is identical to the orange line in Fig. 3.2 and shows the numerically calculated 1 − Fc for

the evolution starting with |0, 0〉. The blue (upper) dashed line is obtained using Eq. (3.21)

with dω
(0)
r /dn calculated at n = 0. It fits the solid line well at short times, and then deviates

up, mostly because |dω(0)
r /dn| decreases with n [see inset in Fig. 3.3(a)] while analytics still

uses the value at n = 0. The red (lower) solid line in Fig. 3.4 shows 1−Fc for the evolution

starting with |0, 1〉. This infidelity is crudely two orders of magnitude less than for the blue

(upper) line because the derivative |dω(1)
r /dn| within the excited-state eigenladder is much

smaller than that for the ground state [see inset in Fig. 3.3(a)]. The infidelity 1−Fc shows

a dip near 100 ns. This is because ω
(1)
r (n) increases for n < 20 and decreases for n > 20;

therefore q|β|2 in Eq. (3.20) first increases and then decreases, passing through zero. At

the point of passing zero we expect 1 − Fc = 0, thus producing the dip; numerically it is

not zero because the form (3.17) is only an approximation. Since dω
(1)
r /dn depends on n

very significantly (even changing the sign), we cannot use Eq. (3.21), so instead we have

integrated Eq. (3.20) to obtain the red (lower) dashed line in Fig. 3.4. As we see, it agrees

well with the solid line. If the integration of Eq. (3.20) is also done for the evolution starting

with |0, 0〉, then the result is significantly closer to the blue solid line than the blue dashed

line.

Note that the states with a quadratic phase factor as in Eq. (3.17) have been

discussed in optics long ago [168–171]. It was shown that these states are squeezed in the

broad sense that variance of a quadrature operator can be smaller than that for a coherent

state. However, to the best of our knowledge, it was never shown that such states with
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Figure 3.4: Infidelity 1− Fc of the dressed coherent state approximation within the initial
eigenladder, starting with |0, 0〉 (upper lines, blue) or |0, 1〉 (lower lines, red). Parameters
are the same as for Fig. 3.2. The solid lines show numerical results, upper (blue) dashed
line is calculated via Eq. (3.21) with the frequency derivative taken at n = 0, and the lower
(red) dashed line is calculated by integrating Eq. (3.20).

large n̄ can be represented as squeezed states in the narrow sense, i.e., they are close to

satisfying the minimum-uncertainty condition. Moreover, it was often emphasized that

the states described by Eq. (3.17) are not the minimum-uncertainty states, because for

sufficiently large q they have crescent-like shape of the Q-function instead of the elliptical

shape, and for even larger q the shape becomes a ring-like one (see experiment [159]). In

contrast, in the next section we will show that in the practically interesting regime these

states are quite close to the squeezed states in the narrow sense. This is because for large

n̄ the squeezing factor is determined by q|β|2, while significant deviation from a minimum-

uncertainty squeezed state starts at |qβ| & 0.1; therefore the squeezing becomes significant

already for such values of q, for which the deviation (crescent-like shape) is still quite small

– see Fig. 3.3(b). In the next section we will also derive simple evolution equations for these
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squeezed states.

3.4 Dressed squeezed state model

As discussed in the previous section, transmon-induced nonlinearity of the res-

onator (i.e., frequency dependence on the number of photons) evolves a dressed coherent

state into a sheared state of the form (3.17) with quadratic phase factor. Unfortunately, it

is not easy to describe evolution of this sheared state due to drive. In some sense this is

because an evolution due to drive is naturally described in the phase space (which is almost

always used in optics), while the sheared state representation requires Fock space. We will

be able to solve this dilemma by showing that the sheared state (3.17) is actually close to a

(minimum-uncertainty) squeezed state in the eigenbasis, which we call a dressed squeezed

state. Evolution of a squeezed state due to drive can be easily described in the phase space,

while its evolution due to nonlinearity can be easily described in the Fock space. Thus, if

we have a reasonably simple conversion between the Fock and phase spaces for squeezed

states, we can describe the state evolution due to both nonlinearity and drive. This simple

conversion is possible only for large n̄, which is an important assumption for our derivation

below (in practice, it is still well applicable for the dynamics starting with the vacuum

state).

3.4.1 Dressed sheared Gaussian state

In this section we prove that for sufficiently large number of photons, the (dressed)

sheared state is approximately equivalent to a (dressed) minimum-uncertainty squeezed
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state.

For |β|2 � 1 we can use a Gaussian approximation for the wavefunction (3.17) in

the Fock space. Let us introduce a more general (dressed) sheared Gaussian state as

|β,K,W 〉k =
∑
n

1

(2πW |β|2)1/4
exp

[
−(n− |β|2)2

4W |β|2
]

× exp[in arg(β)] exp

[
−iK(n− |β|2)2

|β|2
]
|n, k〉 , (3.22)

in which we used the new notation K = q|β|2 and also introduced a new parameter W =

σ2
n/σ

2
n,cs, which is the variance σ2

n of the Gaussian n-distribution compared with the variance

σ2
n,cs = |β|2 of a dressed coherent state, so that w =

√
W is the relative width of the n-

distribution. Thus, the sheared Gaussian state is characterized by 4 parameters: β has the

standard optical meaning, K characterizes the shearing, W characterizes the relative width

of photon number distribution, and k labels the eigenladder. We assume that K and W

are on the order of 1, while |β|2 � 1. Note that the term in arg(β) can be replaced with

i(n−|β|2) arg(β); this changes only the unimportant overall phase of the state, but clarifies

the role of arg(β) as the linear-order part of the phase expansion in n around the mean |β|2.

We call the form (3.22) a hybrid phase-Fock representation, because β is borrowed

from optical phase space, while K and W are the Fock-space parameters. Note that the

state (3.22) is not exactly normalized, but the difference from perfect normalization is less

than 10−5 if |β|2 > max(20W, 1/W ). With a similar accuracy, n̄ = |β|2 for the average

number of photons (excitations in the eigenladder).

The average value of the dressed lowering operator for the state (3.22) is

〈ā〉 ≈ β +
2−W − 1/W

8β∗
− iKW

β∗
− 2K2W

β∗
≈ β, (3.23)
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where in the second equality we neglected the terms scaling as |β|−1. Similarly, neglecting

|β|−1-terms, we find

〈ā2〉 ≈ β2 +
β2

|β|2
(

1

2
− 1

2W
− 4iKW − 8K2W

)
. (3.24)

Now let us define (dressed) quadrature operators,

Xϕ =
1

2

(
e−iϕ ā+ eiϕ ā†

)
, (3.25)

for which ϕ is the quadrature angle (note that notation ϕ was briefly used for a different

quantity in Sec. 3.3.2). Using Eqs. (3.23) and (3.24) we find the variance σ2
Xϕ = 〈X2

ϕ〉 −

〈Xϕ〉2,

σ2
Xϕ =

W + 1/W

8
+ 2K2W + KW sin[2 arg(β)− 2ϕ]

+

(
W − 1/W

8
− 2K2W

)
cos[2 arg(β)− 2ϕ]. (3.26)

It is easy to check that the ϕ-dependence of this variance is exactly what would

be expected for a minimum-uncertainty squeezed state. In particular, the product of the

minimum and maximum values of σ2
Xϕ is the same as for a coherent state,

σ2
Xϕ,minσ

2
Xϕ,max = 1/16, (3.27)

with

σ2
Xϕ,min =

[
1 + S −

√
(1 + S)2 − 1

]
/4, (3.28)

S = 8K2W + (W + 1/W − 2)/2, (3.29)

and σ2
Xϕ,max = [1+S+

√
(1 + S)2 − 1]/4. We see that the degree of squeezing is determined

by the parameter S, so that S = 0 corresponds to a (dressed) coherent state. The minimum
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quadrature variance σ2
Xϕ,min is achieved at the angle ϕmin = θ/2, where

θ = 2 arg(β) + arctan

(
8KW

16K2W −W + 1/W

)
+
π

2
[1− sgn(16K2W −W + 1/W )], (3.30)

and the factor of 2 between θ and ϕmin is to conform with the standard optical definition

of the squeezing parameter discussed later.

Thus, we have proven that for sufficiently large |β|2 the (dressed) sheared Gaussian

state (3.22) is close to a (dressed) minimum-uncertainty squeezed state (despite this is not

true for small |β|2 [159, 170, 171]). Note that the “conservation of area” criterion (3.27)

for a minimum-uncertainty squeezed state is valid for quadratures, but is not valid for the

Husimi Q-function shown in Fig. 3.3, because the Q-function involves convolution with a

coherent state, and therefore the width of the short axis can be at most a factor of
√

2

shorter than that of a coherent state.

3.4.2 Conversion into squeezed state notations

Using the standard optical definition [172, 173], a dressed squeezed state should

be defined as

|β, ξ〉k = exp[βā† − β∗ā] exp

[
ξ∗
ā2

2
− ξ ā

†

2

]
|0, k〉, (3.31)

where ξ ≡ reiθ is the squeezing parameter, while β is a displacement in the phase space.

The smallest standard deviation σXϕ,min for the quadrature Xϕ should then be achieved

[172, 173] at the angle ϕmin = θ/2 [thus corresponding to our notation in Eq. (3.30)], and

its value should be σXϕ,min = e−rσXϕ,cs compared with the standard deviation σXϕ,cs for a

coherent state. The longest axis is σXϕ,max = erσXϕ,cs at the angle ϕmax = θ/2± π/2.
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Comparing these standard optical definitions with our approximate results (3.27),

(3.28), and (3.30) for large |β|2, we obtain the conversion

r =
1

2
arccosh(S + 1), (3.32)

where S is given by Eq. (3.29), while θ is given by Eq. (3.30).

It is easy to check that the case K = 0, W = 1 corresponds to the dressed coherent

state, ξ = 0. In the absence of shearing, K = 0, we have a dressed amplitude-squeezed state

for W < 1 [as is obvious from Eq. (3.22)] and a dressed phase-squeezed state for W > 1 –

see Eq. (3.30), from which θ/2 = arg(β) for W < 1 and θ/2 = arg(β)± π/2 for W > 1. As

shown in Appendix E, the dressed squeezed state is practically unentangled for large |β|2,

in spite of a significant entanglement of the qubit-resonator eigenstates.

Using Eqs. (3.30) and (3.32) we can convert a sheared Gaussian state (3.22) with

sufficiently large |β|2 into a (minimum-uncertainty) squeezed state (3.31). Similarly, we can

convert any (minimum-uncertainty) squeezed state with sufficiently large |β|2 into a sheared

Gaussian state. Most importantly, we know that a squeezed state is simply displaced in

the phase space by an action of a drive ε(t). This means that a sheared Gaussian state

(3.22) remains a sheared Gaussian state under an action of the drive (assuming large |β|2).

Since it also keeps the form (3.22) under the evolution due to nonlinearity, this form is

always preserved (approximately), and therefore it is sufficient for us to characterize the

evolution of the state by evolution of only three parameters: β, K, and W . We emphasize

that this simplicity is possible only for large |β|2 or, in other words, for a sufficiently small

nonlinearity. In general, the simultaneous evolution due to nonlinearity and drive creates

states that cannot be described as (minimum-uncertainty) squeezed states or sheared states.
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Nevertheless, this approximation works quite well for our system.

3.4.3 Phase-Fock-space evolution of dressed squeezed state

Now let us derive evolution equations for the parameters K, W , and β of the

dressed sheared/squeezed state. We will first consider the evolution in the absence of the

drive, then the evolution only due to the drive, and then add up the terms from these

evolutions.

Evolution of the dressed sheared state (3.22) due to nonlinearity of the resonator

is given by Eq. (3.18), which leads to

K̇ =
1

2
|β|2(dω(k)

r /dn)
∣∣∣
n=|β|2

. (3.33)

Note that we do not need to take a derivative of |β|2 because this type of evolution does not

change |β|2. In the absence of the drive, the parameter β evolves only due to the resonator

frequency detuning from the rotating frame,

β̇ = −iω(k)
r (n)

∣∣∣
n=|β|2

β. (3.34)

To derive formulas for the evolution of β, K, and W due to drive ε(t), we use

the fact [173] that for a squeezed state (3.31) the parameter ξ remains constant, while β

changes as β̇ = −iε. Therefore, the parameters S and θ given by Eqs. (3.29) and (3.30)

should remain constant with changing β. The corresponding evolution K̇ and Ẇ can be

found from the system of equations

∂S

∂K
K̇ +

∂S

∂W
Ẇ = 0,

∂θ

∂K
K̇ +

∂θ

∂W
Ẇ +

∂θ

∂β
β̇ = 0, (3.35)
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which has the following solution:

Ẇ = 8KWRe(ε/β), K̇ =

(
1−W 2

4W 2
− 4K2

)
Re(ε/β), (3.36)

where we took into account the equation β̇ = −iε. Note that here we should not include

evolution of β due to detuning, Eq. (3.34), because otherwise the angle θ would not be

constant. Also note that in the term (∂θ/∂β)β̇ in Eq. (3.35) we imply derivatives for both

Re(β) and Im(β).

Combining the evolution equations both in the absence of a drive and from the

drive itself, we finally obtain

Ẇ = 8KW Re(ε/β), (3.37)

K̇ =

(
1−W 2

4W 2
− 4K2

)
Re(ε/β)

+
1

2
|β|2 (dω(k)

r /dn)
∣∣∣
n=|β|2

, (3.38)

β̇ = −iω(k)
r (n)

∣∣∣
n=|β|2

β − iε. (3.39)

These equations together with the conversion formulas (3.30) and (3.32) is our main result

for the evolution of the dressed squeezed state. They allow very efficient simulation, since

they avoid the large dimensionality of the pure Fock-space evolution specified by Eq. (3.6).

Equations (3.37)–(3.39) are a hybrid between the Fock-space and the phase-space represen-

tations, capable of describing evolution of the dressed squeezed state as it rings up due to a

coherent drive ε. To our knowledge, this is a novel representation, which was not previously

used in optics.

Note that the derivation of these equations assumes large |β|2. However, they

can be numerically applied even for evolution starting with vacuum, β(0) = 0. [There
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is no divergence due to the factor of β in the denominator, because at small times β =

−iεt, and therefore Re(ε/β) = Re(i/t) = 0.] We used these relatively simple equations

to compare with the numerical results for evolution due to Hamiltonian (3.6) in a system

with typically 7× 300 levels, and found very good agreement. The reason why Eqs. (3.37)–

(3.39) still work well when starting with the vacuum is that the effect of nonlinearity at

short times is small (K ≈ 0, W ≈ 1), while by the time when the squeezing due to

nonlinearity becomes important, |β|2 is already large. Note, however, that for |β|2 . 100

the sheared and squeezed states are significantly different, and then it is important to use

the dressed squeezed state (3.31) [not the sheared state (3.22)] as the more accurate model

for comparison with simulation results.

Figure 3.3(b) shows comparison between the Q-function for the numerically cal-

culated state |ψ〉0 (solid lines) and for the dressed squeezed state (dashed lines) calculated

using Eqs. (3.37)–(3.39). [At the end we have converted parameters K and W into the

squeezing parameters r and θ using Eqs. (3.30) and (3.32), and then calculated the Q-

function using the standard formula [172] for a squeezed state.] If the parameter β is

not calculated from Eq. (3.39) but is instead computed as β = 0〈ψ|ā|ψ〉0, then the visual

agreement between the dashed and solid lines becomes insignificantly better. The visible

difference between solid and dashed lines is because the numerical state |ψ〉0 is not exactly

the dressed squeezed state; in particular, for Fig. 3.3(b) |qβ|
√
W = |K/β|

√
W = 0.023,

which is comparable to the value of 0.1, above which a significant crescent-shape appears.

The dashed lines in Fig. 3.3(b) are drawn for the squeezing parameter r = 0.550. This cor-

responds to the minimum and maximum quadrature variances of 0.333 and 3.00 compared
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with the coherent state (0.340 and 3.01 numerically for |ψ〉0) and the scaling factors of 0.816

and 1.41 for the short and long axes of the Q-function, compared with the coherent state

(numerically 0.81 and 1.43 in the vicinity of the center).

3.4.4 Accuracy of dressed squeezed state approximation

To quantify the accuracy of the dressed squeezed state approximation and evo-

lution equations (3.37)–(3.39), we compare the numerically calculated state |ψ〉0 for the

evolution shown in Fig. 3.2 (starting with |0, 0〉) with the result from Eqs. (3.37)–(3.39) for

the sheared Gaussian state, which is then converted into the dressed squeezed state |β, ξ〉0.

The infidelity 1 − F = 1 − |0〈β, ξ|ψ〉0|2 is shown in Fig. 3.5 as the dashed blue (lower)

line. It can be compared with similar infidelity for the dressed coherent state shown as the

dashed orange (upper) line, for which we also used Eq. (3.39). We see that the accuracy of

the dressed squeezed state model is much better than for the dressed coherent state model

when the infidelity of the latter exceeds 10−3. However, at short times both infidelities

practically coincide and are significantly larger than the coherent-state infidelity 1 − Fc

shown in Fig. 3.2 (also copied as the solid orange line in Fig. 3.5). Since the difference

between the orange dashed and orange solid lines is the method of α(t) calculation, either

via Eq. (3.39) or as α = 0〈ψ|ā|ψ〉0, this indicates an inaccurate result of Eq. (3.39) for the

state center in the phase space. Let us similarly calculate the center of the dressed squeezed

state as β = 0〈ψ|ā|ψ〉0 = α, while the squeezing parameter ξ is still calculated via Eqs.

(3.37)–(3.39). This produces the blue (lower) solid line in Fig. 3.5, which is crudely two

orders of magnitude lower than 1 − Fc, thus confirming that the dressed squeezed state
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Figure 3.5: Comparison between the dressed squeezed state and dressed coherent state
models within the “correct” eigenladder. Parameters are the same as in Figs. 3.2 and
3.3, evolution starts with |0, 0〉. Blue (lower) lines show time dependence of the infidelity
1−F = 1−|0〈β, ξ|ψ〉0|2 for the dressed squeezed states, orange (upper) lines show infidelity
1 − |0〈α|ψ〉0|2 for the dressed coherent states. For solid lines the state centers β(t) and
α(t) are calculated as average values of the operator ā. For the dashed lines, β(t) and α(t)
are obtained from Eq. (3.39). For the dotted lines, in Eqs. (3.37)–(3.39) we use correction
(3.40) for the drive amplitude. The dressed squeezed state model is about two orders of
magnitude more accurate than the dressed coherent state model.

approximation is much better than the dressed coherent state approximation.

The reason for the inaccuracy of β(t) [or α(t)] calculation is rather simple. For

the dashed lines in Fig. 3.5 we used the bare-basis value for the drive amplitude ε, while

within an eigenladder it is actually slightly different. Using properly normalized eigenstates

for n � nc, it is possible to rewrite the lowering operator in the eigenbasis as: a ≈ [1 +

1
2(g/∆)2σz] ā − (g/∆)σ− (see, e.g., Eq. (53) in [153], and [127]), where σ− is the qubit-

lowering operator in the eigenbasis. This leads to correction of the effective drive amplitude,

ε̃ ≈
[
1− 1

2
(g/∆)2

]
ε, (3.40)
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within the ground-state eigenladder at n . nc. (Within the excited-state eigenladder the

correction will then be ε̃ ≈ {1 + 1
2(g/∆)2 − 1

2 [
√

2 g/(∆ + η)]2} ε.) Using the effective drive

amplitude (3.40) in Eqs. (3.37)–(3.39) instead of ε produces dotted lines (instead of dashed

lines) in Fig. 3.5. We see that the dotted lines are quite close to the solid lines; therefore,

the simple correction (3.40) is sufficient for an accurate theory. Even better accuracy can

be achieved if we use numerical matrix elements for the effective drive amplitude within the

ground-state eigenladder,

ε̃ =
〈n− 1, 0|a|n, 0〉√

n
ε, (3.41)

which now depends on n ≈ n̄. For Fig. 3.5 this produces a line (not shown), which closely

follows the blue solid line for the squeezed-state approximation and a line practically indis-

tinguishable from the orange solid line for the coherent-state approximation.

We emphasize that in Fig. 3.5 the infidelity of the dressed squeezed state model

is . 10−3, while for the dressed coherent state model it is only . 10−1. Note that we

always convert the sheared state (3.22) with parameters K and W into the squeezed state

(3.31) via Eqs. (3.30) and (3.32) before comparing with numerical |ψ〉0. If this is not done,

the infidelity of the sheared Gaussian state in Fig. 3.5 would be above 10−3 at t < 100 ns

(n̄ < 40), reaching 3 × 10−2 for n̄ < 0.5 and becoming practically equal to the blue lines

only at t > 160 ns (n̄ > 100).

Thus, we have numerically confirmed that the dressed squeezed state approxima-

tion performs much better than the dressed coherent state approximation. Nevertheless,

the inaccuracy of the dressed squeezed state model still grows in time, and may eventually

become significant.
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3.5 Summary

In this chapter we analyzed the ring-up of a readout resonator coupled to a trans-

mon qubit. The bare bases of the transmon and resonator hybridize into a joint eigenbasis

that is organized into natural eigenladders associated with each nominal transmon state.

As was pointed out previously, ringing up the resonator from its ground state using a

coherent pump approximately creates a coherent state in this eigenbasis (i.e., a dressed co-

herent state) that is confined to the eigenladder corresponding to the initial transmon state.

We analyzed the deviations from this first approximation and developed a more accurate

dynamical model for the ring-up process.

Through numerical simulation, we demonstrated that the ring-up evolution devi-

ates from the dressed coherent state model in two important respects. First, the initial

transmon population may leak into other (“incorrect”) eigenladders that correspond to

different initial transmon states. Second, even within the initial (“correct”) eigenladder

the state may differ from a coherent state. We analyzed both deviations and developed

analytical models to quantify the effects.

The stray population that leaks outside the correct eigenladder arises from the

mismatch between the coherent pump (in the bare basis) and the hybridized resonator (in

the eigenbasis). We found that this mismatch creates interesting dynamics over a relatively

short timescale after the pump is applied, and were able to describe the resulting damped

oscillations between neighboring eigenladders quantitatively. The most important result is

that for typical experimental parameters the occupation of incorrect eigenladders remains

small (. 10−4); therefore, this effect should not significantly contribute to the qubit mea-
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surement error in present-day experiments. Note, however, that our analysis focuses solely

on the population leakage caused by the pump itself during the ring-up process; as such, it

neglects other important effects that contribute to the total leakage to incorrect eigenlad-

ders in practice, such as qubit energy relaxation, the Purcell effect, interactions with defects,

dressed dephasing, and non-RWA effects. (Note that [151] extends the analysis presented

here to include non-RWA effects, thus explaining an important example of experimentally

observed leakage at high photon numbers.)

The dynamics of the hybridized resonator state remaining within the correct eigen-

ladder is non-trivial due to the effective resonator nonlinearity induced by the interaction

with the transmon. This nonlinearity leads to a significant deviation from the dressed

coherent state picture—in our numerical simulations the infidelity of the dressed coherent

state reaches ∼10−1. The nonlinear evolution shears the phase-space profile of the resonator

state, deforming initially circular coherent state profiles into elliptical and crescent-shaped

profiles over time. We showed that for practical ranges of parameters, these sheared profiles

approximate ideal squeezed states in the eigenbasis (i.e., dressed squeezed states)—in our

simulations the infidelity of the squeezed state picture reaches ∼10−3, or roughly two orders

of magnitude better than that of a dressed coherent state. (Note that the dressed squeezed

state is practically unentangled, similar to the dressed coherent state.) Using a hybrid

phase-Fock-space approach, we derived simple equations of motion [Eqs. (3.37)–(3.39)] for

the self-developing squeezing, which naturally generalize the evolution of a coherent state.

These equations of motion depend only on the photon number-dependence of the dressed

resonator frequency, which may be added phenomenologically from precomputed numerical
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simulations or measured experimentally.

We emphasize that the self-developing squeezing may significantly affect the qubit

measurement error, either decreasing or increasing it, depending on the squeezing axis angle

relative to the line passing through the state centers in the phase space for the qubit states

|0〉 and |1〉. (The resonator field for the qubit state |0〉 is affected by squeezing much more

than for the state |1〉 because of much more efficient level repulsion within the ground-state

ladder of the Jaynes-Cummings Hamiltonian for the multi-level transmon.) Further analysis

of this subject is definitely important.

The dressed squeezed state model provides an efficient and accurate description

of the resonator physics during a sufficiently rapid ring-up process, when the resonator

decay may be neglected (as was assumed in this chapter). This regime is also physically

relevant for at least two known protocols: the catch-disperse-release measurement of a

qubit [152] and the readout protocol [155] based on Josephson photomultipliers. However,

in the standard method of transmon measurement, the resonator decay cannot be neglected

(except during the ring-up), that will require an extension of our dressed squeezed state

model. This generalization will be considered in Chapter 5.
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Chapter 4

Measurement-Induced State

Transitions in a Superconducting

Qubit

Many superconducting qubit systems use the dispersive interaction between the

qubit and a coupled harmonic resonator to perform quantum state measurement. Previous

works have found that such measurements can induce state transitions in the qubit if the

number of photons in the resonator is too high. These transitions can push the qubit out of

the two-level subspace, and they show resonant behavior as a function of photon number.

In this chapter, we develop a theory for these observations based on level crossings within

the Jaynes-Cummings ladder, with transitions mediated by terms in the Hamiltonian that

are typically ignored by the rotating wave approximation. We find that the most important

of these terms comes from an unexpected broken symmetry in the qubit potential. The
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theory is confirmed by measuring the photon occupation of the resonator when transitions

occur while varying the detuning between the qubit and resonator.

4.1 Introduction

The Jaynes-Cummings (JC) Hamiltonian [167, 174] describes the interaction be-

tween a quantum two-level system and a harmonic oscillator, and is used to model a huge

variety of physical systems. For example, in superconducting qubits, it describes the inter-

action between the qubit and a resonator used to measure the qubit’s state. As predicted

by the dispersive limit of the JC model, each qubit state induces a different frequency shift

in the resonator, and the qubit state is inferred by measuring the resonator’s response to a

probe pulse [44, 78, 104]. Dispersive measurement itself played a key role in recent experi-

ments exploring the nature of quantum measurement [106, 132, 133], and the high speed and

accuracy of dispersive measurement has been critical in establishing superconducting qubits

as a compelling technology for quantum computation [49, 68]. Furthermore, repetitive error

protection and characterization protocols [50, 62, 98, 107, 113, 175] require that the qubit

remain in a known state within the qubit subspace after the measurement is complete, a

property guaranteed by the dispersive JC Hamiltonian.

However, several experiments with superconducting qubits have found that as the

number of photons occupying the resonator n̄ is increased past a certain point, the qubit

suffers anomalous state transitions [93, 176–178]. It was long believed that these transitions

could be explained by the breakdown of the dispersive approximation of the JC model as

n̄ exceeds a critical photon number nc, but recent theory showed that the transitions are
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not predicted by the JC interaction even with very large n̄ [79]. Perhaps more puzzling,

the transition probability is observed to be non-monotonic with increasing photon number.

As these transitions limit the speed and lower the fidelity of qubit measurement [93, 177],

understanding and eliminating them is an important step in implementing high fidelity

quantum algorithms, simulation, and error corrected computation.

In this chapter, we investigate the cause of anomalous qubit transitions in a super-

conducting qubit-resonator system. The transitions have been experimentally characterized

by Google/UCSB team, by measuring the state of the qubit after driving the resonator

with variable power, and it is observed that the qubit jumps outside the two-level subspace.

Moreover, these transitions may show a resonant behavior as a function of drive power. By

re-examining an important assumption of the JC Hamiltonian, namely the rotating wave

approximation (RWA), we develop a theory based on level crossings with other states of the

qubit-resonator system, and find that the theory matches experimental observations with

no free parameters.

4.2 Experimental procedure and observations

The experiment [151, 179] was performed by Google/USCB team using a frequency-

tunable superconducting transmon qubit [44, 46], with maximum |0〉 → |1〉 transition fre-

quency of ω10/2π = 5.4 GHz, and anharmonicity of η/2π ≡ (ω21 − ω10)/2π = −221 MHz

at this frequency. The qubit is capacitively coupled to a readout resonator with coupling

strength g/2π ≈ 87 MHz 1. The readout resonator has a frequency of ωr/2π ≈ 6.78 GHz

1Coupling strength depends on qubit frequency, but varies by less than 5% in this work.
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and is coupled with an energy decay rate of κ ≈ 1/(37 ns) through a bandpass Purcell filter

[92, 93] to an output line and amplifiers.

The transmon state is measured using standard cQED dispersive measurement

[78], where each transmon level |i〉 induces a different frequency shift on the resonator,

yielding a set of distinct resonator frequencies ωr,|i〉. The resonator is then pumped to be

populated with photons that leak out from the resonator. The amplitude and phase of the

outgoing photons, which now depend on the transmon state, are extracted as a point in the

IQ plane to distinguish qubit states.

To investigate the effect of resonator photons on the transmon state, the pulse

sequence illustrated in Fig. 4.1 (a) is used. The transmon is initialized to |0〉, then the

resonator is driven with a 2µs long, variable power pulse. This “stimulation pulse” injects

a number of photons into the resonator that, when large enough, induces transitions in the

transmon state. After a 500 ns (13 decay time constants) wait for the resonator to ring

down 2, the resonator is driven again with a fixed low power pulse to measure the transmon

without inducing further transitions, and the IQ response of the resonator is recorded. After

calibration, each IQ point is identified as one of the transmon states, or if the point is more

than three standard deviations from any of the calibrated distributions, it is labeled as an

“outlier”.

Experimental results of Google/UCSB team are striking in two ways. First, as

the stimulation pulse power is raised, the transmon jumps from |0〉 not only to |1〉 but also

to |2〉, |3〉 and even higher states, as shown in Fig. 4.1 (b). Although only the states up

2The transmon T1 is between 20µs and 40µs for the ω10 values used, so the resonator ring-down incurs
little qubit decay.

98



5.4

5.0

4.6

Tr
a
n
sm

o
n

fr
e
q
u
e
n
cy

 [
G

H
z]

0.01 0.1 0.8
Stimulation pulse power [a.u.]

100

380

10
-1

10
-2

10
-3

10
0

(d)

220

580

P0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

0 1000

-1000

0

I [a.u.]

Q
 [

a
.u

.]

(c)

(a)      500 ns
ring-down

measurement
            pulseResonator

drive

2 μs stimulation pulse

Feature B

Feature A

(b)

Qubit drive
spectroscopy pulse (ac Stark only)

Figure 4.1: (a) Control sequence for probing the effect of resonator photons on the transmon.
The spectroscopy pulse is used only in the ac Stark measurement. (b) IQ data for drive
powers 0.02, 0.2, and 0.8 (arbitrary units), with ω10 = 5.38 GHz. The circles represent 3σ for
the four resolvable transmon states after calibration. At high power, the transmon is clearly
driven to states higher than |3〉. (c) Transmon state probabilities versus stimulation power.
In addition to the four calibrated transmon states, dashed purple line shows the probability
that the measurement was > 3σ from any of the resolved states, labeled “outliers”. Note
the two large resonance-like peaks labeled A and B. (d) Stark shifted transmon frequency
ω10 versus stimulation pulse power. We convert the shifted ω10 to n̄ (right vertical axis)
using a numerical theory discussed in Sec. 4.3.1. Figure adapted from Ref. [151].
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to |3〉 can be resolved, the characteristic arc of the IQ points with increasing state index

appears to continue to what we estimate to be |5〉 or higher. Second, the probability of

transitions is highly non-monotonic with power, as was previously seen in Refs. [177, 178].

In particular, the shapes of the features in probability versus power resemble resonance

peaks, with large peaks in the outlier probability at drive powers 0.7 (feature A) and 0.2

(feature B), a small peak in |1〉 near 0.15, another small peak in |2〉 near 0.05, and various

other peaks at other powers. The peaked structure rules out any process that would have

monotonically increasing transitions with increasing drive power, such as chip heating or

dressed dephasing [126, 180], as the dominant mechanism.

In order to connect the experimental results to theoretical models, the stimulation

pulse power is converted to photon number n̄. The value of n̄ cannot be measured directly,

but resonator photons cause the qubit frequency to shift downward 3 in what is called

the ac Stark effect [181]. The drive power is mapped to n̄ by measuring the ac Stark

shifted qubit frequency for each resonator drive power and converting that frequency to n̄

using a numerical model based on separately measured parameters g and ∆ (see Sec. 4.3.1).

To measure the ac Stark shift, the previous experiment is repeated with the addition of

a spectroscopic microwave pulse on the transmon after the driven resonator has reached

the steady state (see Fig. 4.1 (a)). The results of the ac Stark shift measurement with the

computed photon numbers is shown in Fig. 4.1 (d) for the same drive powers as in Fig. 4.1 (c).

