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We review and expand on recent advances in theory and experiments concerning the problem of wavefunction
uncollapse: given an unknown state that has been disturbed by a generalised measurement, restore the state to its
initial configuration. We describe how this is probabilistically possible with a subsequent measurement that involves
erasing the information extracted about the state in the first measurement. The general theory of abstract
measurements is discussed, focusing on quantum information aspects of the problem, in addition to investigating a
variety of specific physical situations and explicit measurement strategies. Several systems are considered in detail:
the quantum double dot charge qubit measured by a quantum point contact (with and without Hamiltonian
dynamics), the superconducting phase qubit monitored by a SQUID detector, and an arbitrary number of entangled
charge qubits. Furthermore, uncollapse strategies for the quantum dot electron spin qubit, and the optical
polarisation qubit are also reviewed. For each of these systems the physics of the continuous measurement process,
the strategy required to ideally uncollapse the wavefunction, as well as the statistical features associated with the
measurement are discussed. We also summarise the recent experimental realisation of two of these systems, the phase
qubit and the polarisation qubit.

Keywords: wavefunction uncollapse; measurement reversal; quantum Bayesianism

1. Introduction

The irreversibility of quantum measurement is an
axiomatic property of textbook quantum mechanics
[1]. In his famous article Law without law, JohnWheeler
expresses the idea with poetic flare: ‘We are dealing
with [a quantum] event that makes itself known by
an irreversible act of amplification, by an indelible
record, an act of registration’ [2]. However, it has been
gradually recognised that the textbook treatment of an
instantaneous wavefunction collapse is really a very
special case of what is in general a dynamical process –
continuous quantum measurement. Continuous mea-
surements do not project the system immediately into
an eigenstate of the observable, but describe a pro-
cess whereby the collapse happens over a period of time
[3–13]. The fact that continuous measurement is a
dynamical process with projective measurement as a
special case, leads us to ask whether the irreversibility
of quantum measurement is also a special case. The
purpose of this paper is to review and expand on recent
developments in this area of research, showing that it is
possible to undo a quantum measurement, thereby
uncollapsing the wavefunction, and to describe this
physics in detail for both the abstract and concrete
physical realisations.

This paper follows our earlier work on the subject
[14,15], as well as other papers investigating similar

questions [16,17]. Wavefunction uncollapse teaches us
several things about the fundamentals of quantum
mechanics. First, there is a notion that wavefunction
represents many possibilities, but that reality is
created by measurement. The fact that the effects of
measurement can be undone suggests that this idea
is flawed, or at least too simplistic. If you create
reality with quantum measurements, does undoing
them erase the reality you created? Secondly, there
is a wide-spread belief that quantum measurement
is nothing more than a decoherence process. This
suggests that the superposition never really collapses;
it only appears to collapse. What actually happens,
according to this idea, is that all the information
about the system disperses into the environment:
when a quantum system interacts with a classical
measuring device, it becomes irreversibly entangled
with all the particles that make up the measuring
device and its surroundings. The uncollapse of the
wavefunction demonstrates that decoherence theory
cannot be the whole story, because a true decoherence
process is irreversible [18]. The perspective we take in
this paper further advances the ‘quantum Bayesian’
point of view, where the quantum state is nothing
more than a reflection of our information about
the system. When we receive more information about
the system, the state changes or collapses not because
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of any mysterious forces, but simply as a result of
Bayesian updating.

We note that there are many approaches to the
non-projective (continuous, weak, generalised, etc.)
quantum measurement, which are essentially equiva-
lent, in spite of quite different formalisms and
terminology. To name just a few, let us mention mathe-
matical POVM-type approaches [3,4] (POVM stands
for positive operator-valued measure), method of
restricted path integrals [5,6], analysis of quantum
jumps in atomic shelving [7], quantum trajectories
[8], quantum-state diffusion [9], Monte-Carlo wave-
function method [10], weak values [11], quantum
filtering [12], and the Bayesian formalism for weak
measurements in solid-state systems [13]. In this paper
we will use the Bayesian and POVM-type formalisms
because they are most suitable for the physical setups of
our main interest.

Our work is indirectly related to the ‘quantum
eraser’ of Scully and Drühl [19]. There, the which-path
information of a particle is encoded in the quantum
state of an atom, resulting in a destruction of inter-
ference fringe visibility. On the other hand, if the
which-path information of the particle is erased, the
interference fringes are restored. Both the Scully
proposal and our proposal erase information. How-
ever, there is an important difference. In order for the
uncollapsing procedure to work, we have to erase the
information that was already extracted classically. In
the ‘quantum eraser’, only potentially extractable
information is erased.

Rather than begin with the abstract idea of
uncollapse, we first introduce the concept with actual
measurement processes in specific physical contexts.
This brings to mind the saying of Asher Peres:
‘Quantum phenomena do not occur in a Hilbert
space. They occur in a laboratory’ [20]. Following
Peres’ dictum, we discuss measurement processes in
a variety of solid state systems, where there has
been remarkable experimental progress in recent
years. Quantum coherence has been demonstrated to
occur in a controllable fashion in systems such as
semiconductor quantum dots and superconducting
Josephson junctions. We will discuss the physics of
measurement in these systems, as well as concrete
strategies for uncollapsing the wavefunction. It should
be stressed that two of these proposals (a super-
conducting phase qubit and optical polarisation
qubit) have now been implemented in the laboratory
[21,22], providing conclusive demonstration of wave-
function uncollapse. It is still too early to predict
whether uncollapse can eventually become a really
useful tool or it will remain only as a surprising and
educating curiosity [18]. One possibly useful applica-
tion is suppression of decoherence by the uncollapse

procedure [23], which will be briefly discussed in our
paper.

The paper is organised as follows. We introduce
the general subject with a preliminary discussion in
Section 2. We then give some specific examples in
Sections 3 (the superconducting phase qubit) and 4
(the double quantum dot qubit, monitored by a
quantum point contact). With these physical imple-
mentations, we discuss the uncollapsing strategies and
results. In Section 5 we give a general treatment of the
physics, using the POVM-based formalism. This is
done both for pure states (Section 5.1) and mixed
states (Section 5.2). In Section 5.3 we discuss the
interpretation of wavefunction uncollapse, and what it
tells us about quantum information. These general
results are applied to the examples given previously in
Section 5.4. In Section 6 we further apply the general
results to the case of the finite-Hamiltonian qubit
undergoing the uncollapse process. In Section 7, we
generalise to the case of many charge qubits, and
discuss an explicit procedure to undo any generalised
measurement. We discuss recent developments in the
theory and experiments of measurement reversal in
Section 8 and conclude in Section 9. The Appendix
contains results about the statistics of the waiting time
distribution in the charge qubit example.

2. Preliminary discussion

Our goal is to restore an initial quantum state
disturbed by measurement. However, it is important
to discuss what exactly we mean by that. For example,
if we start with a known pure state jcini and perform a
textbook projective measurement, then it is trivial to
restore the initial state: since we also know the post-
measurement wavefunction jcmi, we just need to apply
a unitary operation which transfers jcmi into jcini. If
we start with a known mixed state, then its restoration
after a projective measurement is a little more
involved;1 however, such a procedure still can be
easily analysed using standard quantum mechanics and
classical probability theory.

In this paper we consider a different, non-trivial
situation: we assume that an arbitrary initial state is
unknown to us, and we still want to restore it after
the measurement disturbance. To make this idea more
precise, we consider a contest between the uncollapse
proponent Plato, and an uncollapse skeptic Socrates.
Socrates prepares a quantum system in any state he
likes, but it is unknown to Plato. Socrates sends
the state to Plato, who makes some measurement on
the system, verified by the arbiter Aristotle. Plato then
tries to undo the measurement. If Plato judges that the
attempt succeeded, the system is returned to Socrates,
with the claim that it is the original state. Socrates is
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then allowed to try and find a contradiction in any
way he likes, with the whole process monitored by
Aristotle. If a contradiction can be found, then he can
claim to refute the uncollapse claim, but in the absence
of contradiction, the uncollapse claim stands. If
Socrates would like to try again to find a contradiction,
or if Plato judges that his undoing attempt was
unsuccessful (and does not return a state), then
Socrates prepares a new (still unknown to Plato) state,
and the competition continues. If Socrates cannot
find a contradiction after many rounds of the com-
petition, then Plato will win the contest, and will have
successfully demonstrated the uncollapsing of the
quantum state.

A slightly different but equivalent situation is
when we know the initial state, but our uncollapsing
procedure must be independent of the initial state
(so we can pretend that it is unknown), and there-
fore the uncollapsing should restore any initial state
in the same way. This formulation is most appro-
priate for a real experiment demonstrating the
uncollapsing. Finally, we may consider the more
general case where the measured system is entangled
with another system, and we wish to restore the initial
state of the compound system without any access to
its second part.

The traditional statement of irreversibility of a
quantum measurement can be traced to the fact that it
may be described as a mathematical projection.
Projection is a many-to-one mapping in the Hilbert
space, and therefore the same post-measurement state
generally corresponds to (infinitely) many initial
states.2 It is therefore impossible to undo a projective
measurement.

However, the situation is different for a general
[4] (POVM-type) measurement, which typically cor-
responds to a one-to-one mapping jcini!jcmi in the
Hilbert space of wavefunctions (in this paper we
consider only ‘ideal’ measurements which do not
introduce extra decoherence). In this case the post-
measurement wavefunction jcmi can still be asso-
ciated with the unique initial state jcini, and a
well-defined inverse mapping exists mathematically.
This makes the uncollapsing possible in principle.
Since the inverse mapping is typically non-unitary,
it cannot be realised as an evolution with a suit-
able Hamiltonian. However, it can be realised using
another POVM-type measurement with a specific
(‘lucky’) result.