Note that feature B (black dashed line) occurs at 170 . n̄ . 250, which is, interestingly,

considerably larger than the critical photon number nc ≡ (∆/g)2/4 ≈ 60 introduced in

Ref. [78].

3When ω10 > ωr, the ac Stark shift can increase the qubit frequency. See Ref. [179]
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The peaks in Fig. 4.1 (c) are thus seen to indicate particular values of n̄ at which the

qubit-resonator system is especially susceptible to transitions. The association of n̄ with

qubit frequency shift further suggests that the peaks are due to some form of frequency

resonance. With the observation of resonant transitions to higher transmon levels, we now

consider the transmon-resonator system and revisit the rotating wave approximation to

explain these observations.

4.3 Theory of nonRWA transitions

4.3.1 Energy resonances mediated by non-RWA terms

The Hamiltonian of the coupled qubit-resonator system can be written as

H = Hb +HI (4.1)

where Hb is the “bare” Hamiltonian of the qubit and resonator, while HI describes their

capacitive coupling. With the ket convention |qubit, resonator〉, the bare Hamiltonian has

the form

Hb =
∑
k,n

(Ek + n~ωr) |k, n〉〈k, n| (4.2)

where ωr is the (bare) resonator frequency, and Ek is the transmon energy of level k,

calculated numerically using Mathieu characteristic functions [44]. The transmon transition

frequencies are ωkl ≡ (Ek − El)/~ and its anharmonicity is η ≡ ω21 − ω10
4. This bare

Hamiltonian produces the Jaynes-Cummings (JC) ladder of energy levels, shown in Fig. 4.2.

4Note that in this chapter, η is defined with the opposite sign, compared with other chapters.
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Figure 4.2: JC ladder for large values of n. Bare states are shown as solid lines and two
of the eigenstates are shown as dashed lines. Dark curved arrows indicate coupling within
an RWA strip with corresponding RWA coupling strengths shown below. The ladder has
an energy resonance between |0, n〉 and |6, n− 4〉 (long black arrow). Non-RWA couplings
(short straight arrows) allow for interstrip transitions. The couplings to |1, n+ 1〉 (red) and
|3, n− 1〉 (yellow), along with those within the RWA strip, mediate the transition between
the resonant levels. The coupling to |2, n− 1〉 (green), which mediates additional resonant
transitions, requires a Hamiltonian term coupling transmon states of equal parity; this is
forbidden if the transmon potential is symmetric. Note the energy spacing between states
|k, n〉 and |k + 1, n− 1〉 is ∆ as indicated in the top left.

The interaction Hamiltonian HI is due to charge-charge coupling between the

resonator and transmon.

HI =
∑
k,k′,n

~gk,k′
√
n |k′, n− 1〉〈k, n|+ H.c. , (4.3)

where gk,k′ ≡ g〈k|Q|k′〉/〈0|Q|1〉 are the normalized matrix elements of the transmon charge

operator Q. These matrix elements are calculated numerically using Mathieu functions.

For example, in the case k′ = k + 1 and for not very large values of k, the matrix elements
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are approximately (see Appendix A)

gk,k+1 ≈ g
√
k + 1

(
1 +

η

2ω10
k

)
. (4.4)

This interaction imparts an n-dependent shift on the bare levels producing eigen-

states, two of which are shown as dashed lines in Fig. 4.2. As indicated by the long horizontal

arrow, at certain n the ladder contains resonances between states where the qubit goes from

|0〉 to higher levels such as |6〉. This critical observation could explain both the resonance

structure and the transitions to higher transmon levels observed in the data. However, it

remains to see how HI couples the resonant levels.

The interaction Hamiltonian can be divided into two parts,

HI = HRWA +Hnon-RWA , (4.5)

where HRWA contains only terms conserving total excitation number, while Hnon-RWA con-

tains the rest of the terms. Note that the full interaction HI is typically simplified by the

RWA, which has the form

HRWA =
∑
k,n

~gk,k+1

√
n |k + 1, n− 1〉〈k, n|+ H.c. , (4.6)

These RWA terms (curved arrows in Fig. 4.2) divide the JC ladder into excitation preserving

subspaces which we call “RWA strips”. Under HRWA, the system moves only within an RWA

strip; taking the system out of the dispersive limit with n� nc only results in a reduction

of the resonator dispersive shift [79]. Therefore, HRWA does not allow transitions between

resonant levels.

By diagonalizing Hb+HRWA, we find the eigenstates |k, n〉 and eigenenergies E|k,n〉

(overline indicates eigenstate), which we use to numerically compute quantities of interest.
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Figure 4.3: Ac Stark shift of the transmon frequency as a function of the number of resonator
photons n, for parameters of Fig. 2 in the main text (nc ≈ 60), using HRWA. The solid line
shows the value computed numerically, and the dashed line shows the conventional linear
approximation δω10 = −2 |χ|n. As n becomes large, the relation between ac Stark shift
and photon number becomes somewhat nonlinear.

We note that Hnon-RWA induces slight changes in the calculated eigenenergies E|k,n〉, but

the effect is small enough that we neglect it (because non-RWA terms are off resonant).

For example, we numerically compute the photon number dependent ac Stark shift δω10 ≡(
E|1,n〉 − E|0,n〉

)
/~− ω10, as illustrated in Fig. 4.3. This gives us a map between resonator

photon number and transmon ac Stark shift, which provides the calibration between drive

power and photon number discussed in Sec. 4.2, and was the critical link between theory

and experiment. Notice that Eq. (4.6) goes beyond the usual dispersive approximation [78].

In particular, the numerically computed curve deviates noticeably from the usual linear

relation δω10 = −2 |χ|n.

The critical part of the interaction Hamiltonian is Hnon-RWA, containing terms in
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HI that do not conserve excitation number, called here “non-RWA” terms. These terms

can be as large as the RWA terms, but are usually neglected on the grounds that they are

more off resonant than the RWA terms (in our system the RWA terms are ∼ 1 GHz off

resonance, while the non-RWA terms are ∼ 13 GHz off resonance). However, these terms

connect RWA strips and therefore enable resonant transitions in the JC ladder, leading to

the unwanted state transitions. In general, there are many types of non-RWA terms, which

differ in coupling strength and in how close they are to resonantly connecting two JC ladder

levels. We only consider terms involving gk,k+1 and gk,k+3, as they are the largest and least

off-resonant,

H
(1)
non-RWA =

∑
k,n

~ gk,k+1

√
n+ 1 |k + 1, n+ 1〉〈k, n|+ H.c.

+
∑
k,n

~ gk,k+3

√
n |k + 3, n− 1〉〈k, n|+ H.c. . (4.7)

The couplings gk,k+3 are calculated numerically using Mathieu functions; they are much

smaller than gk,k+1, as seen from the approximate formula (see Appendix A)

gk,k+3 ≈ g
√

(k + 1)(k + 2)(k + 3)
−η

4ω10
. (4.8)

In spite of being relatively small, these couplings are numerically more important in our

problem than couplings gk,k+1.

These non-RWA terms couple next-nearest neighboring RWA strips (i.e., those

differing by 2 in total excitation number) together, as shown in Fig. 4.2. Combined with the

intrastrip coupling provided by HRWA, the non-RWA coupling allows multistep (i.e., higher

order) processes to connect the resonant levels. For example, H
(1)
non-RWA carries the system

from |0, n〉 to |1, n + 1〉 in another RWA strip, and then HRWA carries the system within
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the strip to |6, n− 4〉. Note that although the full process conserves energy, the individual

steps do not.

To find the condition under which the resonances occur, we use our numerical tool

to compute the frequencies ωk(n) ≡ E|k,n−k〉/~−nωr of the levels within each RWA strip, as

functions of n. As n increases, energy levels within each strip repel each other more strongly

and fan out, as illustrated by the solid lines in the “fan diagram” in Fig. 4.4. By superimpos-

ing fan diagrams of two next-nearest neighboring RWA strips, as shown by the dashed lines,

we see that they have multiple intersections, meaning that the JC ladder contains multiple

resonances. For example, the left red dot in Fig. 4.4 shows that the transmon-resonator

state |0, n〉 can be brought on resonance with |6, n− 4〉. The presence of crossings with

higher transmon states agrees with the experimental observation of transitions to states

higher than |3〉.

Next, we compute the n at which various intersections occur as a function of the

qubit-resonator detuning ∆, yielding the lines in Fig. 4.5. As |∆| increases, the spacing

between levels within an RWA strip also increases, see Fig. 4.2. However, the spacing

between strips is fixed at ωr, so with increased |∆| fewer photons are required to bring

|0, n〉 on resonance with states in higher strips and so the transitions occur at lower n̄. Note

that while we use n in the theory, the experiment drives the resonator into a coherent state

with mean photon number n̄ and fluctuations
√
n̄ < 0.1 n̄. Also, although the n at which

the energy resonance occurs is not related to nc, the effective couplings between resonant

levels are large enough to yield the experimental features only when n & nc (see Sec. 4.3.2).

To confirm the theoretical prediction, the experiment shown in Fig. 4.1 is repeated
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Figure 4.4: Fan diagram of the energy levels within an RWA strip. Solid: Frequencies
ωk(n) ≡ E|k,n−k〉/~ − nωr versus photon number n for |∆| = 1.4 GHz. As n increases, the

levels repel more strongly and fan out. Dashed: Same frequencies shifted by 2ωr, which
represent the next-nearest neighboring RWA strip. The red dots show energy resonances
with the qubit state |0〉 occurring at specific values of n. The left dot corresponds to the
resonance shown in Fig 4.2. Top axis shows the numerically calculated ac Stark shift.

for several values of ω10 by biasing the transmon’s SQUID with magnetic flux. At each ω10,

we find the values of n̄ of features A and B, as shown in Fig. 4.1 (d), and plot these points in

Fig. 4.5. The experimental points for feature A (black circles) and feature B (blue squares)

are well fit by numerically computed curves for the transitions from |0, n〉 to |6, n− 4〉 and

|3, n− 2〉, respectively. Note that the theory lines are calculated using only the measured

ωr, ω10, and g, with no free parameters fitted to the data.

However, the transition from |0, n〉 to |3, n− 2〉 is actually unexpected. If the

transmon potential is symmetric (in the phase basis), as is usually assumed [44], then gi,j

is only nonzero when j − i is odd. Therefore, HI should only couple RWA strips where
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Figure 4.5: Photon number at level crossing versus ω10, compared between experiment and
theory. Black circles and blue squares show experimental features A and B from Fig. 4.1
respectively, and the error bars represent the apparent widths of the features. Solid red line
is the theory prediction for level crossing between eigenlevels of |0, n〉 and |6, n−4〉. Dashed
blue line is the theory prediction for an asymmetric transmon that breaks the selection rule
by at least 1%, yielding level crossings between eigenlevels of |0, n〉 and |3, n − 2〉. Figure
adapted from Ref. [151].

the difference in total excitation number is even, so the transition to |3, n− 2〉 should be

forbidden. Nevertheless, the theory line for the |3, n− 2〉 transition fits the data well, indi-

cating a possible asymmetry in the transmon potential. This asymmetry is experimentally

confirmed by observing |0〉 → |2〉 Rabi oscillations when driving the transmon at ω01 + ω12

(see Sec. 4.3.2). Accounting for this broken symmetry adds terms to Hnon-RWA,

H
(2)
non-RWA =

∑
k,n

~ gk,k+2

√
n |k + 2, n− 1〉〈k, n|+ H.c. . (4.9)

The non-RWA terms of Eq. (4.9) connect RWA strips differing in total excitation number by

1, which we call “nearest neighbors” (see Fig. 4.2), leading to additional resonance processes,
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such as |0, n〉 → |3, n− 2〉. Through comparison with Rabi oscillations on the |0〉 → |1〉

transition, we experimentally estimate |〈0|Q|2〉/〈0|Q|1〉| ≈ 10−2. This matrix element is

large enough to explain the transitions to |3, n− 2〉, and so the level crossing theory appears

to correctly predict both of the largest resonance features observed in the data.

We note that any spurious TLS coupled to transmon-resonator system can also

participate in level crossings, and can lead to similar features (possibly the small peaks in

Fig. 4.1 (c)), even at lower photon numbers (see Sec. 4.3.3).

4.3.2 Effective coupling at resonance

When a resonance occurs between the initial state |0, n〉 and, e.g., |6, n− 4〉, the

system can make a resonant transition. In the perturbative language, in making this tran-

sition the system goes through several intermediate off-resonant states (see Fig. 4.2); many

different paths are available (i.e. different virtual processes). As an example, one path is

|0, n〉 → |1, n− 1〉 → |4, n− 2〉 → |5, n− 3〉 → |6, n− 4〉, which involves the matrix element

g1,4. The condition of resonance is necessary but not sufficient to give these processes a

measurably large probability; the process must also have large enough effective coupling

between initial and final states. We define the effective coherent coupling gcoh
eff as

gcoh
eff = 〈kf , nf |Hnon-RWA|ki, ni〉 , (4.10)

where |ki, ni〉 and |kf , nf 〉 are the initial and final eigenstates, respectively. To find gcoh
eff , we

expand the (RWA) eigenstates in the bare state basis,

|k, n〉 =

kmax∑
l=0

c
(k,n)
l |l, n+ k − l〉, (4.11)
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where kmax ' 9 is the highest transmon level taken into account. This expansion is then

substituted into Eq. (4.10). In particular, for the transition |0, n〉 → |k, n− k + 2〉 (to the

next-nearest neighboring RWA strip) the effective coupling is

gcoh
eff =

∑
l
c

(0,n)
l ~gl,l+1

√
n− l + 1

[
c

(k,n−k+2)
l+1

]∗
+
∑

l
c

(0,n)
l ~gl,l+3

√
n− l

[
c

(k,n−k+2)
l+3

]∗
. (4.12)

Each term in Eq. (4.12) corresponds to a particular path in the picture of virtual processes.

The paths in the first line are |0, n〉 → |l, n− l〉 → |l + 1, n− l + 1〉 → |k, n− k + 2〉, where

the first and last arrows describe subpaths within the RWA strips. Similarly, the terms in

the second line correspond to paths |0, n〉 → |l, n− l〉 → |l + 3, n− l − 1〉 → |k, n− k + 2〉.

The solid red line in Fig. 4.6 (a) shows gcoh
eff for the |0, n〉 → |6, n− 4〉 transition (so

that n corresponds to the resonance condition E|0,n〉 ≈ E|6,n−4〉), calculated using Eq. (4.10)

or, equivalently, Eq. (4.12). Note that the terms in Eq. (4.12) are large at n > nc because

gl,l+1
√
n ≈ |∆|

√
l + 1

√
n/4nc (typically a few GHz) and the amplitudes cl are significant

for several states within the RWA strip. Nevertheless, the result for gcoh
eff shown by the

solid red line in Fig. 4.6 (a) is smaller than even one such term. The reason is an almost

perfect cancellation of the terms in Eq. (4.12), which happens because while the coefficients

c
(k,n−k+2)
l alternate in sign with changing l for l < k, the coefficients c

(0,n)
l are all positive 5.

Therefore, the terms in Eq. (4.12) have alternating signs and efficiently cancel each other.

This cancellation is probably not so efficient in the real physical system. When the

transmon is in an upper state, it is more sensitive to noise sources (such as charge noise)

and therefore experiences increased dephasing. This and the relatively low coherence of the

5This follows from sequential perturbation theory
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Figure 4.6: (a) Effective coupling between crossing levels for different qubit frequencies.
Solid and dashed lines show coherent and incoherent effective couplings respectively. The
blue line assumes g0,2/g = 10−2. (b) Experimental observation of Rabi oscillation between
transmon levels |0〉 and |2〉. Figure adapted from Ref. [151].
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resonator (1/κr ≈ 37 ns) may suppress coherence between the different paths contributing

to Eq. (4.12). While it is difficult to accurately calculate the effective coupling geff while

accounting for decoherence, we can estimate the upper bound of the resulting geff as the

fully incoherent sum of the terms in Eq. (4.12),

gincoh
eff =

(∑
l

∣∣∣c(0,n)
l ~gl,l+1

√
n− l + 1

[
c

(k,n−k+2)
l+1

]∗∣∣∣2
+
∑

l

∣∣∣c(0,n)
l ~gl,l+3

√
n− l

[
c

(k,n−k+2)
l+3

]∗∣∣∣2)1/2

. (4.13)

The red dashed line in Fig. 4.6 (a) shows gincoh
eff for the |0, n〉 → |6, n− 4〉 transition. We

expect that the effective couplings in real system are between the results for fully coherent

and fully incoherent cases (solid and dashed lines). The experimental feature B (which

corresponds to the transition |0, n〉 → |6, n− 4〉) can be well explained by effective coupling

on the order of 1 MHz, which is in agreement with these theoretical values (note that

g/2π ≈ 87 MHz).

The experimental feature A can be explained only if the state can transition

between neighboring RWA strips (differing in total excitation number by 1). However,

if the transmon potential were exactly left/right symmetric, as is usually assumed, then

gk,k+2 = 0, and this transition is forbidden. Therefore, to explain the feature A, we must

assume that the transmon’s symmetry is broken, leading to the additional non-RWA terms

given in Eq. (4.9). We calculated the effective coupling at the |0, n〉 → |3, n− 2〉 resonance,

hypothesizing that gk,k+2 = 0.01 g
√

(k + 1)(k + 2) (i.e., 1% violation of the selection rule).

The coupling for a coherent process is calculated via Eq. (4.10), which for the transitions

|0, n〉 → |k, n− k + 1〉 between the nearest-neighbor RWA strips produces

gcoh
eff =

∑
l
c

(0,n)
l ~gl,l+2

√
n− l

[
c

(k,n−k+1)
l+2

]∗
. (4.14)
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The numerical result, indicated by the solid blue line in Fig. 4.6 (a), shows that this 1%

violation of the selection rule yields an effective coupling of a few MHz, which is large

enough to explain the experimental feature A. The coupling becomes a few times larger

if we assume the fully incoherent sum of the contributions from the paths in Eq. (4.14)

(constructed similarly as Eq. (4.13))– see the dashed blue line in Fig. 4.6 (a). However,

since the qubit state |3〉 is not supposed to experience a significant level of decoherence,

we believe that the solid blue line is more relevant to the experimental situation than the

dashed blue line. It is interesting to note that the difference between the dashed and solid

blue lines is much smaller than between the dashed and solid red lines, indicating that the

cancellation of terms in Eq. (4.14) is not as efficient as in Eq. (4.12). This is because for the

transition |0, n〉 → |3, n− 2〉 there are only two main terms in Eq. (4.14): those involving

g0,2 and g1,3.

The selection rule violation for g0,2 was experimentally looked for and observed

[151, 179] by directly driving Rabi oscillations between transmon levels |0〉 and |2〉, as shown

in Fig. 4.6 (b). By comparing the |0〉 → |2〉 Rabi oscillation period against the |0〉 ↔ |1〉

Rabi oscillation period, and correcting for the differing microwave amplitude needed to

drive those two transitions, it was found experimentally that g0,2/g ' 10−2, surprisingly in

good agreement with the guessed value. We emphasize that the experimental value of 10−2

should be considered only as an order of magnitude estimate.

We can offer only speculations about the possible physical mechanism behind the

broken symmetry in the transmon. For example, it could result from SQUID asymmetry

under external flux [182] or from a gradient of the magnetic field which couples to oscillating
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current in the circuit. However, these mechanisms are not investigated here and will be the

subject of further studies.

4.3.3 TLS-assisted transitions

It is well known that microscopic defects in the materials comprising the transmon

circuit can act as two level systems (TLS) and lead to qubit relaxation [183]. This relaxation

can depend on the number of photons n in the resonator because of the ac Stark shift. Since

ac Stark shift is approximately δω10 = −2 |χ|n ' −(|η| /2)(n/nc), the change of the qubit

frequency is quite significant (∼ η ≈ −200 MHz) when n is comparable to nc. Therefore,

even if the bare qubit frequency is chosen away from the TLS frequencies, it is possible that

the qubit frequency will cross a TLS during measurement with a moderate value of n/nc.

In fact, this effect has been experimentally observed [151, 179] by comparing the transmon

relaxation rate as a function of ω10 with n = 0 against that same relaxation rate during

dispersive measurement. It was found that the ac Stark shift induced by the resonator

photons during dispersive measurement pushes the transmon into resonance with TLS’s

and therefore increases the relaxation rate. Of course, increased relaxation degrades the

fidelity of the quantum state measurement, so these crossings should be avoided.

Interestingly, coupling between the transmon and TLS’s may also lead to tran-

sitions of the transmon to higher levels, similar to the effect of the non-RWA couplings

associated with resonator. The level crossings associated with TLS’s produce features sim-

ilar to those produced by the non-RWA processes, such as dependence on ∆.

For example, the transmon can be excited from |0〉 to |2〉 via the following virtual
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Figure 4.7: Example of a resonance between transmon and a TLS. For a TLS with frequency
10 GHz, the level crossing occurs between |0, n〉|0〉TLS and |2, n− 3〉|1〉TLS.

process: |0, n〉|0〉TLS → |1, n − 1〉|0〉TLS → |2, n − 2〉|0〉TLS → |3, n − 3〉|0〉TLS → |2, n −

3〉|1〉TLS. This process requires ωTLS ≈ ωr + 2 |∆| + |η| (the exact value is a little larger

because of the level repulsion – see Fig. 4.7). The effective coupling for these resonances

can be large enough to yield noticeable population transfer at lower photon numbers than

for the non-RWA resonances. The example shown in Fig. 4.7 has a TLS with a frequency of

10 GHz and the resonance for the process described above occurs at n/nc ≈ 1. This value is

sufficient for a noticeable amplitude of the bare state |3, n− 3〉 (c
(0,n)
3 ≈ 0.03) and therefore

a noticeable effective coupling for the process.

A TLS-assisted qubit transition from |0〉 to |1〉 requires only population of the bare

state |2, n − 2〉, and therefore the effective coupling becomes significant at values of n/nc

smaller than for the transition |0〉 → |2〉. For example, for the parameters, corresponding
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to the peak in the |1〉 probability (red line) in Fig. 4.1 (c) (n/nc ≈ 1.7), the amplitude of the

|2〉 component is quite significant, c
(0,n)
2 ≈ 0.2. Therefore, even a weak coupling between the

transmon and a TLS with frequency ωTLS/2π ≈ 8.4 GHz can explain this experimental peak.

Note that when the TLS is sufficiently incoherent (e.g., because of fast energy relaxation),

then the resonance condition could transform into a threshold-like condition, i.e., it should

be enough energy to excite the TLS, also exciting the qubit, by transferring two photons

from the resonator into the qubit-TLS system.

With increasing n/nc and therefore increasing population of bare states |k, n− k〉,

the number of possible TLS-assisted processes becomes larger (involving more final states),

which increases the possibility of a transition away from the initial qubit state. We guess

that the TLS-assisted processes may be responsible for the usual deterioration of qubit

measurement fidelity in many experiments when increasing n becomes comparable to nc

(causing either excitation or relaxation of the transmon state).

4.4 Other energy resonances in the JC ladder

Besides the non-RWA level crossings discussed in previous sections of this chapter,

there are other types of energy resonances in the JC ladder that can lead to similar spurious

qubit state deterioration during the measurement. Let us consider the measurement of

a transmon in presence of an excited neighboring qubit, where the measured transmon

can be Stark shifted into resonance with its neighbor and absorb its excitation, i.e., the

qubit’s |0〉 ↔ |1〉 frequency will match that of its neighbor. Besides this simple process,

the readout resonator photons can also participate in such resonances by providing extra
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excitations through the JC ladder. For example, in addition to becoming on resonance

with |0, n〉 ↔ |1, n〉 transition, the excited neighboring qubit can become on resonance with

|0, n〉 ↔ |l, n+ 1− l〉 transition and lose its excitation to the measured qubit. Such events

degrade the measurement of qubit by exciting it from |0〉 to |l〉, and also erroneously change

the state of the neighbors. As a side note, let us remind the reader that Chapter 2 and

Ref. [184] studied the dispersive measurement of a qubit in presence of a detuned neighbor,

and showed that the excitation can also jump (typically rarely) between the joint eigenstates

of the two qubits.

The coupling between the states involved in the resonant transitions discussed

above is provided by a combination of RWA couplings within the JC ladder of the measured

qubit and its resonator, the directly coupled neighboring qubit (which can add or remove

excitation from the JC ladder), and non-RWA terms that couple nearest neighboring RWA

strips. Through paths provided by these couplings, the measured qubit can receive energy

from its excited neighbor and move between RWA strips (e.g., from |0, n〉 to |2, n− 1〉).

Similar to non-RWA transitions, these resonance conditions depend on the number

of photons in the readout resonator, and can be found by calculating the eigenenergies of

the JC ladder. Reference [179] experimentally studies these transitions in detail by directly

driving a qubit during the measurement, and compares the results with the theory to find

a good agreement.
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4.5 Summary

In summary, we find that strong dispersive measurement of a transmon induces

transitions to states above |3〉. These transitions occur at specific values of the photon

occupation in the measurement resonator, and are caused by energy resonances within the

qubit-resonator system. Coupling between the resonant levels is mediated by Hamiltonian

terms usually dropped in the rotating wave approximation, and the most important such

term involves an unexpected broken symmetry in the transmon potential. An interesting

consequence of these results is that a system with smaller |∆| 6 should allow larger photon

numbers before resonant transitions occur. This observation could be critical to improving

measurement accuracy in dispersively measured systems, and may explain the large photon

numbers used in Ref. [150]. Other energy resonances and transitions within JC ladder of

the qubit-resonator can be understood and studied with the tools and theory developed in

this chapter. This work suggests several further avenues of research: characterizing level

crossings with the qubit initialized in |1〉, determining the mechanism for the transmon’s

broken symmetry, clarifying the role of TLSs in non-RWA transitions, and understanding

the n-dependent rates of the non-RWA transitions.

4.6 Contributions

Daniel Sank and Zijun (Jimmy) Chen contributed significantly to the data, text,

and figures of this chapter. The experiments were performed by Daniel Sank, Zijun (Jimmy)

Chen, and Google/UCSB team (see Refs. [151, 179]). The theory was developed by Mostafa

6When ω10 < ωr.
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Khezri and Alexander N. Korotkov.
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Chapter 5

Hybrid phase-space–Fock-space

approach to evolution of a driven

nonlinear resonator

In this chapter, we analyze the quantum evolution of a weakly nonlinear resonator

due to a classical near-resonant drive and damping. The resonator nonlinearity leads to

squeezing and heating of the resonator state. Using a hybrid phase-space–Fock-space rep-

resentation for the resonator state within the Gaussian approximation, we derive evolution

equations for the four parameters characterizing the Gaussian state. Numerical solution of

these four ordinary differential equations is much simpler and faster than simulation of the

full density matrix evolution, while providing good accuracy for the system analysis during

transients and in the steady state. We show that steady-state limit of 3 dB can be exceeded

during transients.
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5.1 Introduction

Nonlinear quantum oscillators have been a subject of various studies for a long

time [168, 185–188]. The renewed interest in this system is caused by the wide use of

microwave resonators in superconducting quantum computing circuits [104, 189], as well as

reaching a quantum regime for nanomechanical resonators [190–193]. In particular, during

dispersive measurement of superconducting qubits [49, 78, 93, 104, 194], nonlinearity of

the measurement resonator is induced by its coupling with the qubit; this nonlinearity

causes significant deviations from the standard dispersive regime in the case of a moderately

or strongly driven resonator [79, 148, 176]. The nonlinearity of Josephson-junction-based

resonators is used in experiments for near-quantum-limited microwave signal amplification

[82, 84, 85, 195].

Driven nonlinear resonators can produce squeezed states [168–171, 187, 196] (note

that quantum squeezing is closely related to classical fluctuations, e.g., [197–199]). Even

though squeezed states are usually discussed for parametrically driven linear resonators [89,

200] (in optics a nonlinear material can be used to produce a parametric drive at a doubled

frequency), there is a similarity between these two systems [195, 201, 202]. In particular,

it can be shown that a nonlinear resonator near the bifurcation point at large photon

numbers is equivalent to a degenerate parametric amplifier driven with a detuned pump

[202]. Squeezed states can be used to improve measurement accuracy [203, 204] in a range

of applications, such as gravitational wave detectors [205], superconducting qubit readout

[152, 160, 161, 206–208], and nano/micromechanical position measurement [193, 209, 210].

There is currently a significant experimental interest in producing squeezed microwave states
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with Josephson parametric amplifiers [83, 84, 164–166, 211]; the self-developing squeezing

due to the nonlinearity of a microwave resonator (with revival and formation of “cat” states)

has also been demonstrated experimentally [159].

It is well known that the steady state of a parametrically driven resonator cannot

be squeezed beyond 3 dB [89, 212, 213]; in other words, any (instantaneous) quadrature

variance is not less than 1/2 of the ground-state value (the 3 dB squeezing is reached in the

ideal case at the threshold of parametric instability; note that for the narrow-band definition,

squeezing in the same case is 6 dB [214]). This limit applies only to the resonator state

(intracavity field), while squeezing of the reflected field outside of the cavity is unlimited

[213, 215]. Various theoretical ideas [209, 216–220] (based on reservoir engineering, weak

measurements, injection of squeezed light, etc.) have been proposed to overcome the 3 dB

limit for a nanomechanical resonator; recently this limit has been exceeded experimentally

[221].

Because of the similarity between nonlinear and parametrically driven resonators

in their use as amplifiers [195, 202], it can be expected that squeezing of driven nonlinear

resonators is also limited by 3 dB. However, we are not aware of papers, which discuss this

limit explicitly (related works are, e.g., Refs. [186, 196, 222–225]; note explicit results for

steady-state quantum fluctuations in Refs. [186] and [196]). As a side result of this work,

we will show that the steady-state squeezing of a coherently driven nonlinear resonator is

indeed limited by 3 dB. We will also show that during transients the squeezing can exceed

this limit.

Previous studies of quantum dynamics of coherently driven nonlinear oscillators

122



have used a variety of theoretical methods, including stochastic differential equations,

Fokker-Planck equation, generalized P -representation, linearization of evolution equation,

formalism of quasienergies, etc. Usually the transients are neglected and only the steady

state is analyzed. Moreover, most of the research has been focused on the regimes close to

bifurcation or within the bistability range, in particular, with the goals to analyze switching

between the quasistable states and to analyze amplification properties near the bifurcation

point. In this chapter we are mainly interested in the opposite regime: far from the bifur-

cation and/or bistability, so that the effects of nonlinearity are not yet very strong. This

regime is relevant to the measurement of superconducting qubits, in which the weak nonlin-

earity of the microwave resonator is induced by its interaction with the qubit. Nevertheless,

this weak nonlinearity may lead to a significant self-developing squeezing of the microwave

field [152], which affects qubit measurement fidelity. Another difference of our analysis from

most of the previous studies is that we are mainly interested in transients, not the steady

state. This is also motivated by the importance of transients in fast measurement of su-

perconducting qubits. Even though our motivation mainly comes from the use of weakly

nonlinear microwave resonators for qubit measurement, our results are equally applicable

to the quantum dynamics of driven nanomechanical resonators, which always show some

nonlinearity [226].

In this chapter, we analyze the evolution of a coherently driven weakly nonlinear

resonator using a hybrid phase-space–Fock-space approach [79]. This approach is based on

the observation that quantum state evolution due to nonlinearity can be easily described

in Fock space, while the effect of the drive and dissipation for a linear resonator is well
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described in phase space. We show that for large photon numbers, a Gaussian state [88]

in phase space has also an approximately Gaussian form in Fock space, thus obtaining a

rather simple conversion between the Fock-space and phase-space representations within the

Gaussian-state approximation. The conversion equations are then used to derive reasonably

simple first-order ordinary differential equations, describing state evolution due to drive,

dissipation, and weak nonlinearity.

These evolution equations are for one complex and three real parameters, which

characterize the Gaussian state of the resonator. The complex parameter describes the cen-

ter of the Gaussian state in the phase plane; its evolution is given by an essentially classical

equation, which takes into account nonlinearity. The three real parameters are Fock-space

parameters, which after conversion into the phase space correspond to the minimum and

maximum quadrature variances (therefore to squeezing and “unsqueezing”) and to the phase

of the minimum-variance quadrature. The product of the minimum and maximum vari-

ances (ratio of unsqueezing and squeezing) corresponds to an effective temperature, which

can be significantly higher [196] than the bath temperature. We note that our approach is

physically similar to linearization of fluctuations around the classical trajectory within the

Gaussian approximation [199], even though it is based on a different framework.

After deriving the hybrid phase-Fock-space evolution equations, we numerically

compare their results with the master (Lindblad) equation simulations. We find quite good

accuracy, with an inaccuracy scaling inversely proportional to the number of photons in the

system. Even though our approximation formally requires large number of photons, it still

works well when the resonator evolution starts from the ground state. In our simulations

124



with a few hundred photons in the system, the typical infidelity compared with the master

equation simulations is about 10−3−10−4, while being faster by a factor of over 105 (fractions

of a second instead of hours). Compared with the coherent-state approximation, our method

for the simulated cases is more accurate by about a factor of 102, which indicates the

importance of taking into account self-developing squeezing and heating.

Thus, our main result in this chapter is the derivation of relatively simple and

computationally efficient equations, which describe the quantum evolution of a driven and

damped weakly nonlinear resonator in the case of large photon numbers. As an example

of using these equations, we derive the 3 dB squeezing limit discussed above for the steady

state and numerically show that this limit can be exceeded during transients. Note that we

analyze only the state of the resonator (intracavity field), while the analysis of the reflected

field is presented in Chapter 6.

The range of validity for our approach seems to be essentially the same as for

validity of the Gaussian approximation. Note that for small number of photons in the res-

onator, the resonator is practically linear, while for large number of photons, the resonator

is practically semi-classical, and in both cases the Gaussian approximation is applicable.

This is why our approach works well in a rather wide range, except the vicinity of the

bifurcation point, where unsqueezing becomes too large; also, within the bistability region

our approach cannot describe gradual mixing of quasistable states, which corresponds to

classical switching between them. We analyze the accuracy of our approach numerically, by

comparing its results with results of simulations based on the master equation.

The chapter is organized as follows. In Sec. 5.2 we describe the system and pose
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the problem. In Sec. 5.3 we review the Gaussian states and corresponding phase-space

evolution equations for a driven and damped linear resonator. Then in Sec. 5.4.1 we intro-

duce Fock-space Gaussian states and discuss their equivalence to the usual (phase-space)

Gaussian states in the case of large photon numbers, with explicit conversion relations

between parameters of the phase-space and Fock-space representations. Using these con-

version relations, in Sec. 5.4.2 we combine the Fock-space evolution due to nonlinearity

with the phase-space evolution due to drive and damping, thus deriving the hybrid phase-

Fock-space evolution equations, which are the main result of this chapter. Section 5.5 is

devoted to analysis of the numerical accuracy of our approach. We start with calculating

the fidelity of the conversion between the Gaussian and Fock-space Gaussian states in Sec.

5.5.1, and then in Sec. 5.5.2 we compare results of the hybrid evolution equations with the

master equation simulations. In Sec. 5.6 the hybrid evolution equations are used to show

that steady-state squeezing of the resonator state is limited by 3 dB, and it is also shown

numerically that squeezing during transients can exceed the 3 dB limit. We conclude in

Sec. 5.7. In Appendix F we discuss derivation of the Gaussian state evolution equations

for a linear resonator under coherent drive and damping. In Appendix G we show that at

large photon numbers, a Fock-space Gaussian state can be approximated by a phase-space

Gaussian state, and derive the corresponding conversion relations. Appendix H discusses

analytical results for squeezing in the steady state.
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5.2 System and problem

We analyze the quantum state evolution of a weakly nonlinear resonator, which

is coherently (classically) driven at frequency ωd and damped due to energy relaxation

with rate κ at bath temperature Tb. The goal is to find a reasonably simple approximate

description of this evolution, suitable for large number of photons in the resonator (we

will use the terminology of photons, though for a mechanical resonator the terminology of

phonons would be more appropriate).

Without damping, the laboratory-frame Hamiltonian of the considered system is

(~ = 1)

Hlf = H lf
r +H lf

d , (5.1)

H lf
r =

∑
n

E(n) |n〉〈n|, E(n) =
n−1∑
k=0

ωr(k), (5.2)

H lf
d = 2Re[ε(t) e−iωdt] (a† + a), (5.3)

where |n〉 is nth eigenstate of the resonator, with corresponding eigenenergy E(n) expressed

via the resonator frequency ωr(n) = E(n+ 1)−E(n), which slightly changes with the level

number [we use E(0) = 0], ε(t) is the complex amplitude of the drive at frequency ωd, and

a = x̂+ip̂ is the annihilation operator, while a† = x̂−ip̂ is the creation operator. Here x̂ and

p̂ are normalized position and momentum operators, x̂ = X̂
√
mωr0/2 and p̂ = P̂ /

√
2mωr0,

where X̂ and P̂ are actual position and momentum operators, m is effective mass, and in the

normalization we use ωr0 ≡ ωr(0); however, this particular value is not important, since we

assume a weak nonlinearity, |ωr(n)− ωr(0)| � ωr(0). The assumption of weak nonlinearity

also allows us to use the standard matrix elements for the annihilation operators, 〈k|a|n〉 =
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√
n δn−1,k. Note that for a linear resonator, ωr(n) = ωr0, the Hamiltonian (5.2) reduces

to the standard form H lf
r = ωr0a

†a. Within the rotating wave approximation (RWA), the

drive Hamiltonian (5.3) becomes H lf
d = ε(t) e−iωdta† + ε∗(t) eiωdta. The RWA is natural for

a weakly nonlinear resonator and near-resonant drive, |ωd − ωr(n)| � ωd. In some cases

RWA misses experimentally important effects [151]; however, it should be sufficient for the

simple system we consider here.

In the rotating frame based on the drive frequency ωd, the RWA Hamiltonian

becomes Hrf = Hrf
r +Hrf

d with

Hrf
r =

∑
n

Erf(n) |n〉〈n|, Erf(n) =
n−1∑
k=0

[ωr(k)− ωd], (5.4)

Hrf
d = ε(t) a† + ε∗(t) a. (5.5)

In this chapter we will mostly use the rotating frame.

The evolution of the system density matrix ρ due to Hamiltonian H (in either

laboratory or rotating frame) and energy relaxation with rate κ is described by the standard

master equation in the Lindblad form [89, 227, 228],

ρ̇ = i[ρ,H] + κ(nb + 1)(aρa† − a†aρ/2− ρa†a/2)

+ κnb(a†ρa− aa†ρ/2− ρaa†/2), (5.6)

where

nb =
1

eωr0/Tb − 1
=

coth(ωr0/2Tb)− 1

2
(5.7)

is the average number of thermal photons for the bath temperature Tb. Note that the evo-

lution equation (5.6) is generally not correct for a nonlinear resonator (e.g., Appendix B4

of [229]); however, we use it, assuming a weak nonlinearity. The problem with applicability
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of the Lindblad equation (5.6) stems from the fact that it requires indistinguishability of

the emitted and/or absorbed photons [229]. However, for a weakly nonlinear resonator, the

photons emitted from (absorbed by) different levels have slightly different frequencies and

can be distinguished spectroscopically if the frequency difference exceeds the level width. To

estimate the effect, let us assume that unsqueezing is not too large, so the typical number of

photons is n̄±
√
n̄, where n̄ is the average photon number. Then the frequency difference is

about
√
n̄ (dωr/dn), while the level width is approximately κn̄. Therefore, indistinguishabil-

ity requires n̄� κ−2(dωr/dn)2. For our typical parameters used in Sec. 5.5, the nonlinearity

is quite small, so that κ−2(dωr/dn)2 ∼ 10−5; therefore, the indistinguishability condition is

well satisfied and the Lindblad equation (5.6) is accurate.

Solving Eq. (5.6) numerically in the Fock space, we can find the resonator state

evolution. However, for over ∼100 average photons in the resonator the numerical solution

becomes slow, and for over ∼500 photons it becomes computationally intractable on a

personal computer because of too large Hilbert space. Note that over 500 photons in the

resonator can be used for a dispersive measurement of a superconducting qubit [150, 151].

In this chapter, we develop an approach which permits a simple analysis of evo-

lution at this large number of photons. To a significant extent, the approach is based on

the observation that evolution of a linear resonator can be described by Gaussian states

in many situations [230]. Using the fact that a weak nonlinearity keeps the evolving state

Gaussian (in the leading order), we will find the corresponding evolution equations. This

greatly simplifies analysis, since a Gaussian state is characterized by only 5 real parameters,

instead of N2 parameters for a density matrix involving up to N Fock states.
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We will first review Gaussian states and evolution of a driven linear resonator,

and then will show how a Gaussian state can be approximately converted into a Fock-space

state, for which it is easy to introduce evolution due to nonlinearity.

5.3 Evolution of a linear resonator

Without nonlinearity, a Gaussian initial state remains Gaussian during evolution,

while initially non-Gaussian state gradually becomes Gaussian [230, 231]. In this section we

briefly review properties of the Gaussian states and discuss evolution of a linear resonator

state due to applied drive and damping.

5.3.1 Brief review of Gaussian states

Gaussian states [88, 232–234] are defined as states for which the Wigner function

[88, 173] has a Gaussian form (generally with an arbitrary number of dimensions). For a

one-dimensional (single-mode) system with position operator X̂ and conjugate momentum

operator P̂ , the Wigner function of a Gaussian state is

W(X,P ) =
exp

(
−1

2
~V TDDD−1~V

)
2π
√

Det(DDD)
(5.8)

where ~V = (X − Xc, P − Pc)
T , Xc = 〈X̂〉, Pc = 〈P̂ 〉, and elements of the covariance

matrix DDD are D11 = DX = 〈X̂2〉 − 〈X̂〉2, D22 = DP = 〈P̂ 2〉 − 〈P̂ 〉2, and D12 = D21 =

DXP = 〈X̂P̂ + P̂ X̂〉/2 − 〈X̂〉〈P̂ 〉. The Husimi Q-function, Glauber-Sudarshan P -function

and density matrix (in X or P space) of a Gaussian state have a Gaussian form as well

[88, 235].

For a linear resonator with Hamiltonian H lf
r = ωra

†a (constant frequency ωr),
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we can introduce the dimensionless (normalized) operators of position and momentum in

the standard way as x̂ = X̂/(2σx,gr) and p̂ = P̂ /(2σp,gr), where σx,gr and σp,gr are the

standard deviations of the ground state in the position and momentum representations,

so that x̂ = (a + a†)/2 and p̂ = (a − a†)/2i. For the normalized operators, the Wigner

function W (x, p) has exactly the same form as Eq. (5.8), except now ~V = (x−xc, p− pc)
T ,

xc = 〈x̂〉, pc = 〈p̂〉, and elements of the covariance matrix are now D11 = Dx = 〈x̂2〉 − 〈x̂〉2,

D22 = Dp = 〈p̂2〉 − 〈p̂〉2, and D12 = D21 = Dxp = 〈x̂p̂ + p̂x̂〉/2 − 〈x̂〉〈p̂〉. Explicit form of

the Wigner function for a Gaussian state is

W (x, p) =
(

2π
√
DxDp −D2

xp

)−1

× exp

[
− Dp(∆x)2 +Dx(∆p)2 − 2Dxp∆x∆p)

2(DxDp −D2
xp)

]
, (5.9)

where ∆x = x− xc and ∆p = p− pc. The Wigner functions (5.8) and (5.9) are normalized

as
∫
W(X,P ) dX dP =

∫
W (x, p) dx dp = 1.

With the quadrature operator along direction ϕ defined as

x̂ϕ ≡
ae−iϕ + a†eiϕ

2
= x̂ cosϕ+ p̂ sinϕ, (5.10)

the variance σ2
xϕ ≡ 〈x̂2

ϕ〉 − 〈x̂ϕ〉2 of this quadrature for the Gaussian state is

σ2
xϕ = Dx cos2 ϕ+Dp sin2 ϕ+ 2Dxp cosϕ sinϕ. (5.11)

Let us introduce real variables D0 > 0 and b ≥ 0 as

D0 ≡
Dx +Dp

2
, b2 ≡ (Dx −Dp)

2

4
+D2

xp, (5.12)
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Figure 5.1: Phase-space illustration of a Gaussian state. The ellipse corresponds to one
standard deviation for the quadrature operators along any direction. It is also the contour
line for the Wigner function being a factor

√
e less than its maximum value. The ellipse

center has coordinates (xc, pc), which on the complex plane correspond to 〈a〉 = xc + ipc.
The minimum and maximum quadrature variances are D0−b and D0 +b, respectively. The
minimum-variance-direction angle is Θ/2. In the rotating frame we use notation θ instead
of Θ.

then the quadrature variance (5.11) can be rewritten as

σ2
xϕ = D0 − b cos(2ϕ−Θ), (5.13)

Θ = arctan

(
2Dxp

Dx −Dp

)
+
π

2
[1 + sign(Dx −Dp)]. (5.14)

Equation (5.13) shows that D0− b and D0 + b are the minimum and maximum quadrature

variances respectively, and the direction of the minimum quadrature makes the angle Θ/2

with the x-axis (see Fig. 5.1). Note that

(D0 + b)(D0 − b) = DxDp −D2
xp. (5.15)

The Wigner function in the rotated “diagonal basis” with xd being the coordinate
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along the minimum quadrature is

W (xd, pd) =
(

2π
√

(D0 − b)(D0 + b)
)−1

× exp

[
−(xd − xd

c )2

2(D0 − b)
− (pd − pd

c )2

2(D0 + b)

]
, (5.16)

where xd + ipd = (x + ip) e−iΘ/2 and similarly xd
c + ipd

c = (xc + ipc) e
−iΘ/2. This formula

shows that the contour lines for the Wigner function in the phase space of x and p are

ellipses (Fig. 5.1).

The Husimi Q-function [89] for the Gaussian state can be obtained using the

standard relation Q(x, p) = 2
π

∫
W (x′, p′) e−2[(x−x′)2+(p−p′)2] dx′ dp′. In particular, in the

diagonal basis we find

Q(xd, pd) =
(

2π
√

(D0 − b+ 1/4)(D0 + b+ 1/4)
)−1

× exp

[
− (xd − xd

c )2

2(D0 − b+ 1/4)
− (pd − pd

c )2

2(D0 + b+ 1/4)

]
. (5.17)

We see that the Q-function (5.17) has the same Gaussian form as the Wigner function

(5.16), but variances for the both axes are increased by 1/4.

It is useful to write the Gaussian state parameters in terms of average values of
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the operators a, a2, and a†a,

D0 =
1

2

[
〈a†a〉+

1

2
− (Re〈a〉)2 − (Im〈a〉)2

]
, (5.18)

b =
1

2

[ [
Re〈a2〉 − (Re〈a〉)2 + (Im〈a〉)2

]2
+
(
Im〈a2〉 − 2Re〈a〉 Im〈a〉

)2 ]1/2
(5.19)

Θ = arctan

(
Im〈a2〉 − 2Re〈a〉 Im〈a〉

Re〈a2〉 − (Re〈a〉)2 + (Im〈a〉)2

)
+
π

2
{1 + sign[Re〈a2〉 − (Re〈a〉)2 + (Im〈a〉)2]}, (5.20)

xc + ipc = 〈a〉. (5.21)

Besides introducing the Gaussian states via the Wigner function, it is also possible

to introduce them as displaced squeezed thermal states (DSTS) [235–237], so that the

density matrix is

ρDSTS = D(α)S(ξ) νnth
S(ξ)†D(α)†, (5.22)

where α = 〈a〉 = xc + ipc is the phase-plane state center, D(α) = exp(αa† − α∗a) is the

displacement operator, S(ξ) = exp[1
2ξ
∗a2− 1

2ξ(a
†)2] is the squeezing operator with squeezing

parameter ξ = reiΘ (the angle Θ/2 determines the short axis direction and therefore Θ is

the same as discussed above), and νnth
is the thermal state, defined as

νnth
=

1

1 + nth

∞∑
k=0

(
nth

1 + nth

)k
|k〉〈k|, (5.23)

where |k〉 is kth Fock state and nth = Tr(a†a νnth
) is the average number of thermal photons.

Note that Eq. (5.23) describes an equilibrium state of a linear resonator at finite temperature

without drive, and in that case nth is equal to the thermal photon number for the bath, nb,

given by Eq. (5.7). However, in the non-equilibrium case considered in this chapter, nth is
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not equal to nb. It is still possible to define an effective temperature Teff for a Gaussian

state (5.22) via the same relation,

coth(ωr/2Teff) = 1 + 2nth. (5.24)

Note that the average photon number n̄ for a Gaussian state has a contribution proportional

(but not equal) to nth,

n̄ = Tr(a†a ρDSTS) = |α|2 + (1 + 2nth) sinh2 r + nth, (5.25)

while from Eq. (5.18) we find a simple expression

n̄ = |α|2 + 2D0 − 1/2. (5.26)

To relate parameters r and nth of the DSTS state to the parameters of the Gaussian

state (5.9), we can calculate averages 〈a〉, 〈a2〉, and 〈a†a〉 for the state (5.22), and use these

results to find the variances

Dx = (1/4 + nth/2)(cosh 2r − sinh 2r cos Θ), (5.27)

Dp = (1/4 + nth/2)(cosh 2r + sinh 2r cos Θ), (5.28)

Dxp = −(1/4 + nth/2) sinh 2r sin Θ. (5.29)

Comparing Eqs. (5.27)–(5.29) with Eqs. (5.12)–(5.14), we find the equivalence for

nth = 2
√

(D0 + b)(D0 − b)−
1

2
, tanh 2r =

b

D0
, (5.30)

and the same angle Θ.

As follows from the discussion above, a Gaussian state is determined by five real

parameters. Two parameters, xc and pc, define the state center on the phase plane; it is
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convenient to use their complex combination α = xc + ipc. Three real parameters define

the “shape” (see Fig. 5.1), which can be characterized either by Dx, Dp, and Dxp or by

D0, b, and Θ or by r, Θ, and nth. A Gaussian state is in general a mixed state. A pure

Gaussian state is a minimum-uncertainty squeezed state, characterized by 4 real parameters;

for such a state DxDp −D2
xp = (D0 − b)(D0 + b) = 1/16 and nth = 0. A coherent state is

characterized by only 2 real parameters, which define the center; then Dx = Dp = D0 = 1/4,

Dxp = b = nth = 0, and Θ is not important.

Note that our discussion in this section used the laboratory frame. In this frame,

the evolution due to Hamiltonian H lf
r = ωra

†a (in the absence of drive and damping) rotates

the state center in Fig. 5.1 clockwise with angular velocity ωr. Moreover, the whole phase-

space picture in Fig. 5.1 rotates clockwise with ωr. This means that parameters D0 and b

do not change with time, while the angle Θ/2 evolves as d(Θ/2)/dt = −ωr, and therefore

Θ̇ = −2ωr. Since D0 and b do not change, the parameters r and nth are also constant –

see Eq. (5.30). In the rotating frame based on the frequency ωd, the picture in Fig. 5.1

additionally rotates counterclockwise with angular velocity ωd, so that the net evolution is

clockwise rotation with angular velocity ωr−ωd. Thus, in the rotating frame, the parameters

D0, b, r, and nth are the same as in the laboratory frame, while the rotating-frame angle

parameter θ is related to Θ as

θ = Θ + 2ωdt, (5.31)

and it evolves as θ̇ = −2(ωr − ωd). Descriptions of the Gaussian states in the rotating and

laboratory frames are practically the same, except Θ is replaced with θ and ωr is replaced

with ωr − ωd, as expected for the rotating-frame Hamiltonian Hrf
r = (ωr − ωd) a†a. Note,
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however, that the conversion between the actual position and momentum operators (X̂,

P̂ ) and the corresponding normalized operators (x̂, p̂) should still be based on the actual

frequency ωr and not on ωr−ωd. The relation between the laboratory frame and the rotating

frame is discussed in more detail in the Appendix F. Evolution in the presence of drive and

damping is discussed next.

5.3.2 Evolution equations

For a linear harmonic oscillator with H lf
r = ωra

†a, the evolution (5.6) due to drive

(5.3) and damping κ at bath temperature Tb, preserves state Gaussianity and leads to the

following evolution equations in the laboratory frame [209, 230, 238, 239],

ẋc = ωrpc, (5.32)

ṗc = −ωrxc − κpc − 2Re(εe−iωdt), (5.33)

Ḋx = 2ωrDxp, (5.34)

Ḋp = −2ωrDxp − 2κDp + (κ/2) coth(ωr/2Tb), (5.35)

Ḋxp = −ωr(Dx −Dp)− κDxp. (5.36)

Note that the evolution of the state center (xc and pc) is decoupled from the evolution of

the variances, and the drive ε contributes only to ṗc (as a classical force). The state center

oscillates with the resonator frequency ωr (intrinsically, neglecting effects of κ and ε), while

the variances oscillate with doubled frequency, 2ωr. Also note that Eqs. (5.32)–(5.36) do

not rely on the RWA assumption.

Using the RWA (which symmetrizes coordinates x and p) and going into the rotat-

ing frame based on the drive frequency ωd, so that the Gaussian state center is characterized
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by a slowly changing complex number β in the standard phase space,

β = (xc + ipc) e
iωdt, (5.37)

from Eqs. (5.32)–(5.36) we can derive (see Appendix F) the following evolution equations

[227, 240] (see also [235, 241]) for the parameters β, D0, b, and θ,

β̇ = −i(ωr − ωd)β − (κ/2)β − iε, (5.38)

Ḋ0 = −κD0 + (κ/4) coth(ωr/2Tb), (5.39)

ḃ = −κb, (5.40)

θ̇ = −2(ωr − ωd). (5.41)

Note that the drive does not affect evolution of the diagonal-basis variances D0±b; however,

the short-axis direction θ/2 rotates clockwise with the detuning frequency ωr − ωd, similar

to the rotation of the state center.

Equations (5.38)–(5.41) are the starting point of our analysis. They describe evolu-

tion of a linear resonator using the phase-space language. However, to include nonlinearity,

we will need to approximately convert them into the Fock-space representation. From now

on, we will use only the rotating frame.
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5.4 Evolution of a weakly nonlinear resonator

5.4.1 Fock-space Gaussian state

Generalizing the idea of Ref. [79], let us introduce a state, for which the density

matrix in the basis of eigenstates |n〉 (Fock space) has the following form,

ρmn =
1√

2πW1|β|2
exp

[
−(n+m

2 − |β|2)2

2W1|β|2
− (n−m)2

8W2|β|2
]

× exp

[
iφβ(n−m)− i 2K

|β|2
(n+m

2
− |β|2

)
(n−m)

]
. (5.42)

We call it a Fock-space Gaussian state (because of quadratic dependence on n and m inside

exponents) or, following the terminology of Ref. [79], a sheared Gaussian state (because of a

shearing effect produced by theK-term in the phase space). The state (5.42) is characterized

by five real parameters: |β|, φβ, W1, W2, and K. Note that a physical ρmn requires

0 < W2 ≤W1. (5.43)

As shown in the Appendix G, in the case |β| � 1 (while W1, W2, and K are on the

order of unity) this state is approximately equal to the standard Gaussian state discussed

in Sec. 5.3, so that

β = eiφβ |β| (5.44)

is (approximately) the state center, while the (approximate) conversion relations for the
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parameters D0, b, and θ are

D0 =
1

8

[
1

W2
+W1(1 + 16K2)

]
, (5.45)

b =
√
D2

0 −W1/(16W2), (5.46)

θ = 2φβ + arctan
( KW1

D0 −W1/4

)
+ (π/2) [1− sign(D0 −W1/4)]. (5.47)

The conversion becomes exact for |β| → ∞.

While in the leading order 〈a〉 = eiφβ |β| for the Fock-space Gaussian state (5.42),

more accurate calculations show the next-order correction proportional to |β|−1,

〈a〉 = eiφβ
[
|β| − W1 + 1/W2 − 2

8|β| − 2K2W1

|β| − iKW1

|β|

]
. (5.48)

The overlap fidelity between the Gaussian and Fock-space Gaussian states becomes some-

what better if this correction is taken into account, so that a slightly shifted center cor-

responds to the same 〈a〉 for the Gaussian and Fock-space Gaussian states (see numerical

results in Sec. 5.5.1). However, for simplicity we will not use the center correction (5.48)

unless specifically mentioned.

Note that the trace of the state (5.42) is not exactly 1; however, the difference

is negligible (exponentially small) for |β| � 1. The Fock-space Gaussian state (5.42) is

in general mixed; it becomes pure if W2 = W1, and in this case it reduces to the sheared

Gaussian state introduced in Ref. [79]. [Note a misprint in Eq. (33) of Ref. [79], where the

last exponent should actually be −iK(n − |β|2)2/|β|2.] Comparing Eqs. (5.45) and (5.46)

with Eq. (5.30), we find a useful relation for the thermal photon number,

nth = (
√
W1/W2 − 1)/2, (5.49)

140



which is equivalent to the relation

W1/W2 = coth2(ωr/2Teff) = 16(D0 + b)(D0 − b). (5.50)

Note that the ratio of the variances, (D0 + b)/(D0 − b), and the angle θ/2 − φβ are both

functions of only two parameters: K and W1W2.

The quadrature variance σ2
xϕ along a direction ϕ for the state (5.42) can be calcu-

lated as σ2
xϕ = D0 − b cos(2ϕ − θ) from Eqs. (5.45)–(5.47). In particular, for the direction

along β (ϕ = φβ) we find the variance σ2
xϕ = W1/4, while for the orthogonal direction

(ϕ = φβ + π/2) we find the variance σ2
xϕ = 1/(4W2) + 4K2W1.

As follows from Eq. (5.47), in the case K = 0, the short axis (minimum variance)

is either along the direction of β (θ/2 = φβ) or orthogonal to it (θ/2 = φβ + π/2). Since

in this case the quadrature variance along β is W1/4, while along the orthogonal direction

[ϕ = φβ + π/2] the variance is 1/4W2, the short axis is along β if W1W2 < 1, and it is

orthogonal to the direction of β if W1W2 > 1.

While Eqs. (5.45)–(5.47) show the conversion (for |β| → ∞) from the Fock-space

parameters W1, W2, and K to the phase-space parameters D0, b, and θ, the inverse conver-

sion is given by equations

W1 = 4[D0 − b cos(θ − 2φβ)], (5.51)

W2 =
D0 − b cos(θ − 2φβ)

4(D2
0 − b2)

, (5.52)

K =
b sin(θ − 2φβ)

4[D0 − b cos(θ − 2φβ)]
. (5.53)

The main idea of introducing the Fock-space Gaussian state (5.42) is that it has

a simple evolution due to resonator nonlinearity. Let us consider the evolution only due to
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Hamiltonian (5.4), i.e., with ε = κ = 0. Then ρnm(t) = ρnm(0) exp{−i[Erf(n)− Erf(m)]t}.

Comparing this phase evolution with the second line of Eq. (5.42) and expanding the res-

onator frequency ωr(n) in Eq. (5.4) up to first order around n ≈ |β2| (assuming that non-

linearity is practically constant within the range |n − |β|2| . √W1 |β|), we find evolution

equations

φ̇β = −[ωr(|β|2)− ωd], (5.54)

K̇ =
1

2
|β|2 dωr(n)

dn

∣∣∣∣
|β|2

, (5.55)

where we neglected discreteness of ωr(n). We see that β rotates due to detuning of the

resonator frequency ωr(|β|2) at the state center from the rotating-frame frequency ωd (as

should be expected), while nonlinearity changes K, leading to accumulation of the quadratic

phase factor in Eq. (5.42).

We emphasize that a weak nonlinearity approximately preserves the Fock-space

Gaussian form (5.42), and therefore approximately preserves the Gaussian-state form in the

phase space, assuming a large photon number |β|2. Since the evolution due to the drive

and damping also preserves the Gaussian-state form, as discussed in Sec. 5.3 (for weak

nonlinearity we can use approximately the same matrix elements of operator a in the Fock

space as for a linear oscillator), the state remains approximately Gaussian in both phase

and Fock spaces during the combined evolution.

5.4.2 Hybrid phase-Fock-space evolution equations

We have separately described the evolution due to nonlinearity, Eqs. (5.54)–(5.55),

and due to drive and damping, Eqs. (5.38)–(5.41). The combined evolution is simply the
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sum of the corresponding terms. However, Eqs. (5.38)–(5.41) assume the phase-space rep-

resentation of Fig. 5.1, while Eq. (5.55) is based on the Fock-state representation (5.42).

Thus, we need to convert the equations into a common representation using the conversion

formulas (5.44)–(5.47).

We will characterize the evolving state by four parameters: β(t), W1(t), W2(t),

and K(t). We call it a hybrid representation, since β is a phase-space parameter, while W1,

W2, and K originate from the Fock-space description.

As discussed in Sec. 5.4.1, evolution due to nonlinearity produces Eq. (5.55) for

K̇, the center β evolves as

β̇ = −i[ωr(|β|2)− ωd]β, (5.56)

while W1 and W2 do not evolve, Ẇ1 = Ẇ2 = 0. Note that Eq. (5.56) essentially implies

that the average number of photons in the resonator is n̄ ≈ |β|2, neglecting corrections in

Eq. (5.25).

To find evolution of parameters W1, W2, and K due to drive and damping, we write

Eqs. (5.39)–(5.41) expressing the time derivatives Ḋ0, ḃ, and θ̇ via the partial derivatives

over the parameters of the conversion equations (5.45)–(5.47),

∂D0

∂W1
Ẇ1 +

∂D0

∂W2
Ẇ2 +

∂D0

∂K
K̇ = −κD0

+ (κ/4) coth(ωr0/2Tb), (5.57)

∂b

∂W1
Ẇ1 +

∂b

∂W2
Ẇ2 +

∂b

∂K
K̇ = −κb, (5.58)

∂θ

∂W1
Ẇ1 +

∂θ

∂W2
Ẇ2 +

∂θ

∂K
K̇ + 2

d[arg(β)]

dt
= 0, (5.59)

where in the last term of Eq. (5.59) we need to use β̇ = −βκ/2 − iε, not including the
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evolution (5.56) due to detuning. This is because the evolution (5.56) compensates the

right-hand-side term of Eq. (5.41), which we therefore do not write in Eq. (5.59). Another

justification of writing Eq. (5.59) in this way is that we consider evolution only due to drive

and damping [not due to detuning, which is already considered in Eq. (5.56)]; then the

angle θ does not change in time, and we should exclude the detuning term from β̇.

Equations (5.57)–(5.59) with the partial derivatives obtained from Eqs. (5.45)–

(5.47), give us a system of three linear equations for Ẇ1, Ẇ2, and K̇. Solving this system,

we find

Ẇ1 = 8KW1 Re(ε/β) + κ [coth(ωr0/2Tb)−W1], (5.60)

Ẇ2 = 8KW2 Re(ε/β)

+ κW2[1−W2(1 + 16K2) coth(ωr0/2Tb)], (5.61)

K̇ =
1

4
[(W1W2)−1 − (1 + 16K2)] Re(ε/β)

− κ (K/W1) coth(ωr0/2Tb). (5.62)

Note that in the term coth(ωr0/2Tb) we neglect changing resonator frequency because of

the weak nonlinearity assumption. In the special case when κ = 0, Eqs. (5.60)–(5.62) reduce

to Eq. (47) of Ref. [79].

Finally, combining the terms from Eqs. (5.55)–(5.56) (for evolution due to nonlin-

earity) and from Eqs. (5.60)–(5.62) (for evolution due to drive and damping), we obtain the
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hybrid phase-Fock-space evolution equations

β̇ = −i[ωr(n̄)− ωd]β − κ

2
β − iε, n̄ ≈ |β|2, (5.63)

Ẇ1 = 8KW1 Re(ε/β) + κ [coth(ωr0/2Tb)−W1], (5.64)

Ẇ2 = 8KW2 Re(ε/β)

+ κW2[1−W2(1 + 16K2) coth(ωr0/2Tb)], (5.65)

K̇ =

(
1

4W1W2
− 1 + 16K2

4

)
Re(ε/β)

− κK

W1
coth(ωr0/2Tb) +

1

2
|β|2 dωr(n)

dn

∣∣∣∣
n=|β|2

. (5.66)

Evolution equations (5.63)–(5.66) complemented with the conversion formulas (5.45)–(5.47)

are the main result of this chapter. To our knowledge, this approach to the quantum

evolution of a weakly nonlinear resonator has never been used previously.

Equations (5.63)–(5.66) describe evolution of five real parameters of a Gaussian

state. Equation (5.63) describing evolution of the state center (2 real parameters) is decou-

pled from the other three equations. The equations are approximate and assume |β| � 1

(more detailed discussion later); in general an evolving nonlinear resonator cannot be de-

scribed by a Gaussian state exactly. In spite of the requirement |β| � 1, Eqs. (5.63)–(5.66)

can be used to numerically analyze evolution starting even from β = 0 with a good accu-

racy (the numerical results are discussed later). There is no divergence of Re(ε/β) in Eqs.

(5.64)–(5.66) at β = 0 because if β(t0) = 0, then close to this time moment β = −iε(t− t0)

and therefore Re(ε/β) = Re[i/(t − t0)] = 0. A numerical divergence can be easily avoided

by shifting the denominator of Re(ε/β) by a negligible amount.

Equation (5.63) has a simple physical meaning; it takes into account that the
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resonator frequency ωr(n) changes with the photon number n, and approximates n with

the average photon number n̄ ≈ |β|2. One may think that a simple generalization of Eq.