Rather than giving the most general, abstract case
first, we start with a couple of specific examples of
realistic systems where such a measurement either has
been done, or could be done in the near future. Once
the reader has the basic idea, we will proceed to
generalise the process and develop its characteristics.

3. Example 1: the phase qubit

We first give a simple example of erasing information
and uncollapsing the wavefunction for the case of a
superconducting phase qubit [24]. The system is
comprised of a superconducting loop interrupted by
one Josephson junction (Figure 1(a)), which is
controlled by an external flux fe in the loop. Two
qubit states j0i and j1i (Figure 1(b)) correspond to
two lowest states in the quantum well for the
potential energy V (f), where f is the superconduct-
ing phase difference across the junction. Transitions
between the levels j0i and j1i (Rabi oscillations) can
be induced by applying microwave pulses that are
resonant with the energy level difference. Because of
the energy difference, the two basis states acquire a
phase difference between them, which linearly in-
creases in time. However, this can be eliminated by
going into the rotating frame; we always assume it in
this section.

The qubit is measured by lowering the barrier
(which depends on fe), so that the upper state j1i
tunnels into the continuum with the rate �, while the
state j0i does not tunnel out. The tunnelling event is
sensed by a two-junction detector SQUID inductively
coupled to the qubit (Figure 1(a)).

3.1. Partial collapse

For sufficiently long tunnelling time t, �t � 1,
the measurement is a (partially destructive) projective
measurement [24]: the system is destroyed if the
tunnelling occurs, while if there is no record of
tunnelling, then the state is projected onto the lower
state j0i. This measurement technique is remarkable
in the fact that the wavefunction is collapsed if
nothing happens. A more subtle situation arises if the
barrier is raised after a finite time t * �71 [25].
The system is still destroyed if tunnelling happens,
while in the case of no tunnelling (which we refer
to as a null-result measurement) the state is partially
collapsed because the inference from the measure-
ment is ambiguous. This is due to the fact that

Figure 1. (a) Schematic of a phase qubit controlled by an
external flux fe and inductively coupled to the detector
SQUID. (b) Energy profile V(f) with quantised levels
representing qubit states. The tunnelling event through the
barrier is sensed by the SQUID.

Contemporary Physics 127

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
a
l
i
f
o
r
n
i
a
,
 
R
i
v
e
r
s
i
d
e
]
 
A
t
:
 
2
0
:
0
0
 
1
8
 
F
e
b
r
u
a
r
y
 
2
0
1
0



classically a null-result measurement could be be-
cause the system is in the lower energy state (and
thus would not ever tunnel), or because it is in the
upper energy level (and we simply didn’t give it
enough time).

The conditional probability for decaying if the
qubit is in state j1i is given by 1 7 exp (7�t). Given
some initial density matrix rin, we can interpret the
diagonal density matrix elements (rin,00 and rin,11)
as classical probabilities of being in states j0i or
j1i. We can then invoke the Bayes rule [26,27] to
update the probabilities,3 given the data of ‘nothing
happened’. It is not possible to use a simple general
rule for updating the off-diagonal element r01; how-
ever, analysis of the full dynamics in the extended
Hilbert space [25,28] gives a simple result as well, so
that the qubit density matrix changes after the null-
result measurement as

r00ðtÞ ¼
rin;00

rin;00 þ rin;11exp ð��tÞ ; ð1Þ

r11ðtÞ ¼
rin;11exp ð��tÞ

rin;00 þ rin;11exp ð��tÞ ; ð2Þ

r01ðtÞ ¼
rin;01exp ½ijðtÞ�exp ð��t=2Þ
rin;00 þ rin;11exp ð��tÞ : ð3Þ

Such a measurement is ideal and does not decohere
the qubit. Notice that in a simple model [10,28]
there is no relative phase j that is added during the
measurement process, if one uses the rotating frame.
In the real experiment [25], however, the energy
difference between the states j0i and j1i changes in
the process of measurement because it is affected
by the changing external flux fe, and therefore even
in the (constantly) rotating frame the phase j is non-
zero.

Actually, in the experiment [25] the situation is
even more complex because the tunnelling rate
gradually changes in time; also, instead of controlling
the measurement time t, it is much easier to control
the tunnelling rate. As a result, the measurement
should be characterised by the overall strength
pt ¼ 1� exp ½�

R t
0 �ðt0Þ dt0�. Nevertheless, for simpli-

city, we use here the physically transparent language
of Equations (1), (2) and (3) with exp(7�t) understood
as 1 7 pt.

Up to such changes of notation, the coherent
non-unitary evolution ((1), (2), (3)) has been experi-
mentally verified in [25] using tomography of the post-
measurement state. The state tomography consisted
of three types of rotations of the qubit Bloch sphere,
followed by complete (projective) measurement. In
the experiment it was not possible to select only the

null-result cases, because it was not possible to
distinguish if a tunnelling event happened during
measurement or during tomography. However, a
simple trick of comparing the protocols with and
without tomography made it possible to separate the
null-result cases.

3.2. Uncollapsing

We will now describe how to undo the state
disturbance ((1), (2), (3)) caused by the partial collapse
resulting from the null-result measurement. The un-
doing of this measurement consists of three steps [14]:
(i) exchange the amplitudes for the states j0i and j1i
by application of a microwave p-pulse, (ii) perform
another measurement by lowering the barrier, identical
to the first measurement, (iii) apply a second p -pulse.
If the tunnelling did not happen during the second
measurement, then the information about the initial
qubit state is cancelled (both basis states have equal
likelihood for two null-result measurements). Corre-
spondingly, according to Equations (1), (2) and (3)
(which are applied for the second time with exchanged
indices 0 $ 1), any initial qubit state is fully restored.
An added benefit to this strategy is that the phase j is
also cancelled automatically; the physics of this phase
cancellation is the same as in the spin-echo technique
for qubits.

It is easy to mistake the above pulse-sequence as
simply the well known spin-echo technique alone. We
stress that this is not the case: spin-echo deterministi-
cally reverses an unknown unitary transformation
(arising, for example, from a slowly varying magnetic
field) without gaining or losing any information about
which state the system is in. Our strategy is probabil-
istic and requires erasing the classical information that
one extracts from the system to begin with. It is a
(probabilistic) reversal of a known non-unitary trans-
formation – and therefore quite different from spin
echo.

While both measurements should give null results
for the success of our procedure, let us define the
uncollapsing success probability PS as the null-result
probability of only the second measurement, assuming
that the first measurement already gave the null result.
Such a definition originates from our intention to
characterise the probability of undoing the first
measurement. (For the joint probability of two null
results we will later use notation P̃S). To calculate PS,
let us start with the initial qubit state rin. Then after the
first null-result measurement the qubit state is given by
Equations (1), (2) and (3), and after the p-pulse
the occupation of the upper level is ~r11 ¼ rin;00=
½rin;00 þ rin;11 exp ð��tÞ�. The success probability is
simply the probability that the second tunnelling
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will not occur, PS ¼ ~r00 þ ~r11exp ð��tÞ ¼ 1� ~r11ð1�
exp ð��tÞÞ, which can be expressed as

PS ¼
e��t

rin;00 þ e��trin;11
: ð4Þ

Notice that if �t ¼ 0 (i.e. the measurement has not
started), then the success probability is 1 because the
state never changed, and consequently does not need
to be changed back. This is unsurprising. In the other
limit, given a sufficiently long time of no tunnelling,
�t � 1, the qubit state j0i is indicated with high
confidence after the first null-result measurement, and
consequently the uncollapse success probability be-
comes very small, recovering the traditional statement
of irreversibility for a projective measurement. We
stress that the possibility of uncollapsing as well as our
formalism requires a quantum-limited detector, i.e. one
that introduces no additional dephasing to the system.
For such a detector measuring a pure state, the state
remains pure throughout the partial collapse, and the
uncollapse. We also note that if the qubit is entangled
with other qubits, the uncollapsing restores the state of
the whole system.

Uncollapsing of the phase qubit state has recently
been experimentally realised by Nadav Katz and
colleagues in the lab of John Martinis, at UC Santa
Barbara [21]. The experimental protocol was slightly
shorter than that described above: it was missing the
second p-pulse, so the uncollapsed state was actually
the p-rotation of the initial state. Shortening of the
protocol helped in decreasing the duration of the pulse
sequence, which was about 45 ns, including the state
tomography. Since the qubit energy relaxation and
dephasing times were significantly longer, T1 ¼ 450 ns
and T�2 ¼ 350 ns, the simple theory described above
was sufficiently accurate. The same trick as for the
partial-collapse experiment [25] was used to separate
tunnelling events during the first, second, and tomo-
graphy measurements, because the detector SQUID
was too slow to distinguish them directly.

The uncollapse procedure should restore any initial
state. However, instead of examining all initial states to
check this fact, it is sufficient to choose four initial
states with linearly independent density matrices and
use the linearity of quantum operations [4]. In the
experiment [21] the uncollapse procedure was applied
to the initial states (j0i þ j1i)/21/2, (j0i7 ij1i)/21/2, j0i,
and j1i, and then the results were expressed via the
language of the quantum process tomography [4]
(QPT).4 The experimental [21] QPT fidelity of the
uncollapsing procedure was above 70% for pt 5 0.6.
A significant decrease of the uncollapsing fidelity for
larger measurement strength pt, especially for pt 4 0.8,
was due to finite T1 time and the fact that the

null-result selection preferentially selects the cases
with energy relaxation events, so that the procedure
should no longer work well when 1 7 pt becomes
comparable to the probability of energy relaxation. (It
is interesting that in some range of parameters, the
same procedure preferentially selects the cases without
energy relaxation events, thus effectively suppressing
qubit decoherence [23] – see Section 8.3.)

Exact uncollapsing requires an ideal detection,
which does not decohere a quantum state; Equations
(1), (2) and (3) correspond to such an ideal detection.
However, if various decoherence mechanisms are
taken into account [28], then only imperfect uncollap-
sing is possible. The theory of imperfect uncollapsing is
a subject of further research.

4. Example 2: double-quantum-dot charge qubit

The next example we consider is illustrated in Figure 2:
a charge qubit made of a double-quantum-dot (DQD),
populated by a single electron, which is measured
continuously by a symmetric quantum point contact
(QPC). This setup has been extensively studied in
earlier papers, both theoretically [29] and experimen-
tally [30]. In contrast to the previous example, we will
denote the basis states of the DQD charge qubit as j1i
and j2i (the electron being in one dot, or the other), to
be consistent with previous papers on this setup. The
measurement is characterised by the average currents
I1 and I2 corresponding to the states j1i and j2i, and by
the shot noise spectral density SI.

5 We treat the
additive detector shot noise as a Gaussian, white,
stochastic process, and assume the detector is in the
weakly responding regime, jDIj � I0, where DI ¼ I1 7
I2 and I0 ¼ (I1 þ I2)/2, with QPC voltage much larger

Figure 2. Illustration of the uncollapsing procedure for the
charge qubit. The slanted lines indicate the deterministic
output of the detector in the absence of noise, if the qubit is
in state j1i or j2i. The initial measurement yields the result r0.
The detector is again turned on, hoping that at some future
time the measurement result r(t) ¼ r0 þ ru(t) crosses the
origin, at which time the detector is turned off, successfully
erasing the information obtained in the first measurement,
and restoring the initial qubit state.
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than all other energy scales, so that the measurement
process can be described by the quantum Bayesian
formalism [13].

4.1. Measurement dynamics for a non-evolving qubit

We begin for simplicity with the assumption that there
is no qubit Hamiltonian evolution, so that the qubit
state evolves due to the measurement only (this can
also be effectively done using ‘kicked’ quantum
nondemolition (QND) measurements [31]). As was
shown in [13], at low temperature the QPC is an ideal
quantum detector (which does not decohere the
measured qubit), so that the evolution of the qubit
density matrix r due to continuous measurement
preserves the ‘murity’ [32] M:r12/(r11r22)

1/2 while
the diagonal matrix elements evolve according to the
classical Bayes rule [26,27].3 We define the electrical
current through the QPC averaged in a time t as
�IðtÞ ¼ ½

R t
0 Iðt

0Þ dt0�=t, and the quantum Bayesian equa-
tions read [13]

r11ðtÞ ¼
r11ð0ÞP1ð�IÞ

r11ð0ÞP1ð�IÞ þ r22ð0ÞP2ð�IÞ
; ð5Þ

r22ðtÞ ¼
r22ð0ÞP2ð�IÞ

r11ð0ÞP1ð�IÞ þ r22ð0ÞP2ð�IÞ
; ð6Þ

M ¼ r12=ðr11r22Þ
1=2 ¼ const; ð7Þ

where the conditional (Gaussian) probability densities
of a current �I realisation, given that the qubit is in j1i,
j2i are

P1;2ð�IÞ ¼ ðt=pSIÞ1=2

� exp ½�ð�I� I1;2Þ2t=SI�: ð8Þ

Equations (5) and (6) may be simplified by noting

r11ðtÞ
r22ðtÞ

¼ r11ð0Þ
r22ð0Þ

exp ½2rðtÞ�; ð9Þ

where we define the dimensionless measurement result
as

rðtÞ ¼ tDI
SI
½�IðtÞ � I0�

¼ DI
SI

Z t

0

½Iðt0Þ � I0� dt0: ð10Þ

Notice that r(t) is closely related to the total charge
passed through the QPC, and therefore r(t) accumu-
lates in time. For times much longer than the
‘measurement time’ [33] TM ¼ 2SI/(DI)

2 (the time scale
required to obtain a signal-to-noise ratio of 1), the

average current �I tends to either I1 or I2 because the
probability density P(�I) of a particular �I is

Pð�IÞ ¼
X
i¼1;2

rii ð0ÞPið�IÞ; ð11Þ

and Pi (�I)! d(�I–Ii) for t/TM!? Therefore, r(t) tends
to +?, continuously collapsing the state to either j1i
(for r ! ?) or j2i (for r ! –?). Importantly, for the
special case when the initial state is pure, the state
remains pure during the entire process. Notice that the
density matrix Equations (5), (6) and (7) formally
coincide with Equations (1), (2) and (3) in the phase
qubit example, if the qubit states are renumbered, the
phase j is neglected, and �t is replaced with 2r.

4.2. Uncollapsing for the charge qubit

In order to describe how to uncollapse the charge qubit
state, we note that if r(t) ¼ 0 at some moment t, then
the qubit state becomes exactly the same as it was
initially, r(t) ¼ r(0), as follows from Equations (9) and
(7). This of course must be the case if t ¼ 0, i.e. before
the measurement began, but is equally valid for some
later time. To see why this is so from the informational
point of view, we note that in the absence of noise,
the measurement result from states j1i, j2i would
simply be r1,2(t) ¼ +t/TM. With the noise present, the
measurement outcome r(t) ¼ 0 splits in half the
difference between states j1i and j2i. Such an outcome
corresponds to an equal statistical likelihood of the
states j1i and j2i, and therefore provides no informa-
tion about the state of the qubit.

Suppose the outcome of a measurement is r0,
partially collapsing the qubit state toward either state
j1i (if r0 4 0), or state j2i (if r0 5 0). The previous ‘no
information’ observation suggests the following strat-
egy for uncollapsing [14]: continue measuring, with the
hope that after some time t the stochastic result of
the second measurement ru(t) becomes equal to 7r0,
so the total result r(t) ¼ r0 þ ru(t) is zero, and therefore
the initial qubit state is fully restored. If this happens,
the measuring device is immediately switched off
and the uncollapsing procedure is successful (Figure 2).
However, r(t) may never cross the origin, and then the
uncollapsing attempt fails. The probability of success
PS is therefore the probability that r(t) crosses the
origin (at least once) after it starts from r0.

This strategy requires the observation of a parti-
cular measurement result that may never materialise.
The strategy shifts the randomness to the amount of
time that needs to elapse in order to find the desired
measurement result. Of course, in a given realisation
the measurement result could take on the desired value
multiple times, so we will take as our strategy to turn
off the detector the first time the measurement result
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takes on r ¼ 0. In the classical stochastic physics this is
known as a first passage process [34], the theory of
which is well developed and is detailed in Appendix 1.

In order to analyse the uncollapsing strategy
performance, in particular to find the success prob-
ability PS, it is important to notice that the off-
diagonal elements of the qubit density matrix r do not
come into play when we consider the detector output
I(t) (this is true only in the case of zero or QND-
eliminated qubit Hamiltonian; in Section 6 we will
generalise to the finite qubit Hamiltonian case). As a
result, the quantum problem can be exactly reduced to
a classical problem by substituting r11(t) and r22(t)
with classical probabilities, evolving in the course of
measurement according to the classical Bayes rule,
while evolution of the off-diagonal elements r12 ¼ r�21
can be found automatically from the murity conserva-
tion law (7). We therefore model the qubit by a
classical bit with probability p1 ¼ r11(0) of being
prepared in state ‘1’ and probability p2 ¼ r22(0) of
being in state ‘2’. If the bit is in state ‘1’, the
dimensionless measurement result r(t) evolves as a
random walk with diffusion coefficient D ¼ (DI)2/
4SI ¼ 1/2TM and drift velocity v1 ¼ (DI)2/2SI ¼
1/TM (see Equations (8) and (10)). For the bit state
‘2’ the random walk of r(t) has the same diffusion
coefficient but the opposite drift velocity v2 ¼ 7(DI)2/
2SI. We are given the fact that the first part of the
measurement had the result r0 (i.e. we select only
such realisations). We need to analyse the stochastic
behaviour of the total measurement result r(t) during
the second part of measurement, with most attention
to the crossing of the zero line r(t) ¼ 0 (for conve-
nience we shift t ¼ 0 to the beginning of the second
measurement, so that r(0) ¼ r0).