(5.63) is to use a more accurate value for n̄ from Eq. (5.25) in ωr(n̄) [it would also require

conversion equations (5.30) and (5.45)–(5.47)]. However, numerical simulations show that

this correction does not always give a better agreement with full master equation simulations

using Eq. (5.6). Because of that, we do not use this correction in the numerical analysis in

Secs. 5.5 and 5.6.

Note that Eqs. (5.63)–(5.66) permit three natural rescalings. First, by rescaling

the time axis, it is possible to use κ = 1. Second, since discreteness of n is not important

in our approach, we can rescale the n axis and normalize nonlinearity, for example setting

dωr(n)/dn|n=0 = ±1. Third, non-zero bath temperature Tb is equivalent to rescaling W1 →

W1 coth(ωr0/2Tb) and W2 → W2/ coth(ωr0/2Tb), while using Tb = 0 in Eqs. (5.63)–(5.66);

this leads to D0 → D0 coth(ωr0/2Tb) and b→ b coth(ωr0/2Tb), with unchanged β and θ.

Equations (5.64)–(5.66) describe evolution of the Fock-space parameters W1, W2,

and K. It is also possible to write evolution equations for the phase-space parameters D0, b,

and θ. Note that without the last term in Eq. (5.66), Eqs. (5.64)–(5.66) exactly correspond

to Eqs. (5.39)–(5.41). Therefore, we only need to convert the last term in (5.66) into the

phase space, that can be done by using partial derivatives from the conversion relations

(5.51)–(5.53). In this way we obtain the following evolution equations,

Ḋ0 = −κD0 + (κ/4) coth(ωr0/2Tb) + 2ηβ|β|2b sin(∆θ), (5.67)

ḃ = −κb+ 2ηβ|β|2D0 sin(∆θ), (5.68)

d(∆θ)

dt
= 2 Re(ε/β)− 2ηβ|β|2

b−D0 cos(∆θ)

b
, (5.69)
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where ∆θ ≡ θ − 2 arg(β), ηβ ≡ dωr(n)/dn
∣∣
n=|β|2 , and evolution of β is still given by Eq.

(5.63). Note that divergence in Eq. (5.69) at β = 0 can be avoided numerically in the same

way as discussed above: by a negligible shift of β. The divergence in Eq. (5.69) at b = 0

can also be avoided numerically by a negligible increase of b (physically, this divergence is

because ∆θ is undefined at b = 0). Equations (5.67)–(5.69) are equivalent to Eqs. (5.64)–

(5.66). We have checked this equivalence numerically. However, in the simulations discussed

below we used Eqs. (5.64)–(5.66) rather than Eqs. (5.67)–(5.69). One of the reasons for our

preference is that evolution of W1, W2, and K is always smooth, while ∆θ evolves very

fast when b approaches zero, thus potentially creating a problem with numerical solution

of differential equations (even though our simulations never suffered from this potential

problem).

Note that from Eqs. (5.67) and (5.68) we can obtain

d

dt
(D0 ± b) = −[κ∓ 2ηβ|β|2 sin(∆θ)] (D0 ± b)

+ (κ/4) coth(ωr0/2Tb), (5.70)

which shows that for the maximum-variance and minimum-variance quadratures, the effec-

tive damping rate is different, κeff = κ∓ 2ηβ|β|2 sin(∆θ), and changes with time. Similarly,

the effective bath temperature is also different, coth(ωr0/2Tb) → (κ/κeff) coth(ωr0/2Tb).

Discussion in terms of different effective damping rates for the two quadratures makes an

obvious connection to the case of a parametric drive with doubled frequency.

We have checked that Eqs. (5.67)–(5.69) are consistent with the results of Ref.

[199] for Gaussian variances of classical fluctuations around the trajectory (5.63), caused

by classical (complex) white noise
√
κ ζ(t) applied to the resonator, with the correlation
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function 〈ζ∗(t) ζ(t′)〉 = (1/2) coth(ωr/2Tb) δ(t− t′), 〈ζ(t) ζ(t′)〉 = 0 (as in, e.g., [139]). Note,

however, that in order to get correct equations, we had to exchange B with B† in Eq.

(3.2.4) of Ref. [199]. The correspondence between Eqs. (5.67)–(5.69) and results of Ref.

[199] confirms that the quantum squeezing is similar to squeezing of classical fluctuations,

and it also shows that our approach is physically similar to linearization of fluctuations

around the classical trajectory within the Gaussian approximation.

In Appendix H we derive analytical results for D0, b, and ∆θ in the steady state

and discuss their equivalence to the results of Refs. [186] and [196] for a Duffing oscillator

(Kerr nonlinearity).

5.5 Numerical accuracy

In this section we discuss numerical accuracy of our approach. We start with

analyzing fidelity of the conversion between the Gaussian and Fock-space Gaussian states,

and then discuss numerical accuracy of the hybrid phase-Fock-space evolution equations by

comparing results with full simulation.

5.5.1 Fidelity of the conversion

As was discussed in Sec. 5.4.1, the Gaussian state (5.9) is approximately equal to

the Fock-space Gaussian state (5.42) with the conversion relations (5.44)–(5.47), in the case

of large photon numbers, |β|2 � 1. Let us check the accuracy of this conversion numerically.

For that we calculate the overlap fidelity F between the states (5.9) and (5.42) using the
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standard definition [58]

F =

(
Tr
√√

ρ1 ρ2
√
ρ1

)2

Tr(ρ1) Tr(ρ2)
, (5.71)

where ρ1 and ρ2 are the density matrices of the compared states. Note that for normalized

states the denominator in Eq. (5.71) is not needed, but we use the more general version

(5.71) because the Fock-space Gaussian state (5.42) is not exactly normalized. When at

least one of the states is pure, Eq. (5.71) reduces to the usual state overlap, e.g., F =

〈ψ1|ρ2|ψ1〉 = Tr(ρ1ρ2) if ρ1 = |ψ1〉〈ψ1| and both states are normalized.

To find the conversion fidelity for a Gaussian state with parameters β, D0, b,

and θ, we use conversion relations (5.45)–(5.47) to find corresponding parameters W1, W2,

and K [β is the same unless we use the correction (5.48)], which gives us the Fock-space

Gaussian state (5.42). Then we calculate exact Fock-space representation of the Gaussian

state of (5.9) using Eq. (5.22) with parameters |ξ| and nth obtained from the relations (5.30)

(using α = β and Θ = θ). Finally, we use Eq. (5.71) in the Fock space to find the fidelity F

between the Gaussian and Fock-space Gaussian states. Note that F does not depend on the

phase arg(β) for a fixed value of θ/2− arg(β), so it is sufficient to consider arg(β) = 0, i.e.,

β = |β|; this is what we assume below in the numerical analysis of the conversion fidelity;

in this case θ/2− arg(β)→ θ/2.

Figure 5.2 shows infidelity 1− F as a function of |β| on a log-log scale for several

values of other parameters: 4(D0 +b) = 1, 2, and 4 (this parameter is the long-axis variance

compared with the coherent state; we call it “unsqueezing factor”), θ/2 = 0, π/2, and

π/4 (this is the direction of the short axis in Fig. 5.1), nth = 0 and 1/2. The lines in

Fig. 5.2 are labeled with a pair of numbers: 4(D0 + b) and θ/2; solid and dashed lines

149



Figure 5.2: Infidelity 1−F between the Gaussian and Fock-space Gaussian states as a func-
tion of (real) β for several values of the parameters 4(D0 + b) and θ/2 (labeled respectively
at the right side), for nth = 0 (solid lines) and nth = 1/2 (dashed lines). At large |β| all
lines show the scaling |β|−2, illustrated by the long-dashed line.

correspond to nth = 0 and 1/2 respectively. Note that there is no dependence on θ when

4(D0 + b) = 1 + 2nth [see Eq. (5.30)], then we show only the line θ = 0; also note that for

nth = 1/2 it is always 4(D0 + b) ≥ 2.

Most importantly, we see that all lines in Fig. 5.2 show the scaling 1− F ∝ |β|−2

at large |β| (this scaling is illustrated by the long-dashed line). The deviation from this

dependence at small |β| is mainly caused by two reasons. First, the “shoulder” feature

may develop when |β| < 3
√

4(D0 − b cos θ) ≤ 3
√

4(D0 + b) because then |β| < 3
√
W1 in

Eq. (5.42) and thus the Gaussian approximation near n = 0 becomes inaccurate (less than

3 standard deviations). Second, deviation from the scaling |β|−2 starts to develop when

1 − F & 0.05 because F cannot exceed 1; actually, a natural metric for distance between
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Figure 5.3: Scaled infidelity (1−F )|β|2 as a function of the short-axis angle θ/2. Solid lines
are for nth = 0 (pure states) and 4(D0 + b) = 8, 4, 2, and 1 (top to bottom); dashed lines
are for nth = 1/2 and 4(D0 + b) = 8, 4, and 2 (top to bottom). We used β = 40, which is
sufficiently large so that the presented results do not depend on |β|.

the states is arccos(
√
F ) [58], which is approximately

√
1− F when 1 − F � 1; for this

metric the above condition is
√

1− F & 0.22. From Fig. 5.2 we conclude that the scaling

1− F ∝ |β|−2 is almost perfect if |β| > 3
√

4(D0 + b) and 1− F < 0.05.

Figure 5.3 shows the scaled infidelity (1−F )|β|2 for sufficiently large |β| (here we

used β = 40), as a function of the short-axis angle θ/2. We used parameters 4(D0 + b) = 1,

2, 4, and 8, while nth = 0 (solid lines) and 1/2 (dashed lines). As expected, we see no

dependence on θ/2 when 4(D0 + b) = 1 + 2nth, since in this case the long-axis and short-

axis variances coincide, D0 + b = D0 − b. When 4(D0 + b) > 1 + 2nth, the local minima of

the infidelity are reached at θ/2 = 0 and θ/2 = π/2; both these cases correspond to K = 0

in Eq. (5.42) [note that K = 0 minimizes the state center shift in Eq. (5.48), which affects

151



Figure 5.4: Solid lines: scaled infidelity (1 − F )|β|2 maximized over the angle θ/2 (for
β = 40), as a function of the quadrupled long-axis variance 4(D0 + b). The upper (blue)
solid line is for nth = 0, the lower (orange) solid line is for nth = 1/2. For the corresponding
dashed lines we used the correction to the state center via Eq. (5.48). The black dotted line
is a crude fit given by Eq. (5.72).

infidelity, as discussed below]. For relatively small values of 4(D0 + b), the minimum is

reached at θ/2 = 0 (“photon number squeezing”), while at larger 4(D0 + b), the minimum

infidelity is at θ/2 = π/2 (“phase squeezing”). The maximum infidelity is reached when

θ/2 is (crudely) near ±π/4. Note that the infidelity dependence on θ/2 has a period of π,

and the dependence is symmetric about the points θ/2 = 0 and θ/2 = π/2.

The upper (blue) solid line in Fig. 5.4 shows the scaled infidelity (1 − F )|β|2

maximized over the angle θ/2 (the worst case), as a function of the unsqueezing factor

4(D0 + b) (long-axis variance in units of the coherent state variance) for the case nth = 0
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(zero effective temperature). We see that this line can be approximately fitted by the

formula

1− F ≈ 0.04
[4(D0 + b)]3

|β|2 , (5.72)

which is drawn as the dotted black line.

The infidelity scaling 1−F ∝ (D0+b)3 can be crudely understood as a consequence

of the Fock-space Gaussian state center shift described by Eq. (5.48). Considering for

simplicity the case K = 0 and W1 = W2 � 1 (i.e., nth = 0, θ/2 = 0 – see Figs. 5.2 and 5.3),

we find that the state center is shifted by ∆|β| ≈ −(8W2|β|)−1 ≈ −(D0 +b)/(2|β|) along the

short axis. The relative shift compared with the “width” of the state along the short axis is

then ∆|β|/
√
D0 − b ≈ −[4(D0 + b)]3/2/(4|β|). Since the infidelity scales quadratically with

this relative shift, 1−F ∝ (∆|β|/
√
D0 − b)2, we obtain the scaling 1−F ∝ [4(D0 +b)]3/|β|2.

The same numerical scaling of the infidelity in Eq. (5.72) indicates that the state

center shift may play a significant role in fidelity reduction. To check this hypothesis, we

used the correction from Eq. (5.48) to produce Gaussian and Fock-space Gaussian states

with the same 〈a〉 by making a small compensating shift of β. The corresponding result

for the infidelity 1 − F is shown by the upper (blue) dashed line in Fig. 5.4. As we see,

the correction has really decreased the infidelity; however, the improvement is only by a

factor of about 2, so the scaling is approximately the same as in Eq. (5.72), with the factor

0.04 replaced by 0.02. We have also checked that numerical optimization of the infidelity

over the center shift of the Fock-space Gaussian state [instead of using Eq. (5.48)] produces

practically the same result. The infidelity decrease by a factor of about 2 can be crudely

understood in the following way. The Fock-space Gaussian state has a slightly crescent
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(non-elliptical) shape of the Wigner function in the phase plane. Slightly shifting its center,

it is possible to improve the state fidelity compared with the Gaussian state (which has a

perfect elliptical shape); however, this improvement cannot be very significant.

Now let us discuss the lower (orange) lines in Fig. 5.4, for which nth = 1/2 (i.e.,

effective temperature is Teff = 0.91ωr); as above, the dashed line takes into account the

center correction (5.48), while the solid line is without the correction. We see that non-zero

nth improves the fidelity compared with the case nth = 0 for the same long-axis variance

D0 + b (the short-axis variance in this case is increased by a factor of 4). The improvement

can be qualitatively understood using the above derivation based on the state center shift:

since the short-axis “width” is now larger, the relative inaccuracy is smaller, thus decreasing

the infidelity. Note, however, that such derivation would predict infidelity reduction by a

factor of 4, while numerically the distance between the upper and lower solid lines in Fig.

5.4 is less than a factor of 2.5. Comparing the solid and dashed orange lines, we see that

the state center correction decreases the infidelity; however, the improvement is only by

crudely a factor of 1.5, even less than in the zero-temperature case.

We can make the following conclusions from the numerical results discussed in

this section. First, the infidelity of the conversion between the Gaussian and Fock-space

Gaussian states is not larger than in Eq. (5.72), so the conversion becomes almost perfect

for sufficiently large |β|. Second, correction (5.48) to the state center improves the fidelity;

however, the improvement is not very significant (we will not use this correction in analyzing

the evolution). Let us also note that the change of effective temperature from zero to 0.9ωr

(nth = 1/2) did not produce a very significant change in the infidelity.
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5.5.2 Accuracy of the hybrid phase-Fock-space evolution equations

The main result of this chapter is the hybrid phase-Fock-space evolution equations

(5.63)–(5.66), which permit a very efficient approximate simulation of the state dynamics

for a slightly nonlinear resonator in the large-photon-number regime. In contrast, full

simulation using the master equation (5.6) is highly resource-consuming in this regime

because of large Hilbert space. In this section we numerically analyze the accuracy of our

hybrid equations by comparing the results with the full master equation simulation.

For the numerical analysis let us consider a constant drive, ε(t) = ε, and a constant

(Kerr) nonlinearity,

ωr(n) = ωr0 + nη, (5.73)

which corresponds to the rotating-frame resonator energy levels Erf(n) = (ωr0−ωd)n+n(n−

1)η/2. We also assume that initial state is vacuum, ρ(0) = |0〉〈0|. Note that the hybrid

evolution equations still work well when initial state is vacuum, because for sufficiently weak

nonlinearity, the photon number becomes large before the effects due to nonlinearity (e.g.,

squeezing) become important. Also note that in RWA the considered resonator Hamiltonian

is equivalent to H lf
r = P 2/(2m) + (m/2) ω̃2

r0X
2 + (η/3)m2ω̃2

r0X
4, where ω̃r0 = ωr0 − η. The

difference between the first-excitation frequency ωr0 and the “plasma frequency” ω̃r0 for a

Duffing oscillator is negligible because we focus on the regime of large n.

In the considered case, the RWA dynamics described by the master equation (5.6)

depends on five parameters: nonlinearity η, drive amplitude ε, initial detuning ωr0 − ωd,

damping rate κ, and bath temperature Tb characterized by the bath photon number nb via

Eq. (5.7). Rescaling the time axis (using κ−1 as the time unit), it is easy to see that the
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dynamics depends on four dimensionless parameters: η/κ, ε/κ, (ωr0 − ωd)/κ, and nb.

For simulation using the hybrid evolution equations (5.63)–(5.66), it is possible to

further reduce the number of free parameters from four to only two (this is not possible for

full master equation simulation). Since discreteness of n is not used in Eqs. (5.63)–(5.66),

it is possible to rescale n-axis using κ/|η| as the unit of n; this eliminates nonlinearity as

a free parameter, d(ωr/κ)/d[n/(κ/|η|)] = ±1 (the sign here is the sign of η). This rescal-

ing renormalizes the drive amplitude as (ε/κ)/
√
κ/|η|, while not affecting dimensionless

detuning. Furthermore, it is possible to rescale W1 and W2 using 1/ coth(ωr0/2Tb) and

coth(ωr0/2Tb) respectively; this eliminates bath temperature as a free parameter, such that

it can always be assumed zero. Then the rescaled dynamics is determined by only two

free parameters: ε
√
|η|/κ3/2 and (ωr0 − ωd)/κ, and we can use Eqs. (5.63)–(5.66) with the

following parameters: κ→ 1, dωr/dn→ ±1 (depending on the sign of η), ε→ ε
√
|η|/κ3/2,

ωr0−ωd → (ωr0−ωd)/κ, and Tb → 0; this automatically rescales β as β → β/
√
κ/|η|, time

as t→ κt, variables W1 and W2 as W1 →W1 coth(ωr0/2Tb) and W2 →W2/ coth(ωr0/2Tb),

while K does not change.

To check accuracy of the hybrid phase-Fock-space evolution equations, let us cal-

culate the time-dependent fidelity F (t) [Eq. (5.71)] between the exact solution ρm(t) of the

master equation (5.6) and the state ρh(t) obtained from our approximate hybrid equations

(5.63)–(5.66). Note that in the hybrid method we evolve variables β, W1, W2, and K, but

the resulting state is always converted into a Gaussian state using Eqs. (5.45)–(5.47), so the

fidelity F (t) is calculated between this Gaussian state and Fock-space solution of the master

equation [for that the Gaussian state is represented in the Fock space using Eq. (5.22)]. In
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Figure 5.5: Blue (lower) solid line: time dependence of infidelity 1 − F (t) between the
exact solution ρm(t) obtained from the master equation (5.6) and state ρh(t) obtained from
the hybrid evolution equations (5.63)–(5.66). Parameters are close to typical circuit QED
parameters (see text), time t is normalized by the resonator decay time κ−1. Dashed green
line: infidelity between ρm(t) and its Gaussian-state fit. Red (upper) solid line: infidelity
of the conventional approach based on coherent states.

simulations we will use parameters somewhat close to typical parameters in circuit QED

experiments for measurement of superconducting transmon qubits; a weak nonlinearity of

the resonator in this case is induced by the qubit nonlinearity; the resonator nonlinearity is

much more significant when the transmon is in the ground state [79].

The lower (blue) solid line in Fig. 5.5 shows the time-dependent infidelity 1 − F

of the calculation based on the hybrid phase-Fock-space evolution equations (5.63)–(5.66).

Here we used parameters κ/2π = 5 MHz, ωr0−ωd = 0, η/2π = −0.02 MHz, ε/2π = 32 MHz

(this corresponds to 100 photons in the steady state), and nb = 3.2×10−3 (this corresponds
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to Tb = 50 mK for ωr0/2π = 6 GHz; we start with the vacuum state instead of the thermal

state, but the difference is negligible). We see a very good accuracy provided by our

approach, with infidelity below 10−3. For comparison, the upper (red) solid line shows the

infidelity for the conventional naive approach, in which we assume a coherent state of the

resonator, with the same center β(t) given by Eq. (5.63). We see that the conventional

approach fails to describe the evolution with a good accuracy, thus emphasizing importance

of considering Gaussian states in our approach.

For the dashed green line in Fig. 5.5, at each time t we fitted ρm(t) by a Gaussian

state having the same values of 〈a〉, 〈a2〉, and 〈a†a〉, and then calculated fidelity between this

Gaussian state and ρm(t). Therefore, the dashed line essentially shows the non-Gaussianity

of the actual state ρm(t) (we have checked that numerical optimization over the state center

β does not provide a noticeable further improvement of the infidelity). Comparing the

dashed green line with the blue solid line, we see that our hybrid evolution equations

(5.63)–(5.66) describe the resonator state almost as good as this Gaussian-state fit. We

have found numerically that almost all difference between the solid blue and dashed green

lines in Fig. 5.5 comes from a small inaccuracy in calculation of the state center using

Eq. (5.63) [see Fig. 5.6(b)]. We tried to improve this accuracy by using n̄ from Eq. (5.25)

for the center evolution (5.63) and also by using the center correction (5.48). While this

decreased infidelity for some parameters, it increased it for some other parameters, so we

decided to use the simplest equation (5.63) for the state center evolution. As follows from

Fig. 5.5, this already gives a very good accuracy.

To clarify the origin of the “bump” on the lower lines in Fig. 5.5, in Fig. 5.6(a) we
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Figure 5.6: Panel (a): “Squeezing factor” [4(D0 − b)]−1 (lower lines) and “unsqueezing
factor” 4(D0 + b) (upper lines) as functions of time, for parameters of Fig. 5.5. Solid lines
are obtained from the hybrid evolution equations (5.63)–(5.66), dashed lines are obtained
from the Gaussian-state fit to the master-equation result ρm(t). Panel (b): Corresponding
evolution of the state center β(t) on the phase plane, with points spaced in time by 0.5/κ.
Solid blue line with dots is calculated using Eq. (5.63), almost coinciding red dashed line
with squares show 〈a〉 for ρm(t).
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show the corresponding evolution of “squeezing parameter” 1/[4(D0 − b)] (lower lines) and

“unsqueezing parameter” 4(D0 + b) (upper lines). We see that the maximum infidelity in

Fig. 5.5 occurs at approximately the same time as the maximum unsqueezing in Fig. 5.6(a),

thus hinting that the infidelity during evolution originates from a mechanism similar to the

infidelity between the Gaussian and Fock-space Gaussian states estimated by Eq. (5.72).

The quantitative comparison shows that the maximum of the lower solid line in Fig. 5.5 is

about a factor of 4 smaller than the estimate given by Eq. (5.72), while the steady-state

infidelity is smaller than this estimate by a factor of 9.

The solid lines in Fig. 5.6(a) are calculated using the hybrid evolution equations

(5.63)–(5.66), while dashed lines are obtained from the Gaussian-state fit of the master-

equation result ρm(t). We see that the dashed and solid lines are very close to each other,

indicating that our hybrid approach is quite accurate in calculating the quadrature vari-

ances.

Note that for a minimum-uncertainty (pure) state, the lower and upper lines

(squeezing and unsqueezing) in Fig. 5.6(a) should coincide; the ratio between these pa-

rameters is coth2(ωr0/2Teff) – see Eq. (5.50). From Fig. 5.6(a) we see that the resonator

state is considerably mixed, with the effective temperature Teff significantly exceeding [196]

the bath temperature Tb; for example, in the steady state Teff = 98 mK, in contrast to

Tb = 50 mK. A large corresponding ratio of thermal photon numbers, nth/nb = 17.3, in-

dicates that the effective temperature Teff in this case is practically independent of the

bath temperature. Indeed, the same simulations with Tb = 0 showed a very close effective

temperature, Teff = 96 mK.
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In Fig. 5.6(b) we show evolution of the state center β(t) on the phase plane for

the same parameters as in Figs. 5.5 and 5.6(a). The dots (and squares) are separated

by time intervals 0.5/κ (which is 15.9 ns); the solid blue line with dots is for calculation

using Eq. (5.63), while the dashed red line with squares shows 〈a〉 for the master-equation

simulation result ρm(t). We see that Eq. (5.63) is quite accurate for calculating the state

center. However, there is a tiny (almost unnoticeable) difference between positions of the

dots and squares in Fig. 5.6(b); as mentioned above, this tiny shift is mainly responsible for

the difference between the lower solid and dashed lines in Fig. 5.5. As another observation,

the maximum photon number |β|2 is achieved at almost the same time as the maximum of

4(D0 + b); however, we think that the infidelity bump in Fig. 5.5 is caused by the maximum

of 4(D0 + b) and not by the almost simultaneous maximum of |β|2.

The main advantage of our method is a simple calculation of the resonator state

deviation from a coherent state. For illustration, Fig. 5.7 shows the contour plot of the

Wigner function W (α) of the resonator state at time moment t = 15/κ (practically the

steady state) for the same parameters as in Figs. 5.5 and 5.6. The solid black lines are cal-

culated for our approximate hybrid-evolution state ρh, while the dashed red lines correspond

to the exact state ρm (at this snapshot 1−F = 2.5×10−4). We see that our approach gives

a quite good approximation for the Wigner function; the difference is mainly because W (α)

contour plot for the actual state ρm has a slightly crescent shape, while in our Gaussian-

state approximation the contours are strictly elliptical. We used Eq. (5.16) to calculate

W (α) for the Gaussian state ρh, while for ρm we used the formula [242, 243]

W (α) =
2

π
Tr
[
D(−α) ρD(α) eiπa

†a
]
, (5.74)
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Figure 5.7: Contour plot for the Wigner function W (α) of the resonator state. The black
solid lines are calculated using the hybrid evolution equations (5.63)–(5.66), the red dashed
lines are calculated using the master equation (5.6). The parameters are the same as in
Figs. 5.5 and 5.6, the snapshot is taken at time t = 15/κ. The contours are drawn at the
levels of 1/4π, 2/4π, ... 7/4π. The centers are indicated by black and red dots.

in which the displacement operator D(α) was applied numerically in the Fock space.

Now let us check numerically the expectation that our approach should become

more accurate with more photons in the resonator. The solid lines in Fig. 5.8 show the

time-dependent infidelity 1 − F (t) for the calculations using Eqs. (5.63)–(5.66) (compared

with the master equation results) for different number of photons. All solid lines correspond

to the same normalized drive amplitude and detuning as in Figs. 5.5–5.7: ε
√
|η|/κ3/2 = 0.40

and (ωr0 − ωd)/κ = 0; however, nonlinearity η varies: from top to bottom η/2π = −0.04,
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Figure 5.8: Solid lines: time dependence of infidelity 1 − F (t) between the simulations
based on the master equation and on our hybrid evolution equations, for the stationary-
state photon numbers nst ≈ 50, 100, and 200 from top to bottom. The corresponding
(color-matched, the same order) dashed lines show infidelity of the Gaussian-state fit to
the master-equation simulations. The dimensionless parameters, ε

√
|η|/κ3/2 = 0.40 and

(ωr0 − ωd)/κ = 0, are the same as in Figs. 5.5–5.7, while ε and η change from line to line
(see text).

−0.02, and −0.01 MHz; correspondingly, the drive amplitude ε also varies (with decay rate

κ/2π = 5 MHz kept constant): ε/2π = 32/
√

2, 32, and 32
√

2 MHz. This corresponds to the

steady-state average photon number nst ≈ |βst|2 approximately equal to 50, 100, and 200

from top to bottom (note that the scaled evolution is the same as in Fig. 5.6). As expected,

the solid lines in Fig. 5.8 show that the infidelity becomes smaller with more photons in the

resonator. The scaling is crudely 1−F ∝ |βst|−2, as expected from Fig. 5.2 and Eq. (5.72).

In addition to better accuracy, for larger |βst| our approach becomes much more

preferable computationally in comparison with the master-equation calculations. As an
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example, for our codes (which are rather simple, Mathematica-based) the calculation of the

hybrid evolution ρh(t) for the solid lines in Fig. 5.8 took about 0.02 seconds, while obtaining

the numerical master-equation solution ρm(t) took 0.2, 1, and 4 hours on a high-end desktop

computer (longer time for larger |βst|). The master-equation simulation duration scales

crudely quadratically with the size of the Fock space, while for our hybrid equations there

is no scaling with the system size. For the lower solid line in Fig. 5.8, our method was faster

by a factor exceeding 105.

Dashed lines in Fig. 5.8 show infidelity of the Gaussian-state fit of ρm(t) for the

same parameters. Comparing the solid and dashed lines, we see that most of the infidelity

in our approach comes from non-Gaussianity of the actual state, thus making unimportant

any possible improvements in the state center calculation by improving Eq. (5.63). We

also see that the fraction of the infidelity coming from non-Gaussianity does not change

significantly with changing number of photons.

Note that with zero initial detuning, ωd = ωr0, assumed in Figs. 5.5–5.8, we auto-

matically avoid the bistability region [244, 245] for the steady state of a classical resonator

with Kerr nonlinearity (5.73). Our method is generally not intended to work inside or close

to this bistability region. In particular, quantum treatment formally removes the bistability

[186] because of transitions due to quantum fluctuations (tunneling or quantum activation

[201]), even though the rate of these transitions can be exponentially small. In contrast,

our approach uses the classical equation (5.63) for the state center evolution, showing full

bistability. The critical point [244, 245] (start of the bistability) occurs at |ε̃| = 3−3/4 ≈ 0.44
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and ∆ω̃d =
√

3/2 for the dimensionless parameters

ε̃ ≡ ε
√
|η|

κ3/2
, ∆ω̃d ≡ −sign(η)

ωr0 − ωd

κ
. (5.75)

For larger |ε̃|, the bistability range for ∆ω̃d becomes non-zero and grows. For a given ∆ω̃d

above
√

3/2, the bistability region for the dimensionless drive amplitude is |ε̃−| ≤ |ε̃| ≤ |ε̃+|,

where |ε̃∓|2 = ñ±[ñ± − ∆ω̃d]2 + ñ±/4 and ñ± = [2∆ω̃d ±
√

∆ω̃2
d − 3/4]/3 [186] (here ñ

is related to the photon number nst = |βst|2 as ñ = nst|η|/κ). As mentioned above, we

should avoid this bistability region when using our approach (5.63)–(5.66). We have checked

numerically that in the vicinity of the critical point as well as near the bistability region,

the unsqueezing parameter 4(D0 +b) may become large, indicating that our approach could

become accurate only at very large number of photons.

The numerical results presented in this section show that our approach based

on the hybrid evolution equations (5.63)–(5.66) typically provides a good accuracy, which

is orders of magnitude better than using the conventional approximation based on the

coherent-state assumption. On the other hand, our approach is orders of magnitude faster

than the full simulation based on the master equation.

5.6 3 dB squeezing limit and its violation in transients

Squeezing of a resonator state due to Kerr nonlinearity (5.73) has been discussed

long ago [168–171] (see also [79]). A somewhat similar squeezing of the vacuum state can

be produced by a parametric drive at the doubled frequency [89, 200], and in this case the

steady-state squeezing of the resonator state is always less than 3 dB, i.e., [4(D0− b)]−1 ≤ 2

[89, 212, 213]. There were several proposals to exceed this limit in a nanomechanical sys-
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tem, in particular based on reservoir engineering [216, 217], weak measurements [209, 218],

injection of squeezed light [219], and short optical pulses [220]. The 3 dB limit for a me-

chanical oscillator was recently exceeded experimentally [221] by using reservoir engineering

and backaction-evading measurement. Note that squeezing of a micro-mechanical resonator

by more than 3 dB below the thermal noise was realized earlier [246].

Because of a similarity [195, 202] between squeezing produced by a doubled-

frequency parametric driving and by the usual non-parametric driving of a nonlinear res-

onator, it is natural to expect a similar 3 dB limit for squeezing in the system considered in

this chapter. However, we are not aware of papers, which discussed such a limit explicitly.

In this section we prove that the hybrid phase-Fock-space evolution equations (5.63)–(5.66)

indeed show the 3 dB limit for the steady-state squeezing. We also show that squeezing

may exceed this limit during the evolution.

First, let us consider squeezing in the steady state. Substituting Ẇ1 = Ẇ2 = 0

into Eqs. (5.64) and (5.65), we find that in the steady state

1 + 16K2 =
2W1/ coth(ωr0/2Tb)− 1

W1W2
. (5.76)

Therefore, from Eq. (5.45) we obtain D0 = W1/[4W2 coth(ωr0/2Tb)]. Now using Eq. (5.46)

for the parameter b, we obtain the scaled minimum quadrature variance 4(D0 − b) =

W1/[W2 coth(ωr0/2Tb)]−
√

[W1/W2 coth(ωr0/2Tb)]2 −W1/W2. Representing this result as

4(D0 − b) =
coth(ωr0/2Tb)

1 +
√

1− coth2(ωr0/2Tb)W2/W1

, (5.77)

we obtain [4(D0−b)]−1 < 2 since coth(ωr0/2Tb) ≥ 1 and W2/W1 is positive. Thus, squeezing

is less than 3 dB in the steady state.
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Note that the 3 dB squeezing limit can be approached only when the bath tem-

perature Tb is zero [so that coth(ωr0/2Tb) = 1] and when W1/W2 → ∞. Correspondingly,

effective temperature Teff becomes infinitely large because nth → ∞, as follows from Eqs.