Let us find the probability PS of such a crossing.
Here we obtain it in a simple way, while in Appendix 1
we reproduce the result in a more complicated way,
which also allows us to analyse the statistics of the
waiting time. For definiteness take r0 4 0 (this will be
extended later). Then the result r(t) will necessarily
cross 0 if the bit is actually in the state ‘2’, because in
this case r(t ¼ ?) ¼ 7? while r(t ¼ 0) ¼ r0 4 0.
The probability of being in the state ‘2’ is ~p2 ¼ p2 exp
(7r0)/(p1 exp (r0) þ p2 exp (7r0)) from (9), which
differs from p2 because of the Bayesian update.3 If
the bit is in state ‘1’ (this happens with probability
~p1 ¼ 1 7 ~p2), then r(t ¼ ?) ¼ þ? and the crossing
of 0 may never happen; however, it is still possible with
some probability PC, which depends on r0, and also on
D and v1. To find PC, let us consider an infinitesimal
time step dt and model the diffusion by discrete jumps
in r of magnitude Dr ¼ + (2D dt)1/2. After a step dt,
the coordinate will then shift to one of two positions,
r ¼ r+, where r+ ¼ r0 þ v1dt + (2D dt)1/2. Each of

these new coordinates will have its own probability
of eventually crossing the origin, PC(r+). Because
the diffusive dynamics is generated by choosing either
rþ or r7 with equal weighting, it follows in the limit
dt ! 0 that

PCðr0Þ ¼
X
�

1

2
PCðr�Þ: ð12Þ

Expanding PC (r+) in this relation in a Taylor series,
we find from the linear in dt term that

D @2r0PC ¼ �v1 @r0PC; ð13Þ

where @r0 and @2r0 denote the first and second
derivatives with respect to r0. Taking into account
that PC ¼ 1 for r0 ¼ 0 and PC ¼ 0 for r0 ¼ ?, the
above differential equation may be easily solved to
find PC ¼ exp (7v1r0/D) ¼ exp (72r0). Now collect-
ing the probabilities of the zero line crossing for both
bit states, we find

PS ¼ ~p1PC þ ~p2 ¼ exp ð�r0Þ
=ðp1 exp ðr0Þ þ p2 exp ð�r0ÞÞ: ð14Þ

The derivation for r0 5 0 is similar and leads to the
extra factor exp (2r0), so that the crossing probability
in both cases can be written as PS ¼ exp (7jr0j)/
(p1 exp (r0) þ p2 exp (7r0)).

Thus, using the trick of reducing the quantum
dynamics to the classical problem, we have found
the probability of successful uncollapsing for a DQD
charge qubit with no Hamiltonian evolution [14]:

PS ¼
exp ð�jr0jÞ

exp ðr0Þrin;11 þ exp ð�r0Þrin;22
; ð15Þ

where rin characterises the qubit state before the first
measurement.

This result formally corresponds to Equation (4)
with substitution �t ! 2r0 (for positive r0), and its
physical meaning is also similar. When the first
measurement result indicates either qubit state with
good confidence (jr0 j � 1), the probability of success
PS given by Equation (15) becomes very small,
eventually becoming PS ¼ 0 for a projective measure-
ment, realised for r0 ¼ +?. In the other limit of
r0 ¼ 0, the success probability is unity because no time
needs to elapse – the state is already undisturbed.

While the above method allows us to find the
success probability PS, there are other important
characteristics of the uncollapsing strategy, which we
have not discussed, such as the mean waiting time
required to uncollapse the state. This and other charac-
teristics of the strategy can be calculated through the
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more powerful methods of first-passage theory. This
method and the results obtained from it are discussed
in Appendix 1.

5. General formalism

The previous two examples were fairly straightforward
to analyse because the unitary dynamics was effectively
turned off, and only the measurement dynamics needed
to be accounted for. In general the situation is more
complicated. For example, if the DQD qubit had a
finite Hamiltonian while the QPC was on, there would
be both measurement dynamics and Hamiltonian
dynamics. This situation leads us to discuss first the
general formalism in its most abstract form before
turning our attention to this more complicated example.

5.1. Formalism for wavefunctions

Let us first consider a pure initial state jcini, and
postpone a generalisation to mixed states until Section
5.2. In the formalism of a general (ideal) quantum
measurement [4] which transfers pure states into pure
states, the measurement with result m is associated
with the linear Kraus operator Mm, so that the
probability of result m is

PmðjciniÞ ¼ jjMmjcini jj
2; ð16Þ

where jj. . . jj denotes the norm of the state, and the
(conditioned) state after measurement is

jcmi ¼
Mmjcini

½PmðjciniÞ�
1=2
; ð17Þ

where the denominator makes jcmi properly normal-
ised. (Very often people prefer to omit this denomi-
nator and work with non-normalised states; this makes
the mapping linear.) The operators Em ¼MymMm

(called POVM elements [4]) are Hermitian and positive
semidefinite by construction; these operators must
obey the completeness relation SmEm ¼ 1, which
ensures that the total probability of all measurement
results is unity. A measurement operator Mm can
always be written as

Mm ¼ UmE
1=2
m ; ð18Þ

where Um is a unitary operator (an important special
case is when Mm ¼ E

1=2
m ; this corresponds to the

‘quantum Bayes theorem’ [6,35]).
Now let us discuss wavefunction uncollapse in this

general and abstract context [14]. The state disturbance
rule (17) is typically a nonunitary one-to-one map in
the Hilbert space. To undo the measurement with
known result m, we have to realise a physical process

corresponding to the nonunitary inverse operatorM�1m ,
multiplied by an arbitrary constant (which is not
important because of the normalisation). This can be
accomplished with another measurement, possibly
together with unitary operations. As shown below,
we can realise measurement undoing if the second
measurement realises a Krauss operator of the form

L ¼ CULE
�1=2
m VL; ð19Þ

where UL and VL are any unitary operators, and C is
an unspecified constant that will be discussed later.
(The operator L also has a decomposition of the form
UE1/2, but with a different POVM element E.) The
uncollapse then consists of three steps: first, the unitary

operator V
y
LU
y
m is applied to reverse the unitary part of

Mm and prepare for the second measurement. Next the

measurement operator L is applied. Finally the unitary

operator U
y
L is applied to reverse the remaining unitary

part of L. We can now see the effect of the uncollapsing
operation on the state jcmi by applying Equation (17)
and the unitaries to find

jcfi ¼
U
y
LLV
y
LU
y
mjcmi

jjUyLLV
y
LU
y
mjcmijj

¼ jcini; ð20Þ

thus restoring the original state, because U
y
LLV
y
L

U
y
mMm ¼ C, which is removed by the normalisation.

(The phase of C is not important, since it affects only
the overall phase of the wavefunction.)

However, in order for the operator L to be physi-
cally realisable, the operator L{L must belong to
another complete set of POVM elements, and therefore
all its eigenvalues must not exceed unity (otherwise
some states will be assigned probabilities that are
above unity; notice that the eigenvalues are non-

negative automatically). Since LyL ¼ jCj2VyLE�1m VL, its

eigenvalues are directly related to the eigenvalues p
ðmÞ
i

of the operator Em. Expressing Em ¼
P

ip
ðmÞ
i jiihij,

where the eigenvectors jii form an orthonormal basis,

the eigenvectors of L{L are obviously V
y
Lji
E
, and the

corresponding eigenvalues are jCj2=pðmÞi . Since all these
eigenvalues must not exceed 1, we find the following
inequality on jCj2,

jCj2 	 min
i

p
ðmÞ
i ¼ minPm; ð21Þ

where min Pm is the probability of the result m,
minimised over all possible states jcini in the Hilbert
space. The equality of min Pm to mini p

ðmÞ
i follows from

Equation (16).
In general, the uncollapse cannot be accomplished

deterministically, since we rely on a measurement with
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a specific result, corresponding to the operator L.
We can calculate the uncollapse success probability
PS from Equation (16), with Mm ! L and cini !
V
y
LU
y
mjcmi,

PS ¼ jjLV
y
LU
y
mjcmijj

2

¼ Cjcini
½PmðjciniÞ�

1=2

�����
�����

�����
�����
2

¼ jCj2

PmðjciniÞ
: ð22Þ

Now using the bound (21) for jCj2, we find the bound
for the success probability of uncollapsing after the
first measurement with result m [14]:

PS 	
minPm

PmðjciniÞ
; ð23Þ

where the denominator is the probability of the result
m for a given initial state, while the numerator is this
probability minimised over all possible initial states.

The bound (23) is one of the most important
results (notice a similar result in [16]) and deserves
discussion. First, this bound is exact in the sense that it
is achievable by an optimal uncollapsing procedure.
This is because the uncollapsing operator with jCj ¼
(min Pm)

1/2 is still a physically allowed operator. As we
will see later, the upper bound (23) is achievable in real
experimental setups (in particular, in the examples
discussed in the two previous sections). However, non-
optimal uncollapsing procedures, especially involving a
sequence of measurements, can lead to smaller success
probabilities (an example of non-optimal uncollapsing
has been discussed in [36]; another example will be
discussed at the end of Section 6). An analysis of the
procedures with an arbitrary sequence of measure-
ments and unitary operations is similar to the above:
the corresponding measurement and unitary operators
should simply be multiplied.

Notice that the success probability (22) and the
inequality (23) depends on the initial state, which is
unknown to the person performing the uncollapsing
(Plato, see description in Section 2). Therefore, the
success probability PS can be calculated by the man
who knows what the initial state is (Socrates), while
Plato can only estimate PS; for example, he can
calculate the worst-case scenario (the minimum of PS

over the accessible Hilbert space) or can calculate
the average of PS over all possible initial states (this
procedure will be discussed in the next subsection).

Recalling the fact that it is not possible to undo a
fully collapsed state due to the nature of projective
measurement, the uncollapsing probability PS should
decrease with increasing strength of the first measure-
ment. Qualitatively, a stronger measurement is one
that tends to a projection, as the uncertainty in the

measurement decreases. Mathematically, this means
that some eigenvalues of Em become closer to 0. As a
consequence, min Pm becomes smaller (see Equation
(21)), therefore lowering the upper bound for PS. For
a projective measurement PS ¼ min Pm ¼ 0, thus
making the state uncollapse impossible.

It is interesting to discuss the case when the initial
state jcini is known to belong to a certain subspace of
the Hilbert space, and we therefore wish to restore
states only in this subspace. In this case, the calculation
of min Pm should be limited to this subspace, which
may increase the bound (23) for the success probability
PS. A trivial example of such a situation is when the
initial state jcini is known to Plato. Then it is not
necessary to minimise Pm over all possible initial states
in Equation (23), because the set of possible states
consists of only one (known) state, thus allowing
uncollapsing with 100% probability. This is exactly the
case discussed at the beginning of Section 2.

5.2. Formalism for density matrices

So far we have dealt only with pure states; however, it
is very simple to generalise the uncollapsing formalism
to include density matrices. In this case the initial
density matrix rin is transformed by the first measure-
ment into the state [4]

rm ¼
MmrinM

y
m

Pm
; ð24Þ

where the probability Pm of the measurement result
m is

PmðrinÞ ¼ TrðMymMmrinÞ: ð25Þ

Using the uncollapsing procedure previously discussed
and using the same measurement operator L given by
Equation (19), we find that the uncollapsed state

rf ¼
U
y
LLV
y
LU
y
mrmUmV

y
LL
yUL

TrðLyLVLU
y
mrmUmV

y
LÞ
¼ rin ð26Þ

coincides with the initial state. The uncollapsing
success probability PS is equal to the denominator in
Equation (26), and satisfies the relation

PS ¼ jCj2=PmðrinÞ ð27Þ

(as in Equation (22)). The constant jCj2 is still limited
by the inequality (21), and therefore the probability of
success has the upper bound [14]

PS 	
minPm

PmðrinÞ
; ð28Þ
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which is the same as the bound (23), except for the new
notation in the denominator, which reminds us of the
possibly mixed initial state. The minimisation of Pm in
the numerator should now be performed over the space
of all possible initial mixed states; however, the result
obviously coincides with the minimisation over the
pure states only. Similar to the case discussed in
Section 5.1, the inequality (28) is the exact bound; it is
achieved by an optimal uncollapsing procedure, which
maximises jCj.

If the initial state is pure, then the formalism of this
subsection is trivially equivalent to the formalism of
Section 5.1. It becomes more general in the case when
the ‘actual’ initial state is mixed; for example, this
happens when the initial state has been in contact with
an unmonitored environment or Socrates prepares a
state by a blind random choice from a set of pure
states. A more interesting case for the result (28) is
when the measured system is entangled with another
system, which does not evolve by itself. Then the
formalism can be applied to the compound system;
however, the measurement probability Pm depends
only on the reduced initial density matrix, traced over
the entangled second part. Therefore, in the entangled
bipartite case the uncollapsing procedure restores the
state of the whole system, while the success probability
PS is given by Equation (28) with rin being the reduced
density matrix.

Another advantage of Equation (28) in comparison
with Equation (23) can be seen by referring back to the
preliminary discussion with the contest between Plato
and Socrates. In the derivation of both results the
initial state is the ‘actual’ initial state, which is known
to Socrates, but typically unknown to Plato. However,
as we will prove below, Equation (28) can still be used
by Plato in a somewhat different sense: with rin being
understood as an averaged density matrix representing
a distribution of possible initial states. In this case,
Equation (28) gives the uncollapsing probability
averaged over this distribution. For example, if Plato
knew that Socrates’ strategy is to prepare one of two
possible (nonorthogonal) states jc1i, jc2i, with prob-
abilities P and 1� P, then he could find the average
uncollapsing probability in two ways. The first method
is that he could simply average the uncollapsing
probabilities of the two states (also taking into account
the information acquired in the first measurement, see
below). Alternatively, he could recall that the random
state preparation described above is equivalent to
considering the initial density matrix rin ¼ Pjc1i c1jþh
ð1� PÞjc2i c2jh , and then apply the result (28) to this
density matrix.6 In this way, in the absence of any
information, Plato could estimate his typical success
rate by calculating (28) for a fully mixed state,
invoking the principle of indifference [27].

In the general case the above statement, that both
ways of computing the averaged uncollapsing prob-
ability are equivalent, can be proven both logically and
explicitly. For the logical proof we notice that Plato’s
judgment of successful uncollapsing does not depend
on whether or not Socrates knows the randomly
picked state; therefore, the average probability of the
cases judged to be successful should be the same in
both situations (whether or not Socrates knows what
the state is). Now let us also prove this statement
explicitly, thus checking that our formalism is self-
consistent. Suppose the initial state is prepared by
Socrates by choosing randomly from a set of initial
states r(k) with probabilities Pk (the most natural
case is when initial states are pure, r(k) ¼ jcki hckj;
however, this is not necessary). Then the bound for
the average probability of uncollapsing success P

ðavÞ
S is

the average of the bounds (28):

P
ðavÞ
S 	

X
k

minPm

PmðrðkÞÞ
P0k: ð29Þ

Notice, however, that P0k is the posterior probability
distribution given the result m, which is different from
Pk. We may now invoke the classical Bayes rule3

[26,27] to relate the posterior P0k to the prior Pk and
the conditional probability Pm(r

(k)) to have result m
given state k, so that

P0k ¼
PmðrðkÞÞPkP

~kPmðrð~kÞÞP ~k

: ð30Þ

Substituting Equation (30) into Equation (29) and
using

P
kPk ¼ 1 in the numerator, we obtain

P
ðavÞ
S 	 minPmP

k

PmðrðkÞÞPk
¼ minPm

PmðrðavÞÞ
; ð31Þ

where rðavÞ ¼
P

krðkÞPk is the averaged initial state.
This ends the proof that Equation (28) can be used for
an unknown initial state, with rin being understood as
the average of all possible initial states.

5.3. Uncollapsing probability, information, and an
irreversibility measure

We defined the success probability PS as a probability
to uncollapse the post-measurement state rm. We now
wish to start counting the overall success probability
P̃S from the time before the first measurement, so that
P̃S is the probability of the pair of events: measurement
with result m and then successful uncollapsing. Using
Equations (27) and (28) we easily find the relation

~PS ¼ PmðrinÞPS ¼ jCj2 ð32Þ
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and the upper bound

~PS 	 minPm: ð33Þ

Notice that P̃S is independent of the initial state. While
this property may seem somewhat surprising, we will
see later why it is rather obvious.

If we now wish to consider all possible results of the
first measurement, and perform different uncollapsing
procedures for each measurement result, then the total
probability of uncollapsing ~Ptotal

S is bounded as

~Ptotal
S 	

X
m
minPm; ð34Þ

and is also independent of the initial state. The bounds
(33) and (34) are exact and reachable by optimal
uncollapsing procedures. The bound (34) indicates
that 1–Sm min Pm can be used as a measure of irrever-
sibility (collapse strength) due to the measurement
operation.

Now let us discuss the relationship between the
uncollapsing procedure and our knowledge of the
initial state. While uncollapsing is possible even if we
know nothing about the initial state of the system, at
first glance it seems like we gain some knowledge about
the initial state in the process. This leads to the
following interesting paradox, initially considered
by Royer [37]. By doing both a measurement and
unmeasurement, one can seemingly learn something
about the initial state without disturbing it. Then by
repeating the measurement þ unmeasurement process
many times, even though the probability of such an
event rapidly decreases to zero, the successful event
would lead to essentially perfect knowledge of the
initial state, leaving the state itself perfectly intact! One
could then violate a host of known results, such as the
no-cloning theorem.

The resolution of the paradox lies in the fact that
the pair of measurement and unmeasurement actually
brings exactly zero information. Uncollapsing the state
can only occur when the information in the second
measurement exactly contradicts the information
gained in the first measurement, thus nullifying it.
This can happen in weak quantum measurements
because there is uncertainty about the system in the
measurement result. It is to the extent that this
ambiguity exists that it is possible to undo the weak
measurement. Let us examine this in more detail.

We learn something about a pre-measurement state
when the measurement result depends on the state. The
measurement with result m brings some information
about rin because the probability Pm(rin) depends
on the initial state rin. The ability to successfully un-
collapse the state also brings some information about
the initial state because the uncollapsing probability

PS ¼ jCj2/Pm(rin) also depends on rin. However,
the collapse–uncollapse probability P̃S of observing
both the result m followed by a successful uncollapse is
independent of rin – see Equation (32). Therefore, the
combined effect of partial collapse and uncollapse
brings no information about the initial state.

More quantitatively, we can use the same frame-
work as at the end of Section 5.2 in order to track the
information gain during the procedure. Suppose Plato
assigns an initial distribution Pk of possible initial
states as a statistical prior, to be updated as more
information comes in. The measurement with result m
brings in this information, so Plato updates his prior to
the posterior distribution P0k (see Equation (30)).
Calculating in a similar way the distribution P00k after
the pair of the measurement and unmeasurement
results, we find

P00k ¼
PSðrðkÞÞP

0

kP
~kPSðrð ~kÞÞP

0
~k

¼
~PSðrðkÞÞPkP
~k
~PSðrðkÞÞP ~k

; ð35Þ

where PS(r) and P̃S(r) denote, respectively, the prob-
abilities of uncollapsing (28) and a combined collapse–
uncollapse pair (32) for the initial state r. However, as
we have already stressed, P̃S(r) is independent of
the initial state r, and therefore cancels out of the
expression (35). This fact (and the normalisation of the
prior {Pk}) restores the initial prior distribution,
P00k ¼ Pk, and therefore Plato has learned nothing,
thus avoiding the paradox. Reversing the logic, in order
to avoid the paradox, P̃S must be independent of the
initial state, as found in Equations (32) and (33).

5.4. Revisiting the previous uncollapse strategies

With these general and abstract results in hand, we can
now revisit the two examples discussed in Sections 3
and 4. Notice though that the principle drawback of
the general results is that while they give the ideal
success probability, they do not provide the strategy as
to how achieve the upper bound.