(5.49) and (5.50). We also see that in this case the maximum quadrature variance becomes

infinitely large, 4(D0 + b)→∞, which indicates instability (similar to the case of reaching

the 3 dB limit for parametric doubled-frequency drive [89, 212]). Using Eqs. (5.63)–(5.66),

we have checked numerically that 3 dB squeezing can be approached near the critical point

and also near the switching point on the upper branch in the bistability region. As discussed

above, our formalism is not actually intended to work in this parameter range. The hybrid

equations do not have any mathematical problems in this range; however, there can be a

problem with accuracy compared to the exact (master equation) evolution. In particular,

when 4(D0 +b) becomes large near the critical point, the accuracy of the formalism requires

a very large number of photons [see estimate (5.72)]. In addition, within the bistability

region our formalism neglects switching between the quasistable states caused by fluctua-

tions, so it can be reasonably accurate only when the switching rate is very small (that also

requires a large number of photons). In spite of these issues, we can still formally use our

equations, keeping in mind the potential problems.

Even simpler derivation of the 3 dB limit can be obtained using Eq. (5.70). This

derivation follows very closely the underlying physical idea of the derivation [89, 213] for the

case of a parametric drive. From Eq. (5.70) we find that in the steady state the unsqueezing

and inverse squeezing factors are

4(D0 ± b) =
coth(ωr0/2Tb)

1∓ 2ηβ|β|2 sin(∆θ)/κ
. (5.78)
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Figure 5.9: Panel (a): Squeezing factor [4(D0 − b)]−1 as a function of time t for ωd/2π =
ωr0/2π = 6 GHz, κ/2π = 5 MHz, η/2π = −0.15 MHz, Tb = 0, and ε/2π = 290 MHz
(so that ε

√
|η|/κ3/2 = 10). The solid blue line is calculated using the hybrid evolution

equations, the dashed red line is obtained from the master equation simulation, and the
dotted black line is the variance of the master-equation Wigner function along the short
axis. Panel (b): Unsqueezing factor 4(D0 + b) for the same parameters (solid blue and
dashed red lines). Dotted black line is the Wigner function variance along the long axis.
Panel (c): the corresponding evolution of the state center β(t) on the phase plane. The
dots are separated in time by 0.1/κ, larger dots are separated by 0.5/κ.

Since D0 + b > 0, there is a limitation 2ηβ|β|2 sin(∆θ) < κ (which is similar to the con-

straint of the parametric instability). Therefore, for 4(D0 − b) the denominator in Eq.

(5.78) is less than 2 (and obviously positive), thus leading to the inequality 4(D0 − b) >

(1/2) coth(ωr0/2Tb) ≥ 1/2.

Even though the steady-state squeezing is always below 3 dB, this limit can be
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violated before reaching the steady state. For example, Ref. [246] experimentally achieves

below 3 dB squeezing of thermal noise during the transient in a micro-mechanical oscillator.

As an example in our system for squeezing below the quantum noise, the solid blue line in

Fig. 5.9(a) shows the squeezing factor [4(D0−b)]−1 as a function of time for the dimensionless

drive amplitude ε̃ = ε
√
|η|/κ3/2 = 10, no initial detuning, ωd = ωr0, and zero temperature of

the bath. We see that the 3 dB limit squeezing limit (horizontal line) is exceeded repeatedly,

even though in the stationary state the squeezing is below 3 dB. The numerical result was

obtained using Eqs. (5.63)–(5.66). To check it, we also performed the simulations using the

master equation (5.6). The dashed red line in Fig. 5.9(a) shows the corresponding result for

the same parameters and η/κ = −0.03 (as discussed above, master equation requires more

dimensionless parameters than the hybrid evolution equations); for example, this case can

be realized with ωd/2π = ωr0/2π = 6 GHz, κ/2π = 5 MHz, η/2π = −0.15 MHz, Tb = 0,

and ε/2π ≈ 290 MHz (these parameters can in principle be realized with a circuit QED

setup by increasing the effective resonator nonlinearity |η| using an increased qubit-resonator

coupling). The maximum average number of photons in this case is approximately 350 (at

κt ≈ 0.4) – see Fig. 5.9(c). Comparing the solid blue and dashed red lines in Fig. 5.9(a), we

see that the master equation gives a slightly smaller squeezing than the hybrid equations,

but it still significantly exceeds the 3 dB value at the peaks. Note that the hybrid-equation

calculation took about 0.02 seconds on a desktop computer, while the master-equation

simulation took over 15 hours (the ratio of over 106).

A noticeable inaccuracy of the squeezing calculation in Fig. 5.9(a) using the hybrid

equations is related to large values of the unsqueezing parameter 4(D0 + b) shown in Fig.
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5.9(b). At the first peak (κt ≈ 0.4) the infidelity estimate using Eq. (5.72) for |β|2 ≈ 350

gives 0.05, so we would expect a noticeable inaccuracy. We checked that the inaccuracy

decreases with decreasing nonlinearity |η|/κ while keeping ε
√
|η|/κ3/2 fixed; this increases

the number of photons, which scales as κ/|η|. (Since further increase of the photon number

is very difficult for the master-equation simulations, we actually checked that the inaccuracy

in Fig. 5.9(a) increases with decreasing number of photons by increasing |η|/κ.) Note that

the unsqueezing parameters calculated by the hybrid equations and by the master equation

[solid blue and dashed red lines in Fig. 5.9(b)] practically coincide with each other.

Figure 5.9(c) shows the evolution of the state center β(t) on the phase plane, with

dots separated in time by 0.1/κ (larger dots are separated by 0.5/κ); the results from Eq.

(5.63) and master equation practically coincide with each other. Comparing Fig. 5.9(c)

with Figs. 5.9(a) and 5.9(b), we see that peaks in squeezing and unsqueezing approximately

correspond to maxima of the photon number |β|2. The minima of the photon number

correspond to small bumps on the lines in Figs. 5.9(a) and 5.9(b).

We expect that the difference between the solid blue and dashed red lines for the

squeezing factor in Fig. 5.9(a) can be mostly explained by a non-Gaussian shape of the actual

states produced by the master equation. This non-Gaussianity can be seen as a slightly

crescent shape of the Wigner function in the phase plane (see Fig. 5.7), with slightly curved

“arms” along the long axis, instead of the perfect elliptical shape. However, the bending

of the “arms” produces a smaller effect along the short axis. To check this hypothesis, we

have calculated the Wigner function variance along the short axis by numerically fitting the

master-equation Wigner function along the short axis (passing through the state center)
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with a one-dimensional Gaussian model. The result is shown by the dotted black line in

Fig. 5.9(a). It is almost indistinguishable from the blue solid line, thus confirming that

squeezing calculated by our hybrid-evolution method is essentially the squeezing of the

Wigner function along the short axis (which is slightly different from the usual “integrated”

definition based on the quadrature variance, which is affected by bending of the “arms”).

In contrast, the Wigner function variance along the long axis, shown by black dotted line

in Fig. 5.9(b), noticeably differs from the quadrature variance shown by the solid blue (or

dashed red) line. This is expected because the Wigner function along the long axis is

significantly more affected by bending of the “arms”.

Figure 5.10 shows time-dependence of the squeezing factor [4(D0−b)]−1 for various

parameters; these results are obtained using the hybrid equations (5.63)–(5.66). In Fig.

5.10(a) we assume zero initial detuning and zero bath temperature, ωd = ωr0, Tb = 0, while

varying the dimensionless drive amplitude, ε̃ ≡ ε
√
|η|/κ3/2 = 5, 10, and 15. In Fig. 5.10(b)

we keep the amplitude fixed, ε̃ = 10, and vary the detuning, ∆ω̃d ≡ sign(η)(ωd − ωr0)/κ =

−3, 0, and 3 (the temperature is still zero). We see that a larger squeezing can be achieved

with a larger amplitude of the drive and also with a detuning, which moves the operating

point closer to the bistability region (for ε̃ = 10 the bistability region starts at ∆ω̃d = 8.75).

Note that a larger squeezing also leads to a larger unsqueezing 4(D0 + b); for example, the

maximum squeezing factor of 5.6 in Fig. 5.10(a) for ε̃ = 15 corresponds to 4(D0 + b) = 7.8

(at this point |β|2 = 13.9κ/η). Similarly, the maximum squeezing factor of 7.6 in Fig.

5.10(b) for ∆ω̃d = 3 corresponds to 4(D0 + b) = 16.3 (at this point |β|2 = 14.1κ/η). This

means that to observe these large values of squeezing, we would need very many photons in
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the resonator. From Eq. (5.72) and numerical results in Sec. 5.5.2, we expect that validity

of our formalism requires

n̄ ≈ |β|2 � [4(D0 + b)]3. (5.79)

Therefore, we estimate that for the upper (green) lines in Figs. 5.10(a) and 5.10(b) to

be reasonably accurate, we need over 500 and 4,000 photons, respectively. Therefore, we

cannot check results of Fig. 5.10 against the master equation. However, since the results of

the hybrid equations and the master equation agree well with each other in the range where

the master equation requires reasonable computational resources, we believe that our Eqs.

(5.63)–(5.66) can still be reliably used for parameters when the master equation already

cannot be used because of too large Hilbert space.

5.7 Summary

In this chapter we have introduced a new approximate method for numerical cal-

culation of quantum evolution of a weakly nonlinear resonator due to drive and dissipation.

This method is most accurate for large number of photons in the resonator (hundreds,

thousands or more). This is exactly the regime where the conventional method based on

the master equation becomes inapplicable because of too large Hilbert space. For a few

hundred photons in the resonator (when the master equation can still be used), our method

is faster by a factor of over 105, while providing a very good accuracy.

The method is based on a hybrid description of a quantum state, which uses

both phase-space and Fock-space parameters. The advantage is that evolution due to

drive and dissipation can be naturally described in the phase space, while evolution due to
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Figure 5.10: Time dependence of the squeezing factor [4(D0 − b)]−1, calculated using the
hybrid evolution equations (5.63)–(5.66). The lines in panel (a) are for zero initial detuning,
ωd = ωr0, zero bath temperature, Tb = 0, and dimensionless drive amplitudes ε

√
|η|/κ3/2 =

15, 10, and 5 (from top to bottom). The lines in panel (b) are for ε
√
|η|/κ3/2 = 10,

Tb = 0, and dimensionless initial detunings (ωd − ωr0)/κ sign(η) = 3, 0, and −3 (from top
to bottom). All lines repeatedly exceed the 3 dB squeezing limit (factor of 2).
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nonlinearity has a simple description in the Fock space. We combined both descriptions by

proving that a phase-space Gaussian state with many photons has a simple approximate

representation in the Fock space, Eq. (5.42), which is also Gaussian. Thus, our method

essentially uses the Gaussian-state approximation for an evolving quantum state. It is not

applicable for quantum dynamics involving cat-states, but is well-applicable for analyzing

squeezing, unsqueezing, and effective heating of the resonator state due to weak nonlinearity.

The method describes the quantum evolution via solving four ordinary differential

equations, Eqs. (5.63)–(5.66). One of them, Eq. (5.63), is decoupled from other equations

and describes the evolution of the state center β(t) on the (complex) phase plane. This is the

usual classical equation, which takes into account resonator nonlinearity. (This equation can

be generalized by coupling it with other equations; however, in our numerical analysis we did

not find a significant improvement of accuracy by doing this.) Other three equations, Eqs.

(5.64)–(5.66), essentially describe evolution of the three quantum parameters of a Gaussian

state (maximum and minimum quadrature variances D0±b and the short-axis angle θ/2 on

the phase plane); however, this is done using the Fock-space parameters (W1, W2, and K).

For conversion of the results into the phase-space description we use Eqs. (5.45)–(5.47). It

is also possible to use Eqs. (5.67)–(5.69) to simulate evolution of the parameters D0, b, and

θ directly, though in this chapter we have not focused on this way of analysis. Physically,

our approach is related to linearization of fluctuations around a classical trajectory [199];

however, formally it is based on a different framework.

Numerical accuracy of our method has been studied in Sec. 5.5. Somewhat sur-

prisingly, it works well not only for a very large number of photons (as expected), but
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may also provide a reasonable accuracy when there are only a few dozen photons in the

resonator. It is important that the method accurately describes the evolution starting with

vacuum (where it formally should not work); this is because during the evolution, effects

of nonlinearity become important at larger number of photons where the method already

works well.

The method becomes inaccurate when a quantum state cannot be reasonably rep-

resented as a Gaussian state. In our simulations this has been usually the case when the

long-axis quadrature variance D0 + b is large, while the number of photons |β|2 is not suf-

ficiently large, so that the Wigner function of the state has a noticeable crescent shape

in the phase plane. We have found numerically that Eq. (5.79) can be used for a crude

estimate of the applicability range of the method; a weaker condition, |β|2 > [4(D0 + b)]3,

still provides a reasonably good accuracy. Because of a growing inaccuracy, the method is

not intended to be used close to the critical point of the resonator bistability, where the

long-axis quadrature variance D0 + b becomes large. Similarly, the method is not intended

to be used within the bistability region, since it neglects switchings between the quasistable

states caused by fluctuations. Nevertheless, the equations of the method can be formally

used in any regime, keeping in mind these reasons for potential inaccuracy of the results

compared with full master-equation simulations. We have checked (Appendix H) that our

analytical results for the steady state agree with the results of Refs. [186] and [196].

As an example, In Sec. 5.6 the equations of our method have been used to derive

the 3 dB limit for the steady-state squeezing of a pumped and damped weakly nonlinear

resonator. We have also shown numerically that squeezing during transients can significantly
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exceed this 3 dB limit (Fig. 5.10). We emphasize that such an analysis is very difficult using

the master equation because a large squeezing typically requires large number of photons

in the resonator and therefore large Hilbert space. In contrast, our calculations take only a

fraction of a second, independently of the photon number.

We hope that our method can be useful in various fields of research involving

squeezing of weakly nonlinear resonators with large number of quantum excitations. In

particular, it can be useful for circuit QED systems, in which a weak resonator nonlinearity

is induced by interaction with a qubit. Note that our method describes squeezing of the

resonator state, but it is not directly applicable to a transmitted/reflected microwave field

outside of the resonator (such generalization is discussed in Chapter 6). Our method can

also be useful in analysis of nanomechanical systems at low temperatures.
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Chapter 6

Two-time correlators for

propagating squeezed microwave in

transients

In this chapter, we analyze two-time correlators as the most natural characteristic

of a propagating quadrature-squeezed field in the transient regime. The considered system

is a parametrically driven resonator with a time-dependent drive. Using a semiclassical

approach derived from the input-output theory, we develop a technique for calculation of the

two-time correlators, which are directly related to fluctuations of the measured integrated

signal. While in the steady state the correlators are determined by three parameters (as

for the phase-space ellipse describing a squeezed state), four parameters are necessary in

the transient regime. The formalism can be generalized to weakly nonlinear resonators

with additional coherent drive. We focus on squeezed microwave fields relevant to the
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measurement of superconducting qubits; however, our formalism is also applicable to optical

systems. The results can be readily verified experimentally.

6.1 Introduction

Squeezed microwave fields (SMFs) [211] have recently become the focus of exten-

sive research efforts, related to superconducting quantum computing. This was enabled

by a rapid progress in the development of practical superconducting parametric amplifiers

[81, 82, 85, 247, 248], which have become versatile sources as well as detectors of SMFs. Ap-

plications of intracavity and propagating (itinerant) SMFs include qubit readout [161, 208],

metrology [203, 249, 250], continuous-variable entanglement [83, 164], control of artificial-

atom fluorescence [166], etc. Among other experimental achievements are demonstrations of

the dynamic Casimir effect [251, 252], tomography of an itinerant SMF [84], and detection

of SMF radiation pressure [253].

Besides generation in phase-sensitive parametric amplification, SMFs are also self-

generated in the process of circuit QED measurement of superconducting qubits [79, 152]

due to effective nonlinearity of the resonator induced by coupling with the qubit. Since

squeezing affects the qubit measurement error, and for fast readout the steady-state regime

is not reached, analysis of squeezing in transients is very important. The corresponding

dynamics of the intracavity squeezing has been recently analyzed [80]; however, there is

still no theory for transient squeezing of the propagating SMF, which determines the qubit

measurement accuracy. Moreover, our extensive search for any papers discussing transient

evolution for a resonator-produced propagating squeezed field resulted in only a few remotely
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related references [254–257], which cannot serve as a starting point in developing a theory

to answer this physically interesting and practically important question.

In this chapter, we analyze the transient regime of the propagating SMF, gener-

ated by a parametrically-driven linear resonator [188], as shown in Fig. 6.1(a). The case of

a weakly nonlinear resonator with a coherent drive (as in the qubit measurement) is slightly

more complicated but equivalent, as discussed in the supplemental material of Ref. [258]. As

needed for practical applications, we focus on two-time correlators [259] for the quadrature

(homodyne) measurement [89, 260], with quadrature angle ϕ changing in time. In particu-

lar, we find that in transients the dependence of the correlator on two angles ϕ1 and ϕ2 is

characterized by four parameters, in contrast to only three parameters needed in a steady

state, as for the ellipse in phase space, which is traditionally used to describe squeezing.

Our results can be readily checked experimentally.

6.2 System and Hamiltonian

Let us consider a parametrically modulated resonator [Fig. 6.1(a)] described in the

rotating-wave approximation by the Hamiltonian (~ = 1)

H = Ω(t) a†a+
i

4

[
ε∗(t) a2 − ε(t) a†2

]
, (6.1)

where the resonator detuning Ω(t) = ωr(t)− ωd and the parametric drive amplitude ε(t) =

|ε(t)| eiθ(t) can depend on time (slowly in comparison with the rotating frame frequency

ωd). In the laboratory frame, this Hamiltonian corresponds to the resonator frequency

modulation at the double-frequency, ωr − |ε| sin(2ωdt − θ). The more general case of a
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Figure 6.1: (a) Analyzed system. Propagating microwave field [described by operator F (t)
or complex stochastic variable f(t)] is squeezed due to parametric drive of the resonator
with changing in time amplitude ε(t) = |ε(t)| eiθ(t). The amplified quadrature phase ϕ(t)
also changes in time, producing the noisy output signal fϕ(t). The resonator damping rate
is κ, and the incoming vacuum noise is described by v(t). (b) An example of the parametric
drive change, producing transient evolution of the resonator field [depicted in panel (a)] and
of the propagating field.

nonlinear resonator and added coherent drive is discussed in the supplemental material of

Ref. [258].

The propagating microwave field leaking from the resonator, described by operator

F (t), is amplified by a phase-sensitive amplifier, which amplifies the quadrature phase ϕ,

so that the measured operator is Fϕ(t) = [F (t) e−iϕ + F †(t) eiϕ]/2. In contrast to most

previous works, we assume a time-dependent phase ϕ(t). After the mixer [not shown in

Fig. 6.1(a)], the ϕ-quadrature measurement produces a classical (normalized) fluctuating

output signal fϕ(t), which in a typical experiment is integrated with a weight function

w(t) to produce the measurement result R =
∫
w(t)fϕ(t) dt. To analyze fluctuations of
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R, we need 〈R2〉 =
∫∫

w(t1)w(t2)〈fϕ1(t1)fϕ2(t2)〉 dt1dt2, where ϕk ≡ ϕ(tk). Therefore, in

experiments it is important to know the correlator

Kϕ1ϕ2(t1, t2) ≡ 〈fϕ1(t1) fϕ2(t2)〉, (6.2)

which will be the main object analyzed in this chapter. Note that in our model, fϕ(t) is only

noise (amplified and measured propagating squeezed vacuum), i.e. 〈fϕ(t)〉 = 0; it is simple

to add a non-zero signal by adding a coherent drive [258] into Eq. (6.1), but this does not

affect fluctuations because of linearity. For simplicity, we assume that the resonator energy

decay rate κ is only due to coupling κout with the transmission line, κ = κout (generalization

to the case κ > κout is trivial in the same-temperature case, see below).

In the simplest case of zero detuning (Ω = 0), zero temperature, and time-

independent ϕ and ε, the propagating squeezed vacuum produces the steady-state correlator

Kϕϕ(0, τ) =
δ(τ)

4
− κ|ε|

4κ+
e−κ+|τ |/2 cos2(ϕ− θ/2)

+
κ|ε|
4κ−

e−κ−|τ |/2 sin2(ϕ− θ/2), κ± = κ± |ε|, (6.3)

as can be obtained via the conventional input-output formalism [88, 90], assuming |ε| < κ.

Correspondingly, the integrated correlator for ϕ = θ/2 is
∫∞
−∞Kϕϕ(0, τ) dτ = (1/4)(κ−/κ+)2,

so it is squeezed compared with the vacuum value of 1/4, while for ϕ = (θ + π)/2 it is un-

squeezed:
∫∞
−∞Kϕϕ(0, τ) dτ = (1/4)(κ+/κ−)2.

Note that dependence of the correlator Kϕϕ(0, τ) on ϕ is described by three real

parameters. Also note that since in the steady state Kϕϕ(0, τ) depends only on the time

difference τ ≡ t2 − t1, it is natural to use the Fourier transform, so the squeezing is usually

analyzed in terms of the squeezing spectrum [89, 200] Sϕ(ω) ≡ 4
∫∞
−∞ e

−iωτKϕϕ(0, τ) dτ .
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However, during transients such a Fourier transform is not natural, so we will focus on the

two-time correlator Kϕ1ϕ2(t1, t2).

6.3 Semiclassical model for measured fluctuations

Instead of using the conventional input-output formalism [88], we will use a simpler

semiclassical stochastic model [261] to analyze the temporal correlations of the output signal

fϕ(t). As shown in [258], the correlators obtained using this model are exact for our linear

system (6.1); the model is still a good approximation for a weakly nonlinear resonator.

In this semiclassical model, the fluctuation of the (quantum) propagating output

field F (t) is treated as a complex-valued stochastic variable,

f(t) = −v(t) +
√
κα(t), (6.4)

where the complex-valued stochastic variable α(t) describes fluctuations of the intracav-

ity field, while the incoming vacuum noise [Fig. 6.1(a)] is described by a complex-valued

Gaussian noise v(t) with two-time correlators

〈v(t) v∗(t′)〉 = (n̄b + 1/2) δ(t− t′), 〈v(t) v(t′)〉 = 0, (6.5)

where 〈...〉 denotes ensemble average and n̄b = [exp(ωr/T )− 1]−1 is the average number of

bath thermal photons. For brevity of formulas, we will assume the temperature T to be

zero (so n̄b = 0); however, for T 6= 0 all correlators in this chapter can be simply multiplied

by the factor 1 + 2n̄b.

The intracavity field fluctuation α(t) for a parametrically modulated resonator
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(6.1) evolves as

α̇(t) = −
(κ

2
+ iΩ

)
α(t)− ε(t)

2
α∗(t) +

√
κ v(t). (6.6)

Note that in our normalization, |α|2 corresponds to the number of photons in the resonator,

while |f |2 corresponds to the propagating number of photons per second. The decay rate κ

is frequency-independent, i.e., we use the Markovian approximation [259]. The term −εα∗/2

describes effective increase of κ by |ε| for the quadrature phase ϕ = θ/2 and its decrease by

|ε| for ϕ = (θ + π)/2.

The output signal fϕ(t) from the quadrature measurement is given by the real-

valued stochastic variable

fϕ(t) = Re[e−iϕ(t)f(t)], (6.7)

so the correlator of interest (6.2) can be calculated as

Kϕ1ϕ2(t1, t2) =
1

2
Re
[
Kff (t1, t2) e−i(ϕ1+ϕ2)

]
+

1

2
Re
[
Kff∗ (t1, t2) e−i(ϕ1−ϕ2)

]
, (6.8)

Kff (t1, t2) ≡ 〈f(t1) f(t2)〉, (6.9)

Kff∗ (t1, t2) ≡ 〈f(t1) f∗(t2)〉. (6.10)

We see that for given t1 and t2, the dependence of Kϕ1ϕ2(t1, t2) on ϕ1 and ϕ2 is

described by four real parameters [e.g., Re(Kff ), Im(Kff ), Re(Kff∗), and Im(Kff∗)]. As

will be discussed later, in the steady state there are only three independent real parameters

because Kff∗ in this case is real. Note that Kff and Kff∗ obviously satisfy the symmetry

relations [262],

Kff (t, t′) = Kff (t′, t), Kff∗ (t, t
′) = [Kff∗ (t

′, t)]∗. (6.11)
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Now let us calculate the correlators Kff (t1, t2) and Kff∗(t1, t2) using the semi-

classical model (6.4)–(6.6). Because of the symmetry, it is sufficient to assume t2 > t1 (the

δ-function contribution to Kff∗ at t1 = t2 is discussed below). Let us introduce the column

vector containing both correlators, K(t1, t2) =
(
Kff (t1, t2), Kff∗ (t1, t2)

)T
. From Eq. (6.4)

we obtain

K(t1, t2) = κ

 〈α(t2)α(t1)〉

〈α∗(t2)α(t1)〉

−√κ
 〈α(t2) v(t1)〉

〈α∗(t2) v(t1)〉

 , (6.12)

since 〈v(t2)α(t1)〉 = 〈v∗(t2)α(t1)〉 = 0 because of causality. Now using Eq. (6.6), we find

the evolution of K(t1, t2) as a function of t2,

∂K(t1, t2)/∂t2 = M(t2)K(t1, t2), (6.13)

where the matrix M(t) describes the ensemble-averaged evolution of the vector (α, α∗)T

following from Eq. (6.6) without the noise term (contribution from the noise v averages to

zero because of linearity),

M(t) =

 −κ/2− iΩ −ε(t)/2

−ε∗(t)/2 −κ/2 + iΩ

 . (6.14)

Note that M(t) is Hermitian only if Ω = 0.

To find the initial condition for Eq. (6.13) at t2 = t1 + 0, we use Eq. (6.12) with

〈α(t1 + 0) v(t1)〉 = 0 and 〈α∗(t1 + 0) v(t1)〉 =
√
κ/2, where the last equation follows from

Eq. (6.6): α∗(t1 + dt) ≈ α∗(t1) +
√
κ v∗(t1) dt, while 〈|v(t1)|2〉 = 1/(2 dt) from Eq. (6.5).

Therefore,

K(t1, t1 + 0) = κ

 〈α2(t1)〉

〈|α2(t1)|〉 − 1/2

 . (6.15)
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The solution of Eq. (6.13) with the initial condition (6.15) can be expressed via

the Green’s function 2× 2 matrix G(t|tin), defined as

∂G(t|tin)/∂t = M(t)G(t|tin), G(tin|tin) = 1. (6.16)

Thus, for K (now expressed via Kff and Kff∗) we obtain Kff (t1, t2)

Kff∗ (t1, t2)

 = κG(t2|t1)

 〈α2(t1)〉

〈|α2(t1)|〉 − 1/2

 . (6.17)

To complete the calculation of Kff and Kff∗ , we need the second moments of

the intracavity field fluctuations, 〈α2(t1)〉 and 〈|α2(t1)|〉. Following the result of Ref. [80],

they can be obtained as a solution of a system of four first-order differential equations.

Alternatively, they can be obtained from Eq. (6.6) as (see [199]) 〈|α2(t1)|〉 〈α2(t1)〉

〈α∗2(t1)〉 〈|α2(t1)|〉

 =
κ

2

∫ t1

t0

G(t1|t′)G†(t1|t′) dt′

+G(t1|t0)

 〈|α2(t0)|〉 〈α2(t0)〉

〈α∗2(t0)〉 〈|α2(t0)|〉

G†(t1|t0), (6.18)

where 〈α2(t0)〉 = Tr[a2ρ(t0)], 〈|α2(t0)|〉 = Tr[a†a ρ(t0)]+1/2, and ρ(t0) is a given intracavity

state at an initial time t0 (for t0 → −∞, the initial state is irrelevant).

Equations (6.16)–(6.18) are the main result of this chapter. Using these equations

with M(t) defined in Eq. (6.14), we can find the correlators Kff and Kff∗ , which can then

be used to obtain the main correlator of interest Kϕ1ϕ2(t1, t2) via Eq. (6.8). As mentioned

above, in the case of a non-zero bath temperature, the correlators should be multiplied by

1 + 2n̄b.
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At t2 = t1, the correlator Kff∗ contains the singular contribution (n̄b +1/2) δ(t2−

t1), as follows from Eqs. (6.4) and (6.5), while Kff does not have a singularity. Since in this

case ϕ1 = ϕ2, the correlator Kϕ1ϕ2(t1, t2) has the singular contribution (1/4)(1+2n̄b) δ(t2−

t1). In a real experiment, at t2 ≈ t1 there is also a contribution from the additional noise

of a not-quantum-limited amplifier.

In the derivation we assumed that energy decay in the resonator is only due to

coupling with the outgoing transmission line, i.e. κ = κout. If this is not the case, the

correlators Kϕ1ϕ2 , Kff , and Kff∗ for t1 6= t2 should be simply multiplied by the factor

κout/κ. This can be shown by repeating the derivation with Eq. (6.4) replaced by f = −v+

√
κout α and Eq. (6.6) replaced by α̇ = −(κ/2 + iΩ)α− (ε/2)α∗+

√
κout v+

√
κ− κout vadd,

where the additional uncorrelated noise vadd(t) satisfies Eq. (6.5) with the same temperature.

Alternatively, the multiplication of the correlators by κout/κ is rather obvious because the

system is then equivalent to adding a beamsplitter with transmission amplitude
√
κout/κ to

the outgoing transmission line (after the circulator) in Fig. 6.1(a). Note that the singularity

of correlators at t2 = t1 does not change when κout 6= κ, because of the additional noise.

Even though our results have been derived for the case of a linear parametrically-

driven resonator (6.1), we emphasize that they remain practically the same if a weak non-

linearity is added to the resonator, as well as a coherent drive (see [258]). In this case the

evolution of fluctuations should be linearized in the vicinity of the classical evolution (this

modifies the matrix M) and we need to use the Gaussian approximation.
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6.4 Steady-state regime

In the steady state we can assume that the parametric drive amplitude ε does

not depend on time (as well as parameters Ω and κ). This is the case considered in the

literature (e.g., [88, 89, 261]). Using our formalism (with n̄b = 0), we can easily find the

Green’s function G(t|tin) by finding eigenvalues and eigenvectors of the matrix M . Then

from Eqs. (6.17) and (6.18) we obtain

Kff (0, τ) = −κε
4

[(
1− 2iΩ

ε

)
e−κ−|τ |/2

κ−

+

(
1 +

2iΩ

ε

)
e−κ+|τ |/2

κ+

]
, (6.19)

Kff∗(0, τ) =
δ(τ)

2
+
κ|ε|2

4ε

(
e−κ−|τ |/2

κ−
− e−κ+|τ |/2

κ+

)
, (6.20)

where κ± = κ±ε and ε =
√
|ε|2 − 4Ω2 if |Ω| < |ε|/2 (overdamped case) or ε = i

√
4Ω2 − |ε|2

if |Ω| > |ε|/2 (underdamped case). The condition of stability is obviously |ε|2 < κ2 + 4Ω2.

The singular contribution δ(τ)/2 added into Eq. (6.20) follows from Eqs. (6.4) and (6.5).

We see that in the steady state, Kff∗(0, τ) is always real. Therefore, the squeezing

is determined by three real parameters (which depend on τ), in contrast to four parameters

in the general (transient) case.

A convenient way of introducing the four real parameters (A, B, φ and ψ) is by

rewriting Eq. (6.8) as

Kϕ1ϕ2(t1, t2) = A cos(ϕ1 − φ) cos(ϕ2 − ψ)

+B sin(ϕ1 − φ) sin(ϕ2 − ψ) + δ(t2 − t1)/4, (6.21)

where we explicitly added the singular term (note that ϕ1 = ϕ2 when t1 = t2) and the

187



parameters A, B, φ and ψ (all depending on t1 and t2) can be obtained from equations

(A−B) ei(φ+ψ) = Kff (t1, t2) and (A+B) ei(φ−ψ) = Kff∗(t1, t2)−δ(t2− t1)/2. As discussed

above, in the steady state Kff∗ is real, and therefore φ = ψ, thus again leaving only three

independent real parameters.

Note that in the case when ϕ1 = ϕ2, the correlator Kϕϕ(t1, t2) drawn in the phase

space as a function of the polar angle ϕ is always an ellipse (even in the transient regime),

as follows from Eq. (6.21). In the steady state, from the measured three parameters of this

ellipse it is possible to find all parameters in Eq. (6.21) (A, B, and φ = ψ), thus predicting

the correlator for ϕ1 6= ϕ2 as well. However, in the general (transient) case this is impossible

because of one extra parameter.