The measurement situation in the case of the phase
qubit (Section 3.1) may be described with a two-
outcome POVM, with elements En and Ey, where n
denotes the null result, and y denotes the affirmative
(tunnelling) result. The POVM elements, given in the
j0i, j1i basis are

En¼
1 0

0 expð��tÞ

� �
; Ey¼

0 0

0 1�expð��tÞ

� �
; ð36Þ

with the obvious completeness relation En þ Ey ¼ 1.
It is interesting to notice that while En ¼ M

y
nMn

corresponds to a Kraus operator Mn (see below), no
meaningful Kraus operator My can be introduced for
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the POVM element Ey, because in the case of a
tunnelling event the system leaves its two-dimensional
Hilbert space and becomes incoherent (so that a
single Kraus operator cannot be introduced even in
the extended Hilbert space). However, this is not
important for us because we are interested in the null-
result case only. The null-result Kraus operator Mn

can be found by comparing the phase qubit dynami-
cal Equations (1), (2) and (3) with the general
state disturbance rule (24); this gives Mn ¼ diag{1,
exp (7�t/2) exp (7ij)}.

It is easy to find that the uncollapsing strategy of
Section 3.2 based on two null-result measurements is
optimal in the sense that its success probability PS

reaches the upper bound (28). The numerator of (28)
is the smallest eigenvalue of En, which is exp (7�t),
while the denominator is Tr(Enrin) ¼ rin,00 þ
exp (7�t)rin,11. Therefore, the bound (28) coincides
with Equation (4), thus confirming the optimality of
the analysed uncollapsing procedure.

The overall success probability P̃S, which is the
joint probability of two null results is

~PS ¼ ðrin;00 þ exp ð��Þtrin;11ÞPS ¼ exp ð��tÞ: ð37Þ

As expected (see Section 5.3) this probability does not
depend on the initial state. It is easy to see that it also
coincides with the upper bound (33) for P̃S.

While the analysed double-null-result uncollapsing
strategy is optimal, an example of a non-optimal
uncollapsing for a phase qubit was considered in [36].
It was shown that if the measurement process is
performed simultaneously with Rabi oscillations, then
in the null-result case the initial state is periodically
restored. The non-optimality of uncollapsing for such
a procedure is due to measurement of an evolving
qubit, which corresponds to a sequence of many
measurements; a similar reason for the non-optimality
will be discussed at the end of Section 6.

Now let us turn to the DQD charge qubit example
of Section 4. First, the qubit measurement dynamics
[(5), (6) and (7)] can be related to the general POVM-
type measurement formalism in the following way
(similar to [32]). For a fixed time t the measurement
result m can be associated with the averaged QPC
current �I (or, equivalently, with the dimensionless
quantity r). The Kraus operator Mm in the measure-
ment basis j1i and j2i then should be chosen as
Mm ¼ diag{[P1(�I)]

1/2,[P2(�I)]
1/2} in order to reproduce

Equations (5), (6) and (7). Notice that Pm in Equation
(25) now describes the probability density of the result
�I instead of probability, because the measurement
result becomes a continuous variable.

We can now check to see if the ‘wait and stop’
uncollapsing strategy of Section 4.2 is the optimal one

by comparing the general upper bound (28) for the
success probability PS with the result (15). Substituting
the probabilities in the bound (28) with probability
densities, we find

PS 	
min fP1ð�IÞ;P2ð�IÞg

P1ð�IÞrin;11 þ P2ð�IÞrin;22
; ð38Þ

where �I corresponds to the measurement result r0. This
bound coincides with Equation (15) because P1(�I)/
P2(�I) ¼ exp(2r0), which proves the optimality of the
discussed ‘wait and stop’ strategy. (Surely, there are
numerous non-optimal uncollapsing strategies; for
example, by stopping the measurement after the
second crossing of the origin by r(t).)

It is also instructive to not specify the result of the
first measurement, but to find the total probability
~Ptotal
S (see Equation (34)) that the initial qubit state can

be restored after a measurement for time t. This is
given by averaging PS in Equation (15) over the results
r0 with the corresponding weights (11). This averaging
is technically easier using the form of Equation (38)
and gives

~Ptotal
S ¼

Z
d�IminfP1ð�IÞ;P2ð�IÞg¼ 1� erf

t

2TM

� �1=2
 !

;

ð39Þ

which depends only on the ‘strength’ t/TM ¼ t(DI)2/
2SI of the first measurement, but not on the initial
state, as expected from the discussion in Section 5.3.
Notice that the result (39) reaches the upper bound
(34) because (15) reaches the upper bound (28).

6. Evolving charge qubit

Armed with the general uncollapsing formalism
of Section 5, we now turn to the case of the
finite-Hamiltonian DQD measured by QPC, by
including internal evolution of the qubit via a qubit
Hamiltonian,

HQB ¼ �ðe=2Þsz þHsx; ð40Þ

where e is the energy asymmetry between the quantum
dot levels, and H is the tunnel coupling between the
dots. In this case Equations (5)–(7) are no longer valid
and should be replaced by the Bayesian equations [13]
(in Stratonovich form [38])

_r11¼� _r22¼�2HImr12þr11r22
2DI
SI
½IðtÞ� I0�; ð41Þ

_r12 ¼ ier12 þ iHðr11 � r22Þ � ðr11 � r22Þ

� DI
SI
½IðtÞ � I0� r12; ð42Þ

136 A.N. Jordan and A.N. Korotkov
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where I(t) is the QPC current,

IðtÞ ¼ r11ðtÞI1 þ r22ðtÞI2 þ xðtÞ; ð43Þ

containing white noise x(t) with spectral density SI,
and we use �h ¼ 1. These evolution equations are
nonlinear and not very simple to deal with. To discuss
the undoing of a continuous measurement, it is more
convenient to use a non-normalised density matrix s,
which has an advantage of dealing with linear
equations.

We rewrite Equations (41)–(42) in the form

r ¼ s=Trs; ð44Þ

_s11 ¼ �2H Ims12 � s11
1

SI
½IðtÞ � I1�2; ð45Þ

_s22 ¼ 2H Ims12 � s22
1

SI
½IðtÞ � I2�2; ð46Þ

_s12 ¼ ies12 þ iHðs11 � s22Þ

� s12
½IðtÞ � I0�2

SI
þ ðDIÞ

2

4SI

( )
; ð47Þ

so that s(0) ¼ r(0), while the ratio s(t)/r(t) decreases
with time and is equal to the normalised probability
density of the corresponding realisation of the detector
output I(t0), 0 	 t0 	 t.7 In the language of general
quantum measurement this formulation corresponds
to omitting the denominator in Equation (24). Notice
that we still consider an ideal detector, so an initially
pure state remains pure, js12 j2 ¼ s11 s22.

7

A casual inspection of Equations (45)–(47) shows
that they are seemingly not well defined because the
terms [I(t) – I0,1,2]

2 contain the term x(t)2 ¼ ? (from
the relation hx(t)x(0)i ¼ (SI/2)d(t)). This divergence is
artificial because there will always be a small correla-
tion time T of the noise and/or a finite detector
bandwidth B (corresponding to T ¼ 1/4B), so there
will be a large but finite constant C ¼ hx(t)2i ¼ SI/4T
contained in terms of the form [I(t) 7 I0,1,2]

2. It is
easy to see that Equations (45)–(47) do not change
if we subtract the same constant from these terms
[I(t) 7 I0,1,2]

2! [I(t) 7 I0,1,2]
2 7 C. This can be shown

by considering another unnormalised density matrix
Z ¼ s exp (t/T). Writing the linear Bayesian equations
(45)–(47) in the form _sij ¼ fij½s�, the equations trans-
form to _Zij ¼ fij½Z exp ð�t=TÞ� exp ðt=TÞ þ Zij=T under
the change of variables. The unnormalised Bayesian
equations are linear in the density matrix elements
sij, so the exponential factors cancel out. The new
equations are thus the same as the old ones with a
constant C ¼ SI/4T subtracted from the [I(t) 7 I0,1,2]

2

terms. The unspecified constant T in the density matrix

transformation may be chosen to be the short corre-
lation time T discussed above, thus cancelling the
large term and making Equations (45)–(47) well
defined. The only price to be paid for this transforma-
tion is an altered normalisation, that will cancel in the
normalised density matrix (44).

For a particular realisation of the detector output
I(t0), 0 	 t0 	 t, Equations (45)–(47) define a linear
map s(0)! s (t), corresponding to a particular Kraus
operator Mm (which, therefore, can be denoted as
M{I}). For the uncollapsing we have to realise the map,
corresponding to the inverse Kraus operator CM�1fIg
(see Section 5.1). It is obvious that in contrast to the
case of the non-evolving qubit discussed in Section 4,
this cannot be done by simply continuing the
measurement and waiting for a specific result. The
reason is that now the map is characterised by six real
parameters (eight parameters for a linear operator
CM�1fIg with neglected overall phase and normalisa-
tion), instead of one parameter for the non-evolving
case (see Equations (7) and (9)). We will discuss a little
later how the six-parameter uncollapsing procedure
can be realised explicitly. Before that we discuss how to
find the operator M{I} in a more straightforward way,
from Equations (45)–(47).