6.5 Example of transient evolution

To observe experimentally the discussed features of the squeezing in transients,

the simplest case is to use no detuning (Ω = 0) and to change abruptly the parametric drive

amplitude |ε(t)| eiθ(t) (with a reasonably long cycle to accumulate ensemble statistics). If

only |ε(t)| is changing [254], then the dynamics is still not very interesting (squeezing is

still characterized by only three parameters). Therefore, the natural choice is to keep |ε|

constant, but to change abruptly the phase θ(t), as shown in Fig. 6.1(b). Let us assume

that θ(t) = 0 for t < 0 and θ(t) = θ̃ for t > 0. Then solving Eqs. (6.16)–(6.18) we obtain
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Kff (t1, t1 + τ) = κ[P− + P+] eiθ̃, (6.22)

Kff∗ (t1, t1 + τ) = κ[P+ − P−], (6.23)

P± =
{ κ|ε|

4(κ2 − |ε|2)

[
(1− cos θ̃) e−κ±t1 + i sin θ̃ e−κt1

]
− |ε|

4κ±

}
e−κ±τ/2, (6.24)

where κ± = κ± |ε| and τ > 0. Figure 6.2 shows the corresponding parameters A, B, φ and

ψ in Eq. (6.21) as functions of τ for several values of t1. As expected, we see that φ 6= ψ,

except in the steady state (t1 →∞).

Thus, in this example the steady-state squeezing is described by three parameters;

A(τ), B(τ), and φ (not depending on τ), while the transient squeezing is described by four

parameters: A, B, φ, and ψ, which all depend on both τ and t1. The same conclusion of

three versus four parameters remains true if the correlator Kϕ1ϕ2(t1, t1 + τ) is integrated

over τ or if we apply the Fourier transform over τ (as in the squeezing spectrum).

Note that to check our results experimentally, it is easier to use a phase-preserving

amplifier instead of the assumed phase-sensitive amplifier with time-varying amplified quadra-

ture. All our results remain the same for a phase-preserving amplifier, except the singular

contribution to Kff∗ becomes twice as large (in a real experiment the singular contribution

broadens because of the finite bandwidth of the amplifier).
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Figure 6.2: Parameters A and B (top panel) and φ and ψ (bottom panel) as functions of
τ = t2 − t1 for several values of time t1 passed after the abrupt change of the parametric
drive shown in Fig. 6.1(b), κt1 = 0.25, 1, 2,∞. In the steady state, φ = ψ. We use θ̃ = π/2,
|ε|/κ = 0.5, and Ω = 0.

6.6 Summary

In this chapter we have developed the theory for analyzing the squeezing of a

propagating microwave field in the transient regime. The most natural way to characterize

squeezing in this case is via the two-time correlators Kϕ1ϕ2(t1, t2) of the detector output with

different quadrature angles ϕ1 and ϕ2, since in experiments these correlators are directly

related to the fluctuations of the integrated signal. In our theory the correlators Kϕ1ϕ2
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are expressed via the field fluctuation correlators Kff and Kff∗ , for which the differential

equations have been derived using the semiclassical model. Our theory is equally applicable

to squeezing in optics, though it is more challenging to realize transients of optical squeezing

experimentally.
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Chapter 7

Conclusion

In this dissertation, we have investigated various aspects of the dispersive mea-

surement of superconducting qubits, and have introduced models and tools that can be

used to analyze these systems. The main message of this dissertation is that the driven

qubit-resonator system, and in general more complicated joint systems in circuit QED se-

tups, should be treated in the joint eigenbasis in contrast to the bare basis. In other words,

the eigenbasis picture is the proper way of thinking and studying these systems. This way

of thinking is evident throughout the chapters of this dissertation, and has contributed

significantly to the theory and results.

In Chapter 2 we studied the dispersive measurement in the presence of neighboring

qubits, as is common in circuit QED setups with arrays of qubits. We showed that for typical

experimental parameters, the system is actually measured in the basis of joint eigenstates of

the qubits, in contrast to what is expected from the textbook collapse postulate. However,

the qubit excitation can jump between these eigenstates. By using a semiclassical model
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for the fluctuating ac Stark shift, we derived an expression for the rate of these jumps,

and confirmed it by numerically simulating the master equation for the system. These

jumps contribute to the readout error in a manner similar to energy decay processes. We

calculated analytical formulas for the minimum error that is achievable in the presence of

such switching events, and found good agreement when comparing them with quantum

trajectory simulations.

Chapter 3 studied the joint state of the qubit-resonator system during the mea-

surement. In this chapter we showed that by pumping the readout resonator, a squeezed

state forms by itself in the joint eigenbasis of the qubit-resonator system. We derived ap-

proximate equations to describe the qubit population leakage out of its initial state, and

showed that within RWA the qubit mostly remains in its initial eigenladder, with negligible

leakage to other eigenladders for typical experimental parameters. We also showed that

the interaction with transmon induces nonlinearity in the resonator that squeezes its state,

and introduced a numerically efficient hybrid approach that is capable of describing this

self-developed squeezing of the readout resonator state during the ring-up process.

In Chapter 4 we developed analysis of the qubit-resonator system beyond the

Jaynes-Cummings model, and identified built-in energy resonances that occur in the system

when the photon number in the resonator increases. We found that the coupling between

the resonant states is provided by the non-RWA terms that are usually neglected in the the-

ory of the dispersive readout, and through these resonances the qubit can become excited

out of the computational subspace. This theory of non-RWA level crossing was confirmed

experimentally by the Google/USCB team, therefore describing the underlying mechanism
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responsible for sudden deterioration of the measurement at large photon numbers. We

also found that some energy resonances occur due to a broken symmetry in the transmon

potential; this broken symmetry was experimentally observed and confirmed as well.

In Chapter 5 we introduced the hybrid phase-space-Fock-space approach to evolu-

tion of a driven and leaky nonlinear resonator. Study of such systems is important for the

measurement of superconducting qubits, because as mentioned before, the qubit induces

nonlinearity in the readout resonator that can squeeze the resonator state, therefore af-

fecting the measurement fidelity. We separated the evolution into two parts: the evolution

due to pump and energy decay which is naturally described in the phase space, and the

evolution due to nonlinearity that can be easily described in the Fock space. By showing

that Gaussian states in the phase space and Fock space are approximately equivalent, we

combined the two parts of the evolution to write hybrid phase-space-Fock-space equations

capable of describing the intracavity evolution of weakly nonlinear resonators. Our equa-

tions are very efficient for numerical analysis compared to master equation simulations, yet

accurate within the Gaussian approximation.

In Chapter 6 we studied the evolution of the propagating output field of a para-

metrically driven resonator, which is practically equivalent to studying a coherently driven

nonlinear resonator (as in the case of dispersive measurement of the qubit). We used a

semiclassical model to derive evolution equations for two-time correlators of the propagat-

ing field, which are equivalent to the full quantum analysis for the parametrically driven

linear resonator, and are valid within the Gaussian approximation for the nonlinear res-

onator case. These evolution equations are easy to simulate numerically, and can describe
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the squeezing of the propagating field during the transients, which in turn can be used to

optimize the fidelity and speed of the qubit measurement in dispersive readout schemes. We

also showed that the transient squeezing is characterized by four parameters, in contrast to

only three parameters needed in a steady state.

We hope that the results and tools presented in this dissertation will be useful in

studying superconducting qubits and advancing our understanding of the dispersive readout

in circuit QED systems.
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Appendix A

Perturbative treatment of

transmon states and circuit QED

parameters

In this Appendix, by assuming an anharmonic oscillator model for the transmon

and using perturbation theory, we calculate the energy spectrum of the transmon up to

the second order in anharmonicity. For that, we need to go beyond quartic anharmonic

approximation for the transmon potential. We also calculate the circuit QED (cQED)

coupling energies between neighboring states up to the first order in anharmonicity, which

is the first perturbative correction beyond the harmonic oscillator model. We finish by using

the perturbative results to calculate the dispersive shift of the readout resonator in a cQED

setup. Note that when the perturbative calculations of this appendix become inaccurate,

we use the numerical methods discussed in Appendix C.
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A.1 Hamiltonian

Transmon Hamiltonian can be written as [44]

H = 4EC(n̂− ng)2 − EJ cos ϕ̂, (A.1)

where n̂ is the number of Cooper pairs transferred through the Josephson junction, ϕ̂ is the

superconducting phase across the junction, EC = e2/2C is the charging energy, ng is the

offset charge, EJ = Ic
Φ0
2π is the Josephson energy, Φ0 = h/2e is the magnetic flux quantum,

and [ϕ̂, n̂] = i (similar to x̂ and p̂). We now expand the cosine potential around ϕ = 0 which

corresponds to the bottom of the well. This expansion is allowed, since for the transmon we

have EJ/EC � 1 (typically between 50 and 100), and therefore ϕ is near zero. Expanding

up to ϕ6 gives

H = 4EC(n̂− ng)2 − EJ
(

1− ϕ̂2

2
+
ϕ̂4

24
− ϕ̂6

720

)
= −EJ + 4EC(n̂− ng)2 +

EJ
2
ϕ̂2 − EJ

24
ϕ̂4 +

EJ
720

ϕ̂6. (A.2)

The first term is a constant offset in energy, and we omit it in the rest of this appendix. By

neglecting ng (assuming ng = 0) and recognizing the canonical relation between n̂ and ϕ̂,

we can write

ϕ̂ =

(
8EC
EJ

) 1
4 b+ b†√

2
, (A.3)

n̂ =

(
8EC
EJ

)− 1
4 b− b†√

2 i
, (A.4)
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where b and b† are lowering and raising operators in the space of eigenstates of quantum

harmonic oscillator |i〉 with usual properties

[b, b†] = 1, (A.5)

b|i〉 =
√
i |i− 1〉, (A.6)

b†|i〉 =
√
i+ 1 |i+ 1〉. (A.7)

Rewriting the Hamiltonian in terms of these lowering and raising operators yields

(~ = 1)

H

ωp
= b†b+

1

2︸ ︷︷ ︸
H0/ωp

V/ωp︷ ︸︸ ︷
−λ
(
b+ b†√

2

)4

+
4λ2

5

(
b+ b†√

2

)6

, (A.8)

where H0 is the unperturbed Hamiltonian of the harmonic oscillator, and V is the pertur-

bation (anharmonic) part. The “plasma frequency” ωp and the perturbation parameter λ

are

ωp =
√

8EJEC , (A.9)

λ =
EC
3ωp

=
1

3

√
EC
8EJ

. (A.10)

The “number of levels” in the cosine potential well can be defined as

N ≡ 2EJ
ωp

=
1

12λ
. (A.11)

A.2 Perturbative Energies

Having λ� 1, which is true for typical transmon designs, we use the second order

perturbation theory and keep terms of up to second order in λ to approximately find the
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eigenstates of the Hamiltonian. From perturbation theory we know that for the nth energy

level En we have

En = E(0)
n + 〈n|V |n〉+

∑
j 6=n

|〈j|V |n〉|2

E
(0)
n − E(0)

j

, (A.12)

where E
(0)
n = 〈n|H0|n〉 = ωp(n + 1/2) is the zeroth-order energy level (n = 0, 1, ...) of the

harmonic oscillator. Note that we use n for both the level number and the operator n̂ of

number of Cooper pairs.

Having V in terms of lowering and raising operators and knowing its effect on the

states |n〉, we can calculate the relevant matrix elements in Eq. (A.12). Keeping the terms

up to second order in λ, the matrix elements of perturbation V are

1

ωp
〈n|V |n〉 =− λ

4
(6n2 + 6n+ 3)

+
λ2

10
(20n3 + 30n2 + 40n+ 15), (A.13)

where we have used ϕ4 and ϕ6 terms in V , and

| 1
ωp
〈j|V |n〉|2

E
(0)
n − E(0)

j

=
λ2

16ωp(n− j)
∣∣∣√n(n− 1)(n− 2)(n− 3)δj,n−4

+
√

(n+ 1)(n+ 2)(n+ 3)(n+ 4)δj,n+4

+ 2(n+ j + 1)
√
n(n− 1)δj,n−2

+ 2(n+ j + 1)
√

(n+ 1)(n+ 2)δj,n+2

∣∣∣2, (A.14)

where we have only used the ϕ4 term in V to keep the terms up to second order in λ. Using

these matrix elements in Eq. (A.12) and rearranging the answer in increasing orders of λ

yields

En
ωp

= n+
1

2
− λ

4
(6n2 + 6n+ 3)− 9λ2

8
(2n3 + 3n2 + 3n+ 1). (A.15)
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Level Analytics Numerics

0 1.125 1.125
1 10.125 10.125
2 39.375 39.37±0.01
3 102.375 102.37±0.01

Table A.1: Comparison of the analytical coefficients of the second order correction to the
energy, with numerical results for exact eigenstates using Mathieu functions. The numerics
column is calculated by finding the coefficient of λ2 when λ→ 0 in exact eigenenergies.

Below, we have calculated En for the first four transmon energy levels

E0 = ωp

(
1

2
− 3

4
λ− 9

8
λ2

)
, (A.16)

E1 = ωp

(
3

2
− 15

4
λ− 81

8
λ2

)
, (A.17)

E2 = ωp

(
5

2
− 39

4
λ− 315

8
λ2

)
, (A.18)

E3 = ωp

(
7

2
− 75

4
λ− 819

8
λ2

)
. (A.19)

We have also compared the coefficient of the second-order correction (the λ2 terms) with

the numerical coefficient derived by looking at the exact eigenenergies of the transmon using

Mathieu functions (see Appendix C), and the analytical coefficients derived here match the

numerical ones very well. The result of this comparison is presented in Table A.1.

Note that the term EJϕ
6/720 in Eq. (A.2) is important for these results, and it

produces the term λ2(20n3 + 30n2 + 40n+ 15)/10 in Eq. (A.13). Without this term (i.e. in

quartic approximation) the second order correction to the energy levels in Eq. (A.16)–(A.19)

would have been incorrect.

Let us introduce the qubit frequency as (ωkl ≡ Ek − El)

ωq ≡ ω10 = ωp
(
1− 3λ− 9λ2

)
, (A.20)
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and the frequency of the third and fourth level with respect to the ground state

ω20 = ωp

(
2− 9λ− 306

8
λ2

)
, (A.21)

ω30 = ωp

(
3− 18λ− 810

8
λ2

)
. (A.22)

Now let us define the anharmonicity as η ≡ ω10 − ω21, which yields

η = 2ωq − ω20 = ωp

(
3λ+

162

8
λ2

)
. (A.23)

We can then write the transmon energies (counting from E0) up to second order in η/ωq

En − E0 = ωq

[
n− n(n− 1)

2

η

ωq
− n(n− 1)(n− 2)

4

(
η

ωq

)2
]
, (A.24)

and similarly transmon frequencies

ωn+1,n = ωq

[
1− n η

ωq
− 3n(n− 1)

4

(
η

ωq

)2
]
. (A.25)

A.3 Perturbative Couplings

In typical cQED schemes for transmon readout where a detuned resonator is cou-

pled to the qubit, the effective Hamiltonian of the system is [44, 78]

H = 4EC(n̂− ng)2 − EJ cos ϕ̂+ ωra
†a+ Ecpl n̂(a+ a†). (A.26)

Here, ωr is the readout resonator frequency, a and a† annihilate and create one photon

in the resonator, and Ecpl is a constant depending on circuit parameters [see Eq. (3.1) in

Ref. [44]]. Note that n̂ 6= a†a in Eq. (A.26); here n̂ is the number of Copper pairs, not the

number of photons.
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If we rewrite this Hamiltonian in the basis of exact transmon eigenstates |ψn〉 (i.e.,

Mathieu functions), then we obtain

H =
∑
n

En|ψn〉〈ψn|+ ωra
†a+

∑
n,m

gn,m|ψn〉〈ψm|(a+ a†), (A.27)

where En is the energy of the nth transmon state [derived perturbatively in Eq. (A.15)] and

coupling energies are

gn,m = Ecpl 〈ψn|n̂|ψm〉. (A.28)

Expressing n̂ in terms of b and b† [see Eq. (A.4)] and neglecting ng, we can rewrite the

coupling energy as

gn,m =
Ecpl√

2 i
4

√
EJ

8EC
〈ψn|(b− b†)|ψm〉. (A.29)

Note that gm,n = g∗n,m since anti-Hermitian b− b† is compensated by the imaginary unit.

We now calculate the coupling energies by examining the matrix elements of

〈ψn|(b − b†)|ψm〉 in a first order perturbative approach. Recalling the transmon Hamil-

tonian in Eq. (A.8), we write the perturbative eigenstates of the transmon as follows

|ψn〉 = |ψ(0)
n 〉+

∑
j 6=n

〈ψ(0)
j |V |ψ

(0)
n 〉

E
(0)
n − E(0)

j

|ψ(0)
j 〉, (A.30)

where |ψ(0)
n 〉 = |n〉 and E

(0)
n = ωp(n+1/2) are zeroth order (harmonic oscillator) eigenstates

and eigenenergies respectively. Using only the quartic anharmonic term ϕ4 in perturbation
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V [see Eq. (A.8)], up to first order in λ we get

|ψn〉 =|n〉 − λ

4

[√
n(n− 1)(n− 2)(n− 3)

4
|n− 4〉

−
√

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

4
|n+ 4〉

+ (2n− 1)
√
n(n− 1)|n− 2〉

− (2n+ 3)
√

(n+ 1)(n+ 2)|n+ 2〉
]
. (A.31)

Finally, after some algebra we find

gn,m =
Ecpl√

2 i
4

√
EJ

8EC

{[√
n+ 1− 3λ

2
(n+ 1)

3
2

]
δn,m−1 −

[√
n− 3λ

2
n

3
2

]
δn,m+1

− 3λ

4

(√
(n+ 1)(n+ 2)(n+ 3)δn,m−3

−
√
n(n− 1)(n− 2)δn,m+3

)}
, (A.32)

where we have only kept the terms of up to first order in λ. Note that because of the selection

rule (symmetry of the cosine potential), the charge matrix elements between transmon states

that are separated by even numbers (e.g., gn,n+2) are exactly zero. Also note that the δn,m±5

terms are zero in the first order approximation and will only appear in the second order in

λ.

Below we have calculated the nearest neighbor couplings gi,i+1 for first three neigh-

bors

g0,1 =
Ecpl√

2 i
4

√
EJ

8EC

(
1− 3

2
λ

)
, (A.33)

g1,2 =
Ecpl√

2 i
4

√
EJ

8EC

(√
2− 3

√
2λ
)
, (A.34)

g2,3 =
Ecpl√

2 i
4

√
EJ

8EC

(
√

3− 9
√

3

2
λ

)
. (A.35)
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We can also rewrite these couplings in terms of g ≡ g0,1, only keeping terms in first order

of η/ωq

g1,2 = g
√

2(1− 3

2
λ) = g

√
2

(
1− 1

2

η

ωq

)
, (A.36)

g2,3 = g
√

3(1− 3λ) = g
√

3

(
1− η

ωq

)
. (A.37)

More generally, for k ≥ 0 we have

gk,k+1 = g
√
k + 1

(
1− k

2

η

ωq

)
. (A.38)

The lowest non-nearest neighbor couplings are

g0,3 = −g3
√

6

4
λ = −g

√
6

4

η

ωq
, (A.39)

g1,4 = −g3
√

6

2
λ = −g

√
6

2

η

ωq
, (A.40)

g2,5 = −g3
√

15

2
λ = −g

√
15

2

η

ωq
. (A.41)

More generally, for k ≥ 0 we have

gk,k+3 = −g η

4ωq

√
(k + 1)(k + 2)(k + 3) . (A.42)

As mentioned above, only the couplings gk,k+1 and gk,k+3 are linear in λ. Other

couplings of the form gk,k+2l+1 are of the higher orders in λ, while gk,k+2l = 0 because of the

symmetry of the cosine potential. Note that in our results gn,m = g∗m,n, but g is imaginary.

This is because of the asymmetric form of the interaction [(b − b†)/i](a + a†) assumed in

Eq. (A.26) and (A.27) [it would be more natural to use (a−a†)/i for the resonator]. However,

usually it is OK to assume that g is real, while keeping the interaction form (A.27).
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A.4 Perturbative derivation of dispersive shift

As an application of the perturbative results discussed above, we derive the dis-

persive shift of a coupled and detuned readout resonator, used in circuit QED measurement

setup [78]. With the ket notation |qubit, resonator〉, and within the rotating wave approxi-

mation (RWA) that only keeps the excitation-preserving coupling terms, we can rewrite the

Hamiltonian in Eq. (A.27) as

H =
∑
k,n

(Ek + nωr) |k, n〉〈k, n|

+

∑
k,n

gk,k+1

√
n |k + 1, n− 1〉〈k, n|+ H.c.

 , (A.43)

where the first term is the bare energy of the qubit-resonator system, and the next terms are

the RWA interactions. Note the different notation compared to the previous sections: here

n is used for the resonator state and k for the transmon state (previously n was used for

the transmon state). The Hamiltonian of Eq. (A.43) is illustrated in the Jaynes-Cummings

ladder of energies in Fig. A.1.

Let us use notations ω
|0〉
r and ω

|1〉
r for the resonator frequency when the qubit is

in the ground state and excited state respectively1. Since dispersive measurement schemes

typically operate in the regime where |g| � |∆| (∆ = ωr − ωq is the detuning between the

resonator and the qubit), we use a second-order perturbation in g/∆ to find the eigenenergies

of the system. For simplicity we assume real g. Note that any pair of energy levels that

are detuned by ∆̃ and coupled by g̃ are each repelled by g̃ 2/∆̃ in the second order of

g̃/∆̃� 1. By calculating level repulsions between all the pairs of energy levels, we can find

1These resonator frequencies are defined for the case when there are no photons in the resonator.
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Figure A.1: Bottom levels in the Jaynes-Cummings ladder of the qubit and the readout res-
onator states. Solid horizontal lines show bare energy levels Ek+nωr of the system, marked
with the corresponding states |k, n〉 with ket notation of |qubit, resonator〉, and dashed hor-
izontal lines indicate repelled (perturbative) eigenenergies E|k,n〉. Each color-coded ladder

corresponds to a different qubit state. Blue slanted arrows show excitation-preserving RWA
couplings. Vertical arrows show energy differences in the system. Resonator frequencies

when the qubit is in the ground state (ω
|0〉
r ) and when it is in the excited state (ω

|1〉
r ) are

color coded and bold. Here ∆ = ωr − ωq is the detuning between the resonator and the
qubit.

the resonator eigenfrequencies (see Fig. A.1)

ω|0〉r = E|0,1〉 − E|0,0〉 ≈ ωr +
g2

∆
, (A.44)

ω|1〉r = E|1,1〉 − E|1,0〉 ≈ ωr −
g2

∆
+

g2
1,2

∆ + η
, (A.45)

∆ = ωr − ωq, η = ω10 − ω21, (A.46)

where g1,2 = g
√

2[1−η/(2ωq)] is the perturbative transmon charge matrix element that was

derived in Section A.3. Here E|k,n〉 is the energy of the eigenstate |k, n〉 corresponding to

bare state |k, n〉.

We can now calculate the total dispersive shift as

2χ ≡ ω|0〉r − ω|1〉r ≈
2g2

∆
−

g2
1,2

∆ + η
≈ 2

g2

∆

η

∆ + η

ωr
ωq
. (A.47)
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Note that the factor ωr/ωq comes from the first order perturbative correction to g1,2 [see

Eq. (A.36)]. This correction is important for practical use in the lab, where typically 2χ is

measured directly, and is used to extract the unknown coupling g using

g ≈
√

2χ
∆(∆ + η)

2η

ωq
ωr
. (A.48)

Here the correction term ωq/ωr can change the extracted g by ∼ 15% for typical experi-

mental parameters.
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Appendix B

Transmon with addition of an

inductor

In this Appendix, we consider the circuit for transmon and add an inductor in series

with the Josephson junction. We perturbatively find the qubit frequency and anharmonicity,

and show that this model can explain experimental observations for the dependence of

anharmonicity on the qubit frequency. The model of transmon with addition of an inductor

in series can also be used for study of Gmon qubits [48, 263].

B.1 Derivation of Hamiltonian

Let us consider the usual transmon [44] with addition of a series inductor (Fig. B.1).

We write the potential energy of the Josephson junction, potential energy of the inductor,

and the kinetic energy of the capacitor for this circuit. We use these results to derive the
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Figure B.1: A transmon with addition of an inductor. The superconducting phase difference
across the Josephson junction is ϕJ and across the inductor is ϕL, so that the total phase
difference is ϕ = ϕJ + ϕL. The Josephson energy is EJ (critical current Ic), the charging
energy is EC , and the extra inductance is L.

Lagrangian of the circuit, which is then used to derive the circuit Hamiltonian.

With phase difference of ϕJ across Josephson junction, the current passing through

the junction is IJ = Ic sinϕJ , which then leads (in the standard way) to the junction

potential energy

Ujunction =
Φ0

2π

∫
IJ dϕJ = −Φ0

2π
Ic cosϕJ = −EJ cosϕJ , (B.1)

where Φ0 = h/2e is the flux quantum, and EJ = Φ0
2π Ic is the Josephson energy.

The superconducting phase difference across the inductor, ϕL, and the current

passing through it, IL, are related via Φ0
2πϕL = LIL. Since the inductor is in series with

the junction, the current that goes through both of them should be the same, IL = IJ =

209



Ic sinϕJ , which gives

ϕL =
2π

Φ0
LIc sinϕJ . (B.2)

We use this relation to write the potential energy of the inductor as a function of the

Josephson junction phase ϕJ

Uinductor =
Φ0

2π

∫
IL dϕL =

1

2L

(
ϕLΦ0

2π

)2

=
LI2

c

2
sin2 ϕJ = EL sin2 ϕJ , (B.3)

with inductor energy scale

EL =
1

2
LI2

c =
1

2
LE2

J

(
2π

Φ0

)2

. (B.4)

Note that

EL
EJ

=
L

2LJ
, (B.5)

where LJ = (Φ0/2π)/Ic = (Φ0/2π)2/EJ is the Josephson junction inductance.

To find the “kinetic energy” of the system, we need to find the voltage of the

capacitor. The capacitor voltage is proportional to the time derivative of the phase across

it as VC = (Φ0/2π) dϕ/dt, where

ϕ = ϕJ + ϕL = ϕJ +
L

LJ
sinϕJ (B.6)

is the total phase across the capacitor, and L/LJ = 2π
Φ0
LIc. The “kinetic energy” of the

capacitor is then

Tcapacitor =
C ϕ̇2

2

(
Φ0

2π

)2

=
ϕ̇2

16EC
, (B.7)

where C is the capacitance and EC = e2/(2C) is the charging energy [so that 1/(16EC) =

(C/2)
(

Φ0
2π

)2
].
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Noting the capacitive energy above, it is more convenient to choose the total phase

ϕ as the generalized coordinate (unlike the usual choice of the Josephson phase ϕJ) for the

Lagrangian of the circuit. With the total potential energy U = Ujunction +Uinductor, we can

write

L = T − U =
ϕ̇2

16EC
+ EJ cos[ϕJ(ϕ)]− EL sin2[ϕJ(ϕ)], (B.8)

where ϕJ(ϕ) is the Josephson junction phase expressed in terms of the total phase ϕ, which

can be calculated by solving Eq. (B.6). It is straightforward to check that this Lagrangian

gives correct equation of motion (i.e., classical current equation) for this circuit.

From the Lagrangian, we can find the canonical conjugate momentum to ϕ as

pϕ = ∂L/∂ϕ̇ =
ϕ̇

8EC
, (B.9)

which is related to the capacitor charge Q as pϕ = (Φ0/2π)Q. We then use H = pϕ ϕ̇ − L

to write the Hamiltonian of the circuit as a function of the total phase ϕ across both the

Josephson junction and inductor, and its conjugate momentum pϕ:

H = 4EC p̂
2
ϕ − EJ cos[ϕJ(ϕ̂)] + EL sin2[ϕJ(ϕ̂)], (B.10)

with

EL =
L

2LJ
EJ , (B.11)

where ϕ̂ and p̂ϕ are canonical conjugate operators, [ϕ̂, p̂ϕ] = i~.

B.2 Perturbative Treatment

In this section we calculate the perturbative eigenenergies of the circuit described

by the Hamiltonian (B.10). To do so, we first need to write the Hamiltonian of (B.10)
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in terms of the total phase ϕ only. For that, let us assume L/LJ � 1, then ϕJ is only

slightly different from ϕ. Using iteration in Eq. (B.6) and keeping terms up to first order

in L/LJ � 1, we can find an approximate solution to the Josephson junction phase as

ϕJ(ϕ) ≈ ϕ+ (L/6LJ)ϕ3

1 + (L/LJ)
. (B.12)

Inserting this solution into the Hamiltonian (B.10) and expanding up to 4th order in ϕ� 1,

we get

H ≈ 4EC p̂
2
ϕ +

EJ
2

ϕ̂2

1 + L/LJ
− EJ

24

ϕ̂4

(1 + L/LJ)4
f(L/LJ), (B.13)

where f(x) = 1 − 12x2 − 12x3 − 4x4 is a polynomial. Since we have already thrown away

second order terms in L/LJ � 1 when solving Eq. (B.6), we ignore higher order terms in

this polynomial and use f(L/LJ) ≈ 1. [In this case (1 + L/LJ)4 ≈ 1 + 4L/LJ , but it is

more convenient to use powers of 1 + L/LJ .] Note that having Eq. (B.12) in third order of

ϕ is enough to expand the Hamiltonian up to fourth order in ϕ, because the next term in

(B.12) is fifth order in ϕ.

The first two terms in Eq. (B.13) make a quantum harmonic oscillator, therefore

we can define

ϕ̂ =

(
8EC
EJ

(1 + L/LJ)

) 1
4 b+ b†√

2
, (B.14)

p̂ϕ =

(
8EC
EJ

(1 + L/LJ)

)− 1
4 b− b†√

2 i
, (B.15)

where b and b† are usual lowering and raising operators of the quantum harmonic oscillator.

Rewriting the Hamiltonian (B.13) in terms of these lowering and raising operators yields

(~ = 1)

H

ω̃p
= bb† +

1

2
− λ̃

(
b+ b†√

2

)4

, (B.16)

212



where the “plasma frequency” ω̃p and perturbation parameter λ̃ are defined as

ω̃p =
√

8EJEC/(1 + L/LJ), (B.17)

λ̃ =
1

3

√
EC
8EJ

1

(1 + L/LJ)5
. (B.18)

Note that the above plasma frequency and perturbation parameter agree with Eqs. (A.9)

and (A.10) in Appendix A when the inductor is absent (L = 0).

Following the procedure in Appendix A and perturbatively writing the eigenener-

gies of the Hamiltonian in Eq. (B.16), we can find the qubit frequency ωq and anharmonicity

η ≡ 2ωq − ω20 to first order in λ̃ as

ωq ≈ ω̃p(1− 3λ̃) =

√
8ECEJ

(1 + L/LJ)
− EC

(1 + L/LJ)3
, (B.19)

η ≈ 3λ̃ω̃p =
EC

(1 + L/LJ)3
. (B.20)

We note that Eq. (B.20) coincides with the anharmonicity calculation in Ref. [48]. Further-

more, we can add the ϕ6 term to Eq. (B.13) and calculate the anharmonicity with better

accuracy as (neglecting terms of the order L/LJ
√
EC/EJ)

η ≈ EC
(

1

(1 + L/LJ)3
+

9

4

√
EC
8EJ

)
. (B.21)

One of our goals is to see how the anharmonicity of the qubit changes with the

qubit frequency, which is tuned by varying the effective value of EJ . Since L/LJ ∝ EJ , let

us define L/LJ = (EJ/EJ0)r0, where EJ0 is the value of EJ at some chosen point and r0

is the ratio of L/LJ at that point (r0 � 1). Then, rewriting the anharmonicty (B.21) as a

function of EJ gives

η ≈ EC
(

1

[1 + (EJ/EJ0)r0]3
+

9

4

√
EC
8EJ

)
. (B.22)
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Equation (B.22) shows that the anharmonicity η decreases when EJ increases,

and we also know that the qubit frequency ωq increases with EJ [see Eq. (B.19)]. This

observation explains decrease of η with increasing ωq in experimental observations (see Fig.

B.2 and its discussion). For r0 = 0, anharmonicity in (B.22) coincides with Eq. (A.23) in

Appendix A.

B.3 Comparison with experimental observations

The experiment was performed by Zijun (Jimmy) Chen at UCSB as part of the

Google/UCSB team effort, using a flux-tunable transmon (Xmon [46]) qubit. The qubit

anharmonicity η was experimentally measured at different qubit frequencies ωq, and the re-

sult is shown by black dots in Fig. B.2(a). The surprising experimental observation was that

the anharmonicity η(ωq) decreases roughly 4 times faster than it was expected for a typical

transmon [see Eqs. (A.9), (A.10), (A.20), (A.23), and black dash-dotted line in Fig. B.2(b);

in the simple theory with L = 0 it should be ∂η/∂ωq ≈ −(9/4)(η/ωq)
2]. However, since

the Xmon is physically large, its geometrical inductance becomes important and should be

taken into account when modeling the qubit. Therefore, the model of the previous section

with addition of an extra inductor in series with the junction can be used to explain the ex-

perimental observation for dependence of anharmonicity on the qubit frequency, as detailed

below.