Let us consider only the evolution of (unnorma-
lised) pure states jc(t)i ¼ a(t)j1i þ b(t)j2i, so that
s ¼ jci hcj. Then Equations (45)–(47) can be rewritten
as

_a ¼ þi e
2
a� iHb� a

1

2SI
½IðtÞ � I1�2; ð48Þ

_b ¼ �i e
2
b� iHa� b

1

2SI
½IðtÞ � I2�2; ð49Þ

where the infinite part of I2 (t) can be cancelled in the
same way as discussed above. The linearity of these
equations guarantees that for any given realisation of
I(t), it is sufficient to solve (48) and (49) for the initial
states j1i and j2i in order to find the solution for an
arbitrary initial state of the qubit. Defining v1 ¼
a1(t)j1i þ b1(t)j2i as the solution of (48) and (49) for
initial state j1i, and v2 ¼ a2(t)j1i þ b2(t)j2i as the
solution of (48) and (49) for initial state j2i, we can
write the solution for an arbitrary initial state jcini ¼
jc(0)i ¼ aj1i þ bj2i as jc(t)i ¼ av1 þ bv2. Therefore,
the Kraus operator M{I} for a given realisation of I(t),
in the j1i, j2i basis is

MfIg ¼
a1ðtÞ a2ðtÞ
b1ðtÞ b2ðtÞ

� �
: ð50Þ

For the uncollapsing we need to apply the Kraus
operator CM�1fIg, which maps the state v1 onto Cj1i and
the state v2 onto Cj2i. The reason why we need a non-
unitary transformation is that the vectors v1 and v2 are
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in general non-orthogonal and have different norms.
Geometrically, such a transformation can be done
by using a relative shrinking or stretching of two
orthogonal axes (found for a given M{I}), which would
make v1 and v2 orthogonal and equal in norm,
followed by a unitary transformation (this would
correspond to the decomposition of the form UE1/2 –
see Section 5.1). However, for a practical realisation of
uncollapsing it is most natural to use the shrinking or
stretching of the axes j1i and j2i via a continuous
QND measurement with the QPC in the way con-
sidered above for a non-evolving qubit. In this case the
uncollapsing procedure can be done in three steps (see
Section 5.1): unitary evolution V, continuous QND
measurement (where the qubit Hamiltonian is turned
off, e ¼ H ¼ 0) described by a diagonal matrix L, and
a final unitary operation U (in the notation of Section

5.1,V corresponds toV
y
LU
y
m, andU corresponds toU

y
L).

These operators should satisfy

ULV ¼ CM�1fIg; ð51Þ

and it is easy to find U, L, and V explicitly by
recognising Equation (51) as a singular value decom-
position of the operator CM�1fIg (recall here that L is
diagonal; also notice that the standard form for the
singular value decomposition is slightly different, with
V denoted as V{).

To find L explicitly, we notice that

C�2M
y
fIgMfIg ¼ UL�2Uy; ð52Þ

which is simply the diagonalisation of C�2M
y
fIgMfIg.

Therefore,

L¼C
l�1=2� 0

0 l�1=2þ

 !
or L¼C

l�1=2þ 0

0 l�1=2�

 !
; ð53Þ

where

l� ¼
jjv1jj2 þ jjv2jj2

2

� jjv1jj2 � jjv2jj2

2

 !2

þjv1 
 v�2j
2

2
4

3
5
1=2

ð54Þ

are the eigenvalues of the operator M
y
fIgMfIg and the

vectors vi are defined above Equation (50). The
Cauchy–Schwartz inequality, jv1 
 v�2j

2 	 jjv1jj2jjv2jj2,
guarantees the non-negativity of l7. (The notation
v1 
 v2 is used for the inner product hv2jv1i of v2 and v1.)

To find U, we use Equation (52) again and see that
the columns of U are composed of the eigenvectors of
M
y
fIgMfIg (the sequence of columns depends on the

choice in Equation (53)). Finally, V is given by

V ¼ Uy CL�1M�1fIg. For brevity we will not show the
matrices U and V explicitly.

In the physical realisation of the uncollapsing
procedure the measurement step L can be performed
in exactly the same way as in Section 4.2. Comparing
Equation (53) with Equations (9) and (7), we see that
the continuous measurement by the QPC should be
stopped when the dimensionless measurement result
r(t) reaches the value

r1¼ lnðlþ=l�Þ1=2> 0 or r2¼ lnðl�=lþÞ1=2< 0; ð55Þ

for the first and second choice in Equation (53),
respectively (the choice should be made beforehand,
since it determines operation V). As previously men-
tioned, the constant C is not important here because
the physical state is always normalised. The procedure
fails if the desired result is not reached during the
continuous measurement.

The unitary operations V and U can be practically
realised in three substeps each: z-rotation on the Bloch
sphere by applying non-zero energy asymmetry e for
some time, y-rotation by applying non-zero tunnelling
H, and then one more z-rotation. However, the last
z-rotation of V and the first z-rotation of U are simply
added to each other (since L does not change the
relative phase of the state components or, equivalently,
the azimuth angle on the Bloch sphere). The corre-
sponding trivial degree of freedom can be eliminated,
for example, by realising the operation V in only two
substeps, without the second z-rotation.

Let us count the number of real parameters,
characterising the uncollapsing procedure. Since V
and U together provide 2 6 3 – 1 ¼ 5 parameters, and
the desired result r in the measurement step adds one
more parameter, the overall number of parameters is 6.
As expected, this is exactly the needed number of
parameters characterising an arbitrary Kraus operator
for the qubit (neglecting normalisation and overall
phase). Let us also mention the fact from linear algebra
that the singular value decomposition (51) is unique
in the non-degenerate case (lþ 4 l 7 4 0), up to the
permutation of singular values (corresponding to the
choice in Equation (53)) and arbitrary phase factors in
columns of U, with compensating changes in V (this
corresponds to the previously discussed compensation
of the z-rotations).

Now let us discuss the probability PS of the
successful uncollapsing. From the general theory of
Section 5 (Equation (23)), it is bounded from above
by a fraction, PS 	 minP{I}/P{I}(jcini), in which the
denominator is the probability density of the given
realisation I(t) for the initial state jcini ¼ aj1i þ bj2i
(with jaj2 þ jbj2 ¼ 1), while the numerator is this
probability minimised over all initial states. So, the
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denominator is given by the squared norm of the final
state jc(t)i ¼ av1 þ bv2,

PfIgðjciniÞ ¼ jjav1 þ bv2jj2; ð56Þ

while the numerator is given by minimising (56) over
all normalised initial states. It is easy to see that this
minimum is equal to the minimum eigenvalue l7
of the operator M

y
fIgMfIg, given by Equation (54);

therefore,

PS 	
l�

jjav1 þ bv2jj2
: ð57Þ

Converting this result into the language of density
matrices and simultaneously generalising it to an
arbitrary initial state rin, we obtain the bound

PS	

jjv1jj2þjjv2jj2
2 � jjv1jj2�jjv2jj2

2

� �2
þ jv1 
 v�2j

2

� �1=2
rin;11jjv1jj

2þrin;22jjv2jj
2þ2Re½rin;12 v1 
 v�2�

; ð58Þ

in which the numerator is the explicit expression (54)
for l7. It is easy to check that this result reduces to
the bound (38) in the non-evolving case, in which
v1 ¼ ([P1(�I)]

1/2,0)T and v2 ¼ (0,[P2(�I)
1/2)T.

The uncollapsing procedure discussed in this
section is optimal in the sense that it corresponds
to the upper bound of Equation (58). To prove this
statement, instead of calculating PS explicitly, let us
use the fact (see Section 5.3) that the product PS P{I}

cannot depend on the initial state. Therefore, it is
sufficient to prove the optimality of PS only for one
initial state. Let us choose the state jcini that is the

eigenvector of M
y
fIgMfIg, corresponding to the eigen-

value l–. Then after the first measurement (operator
M{I}) and the unitary operation V it is transformed
into one of the basis states (j1i or j2i for the first or
second choice in (53), respectively). Recall that for the
non-evolving (QND) measurement case, r(t) ! ? for
the initial state j1i, while r(t) ! 7? for the initial
state j2i. The crossing thresholds (55) indicate that
the measurement L is always successful because r(t)
necessarily crosses the desired value (which is positive
for j1i and negative for j2i, as discussed above).
Therefore, the uncollapsing success probability for
this special state is 100%, that is equal to the upper
bound (58). As mentioned above, the optimality of
the procedure for this special state also proves the
optimality for any initial state.

Obviously, an uncollapsing procedure can also be
non-optimal. As an example, let us consider a proce-
dure which realises the desired mapping {v1, v2} !
{Cj1i,Cj2i} using two measurements instead of one.
The goal of the first measurement is to map {v1, v2}

into an orthogonal pair of vectors, while the goal of the
second measurement is to equalise their norms,
keeping them orthogonal. The first goal can be
achieved by stretching/shrinking of the Hilbert space
along any axis u of the form v1 þ cv2 (v1
v2)/jv1
v2j with
an arbitrary positive real number c (it is easy to
visualise this procedure of making two vectors
orthogonal by assuming the space of real vectors, for
which the axis u is geometrically in between v1 and v2;
the same geometrical idea works for complex vectors).
We recall that measurement for a non-evolving qubit
(Section 4.1) stretches (squeezes) the j1i axis, while
squeezing (stretching) the j2i axis. Therefore, the first
goal can be achieved by a unitary operation which
rotates u into j1i, followed by a continuous measure-
ment (with a QPC) of a non-evolving qubit, to be
stopped when the mapped vectors become orthogonal.
After the vectors {v1, v2} are transformed into an
orthogonal pair by the (successful) first measurement,
the second part of the procedure should stretch/shrink
the 2D Hilbert space along the resulting vectors to
make them equal in norm. This can be done similarly,
by a unitary rotation and partial measurement of a
non-evolving qubit. Finally, another unitary operation
can be used to map the resulting pair of vectors into
{Cj1i, Cj2i}, thus completing the uncollapsing proce-
dure. Notice that both measurements are performed in
the ‘wait and stop’ manner, and both measurements
should be successful to realise the uncollapsing. While
the successfully uncollapsed state is still perfect in this
procedure, the probability of success is lower than the
bound (58). To prove this non-optimality, let us again
use the initial eigenstate jcini, which corresponds to
eigenvalue l7, so that the bound (58) is 100%. Then
the probability of success for the first measurement is
in general less than 100% (it is 100% only for one
specific axis discussed previously, while here we
consider a range of possible axes by allowing c to
vary). Thus, the success probability is less than 100%
for this special state, and therefore PS is below the
bound (58) for any initial state.