We use r0 = L/LJ0 as a fitting parameter to fit the linear slope of the experimental

dependence η(ωq) [see upper blue line in Fig. B.2(a) and its discussion]. The fitting gives

r0 = 0.032, which corresponds to the series inductance L ≈ 0.3 nH. This value of L seems
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to be reasonable for the experimental geometry used by Google/UCSB team, although

few times higher than expected. Therefore, the addition of the series inductor can crudely

explain the surprisingly fast decrease of η with qubit frequency in experimental observations.

However, the results of the previous section cannot explain the significant curving

down of the experimental data in Fig. B.2(a) at larger qubit frequencies close to 6 GHz.

As we found, this is due to a different effect: eigenstate formation between the transmon

and its readout resonator. Coupling to the readout resonator slightly shifts the transmon

energy levels, which additionally decreases the measured anharmonicity. We can calculate

the anharmonicity of the qubit in presence of the coupled readout resonator by calculating

the eigenenergies in the Jaynes-Cummings (JC) ladder of the qubit and the resonator. The

qubit eigenfrequencies are (see Fig. A.1)

ω10 = E|1,0〉 − E|0,0〉 ≈ ωq −
g2

∆
, (B.23)

ω21 = E|2,0〉 − E|1,0〉 ≈ ωq − η +
g2

∆
−

g2
1,2

∆ + η
, (B.24)

where ωkl denotes the eigenfrequency in the JC ladder, E|k,n〉 denotes the JC eigenenergy

for the eigenstate |k, n〉, and we use the ket notation |qubit, resonator〉. The approximate

formulas in (B.23)–(B.24) are derived perturbatively using two-level energy repulsions, sim-

ilar to the calculations in Sec. A.4 and with the same notations as there. The experimentally

measured anharmonicity is then

ηexp = ω10 − ω21 ≈ η − 2χ, (B.25)

where 2χ = ω
|0〉
r −ω|1〉r = 2g2/∆−g2

1,2/(∆+η) is the total dispersive shift of the readout res-

onator frequency when the qubit state changes from excited to ground state [see Eq. (A.47)

and its derivation in Sec. A.4].
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When the qubit frequency increases, the detuning between the qubit and the res-

onator decreases1 and consequently the dispersive shift 2χ increases [see Eq. (A.47)]. More-

over, the dispersive shift does not linearly increase with the qubit frequency, therefore its

effect on ηexp can produce the curving observed in the experimental data [see Fig. B.2(a)].

For the experimental results presented here, the value of 2χ at qubit frequency of 5 GHz

and 5.9 GHz is 1.7 MHz and 6.6 MHz respectively, producing a significant change in the

experimentally observed ηexp compared to η.

The lower solid green line in Fig. B.2(a) shows the anharmonicity obtained from

numerical simulation for the Hamiltonian (B.10) [based on numerical solution for ϕJ(ϕ)]

assuming r0 = 0.032, with the additional decrease by 2χ (obtained from experiment). As we

see, the green line matches the experimental data quite well (except for two points below 4.9

GHz, which are possibly shifted by some other reason, e.g., a defect). The upper solid blue

line shows the same numerical results without the additional decrease by 2χ. Figure B.2(b)

shows the same blue line as in the panel (a), along with the dashed orange line corresponding

to the analytical formula (B.22) with the same parameters (see the caption). As we see, the

slope of the dependence η(ωq) given by the analytics is close to the numerically calculated

slope, though there is still a noticeable difference between them (the vertical shift between

the analytics and numerics is not important here because EC is an overall fitting parameter

anyway). The black dash-dotted line in Fig. B.2(b) is the anharmonicity of the transmon

in the absence of the series inductor and coupling to the resonator [calculated numerically

using Eq. (C.2)]; it decreases roughly four times slower than the experimental observation.

1In this experiment the qubit frequency is smaller than the resonator frequency.
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Figure B.2: Anahrmonicity η of the transmon vs qubit frequency ωq. Black circles are
Google/UCSB experimental data, solid blue line (in both panels) is the numerical simula-
tion of the Hamiltonian in Eq. (B.10), lower solid green line in panel (a) is the numerical
simulation with the additional decrease by 2χ (the values of 2χ are obtained from experi-
ment and are frequency dependent), and dashed orange line in panel (b) is the analytical
formula (B.22). Black dash-dotted line in panel (b) is the anharmonicity of the transmon in
the absence of the series inductor [calculated numerically using Eq. (C.2)], which decreases
roughly four times slower than the experimental observation. Here EC/2π = 214 MHz and
r0 = 0.032, so that L/LJ = 0.032 for the qubit frequency of 5 GHz (at this frequency
EJ0/2π = 16.31 GHz) and L/LJ ≈ 0.046 for the qubit frequency of 6 GHz. The resonator
frequency is 6.63 GHz. Experimental data is courtesy of Zijun (Jimmy) Chen.
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We conclude that the model which takes into account an inductor in series with

the Josephson junction and also additional contribution of −2χ, can explain well the exper-

imental observations for dependence of anharmonicity on qubit frequency. Note that the

model of transmon with addition of a series inductor is applicable to Gmon qubits [48, 263],

and that similar equations also arise when modeling inductive couplers [264].
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Appendix C

Numerical methods for studying

readout of qubits

In this appendix we briefly explain how the numerical analysis of the dispersive

measurement of a qubit is done throughout this dissertation. We start by reviewing eigenen-

ergies and eigenstates of transmon, and then show how the Jaynes-Cummings (JC) ladder

of the qubit-resonator system can be numerically diagonalized to calculate useful quantities

related to dispersive measurement.

C.1 Transmon

Transmon in its simplest form consists of a Josephson junction that is shunted by

a relatively large capacitor. The Hamiltonian for this qubit can be written as [44]:

H = 4EC(n̂− ng)2 − EJ cos ϕ̂, (C.1)
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where ϕ̂ is the superconducting phase difference across the Josephson junction, n̂ is the

number of Cooper pairs transferred through the junction, EC = e2/2C is the charging

energy, ng is the (dimensionless) offset charge, and EJ = IcΦ0/2π is the Josephson energy,

with commutation relation [ϕ̂, n̂] = i (similar to x̂ and p̂). Transmons operate in the regime

where EJ/EC � 1 (typically between 50 to 100), which enabled us to perturbatively solve

for lowest eigenenergies and eigenstates in Appendix A. Below, we discuss exact solutions

for the eigenenergies and eigenstates of the Hamiltonian (C.1).

The time-independent Schrodinger equation for the cosine potential of transmon

can be analytically solved using Mathieu functions [265, 266]. Since the transmon states

with the phase ϕ shifted by 2π are physically equivalent, the wave function should be 2π-

periodic in ϕ. Imposing this periodic boundary condition on the Mathieu solutions yields

the discrete set of eigenenergies of transmon

Ek = ECMA(rk,−
EJ

2EC
), (C.2)

where MA(r, q) is the characteristic value for even Mathieu function, and

rk = k + 1− (k + 1)(mod 2) + 2ng(−1)k−[Sign(ng)−1]/2, k = 0, 1, ... (C.3)

Here (k+1)(mod 2) denotes k+1 modulo 2, which can be either 0 or 1, and Sign(ng) = ±1.

Note that MA(r, q) is a monotonously increasing function of r; therefore for Ek increasing

with k, we need rk increasing with k. Equation (C.3) shows monotonous increase with k

only when ng belongs to the exclusive range (−1/2, 1/2). Because the eigenenergies and

the eigenfunctions are periodic in ng with period of 1, values of ng that are outside of the

range (−1/2, 1/2) should be moved to this range by adding an integer. Also note that the
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procedure may not work well for integer rk, therefore for integer or half-integer ng we should

sometimes shift ng by a negligible amount to avoid an exact integer rk.

The eigenstates of transmon are

〈ϕ|k〉 = ψk(ϕ) =
eingϕ√

2π

[
MC

(
Ek
EC

,
−EJ
2EC

,
ϕ

2

)
+ i(−1)k+1MS

(
Ek
EC

,
−EJ
2EC

,
ϕ

2

)]
, (C.4)

where MC(a, q, θ) and MS(a, q, θ) are even and odd Mathieu functions respectively (also

called Mathieu cosine and Mathieu sine functions). Mathieu functions MC and MS and

Mathieu characteristic value MA can be evaluated to arbitrary precision using numerical

packages and softwares. For example, Wolfram Mathematica includes them as the functions

MathieuC, MathieuS, and MathieuCharacteristicA.

The eigenstates can be used to calculate charge matrix elements of the transmon

〈l|n̂|k〉 =

∫ π

−π
ψ∗l (ϕ)

∂

i∂ϕ
ψk(ϕ) dϕ. (C.5)

The derivatives of the Mathieu functions are also included in numerical packages.

The eigenenergies and charge matrix elements calculated here can be used to model

the dispersive measurement of the qubit, as detailed in the next section.

C.2 JC ladder of qubit and resonator

In circuit QED (cQED) setups, the transmon is typically measured via a detuned

readout resonator that is coupled to it [78]. The frequency of the resonator changes de-

pending on the state of the qubit, and this change of the resonator frequency (also called

dispersive shift of the resonator frequency, hence the name dispersive readout) is used to

measure the state of the qubit. Here we focus on numerical approaches for modeling the
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dispersive measurement.

With the ket convention |qubit, resonator〉, we write the bare Hamiltonian of the

qubit and resonator (~ = 1) as

Hb =
∑
k,n

(Ek + nωr)|k, n〉〈k, n|, (C.6)

where ωr is the bare resonator frequency, and Ek is the transmon eigenenergy for level k,

with qubit bare frequency ωq = E1 − E0. The transmon eigenenergies can be calculated

using numerical methods in Sec. C.1, or via perturbative formulas in Appendix A, depending

on the accuracy required. The bare Hamiltonian of (C.6) produces the Jaynes-Cummings

ladder of energy levels, as depicted in Fig. C.1.

Typically the qubit and the readout resonator are capacitively coupled, therefore

there is a charge-charge interaction between them. In the rotating wave approximation

(RWA), this interaction has the form

HRWA =
∑
k,n

gk,k+1

√
n |k + 1, n− 1〉〈k, n|+ H.c., (C.7)

where gk,k+1 ≡ g〈k|n̂|k + 1〉/〈0|n̂|1〉 are the normalized charge matrix elements of the

transmon 1. Again, these matrix elements can be calculated either numerically as discussed

in Sec. C.1, or via perturbative formulas of Appendix A, depending on the accuracy required.

The RWA couplings are shown as black curved arrows in Fig. C.1.

Our goal is to numerically diagonalize the total Hamiltonian H = Hb + HRWA to

find the eigenenergies and eigenstates of the system, and also to correctly identify (label)

these eigenstates such that they correspond to their bare states. The idea for labeling is

1Note that coefficients
√
n in Eq. (C.7) are the charge matrix elements of the readout resonator (harmonic

oscillator).
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Figure C.1: JC ladder of the qubit and the resonator. Bare states are shown as horizontal
lines and labeled with the ket convention |qubit, resonator〉, black curved arrows indicate
coupling within an RWA strip, with corresponding RWA coupling strengths written below
them. An RWA strip is enclosed by dashed line.

to use the fact that the RWA interaction preserves total number of excitations. This forms

subspaces in the JC ladder, where the excitation number is fixed and states within that

subspace couple only to each other as a linear chain. We call these subspaces “RWA strips”,

one of which is marked in Fig. C.1.

Within each RWA strip, the energy levels repel from each other. In the most prac-

tical case when qubit frequency is smaller than the resonator frequency, the bare energies

within one RWA strip decrease monotonously with k; then the repelled eigenenergies do

not cross each other with increasing n. Therefore, the order of the eigenenergies within an

RWA strip is the same as for bare energies, and this fact can be used to correctly identify

and label the numerically calculated eigenenergies.

The numerical procedure in the case ωq < ωr is as follows. We first construct the
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Hamiltonian for an RWA strip with a given total excitation number nΣ, with bare energies

E|k,n〉 = Ek + nωr and bare states |k, n〉, where n = nΣ − k. Note that the bare energies

within an RWA strip are ordered (i.e., from largest to smallest) by construction. Next, this

RWA strip Hamiltonian is numerically diagonalized, giving unlabeled pairs of eigenenergies

and eigenstates. We then sort (e.g., in increasing order) these eigenenergies and match

them for labeling with the bare energies that were ordered by construction in the RWA

strip. This procedure yields the correctly labeled eigenenergies E|k,n〉 and corresponding

eigenstates |k, n〉 (overline indicates eigenstate). This procedure is repeated for all the

RWA strips in the JC ladder.

In the less common case when the qubit frequency is larger than the resonator

frequency, the RWA strips can bend on themselves. In this configuration, the bare energies

inside a strip are not ordered anymore, and furthermore there can be energy level crossings

within an RWA strip as the photon number increases and states repel from each other.

Therefore the labeling scheme discussed above will not always work; however, one can in

principle keep track of these level crossings as the photon number increases and update the

labels accordingly. Even without more complicated labeling schemes, the simple numerical

method discussed above can be used for studying the JC ladder when the qubit frequency

is larger than for the resonator, with good agreement between the numerical model and

experimental results [179].

With addition of nonRWA terms, the labeling method discussed above will no

longer work, because nonRWA terms couple different RWA strips to each other (see chap-

ter 4). However, for typical cQED parameter regimes, these nonRWA terms are far more
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off-resonant compared to the RWA terms. This means that, although they do change the

eigenenergies and eigenstates of the system, this change is relatively small. The fact that

the change in the eigenstates is relatively small can be used to label nonRWA eigenenergies.

The idea is to use the same label as the one belonging to the closest RWA eigenstate to it.

This way we can label eigenenergies and eigenstates of the system with inclusion of nonRWA

terms as follows (note that this labeling may jump at the level crossings). We first calculate

and label the RWA eigenenergies and eigenstates of the Hamiltonian Hb + HRWA to find

E
(RWA)

|k,n〉
and |k, n〉(RWA)

. We also diagonalize the Hamiltonian Hb + HRWA + HnonRWA to

get the unlabeled eigenenergies E|j〉 and corresponding eigenstates |j〉. For each nonRWA

eigenstate/eigenenergy pair, we search through the RWA eigenstates to maximize the ab-

solute value of the inner product between |j〉 and |k, n〉(RWA)
, which we then use to label

the pairs.

Another numerical detail that should be noted is the problem with the overall

sign of the eigenstates. When numerical codes diagonalize a matrix, the overall sign of

the eigenstates will be ambiguous and may change for different parameters and in different

conditions. We fix this by setting the overall sign of each eigenstate such that it does not

flip with changing n. In other words, we make sure that the overall sign of |k, n〉 is the same

as for |k, n+ 1〉.

With eigenenergies and eigenstates correctly labeled, we can calculate a variety of

useful quantities related to the dispersive measurement of qubits. For example, the qubit

frequency when the resonator is populated with n photons is

ωq(n) = E|1,n〉 − E|0,n〉, (C.8)
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which can be used to find the ac Stark shift ωq(n)−ωq(0), e.g., for photon number calibration

in an experiment [151, 179]. The resonator frequency when the qubit is in the state |k〉 is

ω|k〉r (n) = E|k,n+1〉 − E|k,n〉, (C.9)

which can be used to calculate the dispersive shift 2χ(n) = ω
|0〉
r (n) − ω|1〉r (n). Finally, the

“fan diagram” frequencies (see Chapter 4 and Ref. [151]) are calculated as

ωk(n) ≡ E|k,n−k〉 − nωr, (C.10)

which can be used to calculate the photon number at which the readout induced nonRWA

transitions occur (see chapter 4).

A Python implementation of these numerical methods is available at https://

github.com/MostafaKhezri/JC-ladder.
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Appendix D

Derivation of the measurement

error in presence of a neighboring

qubit

This appendix is related to Chapter 2 and uses the same notations as in that

chapter. Here we provide a more complete derivation of the measurement error, assuming

the regime with Γm � ∆, where the two-qubit eigenstates are the optimal logical states.

Our derivation will consist of two parts. First, neglecting transients for the resonator and

assuming abrupt switching events, we will calculate the histograms P (Ī | 00) and P (Ī | 10) for

the integrated measurement output Ī =
∫ t

0 I(t′) dt′/t, corresponding to the initial states |00〉

and |10〉, respectively (we use the word “histogram” instead of “probability distribution” as

a shorter term). Second, we will impose a discrimination threshold Ith on these histograms

to compute the probability of error according to our definition in Eq. (2.34).
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D.1 Readout histograms

Our primary assumption for obtaining the readout histograms is that we can sepa-

rate the integrated normalized measurement output Ī into two approximately uncorrelated

terms (signal and noise)

Ī(t) = z̄tot(t) + ξ̄(t). (D.1)

The first term, z̄tot ≡ z̄ + Z̄, is the total integrated bare-population difference between the

ground and excited states of the main qubit, which includes a part z̄ in the single-excitation

subspace, as well as a part Z̄ outside this subspace,

z̄(t) ≡ 1

t

∫ t

0
[P10(t′)− P01(t′)] dt′, (D.2)

Z̄(t) ≡ 1

t

∫ t

0
[P11(t′)− P00(t′)] dt′. (D.3)

The second term of Eq. (D.1) is integrated zero-mean white noise, which is randomly sam-

pled from a Gaussian distribution of variance τ/t,

Pξ(ξ̄) =

√
t

2πτ
exp

(
− ξ̄

2t

2τ

)
. (D.4)

We note that the assumption of an uncorrelated dynamics of ξ(t) and z(t) is in general not

good in the quantum Bayesian approach. For example, for single-qubit Rabi oscillations, the

correlation between ξ(t) and z(t) is as strong as autocorrelation for z(t) [267]. However, for

the dynamics with rare switching events this assumption should be sufficiently good because

the correlation between ξ(t) and z(t) is most important only in the vicinity of switching

events, which occupy a small fraction of the total integration time. The approximation

(D.1) also neglects transients of duration ∼ κ−1 at the start of the measurement and near

switching events, implying t� κ−1.
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The approximation of Eq. (D.1) permits us to calculate each histogram for Ī in

a simple way as a convolution between a histogram for the population difference z̄tot and

the Gaussian white noise distribution for ξ̄. If we additionally assume that in the single-

excitation subspace the state is always pinned to an eigenstate, with abrupt jumps between

the eigenstates (in particular, this implies ρ01,10 = 0), then the histogram for z̄ is determined

by the histogram for the eigenstate population difference z̄e,

z̄ = cos(2θ) z̄e, z̄e ≡
1

t

∫ t

0
[P10(t′)− P01(t′)] dt′, (D.5)

via the conversion factor cos(2θ) with rotation angle 2θ = arctan(2g/∆). We will now

calculate the histograms corresponding to the specific initial populations P00(0) = 1 or

P10(0) = 1, which are the optimal logical states for discrimination.

D.1.1 Ground-state histogram

An initial ground state |00〉 remains |00〉 for an arbitrarily long time, and the

corresponding output signal also does not change in time, since we assumed the steady

state for the resonator. Therefore, an initial population P00(0) = 1 produces the stationary

integrated coordinate Z̄ = −1 (with z̄ = 0) and the stationary integrated total population

difference z̄tot = −1, which implies a delta-function histogram Pz[z̄tot(t) | 00] = δ(z̄tot +

1). Convolving this histogram with the Gaussian white noise in Eq. (D.4) produces the

histogram for the integrated measurement result,

P (Ī | 00) =

√
t

2πτ
exp

[
−(Ī + 1)2t

2τ

]
, (D.6)

which is the expected Gaussian distribution of the same width as the noise that is centered

at the ground state normalized signal of I0 = −1.

229



D.1.2 Excited-state histogram

An initially excited eigenstate |10〉 will randomly jump to the eigenstate |01〉 at

the rate Γ−sw, as discussed in Section 2.4, and may then randomly jump back to the original

eigenstate at the rate Γ+
sw. We assume that these jumps can be treated as instantaneous

compared to the integration time t, and that we can treat the eigenstates as stationary

between these jumps. We also assume that the jumps obey Poissonian statistics and that

the average time between the jumps is long compared to typical integration times, Γ±swt� 1;

therefore it will be sufficient to consider only zero, one, or two possible jumps per integration

duration t. The total histogram for the excited state will then be a weighted contribution

of histograms with a definite number of jumps

P (Ī | 10) = p0P
(0)(Ī|10) + p1P

(1)(Ī|10) + p2P
(2)(Ī|10). (D.7)

We compute each of these histograms and their weights separately. The derivation is sig-

nificantly easier for the case when Γ+
sw = Γ−sw ≡ Γsw, so we will be starting the discussion

with this case and then discussing more approximate results for unequal switching rates.

For Poissonian jump statistics with equal switching rates, the probability of having

k jumps within the measurement duration t is pk = e−Γswt(Γswt)
k/k!. Since we consider

only k ≤ 2, we will use

p0 = e−Γswt, p2 =
(Γswt)

2

2
e−Γswt, p1 = 1− p0 − p2, (D.8)

where p1 is chosen to adjust normalization because the largest neglected contribution, k = 3,

also has an odd number of jumps, and such choice slightly improves the accuracy for the

calculation of the measurement error (though this is not really important).
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In the case of unequal switching rates the exact formulas for pk are quite lengthy,

p0 = e−Γ−swt, p1 = Γ−sw(e−Γ−swt − e−Γ+
swt)/(Γ+

sw − Γ−sw), p2 = Γ−swΓ+
sw[e−Γ+

swt + e−Γ−swt(Γ+
swt −

Γ−swt− 1)]/(Γ+
sw − Γ−sw)2, so we will use the approximation

p0 = e−Γ−swt, p2 ≈
Γ−swΓ+

swt
2

2
, p1 = 1− p0 − p2, (D.9)

Note that the next-order approximation for p2 is p2 ≈ 1
2Γ−swΓ+

swt
2[1− (2Γ−sw +Γ+

sw)t/3]. Also

note that to linear order in t (then fully neglecting p2, as in the main text)

p1 ≈ Γ−swt. (D.10)

The excited-state histogram with zero jumps is similar to the ground-state his-

togram in Eq. (D.6). The initial eigenpopulation remains stationary in this case, corre-

sponding to a stationary eigenpopulation difference z̄e = 1, and thus a bare population

difference of z̄ = cos(2θ) and a histogram of

P (0)
z (z̄tot | 10) = δ[z̄tot − cos(2θ)]. (D.11)

Convolving this histogram with the Gaussian noise in Eq. (D.4) yields the measurement

histogram

P (0)(Ī | 10) =

√
t

2πτ
exp

[
− [Ī − cos(2θ)]2t

2τ

]
, (D.12)

which is a Gaussian distribution similar to the ground-state histogram, but centered at

cos(2θ) ≈ 1− 2(g/∆)2 that is slightly shifted from the otherwise expected mean of I1 = +1

by the coupling to the neighboring qubit. This slight shift was neglected in the main text

as small.
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Now let us calculate the histogram with a single jump. If the jump occurs at time

moment t1, then the signal of cos(2θ) is integrated for time t1 and the signal of − cos(2θ)

is integrated for time t− t1, resulting in the average

z̄(1) =
2t1 − t
t

cos(2θ). (D.13)

In the case Γ−sw = Γ+
sw, the jump time t1 is equally likely at any time in the interval

[0, t]. Then z̄
(1)
tot has a uniform histogram P

(1)
z (z̄tot | 10) = [2 cos(2θ)]−1 in the corresponding

interval [− cos(2θ), cos(2θ)], illustrated in Fig. D.1(a). Convolving this uniform distribution

with the Gaussian white noise in Eq. (D.4) yields the measurement histogram

P (1)(Ī | 10) =

erf
Ī + cos(2θ)√

2τ/t
− erf

Ī − cos(2θ)√
2τ/t

4 cos(2θ)
, (D.14)

which is a smoothed box distribution [in Fig. D.1(a) the smoothing is shown for t/τ = 10].

This addition to the excited-state histogram is the dominant effect of the quantum jumps

on the readout. Note that for t/τ & 4 the smoothing appreciably affects only the edges

of the rectangular distribution P
(1)
z (z̄tot | 10), so that for cos(2θ)− |Ī| & 2

√
τ/t we can use

P (1)(Ī | 10) ≈ P (1)
z (Ī | 10).

In the case of unequal switching rates, Γ−sw 6= Γ+
sw, the jump time t1 is no

longer equally distributed within t; instead, it has the (normalized) probability distribution

e−Γ−swt1e−Γ+
sw(t−t1)(Γ+

sw − Γ−sw)/(e−Γ−swt − e−Γ+
swt). Then the probability distribution for z̄(1)

within the interval [− cos(2θ), cos(2θ)] is given by the same formula, with t1 replaced by

[1 + z̄(1)/ cos(2θ)] t/2 and extra normalization factor t/[2 cos(2θ)]. This probability distri-

bution for z̄(1) should then be convolved with the Gaussian noise to obtain P (1)(Ī|10). The
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Figure D.1: (a) Left panel: schematic evolution of the eigenbasis population difference ze

with a jump from 1 to −1 at t1. Right panel: the histogram P
(1)
z (z̄tot|10) for time-averaged

bare-basis population difference in the one-jump scenario (solid line) and the corresponding
histogram P (1)(Ī|10), which includes Gaussian noise (dashed line). (b) Similar schematic
and histograms for the two-jump scenario. We assume t/τ = 10, g/∆ = 1/10, and Γ+

sw =
Γ−sw.

resulting formula is very long, so for simplicity we can use

P (1)
z (z̄tot | 10) ≈

1 +
(Γ+

sw − Γ−sw)t

2 cos(2θ)
z̄tot

2 cos(2θ)
, |z̄tot| ≤ cos(2θ), (D.15)

and since the convolution of a linear function with the Gaussian noise affects mostly the

vicinity of edges, we can use P (1)(Ī | 10) ≈ P
(1)
z (Ī | 10) for cos(2θ) − |Ī| & 2

√
τ/t. A little

better approximation is to use Eq. (D.14) with added term Ī(Γ+
sw − Γ−sw)t/4 cos2(2θ) at

|Ī| ≤ cos(2θ).

Note that if we also want to take into account the energy relaxation with the
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rate T−1
1 , then for the energy relaxation event occurring at time t1 we have z̄

(1)
tot = [1 +

cos(2θ)] t1/t − 1. Then using approximation of uniformly distributed t1 (applicable for

t/T1 � 1) we obtain the uniform distribution for z̄
(1)
tot within the interval [−1, cos(2θ)].

Convolution with the Gaussian noise will then lead to a slightly asymmetric probability

distribution P (1)(Ī|10).

Now let us calculate the histogram with two jumps. If the first jump occurs at time

moment t1 and the return jump occurs at t2, then the system spends duration ∆t = t2− t1

in the “wrong” state |01〉, so that

z̄(2) =
t− 2∆t

t
cos(2θ). (D.16)

In the case Γ−sw = Γ+
sw the probability distribution of time moments t1 and t2 is uniform

within the range 0 ≤ t1 ≤ t2 ≤ t, and therefore the normalized probability distribution for

∆t is linearly decreasing, P∆t(∆t) = (2/t)[1−(∆t)/t]. This produces the linearly increasing

probability distribution for the integrated signal,

P (2)
z (z̄tot | 10) =

cos(2θ) + z̄tot

2 cos2(2θ)
, |z̄tot| ≤ cos(2θ), (D.17)

which is illustrated in Fig. D.1(b). The convolution with the Gaussian white noise in

Eq. (D.4) yields the measurement histogram

P (2)(Ī | 10) =

∫ cos(2θ)

− cos(2θ)

e−t(Ī−z̄)
2/2τ√

2πτ/t

cos(2θ) + z̄

2 cos2(2θ)
dz̄, (D.18)

which we leave unevaluated here for brevity. As above, we can use approximation P (2)(Ī|10) ≈

P
(2)
z (Ī|10) sufficiently far from the edges, cos(2θ)− |Ī| & 2

√
τ/t [see Fig. D.1(b)].

In the case when Γ−sw 6= Γ+
sw, the exact formulas are much lengthier because

the probability distribution for the jump moments t1 and t2 [which is proportional to
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Figure D.2: Comparison between analytical and numerical results for the measurement
histograms P (Ī| 00) and P (Ī| 10). The green and blue lines show the same numerical results
as in Fig. 2.6, but on an enlarged scale. The solid black line shows the analytical result
[Eq. (D.7)] for P (Ī| 10), taking into account up to two jumps. The almost coinciding red
dashed line shows the result with up to one jump. The black dashed line shows Eq. (D.6)
for P (Ī| 00).

e−(Γ+
sw−Γ−sw)(t2−t1)] is no longer uniform. However, since |Γ+

sw − Γ−sw| t � 1, we can still

approximate it as a uniform distribution, and then Eqs. (D.17) and (D.18) are still approx-

imately valid. Since the two-jump histogram brings a very small contribution to the total

histogram (D.7), any crude approximation should be sufficient. Note that if the first jump

was due to the energy relaxation event, then the return jump is impossible.

Thus, the no-jump contribution to the total excited-state histogram (D.7) produces

the main Gaussian shape, the single-jump contribution adds an extended nearly uniform

tail, and the two-jump contribution produces a very small linearly increasing correction.
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Figure D.2 shows on an enlarged scale the numerical (quantum trajectory) histograms

presented in Fig. 2.6 (green and blue lines) and also shows the analytical results derived

in this section. The solid black line shows the result for P (Ī|10) using Eq. (D.7) taking

into account up to two jumps, with Γ−sw = Γ+
sw = 2Γmg

2/(∆2 + 4g2) for parameters of Fig.

2.6 (so that Γ±swτ = 9.6 × 10−3 and t/τ = 7). The dashed red line shows a similar result

using a simplified one-jump approach, in which p0 = e−Γ−swt and p1 = 1 − p0. We see that

the difference between the results for the one-jump and two-jump approaches is very small,

but the two-jump approach still agrees slightly better with the numerical results (blue line)

for the tail of the distribution. It is interesting to note that the tail looks almost linearly

increasing, in contrast to the horizontal shape expected from the uniform distribution of

P
(1)
z (z̄tot|10). This is because near its edge, Ī = − cos(2θ) ≈ −1, the Gaussian averaging

plays the major role [see Fig. D.1(a)]. The black dashed line shows Eq. (D.6) for P (Ī|00);

its agreement with the numerical results (green line) is rather trivial because in this case

only noise is simulated numerically.

The evolution of the tail of the excited-state distribution P (Ī | 10) is illustrated in

Fig. D.3 (we do not show the ground-state histogram for clarity). We assume Γ±swτ = 10−3

and show the histogram at four equally spaced time points, t/τ = 5, 10, 15, 20. At short

integration times the Gaussian noise dominates, and the jump events contribute only a small

bump distortion in the tail of the Gaussian. However, as the integration time increases, this

bump grows to a flattened tail that becomes significant compared to the otherwise shrinking

Gaussian noise. The overlap between P (Ī | 10) and P (Ī | 00) produces measurement error,

which we discuss next.
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Figure D.3: Time evolution of the integrated signal histogram for an initially excited eigen-
state |10〉, shown on a semi-log scale, for times t/τ = 5, 10, 15, 20, assuming Γ±swτ = 10−3.
The histogram width due to Gaussian noise decreases with increasing integration time, anal-
ogously to the ground state histogram (which is not shown). Also, a tail due to quantum
jumps between the eigenstates appears at the left side of the histogram; this tail grows in
amplitude and flattens with increasing integration time.

D.2 Measurement error probability

We assume that the states |00〉 and |10〉 are discriminated by integrating the

normalized quadrature I(t) and comparing the result Ī with a threshold value Ith. Slightly

changing the notations used in the main text, we introduce the error probabilities for the

two initial states as

Perr(t | 00) =

∫ ∞
Ith

P (Ī | 00) dĪ, (D.19)

Perr(t | 10) =

∫ Ith

−∞
P (Ī | 10) dĪ, (D.20)
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where in the notations of the main text Perr(t | 00) ≡ P
(0)
err and Perr(t | 10) ≡ P

(1)
err , so that

the overall error is

Perr(t) =
1

2

[
Perr(t | 00) + Perr(t | 10)

]
. (D.21)

The error for the ground state |00〉 has a simple form,

Perr(t | 00) =
1

2

[
1− erf

1 + Ith√
2τ/t

]
, (D.22)

which follows from Eq. (D.6). The error for the state |10〉 can be calculated as a weighted

sum of contributions from zero, one, and two jumps, following Eq. (D.7),

Perr(t | 10) = p0P
(0)
err (t|10) + p1P

(1)
err (t|10) + p2P

(2)
err (t|10), (D.23)

with the probabilities pk of k jumps given by Eqs. (D.8) and (D.9), and the partial error

probabilities,

P (k)
err (t | 10) =

∫ Ith

−∞
P (k)(Ī | 10) dĪ, (D.24)

obtained from the partial histograms P (k)(Ī | 10) discussed above.

The zero-jump error is then similar to the ground-state error,

P (0)
err (t | 10) =

1

2

[
1− erf

cos(2θ)− Ith√
2τ/t

]
, (D.25)

and similarly to Eq. (D.22), it steadily decreases with increasing t. The exact formula

for the single-jump error P
(1)
err (t|10) is very lengthy, but for practical purposes it can be

significantly simplified. First, let us note that in the case Γ−sw = Γ+
sw, the distribution

(D.14) for P (1)(Ī|10) is symmetric (since it is a convolution of a symmetric distribution

P
(1)
z (z̄tot|10) and Gaussian noise). Therefore, for the symmetric threshold, Ith = 0, we

have P
(1)
err (t|10) = 1/2. Second, for t/τ & 4, the distribution P (1)(Ī|10) ≈ [2 cos(2θ)]−1
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is practically flat for Ith close to zero, cos(2θ) − |Ith| &
√

4τ/t. Therefore, in this case

dP
(1)
err (t|10)/dIth ≈ [2 cos(2θ)]−1, which gives

P (1)
err (t | 10) ≈ 1

2
+

Ith

2 cos(2θ)
. (D.26)

Very near the symmetric threshold, |Ith| . τ/3t, a better approximation is possible,

P (1)
err (t | 10) ≈ 1

2
+

Ith

2 cos(2θ)
erf

cos(2θ)√
2τ/t

, (D.27)

which corresponds to the exact derivative at Ith = 0, P (1)(Ī = 0|10) = [2 cos(2θ)]−1 ×

erf[cos(2θ)/
√

2τ/t]. Note that very good accuracy for P
(1)
err (t | 10) is not really needed since

its weight p1 in Eq. (D.23) is small. In the case Γ−sw 6= Γ+
sw we can use approximation (D.15)

and neglect the Gaussian averaging, assuming cos(2θ) − |Ith| &
√

4τ/t. Then Eq. (D.26)

generalizes as

P (1)
err (t|10) ≈ 1

2
+

Ith

2 cos(2θ)
− (Γ+

sw − Γ−sw)t

8

(
1− I2

th

cos2(2θ)

)
. (D.28)

Note that for |Γ+
sw − Γ−sw|t � 1 and Ith = 0 we have P

(1)
err (t|10) ≈ 1/2, which

stems from the property that a nearly symmetric distribution (D.15) for z̄
(1)
tot remains nearly

symmetric after convolution with the Gaussian noise. This explain the factor 1/2 in Eq.

(2.38) of the main text, which follows from Eq. (D.23) with p0 ≈ 1, p1 ≈ Γ−swt, and p2 ≈ 0.

Similar approximations have been used in Eq. (2.43), in which we also assumed cos(2θ) ≈ 1.

The double-jump contribution to the total error (D.23) is very small because of

small probability p2. Therefore, it is sufficient to use a crude estimate for P
(2)
err (t|10). In

particular, using Eq. (D.17) and assuming P (2)(Ī|10) ≈ P (2)
z (Ī|10), we find

P (2)
err (t|10) ≈ 1

4
+

Ith

2 cos(2θ)
+

I2
th

4 cos2(2θ)
. (D.29)
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Even though we neglect the three-jump processes, we actually take into account

the main contribution from them automatically, by combining their probability p3 with

p1 in Eqs. (D.8) and (D.9). This is because P
(3)
err (t|10) ≈ 1/2 for Ith = 0 (following from

the symmetry of three-jump processes), which is the same as P
(1)
err (t|10). However, the

dependence on Ith for the one-jump and three-jump terms is different.

The blue dot-dashed line in Fig. 2.8 in the main text shows the error Perr(t | 10)

calculated using Eq. (D.23) with the probabilities pk given by Eq. (D.8), the term P
(0)
err (t | 10)

given by Eq. (D.25), the term P
(1)
err (t | 10) equal to 1/2 (because in Fig. 2.8 we use symmetric

threshold, Ith = 0), and the term P
(2)
err (t | 10) obtained by integration of the histogram

(D.18). This analytics fits the numerical result (red solid line in Fig. 2.8) significantly

better than the simple analytics (dashed green line) discussed in the main text. Actually,

for the two-jump processes it is sufficient to use P
(2)
err (t | 10) = 1/4 [see Eq. (D.29)] instead

of numerical integration; the result is almost indistinguishable. Note that this is practically

equivalent to using p0 = e−Γ−swt, p1 = Γ−swt [1− (3/4)Γ−swt], p2 = 0.

Finally, we emphasize that we have used the initial eigenstate |10〉 in the definition

for measurement error in Eq. (D.20), since this is the optimal choice of logical encoding for

the regime with Γm � ∆. If instead we use the bare state |10〉, then it will additionally

collapse to a mixture of the eigenstates |10〉 and |01〉, which will increase the error,

Perr(t | 10) = cos2(θ)Perr(t | 10) + sin2(θ)[1− Perr(t | 10)],

= cos(2θ)Perr(t | 10) + sin2 θ. (D.30)

Thus, for the total error (D.21), we will have a nearly constant amount of additional error

when distinguishing bare qubit states, Perr,bare ≈ Perr + (g/∆)2/2 for g � ∆.
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Appendix E

Vanishing entanglement in dressed

coherent and squeezed states

This appendix is related to Chapter 3, and uses the same notations as in that chap-

ter. Here we show that dressed coherent states and dressed squeezed states are practically

unentangled for large average numbers of photons n̄. For a dressed coherent state we can

anticipate this result because coherent states with large n̄ are practically classical. Thus,

the transmon is essentially driven by a classical field, and should therefore produce an unen-

tangled state. However, this result is rather paradoxical because the dressed coherent state

(3.10) is constructed out of highly entangled eigenstates of the transmon-resonator system,

so significant entanglement could be naively expected. The derivation below resolves this

paradox. A similar result also applies to a dressed squeezed state.

Let us consider a general dressed state

|ψ〉 =
∑

n
cn |n, k〉, (E.1)
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where |n, k〉 are the eigenstates of the transmon-resonator system for the transmon nomi-

nally in the state |k〉q, and the coefficients cn describe the nominal resonator state
∑

n cn |n〉r,∑
n |cn|2 = 1. Our first goal is to derive a condition for which this dressed state can be

approximately represented as a direct product of the resonator state
∑

n cn |n〉r and some

transmon state (which will be generally different from the nominal state |k〉q).

The eigenstate |n, k〉 can be expanded in the bare basis (within the RWA strip) as

|n, k〉 =
∑

l
d

(n,k)
l |n− l, k + l〉, (E.2)

where the summation involves a few transmon levels, −k ≤ l ≤ kmax−k, k < kmax ' 7. The

coefficients d
(n,k)
l depend on n because the coupling (3.4) between neighboring bare levels

|n− l, k + l〉 and |n− l − 1, k + l + 1〉 is proportional to
√
n− l. However, this dependence

can be neglected,
√
n− l ≈

√
n̄− l if

σn � n̄, kmax � n̄, (E.3)

where by the standard deviation σn we characterize the spread of n in the state (E.1). In

this case we can use approximation with n-independent coefficients d
(k)
l (which may still

depend on n̄),

|n, k〉 ≈
∑

l
d

(k)
l |n− l, k + l〉. (E.4)

Substituting Eq. (E.4) into Eq. (E.1), shifting the indices, n − l → n, and changing the

order of summation, we obtain

|ψ〉 ≈
∑

l
d

(k)
l

∑
n
cn+l |n, k + l〉

=
∑

l
d

(k)
l |k + l〉q |φl〉, (E.5)

|φl〉 =
∑

n
cn+l |n〉r, (E.6)
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where |k + l〉q is the transmon level and |φl〉 is the resonator state, which depends on

transmon index l. Note that |φl〉 are (practically) normalized, since the coefficients cn+l

are the same as in the normalized state (E.1) and the shift of indices by l is not important

when the condition (E.3) is satisfied.

The dependence of |φl〉 on the transmon index l indicates the entanglement be-

tween the transmon and resonator. If |φl〉 were not dependent on l, then |ψ〉 in Eq. (E.5)

is an (unentangled) direct product of the transmon and resonator states. Moreover, any

l-dependent phase factor, |φl〉 = eiϕl |φ0〉, may be absorbed into the transmon state, still

yielding a direct product. This gives us a condition for the approximate absence of entan-

glement: |〈φ0|φl〉| ≈ 1 for all transmon indices l.

Thus, we have shown that if

∣∣∣∣∑n
c∗ncn+l

∣∣∣∣ ≈ 1 (E.7)

for any l within the relevant range, |l| ≤ kmax ' 7, then the dressed state (E.1) is approxi-

mately a direct product,

∑
n
cn |n, k〉 ≈

∑
n
cn |n〉r ⊗

∑
l
eiϕld

(k)
l |k + l〉q, (E.8)

where ϕl = arg(
∑

n c
∗
ncn+l) and d

(k)
l are the coefficients in the eigenstate (E.4).

Now let us show that the condition (E.7) is satisfied for a dressed coherent state

|α〉k given by Eq. (3.10). Since in this case cn = exp(−|α|2/2)αn/
√
n!, we find

∑
n

c∗ncn+l =
∑
n

e−|α|
2 |α|2n
n!

|α|leil arg(α)√
(n+ 1)(n+ 2) · · · (n+ l)

≈ eiϕl , ϕl = l arg(α), (E.9)
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where we approximated
√

(n+ 1)(n+ 2) · · · (n+ l) ≈ nl/2 ≈ |α|l. This approximation

requires |α|2 � l2. Thus, the dressed coherent state |α〉k is practically unentangled if

|α|2 � k2
max.

The solid lines in Fig. E.1(a) show the inaccuracy of the direct-product approxi-

mation (E.8) for the dressed coherent state |α〉0 as a function of |α|2 for typical parameters:

(ωr − ωq)/2π = 1 GHz, η/2π = 200 MHz, and g/2π = 100 MHz (lower blue line, nc = 25)

or g/2π = 141.4 MHz (upper orange line, nc = 12.5). As a measure of inaccuracy we use

1 − |〈ψdp|α〉0|2, where the direct-product state |ψdp〉 is given by Eq. (E.8). Note that for

small α we average coefficients d
(n,k)
l in Eq. (E.2) to obtain d

(k)
l . We see that the solid

lines in Fig. E.1(a) significantly increase with n̄ ≈ |α|2 until n̄ becomes much larger than

nc. This behavior is due to a competition between the continuously increasing entangle-

ment of eigenstates (E.2) and the decrease of entanglement due to the increasingly satisfied

condition (E.7). However, we see that even at large n̄, the dressed coherent state |α〉0 is

very close to the direct-product state (E.8). For comparison, we show with blue and orange

dots the much larger inaccuracy when we try to approximate the corresponding eigenstates

|n, 0〉 (i.e., the dressed Fock states) with similar direct-product wavefunctions. It is easy

to prove that the best such approximation is the bare state with the largest coefficient in

the expansion (E.2); the visible kinks in Fig. E.1(a) are due to the change of this best bare

state. Figure E.1(b) is similar to Fig. E.1(a), except it shows the entanglement of formation

[268] (equal to the entropy of entanglement for pure states) for the same dressed coherent

states |α〉0 and dressed Fock states |n, 0〉. With this measure we again confirm that the

dressed coherent states are practically unentangled, in contrast to the strongly entangled
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dressed Fock states [note an overall similarity between Figs. E.1(a) and E.1(b)].

Even though a dressed coherent state is practically unentangled, there is a strong

classical correlation between the resonator and transmon dynamics. This can be seen by

adding explicit time dependence into Eq. (E.8), thus going from the rotating frame into

the lab frame. Replacing coefficients cn for the coherent state with cn(t) = e−inωrtcn(0)

(the remaining factor e−iE(k,n̄)t is an overall phase and therefore not important), we find

α(t) = e−iωrtα(0). As a result, φl = l arg[α(0)] − lωrt, and therefore the dressed coherent

state evolves in time as

|α〉k = |e−iωrtα(0)〉r ⊗
∑
l

e−ilωrteilarg[α(0)]d
(k)
l |k + l〉q. (E.10)

We see that both resonator and transmon states are evolving with the period 2π/ωr in

a phase-synchronized way; the resonator state evolution is a simple oscillation, but the

transmon evolution within the period is quite non-trivial. This is exactly what we would

expect classically for a non-linear oscillator that is harmonically driven with frequency ωr.

We have performed numerical simulations for the transmon state evolution in Eq. (E.10)

using the x-representation (where x in this case is the superconducting phase difference) and

confirmed such non-trivial evolution within one period of oscillations when n̄ is significantly

larger than nc.

To check the direct-product condition (E.7) for a dressed squeezed state, let us use

its approximate sheared Gaussian representation in Eq. (3.22). Then we find

∑
n

c∗ncn+l ≈ eil arg(β)

[
1− l2

2Wn̄
− 2K2W

n̄
l2
]
, (E.11)
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assuming large n̄ = |β|2. We see that the condition (E.7) is satisfied if

n̄� k2
max max(1/2W, 2K2W ). (E.12)

In this case the dressed squeezed state is practically unentangled. For the dressed coherent

state (W = 1, K = 0) this inequality reduces to n̄� k2
max, as expected.

Note that in the case when the dressed sheared state is practically unentangled,

the phase ϕl = l arg(β) in Eq. (E.8) is still the same as for the dressed coherent state (except

for the notation change, α → β). Therefore, the transmon state and its evolution within

the period of ωr is still the same as for the dressed coherent state with α = β. In other

words, for sufficiently large n̄ there is no difference for the transmon if it is driven by a

coherent or a squeezed field from the resonator.
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Figure E.1: (a) Solid lines: infidelity 1− |〈ψdp|α〉0|2 of approximating the dressed coherent
state |α〉0 with a direct-product state |ψdp〉 given by Eq. (E.8), as a function of |α|2. For

comparison, the dots show similar infidelity for the eigenstates |n, 0〉, i.e., dressed Fock
states, as a function of n (axes of n and |α|2 coincide). We assume (ωr − ωq)/2π = 1 GHz,
η/2π = 200 MHz, and g/2π = 100 MHz (lower blue line/dots, nc = 25) or g/2π = 141.4
MHz (upper orange line/dots, nc = 12.5). (b) Entanglement of formation EF (coinciding
with entropy of entanglement) for the dressed coherent states |α〉0 (lines) and dressed Fock
states (dots) with the same parameters as in (a).
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Appendix F

Rotating-frame evolution of a

linear-resonator state

This appendix is related to Chapter 5, and uses the same notations as in that

chapter. Here we discuss derivation of the rotating-frame equations (5.38)–(5.41) for evolu-

tion of the Gaussian-state parameters β, D0, b, and θ from the laboratory-frame equations

(5.32)–(5.36), using the rotating wave approximation (RWA).

Let us start with introducing the rotating frame based on the drive frequency ωd,

by defining the dimensionless rotating-frame position and momentum operators ˆ̃x and ˆ̃p as

ˆ̃x+ i ˆ̃p = (x̂+ ip̂) eiωdt. (F.1)

This is equivalent to introducing a new lowering operator ˆ̃a = â eiωdt. From Eq. (F.1) we
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obtain the canonical transformation

x̂ = ˆ̃x cosωdt+ ˆ̃p sinωdt, (F.2)

p̂ = ˆ̃p cosωdt− ˆ̃x sinωdt. (F.3)

To find the rotating-frame evolution equation for the Gaussian state center, we

use Eqs. (5.32) and (5.33) for the evolution of xc = 〈x̂〉 and pc = 〈p̂〉, and convert them into

equations for x̃c = 〈ˆ̃x〉 and p̃c = 〈 ˆ̃p〉, thus obtaining

d

dt
(x̃c + ip̃c) = −i(ωr − ωd)(x̃c + ip̃c)− iε− iε∗ei2ωdt

− iκ
(
p̃c

1 + ei2ωdt

2
+ x̃c

1− ei2ωdt

2i

)
. (F.4)

This equation is still exact. Now using RWA, we neglect the terms oscillating with frequency

2ωd, thus obtaining slow evolution of the Gaussian state center,

β̇ = −i(ωr − ωd)β − κ

2
β − iε, β ≡ x̃c + ip̃c, (F.5)

which is Eq. (5.38).

To derive Eqs. (5.39) and (5.40) for Ḋ0 and ḃ, let us start with expressing Dx, Dp,

and Dxp via the corresponding rotating-frame quantities Dx̃, Dp̃, and Dx̃p̃ (with obvious

definitions)

Dx = Dx̃ cos2(ωdt) +Dp̃ sin2(ωdt) +Dx̃p̃ sin(2ωdt), (F.6)

Dp = Dx̃ sin2(ωdt) +Dp̃ cos2(ωdt)−Dx̃p̃ sin(2ωdt), (F.7)

Dxp = Dx̃p̃ cos(2ωdt) + (1/2)(Dp̃ −Dx̃) sin(2ωdt). (F.8)

Note that D0 ≡ (Dx + Dp)/2 has the same expression in the rotating frame, D0 = (Dx̃ +

Dp̃)/2; similarly, b2 ≡ (Dp−Dx)2/4+D2
xp can also be expressed as b2 = (Dp̃−Dx̃)2/4+D2

x̃p̃.
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For the evolution of D0, from Eqs. (5.34) and (5.35) we find Ḋ0 = −κDp +

(κ/4) coth(ωr/2Tb). Then using Eq. (F.7), we obtain

Ḋ0 =− κ[Dx̃ sin2(ωdt) +Dp̃ cos2(ωdt)−Dx̃p̃ sin(2ωdt)]

+ (κ/4) coth(ωr/2Tb). (F.9)

Now using RWA, we neglect the terms oscillating with frequency 2ωd, so that sin2(ωdt)→

1/2, cos2(ωdt)→ 1/2, and sin(2ωdt)→ 0. This gives us

Ḋ0 = −κD0 + (κ/4) coth(ωr/2Tb), (F.10)

which is Eq. (5.39).

For the evolution of b, from Eqs. (5.34)–(5.36) we obtain

d(b2)/dt = (κ/4)(Dp −Dx) coth(ωr/2Tb)

− κ(Dp −Dx)Dp − 2κD2
xp. (F.11)

Within RWA, the first term on the right-hand side is zero because Dp −Dx oscillates with

frequency 2ωd [see Eqs. (F.6) and (F.7)]. The second term is not zero because Dp has also a

part oscillating with 2ωd; averaging over these oscillations we obtain−κ[D2
x̃p̃+(Dp̃−Dx̃)2/4],

which equals −κb2. Similarly, for the third term we use Eq. (F.8) and averaging over the

oscillations obtain −κ[D2
x̃p̃ + (Dp̃ −Dx̃)2/4], which is again −κb2. Thus, within RWA

d(b2)/dt = −2κb2. (F.12)

Equivalently, ḃ = −κb, which is Eq. (5.40).
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To derive Eq. (5.41) for θ̇, we start with Eqs. (5.14) and (5.31), which give

θ = arctan

(
2Dxp

Dx −Dp

)
+ 2ωdt

+ (π/2)[1 + sign(Dx −Dp)]. (F.13)

Neglecting the last term, the time derivative is

θ̇ =
Ḋxp(Dx −Dp)−Dxp(Ḋx − Ḋp)

2b2
+ 2ωd. (F.14)

Using Eqs. (5.34)–(5.36), we find that the numerator here is −4ωrb
2−2κDxpD0+(κ/2)Dxp×

coth(ωr/2Tb), in which the only non-oscillating term is −4ωrb
2. Dividing it by 2b2 and

adding 2ωd, from Eq. (F.14) we obtain θ̇ = −2(ωr − ωd), which is Eq. (5.41).
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Appendix G

Equivalence between Gaussian and

Fock-space Gaussian states

This appendix is related to Chapter 5, and uses the same notations as in that

chapter. Here we show that the Fock-space Gaussian state introduced in Eq. (5.42) is

approximately the same as the standard Gaussian state [Eq. (5.9)] in the limit of large

photon number, |β| � 1, and derive the conversion relations (5.44)–(5.47). This is done

by comparing the Husimi Q-functions of the Gaussian and Fock-space Gaussian states. We

use the rotating frame and characterize the Gaussian state by the complex parameter β

(center) and three real parameters: D0, b, and θ – see Eqs. (5.12)–(5.14). The Fock-space

Gaussian state is characterized by the complex parameter eiφβ |β| (which is chosen to be the

same as β) and three real parameters: W1, W2, and K – see Eq. (5.42).

The Husimi Q-function Q(α) of a state with density matrix ρ is defined via its
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overlap with the coherent state |α〉,

Q(α) =
1

π
〈α|ρ|α〉, |α〉 = e−

1
2
|α|2

∞∑
n=0

αn√
n!
|n〉, (G.1)

where α = x̃ + ip̃ assumes the rotating frame, in contrast to the notation α used in Sec.

5.3.1. The function Q(α) can be calculated from the Wigner function W (α) (here in the

rotating frame; note a slightly different notation used in Sec. 5.3.1),

Q(α) =
2

π

∫
W (α′) e−2|α−α′|2 dRe(α′) dIm(α′). (G.2)

For the Gaussian state (5.9) it is equal

Q(α) = π−1 [4(D0 − b+ 1/4)(D0 + b+ 1/4)]−1/2

× exp

{
− (D0 + b cos θ + 1/4) [Re(α− β)]2

2(D0 − b+ 1/4)(D0 + b+ 1/4)

−(D0 − b cos θ + 1/4) [Im(α− β)]2

2(D0 − b+ 1/4)(D0 + b+ 1/4)

− (2b sin θ) Re(α− β) Im(α− β)

2(D0 − b+ 1/4)(D0 + b+ 1/4)

}
. (G.3)

Recall that β is the Gaussian state center, D0 + b is the maximum quadrature variance,

D0 − b is the minimum quadrature variance, and θ/2 is the angle between the minimum

quadrature direction and x̃-axis (see Fig. 5.1). Note that in the diagonal basis, Eq. (G.3)

reduces to Eq. (5.17), up to a slight change of notations.

Now let us calculate the Q-function for the Fock-space Gaussian state, Eq. (5.42),

and compare it with Eq. (G.3). We will use a series of approximations to calculate Q(α).

First, for |β| � 1 we can also assume |α| � 1; then the coherent state |α〉 in Eq. (G.1)

can be approximated as |α〉 ≈ (2π|α|2)−1/4
∑

n exp[−(n − |α|2)2/4|α|2] exp[inφα], where
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φα = arg(α), so that the Q-function is approximately

Q(α) =
1

π
√

2π|α|2
∞∑

n,m=0

ρnm exp

[
− (n− |α|2)2

4|α|2

−(m− |α|2)2

4|α|2 − iφα(n−m)

]
. (G.4)

Substituting ρnm from Eq. (5.42), we obtain

Q(α) = N
∑

n,m
exp[−An2 − Ãm2 −B(m)n

−B̃m− C], (G.5)

N = π−1(4π2W1|β|2|α|2)−1/2, (G.6)

A =
1

4|α|2 +
1

8W1|β|2
+

1

8W2|β|2
+ i

K

|β|2 , (G.7)

Ã =
1

4|α|2 +
1

8W1|β|2
+

1

8W2|β|2
− i K|β|2 , (G.8)

B(m) = −1

2
+ i(φα − φβ) +

m

4W1|β|2
− 1

2W1

− m

4W2|β|2
− 2iK, (G.9)

B̃ = −1

2
− i(φα − φβ)− 1

2W1
+ 2iK, (G.10)

C =
|α|2

2
+
|β|2
2W1

. (G.11)

Then replacing summation over n and m by integration within infinite limits (assuming

|β| � 1) and calculating the integral over n, we find

Q(α) = N

√
πe−C√
A

∞∫
−∞

exp

[
[B(m)]2

4A
− Ãm2 − B̃m

]
dm. (G.12)
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Using Eq. (G.9), we then represent [B(m)]2/4A as

[B(m)]2/4A = Ām2 + B̄m+ C̄, (G.13)

Ā =
1

4A

( 1

4W1|β|2
)2(

1− W1

W2

)2
, (G.14)

B̄ =
1

4A

1

2W1|β|2
(

1− W1

W2

)[
− 1

2
− 1

2W1

+i(φα − φβ)− 2iK
]
, (G.15)

C̄ =
1

4A

(
− 1

2
− 1

2W1
+ i(φα − φβ)− 2iK

)2
. (G.16)

Then the exponent in Eq. (G.12) is exp[−(Ã− Ā)m2− (B̃ − B̄)m] and its integral over dm

can be easily calculated,

Q(α) = (2π
√
W1|β||α|)−1[A(Ã− Ā)]−1/2

× exp{(B̃ − B̄)2/[4(Ã− Ā)]− C − C̄}. (G.17)

Since we want to compare this result with Eq. (G.3), we need to find its dependence

on the difference α − β. Assuming |β| � 1, we expand Eq. (G.17) up to second order in

Re(α − β) and Im(α − β). Let us consider first the special case when β is real (β > 0), so

that φβ = 0. Then expansion of Eq. (G.17) produces (after some algebra) the result

Q(α) ≈ 1

π

(1

4
+

W1

4W2
+

1

4W2
+
W1

4
+ 4K2W1

)−1/2

× exp

{
− 2(1 +W2 + 16W1W2K

2) [Re(α− β)]2

1 +W1 +W2 +W1W2(1 + 16K2)

− 2W2(1 +W1) [Im(α− β)]2

1 +W1 +W2 +W1W2(1 + 16K2)

− 16W1W2K Re(α− β) Im(α− β)

1 +W1 +W2 +W1W2(1 + 16K2)

}
. (G.18)

Comparing this formula with Eq. (G.3) for the Gaussian state, we see that the formulas
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coincide if

D0 =
1

8W2
+
W1

8
+ 2K2W1, (G.19)

b =
1

4

√( 1

2W2
+
W1

2
+ 8K2W

)2
− W1

W2
, (G.20)

θ0 = arctan
( 8KW1W2

1−W1W2 + 16K2W1W2

)
+ (π/2) [1− sign(1−W1W2 + 16K2W1W2)], (G.21)

where we use notation θ0 instead of θ to remind that we consider the special case of a real

positive β. Note that Eqs. (G.19)–(G.21) coincide with Eqs. (5.45)–(5.47) in the case of a

real positive β.

For a complex β, it is also possible to use the second-order expansion of Eq. (G.17);

however, it is easier to use the fact that dependence of Q(α) on the complex phase φβ in

Eqs. (G.5)–(G.11) comes only from the combination φα − φβ. Therefore, the Q-function of

the Fock-space Gaussian state does not change in the transformation β → |β|, α→ e−iφβα,

so for a complex β we can still use Eq. (G.18) with the substitution (α−β)→ e−iφβ (α−β).

Using this substitution in the equivalent Eq. (G.3), we easily find that it results in replacing

the angle θ0 (for real β) with

θ = θ0 + 2φβ, (G.22)

while the parameters D0 and b do not change. Another way to obtain Eq. (G.22) is to note

that the parameters W1, W2, and K of the Fock-space Gaussian state do not change when

the phase space is rotated (i.e., β → ei∆φβ, α → ei∆φα), while for the Gaussian state this

results in the change θ → θ + 2∆φ with unchanged parameters D0 and b (see Fig. 5.1).

Therefore, we can first rotate the phase space clockwise by the angle φβ (to make β real),
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then convert parameters W1, W2, and K, into D0, b, and θ0 using Eqs. (G.19)–(G.21), and

then move the phase space back by counterclockwise rotation with the same angle φβ, which

results in θ change (G.22).

Thus we have derived the conversion relations (5.45)–(5.47) between the Gaussian

and Fock-space Gaussian states (β does not change). Note that our derivation relied on the

fact that the Husimi Q-function uniquely defines a quantum state [173]. Since Eq. (G.18)

is only an approximation, a Fock-space Gaussian state is not exactly equal to a Gaussian

state. However, the accuracy of the conversion improves at larger |β|, approaching exact

equivalence in the limit |β| → ∞. Numerical results in Sec. 5.5.1 show that infidelity of the

conversion scales as |β|−2.
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Appendix H

Steady-state squeezing and heating

of a driven nonlinear resonator

This appendix is related to Chapter 5, and uses the same notations as in that

chapter. Here we derive results for D0, b, and θ in the steady state. The parameters r

and nth can be then calculated using Eq. (5.30). The squeezing factor is [4(D0 − b)]−1, the

effective temperature Teff is given by coth(ωr0/2Teff) = 4
√

(D0 + b)(D0 − b). All variables

discussed in this appendix are only for the steady state.

The steady-state value of β can be calculated from Eq. (5.63); in general it does

not have an analytical expression. Note that

ε/β = ωd − ωr(|β|2) + iκ/2, (H.1)

so Re(ε/β) can be positive or negative, depending on detuning.
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From Eqs. (5.67) and (5.68) in the steady state we find

D0 =
coth(ωr0/2Tb)

4

1

1− [2ηβ|β|2 sin(∆θ)/κ]2
, (H.2)

b =
coth(ωr0/2Tb)

4

2ηβ|β|2 sin(∆θ)/κ

1− [2ηβ|β|2 sin(∆θ)/κ]2
, (H.3)

where ηβ = dωr(n)/dn|n=|β|2 is the steady-state nonlinearity. To obtain explicit analytics

for D0 and b, we still need to find sin(∆θ). For that we can substitute the ratio b/D0 =

2ηβ|β|2 sin(∆θ)/κ into Eq. (5.69) in the steady state, thus obtaining

tan(∆θ) =
κ/2

ηβ|β|2 − Re(ε/β)
. (H.4)

Since ηβ sin(∆θ) ≥ 0 (because b ≥ 0), we can use

sin(∆θ) = sign(ηβ)

√
(κ/2)2

(κ/2)2 + [ηβ|β|2 − Re(ε/β)]2
(H.5)

in Eqs. (H.2) and (H.3).

The angle θ can be calculated as

θ = 2 arg(β) + arctan

(
κ/2

ηβ|β|2 − Re(ε/β)

)
+ (π/2){1− sign[|β|2 − η−1

β Re(ε/β)]}. (H.6)

These results can be compared with results of Ref. [186] in the case of Kerr non-

linearity (Duffing oscillator), H lf
r = ωr0a

†a+(η/2)(a†)2a2, which is equivalent to our Hamil-

tonian when ωr = ωr0 + nη [see Eq. (5.73)], so that ηβ = η = const. In this case Eq. (4.4)
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of Ref. [186] (converted into our notations) gives

〈a2〉 − β2 = −ηβ
2(ωr0 + 2η|β|2 − ωd + iκ/2)(1 + 2nb)

2λ
, (H.7)

〈a†a〉 − |β|2 =
η2|β|4(1 + 2nb)

2λ
+ nb, (H.8)

λ = (ωr0 + 2η|β|2 − ωd)2 + κ2/4− η2|β|4. (H.9)

From these values, D0, b, and θ can be obtained using Eqs. (5.18)–(5.20) [also, Eq. (5.26)

gives 〈a†a〉 − |β|2 = 2D0 − 1/2].

We have numerically compared these results with our Eqs. (H.2), (H.3), and (H.6)

and found that they coincide for all parameters, which we checked. Thus, for the steady

state in the case of Kerr nonlinearity, our results for squeezing and heating agree with results

of Ref. [186] (note that the terminology of squeezing and/or heating was not used in Ref.

[186]).

Our steady-state results for a Duffing oscillator in the limit of small dissipation

(κ → 0) can also be directly compared with the analytical results presented in Secs. 2.1

and 2.5 of Ref. [196]. In this case the squeezing and heating are determined only by the

parameter combination ε2η/(ωd − ωr0)3 (which was called β in Ref. [196]). Results of Ref.

[196] show that the squeezing parameter ξ = reiθ is real and equals

ξ =
1

4
ln

3Q2 − 1

Q2 − 1
, (H.10)

where Q satisfies equation

Q(Q2 − 1) =
√
ε2η/(ωd − ωr0)3. (H.11)

Here in the case ε2η/(ωd − ωr0)3 > 4/27, there is only one real solution for Q. The range

0 < ε2η/(ωd − ωr0)3 < 4/27 corresponds to bistability, and there are three real solutions
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for Q, with the largest value corresponding to the upper bistability branch and the middle

value for the lower branch. In the case ε2η/(ωd − ωr0)3 < 0, we need to use the purely

imaginary solution for Q.

The angle θ in this limit is zero (squeezing is in phase with the drive), except θ = π

for the lower bistability branch (then ξ < 0). The number of thermal photons is [196]

nth = nb + (2nb + 1) sinh2 r. (H.12)

We have numerically compared Eqs. (H.10) and (H.12) for ξ and nth with our results

following from Eqs. (H.2), (H.3), and (H.6). As expected, we have found that they coincide

in the limit κ → 0 for a fixed value of ε2η/(ωd − ωr0)3. Thus, our results agree with the

results of Ref. [196].
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