7. General procedure for entangled charge qubits

Let us present an explicit procedure [14] which can be
used in principle to undo an arbitrary measurement
Mm of any number N of entangled qubits with maxi-
mum probability of success PS. For simplicity we
consider double-quantum-dot charge qubits and
assume that any unitary transformation can be used
in the procedure. If the operator Mm was produced by
a one-qubit measurement, and other entangled qubits
were not experiencing a Hamiltonian evolution, then
the formalism of Section 4.1 is essentially unchanged
[40], and uncollapsing of the measured qubit leads to
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the restoration of the whole entangled state. If the
operator Mm was produced by a one-qubit measure-
ment, while other qubits were evolving in a unitary
way but not interacting with the measured qubit, then
uncollapsing is also easy: we should uncollapse the
measured qubit in the usual way (Section 4.2) and
should apply the inverse unitary transformation for the
other qubits. In this section, however, we do not
consider these simple special cases; the goal is to undo
an arbitrary Kraus operator Mm.

Let us decompose Mm asMm ¼ UmE
1=2
m (see Equa-

tion (18)). Reversing the unitary operation Um can be
done in the regular Hamiltonian way, so the nontrivial
part is undoing the E

1=2
m operator. We recall the

diagonalisation of Em is given by Em ¼
P

i p
ðmÞ
i jiihij

with vectors jii forming an orthonormal basis. As
discussed in Section 5.1, for the optimal uncollapsing
which maximises the success probability, we have to
perform a procedure corresponding to the measure-
ment operator ~L ¼ ðmin jp

ðmÞ
j Þ

1=2 E
�1=2
m which is also

diagonal in the basis jii with corresponding
matrix elements ~Lii ¼ hij ~Ljii ¼ ½ðmin jp

ðmÞ
j Þ=p

ðmÞ
i �

1=2,
all of which are between 0 and 1. Given N qubits, i
ranges from 1 to 2N. Notice that L is obviously
Hermitian.

Our procedure is to realise ~L with a sequence of
null-result measurements and unitary operations.
Shown in Figure 3 is an illustration of the physical
set-up that is used for the measurements: a QPC
(tunnel junction) capacitively coupled to N non-
evolving DQD charge qubits. We assume that the
QPC is tuned to a highly nonlinear regime, for which
no electron can tunnel across the QPC barrier on
experimentally relevant time-scales unless all qubits are
in the state j1i. We name this multi-qubit state
j1i:j1,1, . . . ,1i. Such a regime is possible because of
the exponential dependence of the tunnelling rate on
QPC barrier height, while the barrier height depends
linearly on the states of the coupled qubits. Of course,
this regime is not quite realistic; however, we discuss
the procedure in principle. We also assume that

even for the N-qubit state j1i, the rate g of electron
tunnelling through the QPC is rather low, so that we
can distinguish single tunnelling events (technically,
this would require an additional single-electron tran-
sistor). If we perform the measurement during time
t and see no tunnelling through the QPC, then
similarly to the case of Section 3.1, the corresponding
null-result Kraus operator Mn shrinks the j1i axis of
the Hilbert space by the factor exp(7gt/2), while
leaving all perpendicular axes unchanged. For the
matrix elements this means h1jMnj1i ¼ exp ð�gt=2Þ;
hc?j jMnjc?j 0 i ¼ djj 0; hc?j jMnj1i ¼ h1jMn þ c?j i ¼ 0,
where we introduced a set of 2N 7 1 states jc?j i
spanning the subspace orthogonal to j1i.

The general strategy to implement the operator ~L is
the following. We first note that in the basis jii that
diagonalises ~L, this diagonal matrix can be represented
as a product of 2N diagonal matrices, where each term
in the product has all diagonal entries as 1, except
the ith entry: diag {1, 1, . . . , ~Lii, . . . ,1}. Each of these
matrices may be interpreted as a separate Kraus
operator that can be sequentially implemented. Thus,
the explicit physical procedure consists of 2N steps,
each of which has three substeps. First, we apply a
unitary transformation U1 which transforms the first
basis vector ji ¼ 1i into the state j1i. Then the
evolution of all qubits is stopped, and the detector is
turned on for a time t1. This time is chosen so that
the null-result Kraus operator L(1) has the desired
matrix element h1jL(1)j1i ¼ L11; this condition yields
t1¼ –2g–1 ln ~Lii. The measurement is then followed by

the reverse unitary, U
y
i , to take the state j1i back to

state ji ¼ 1i. This three-substep procedure is then
repeated for i ¼ 2,3, . . . ,2N, sequentially transforming
the state jii to j1i with unitary Ui, and performing
measurement with the detector for a time ti ¼ –2g–1 ln
~Lii, followed by the reverse unitary, U

y
i . This sequence

of steps decomposes the uncollapsing operator ~L as

~L ¼ U
y
2N
Lð2

NÞU2N . . .U
y
2L
ð2ÞU2U

y
1L
ð1ÞU1: ð59Þ

The uncollapsing procedure is successful only if there
were no tunnelling events in the QPC. By construction,
the success probability PS for this procedure maximises
the general bound (28).

The success probability PS for the uncollapsing

process rm ! rin with rin ¼ ~L~r ~Ly=Trð ~Ly ~L~rÞ and

~r ¼ U
y
mrmUm, can be calculated as

PS¼Trð ~Ly ~L~rÞ¼
X
i

~L
2

ii~rii¼
X
i

~rii expð�gtiÞ; ð60Þ

where ~rij are the matrix elements of ~r in the basis jii,
which diagonalises ~L. We may also find this result
from another perspective by realising that the success

Figure 3. Schematic set-up for uncollapsing of N entangled
qubits. The tunnel junction detector (QPC) is in a strongly
nonlinear regime, so that an electron can tunnel through it
with rate g only when all qubits are in state j1i.
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probability is simply the product of the null-result
probabilities p

ðiÞ
S of all 2N measurements,

PS ¼
Y2N
i

P
ðiÞ
S ; p

ðiÞ
S ¼

P
i
j¼1~rjj exp ð�gtjÞ þ

P
2N

j¼iþ1 ~rjjP
i�1
j¼1 ~rjj exp ð�gtjÞ þ

P
2N
j¼iþ1 ~rjj

;

ð61Þ
where the expression for p

ðiÞ
S comes from comparing

the traces of unnormalised density matrices after each
of 2N steps of the procedure. It is instructive to show
explicitly that this expression for p

ðiÞ
S is equal to the

expected expression

p
ðiÞ
S ¼ 1� ½1� exp ð�gtiÞ�~rðiÞii ; ð62Þ

in which ~rðiÞ is the normalised density matrix before the
ith step of the procedure (after i 7 1 null-result steps).
This can be done if we prove the relation

Yk
i¼1
½1� ~rðiÞii ð1� expð�gtiÞÞ� ¼ 1�

Xk
i¼1
½1� expð�gtiÞ�~rii;

ð63Þ

(notice that the right-hand side of this equation is
equal to the numerator in Equation (61) with
substitution k ! i). Equation (63) can be proven by
induction using the relation ~rðiÞii ¼ ~rii=

Qi�1
j¼1 ½1�

½1� exp ð�gtjÞ�~rðjÞjj �, which can be easily derived recur-

sively, ~rðjÞii ! ~rðjþ1Þii , starting from ~rð1Þii ¼ ~rii. In this way
we show consistency between the null-result probabil-
ities given by Equations (61) and (62), permitting the
calculation of PS in two independent ways.

Let us mention again that the uncollapsing proce-
dure considered in this section reaches the upper
bound (28) for the success probability PS, that can be
seen both by construction and explicitly.

8. Recent developments in wavefunction uncollapse

Before concluding, we wish to give a summary of
some interesting recent developments in this area of
research. We will briefly discuss two theory proposals
and one experiment.

8.1. Spin qubit

The examples given above mainly concern quantum
dot charge qubits. It is a natural question if a similar
kind of partial collapse/uncollapse can be carried over
to spin qubits. An analysis of this situation was carried
out by Trauzettel, Burkard, and one of the authors
[41]. There it was shown how an uncollapse measure-
ment can be realised using a scheme similar to the
recent experiments by Koppens et al. [42]. The essential
idea of the spin-qubit experiments [42–45] is to
manipulate and measure the spin of a single electron

through the charge degree of freedom. This technique
circumvents the otherwise difficult problem of control-
ling the weakly interacting spin. While we refer the
reader to [41–45] for the details, we will give a
simplified thumb-nail sketch of the physics here.

The qubit is encoded with two electron spins,
where each electron is confined in a separate quantum
dot. In contrast to our charge qubit discussion, these
dots are open, with electrons able to enter and leave.
Electrical bias is applied across this double quantum
dot leading to charge transport. Electrons can tunnel
sequentially, but spin blockade [46] restricts transport
to situations where the two electrons form a spin
singlet (0,2)S on the right dot while the spin triplet
(0,2)T is outside the transport energy window due to
the large single quantum dot exchange energy (here
(n, m) refers to n electrons on the left dot and m
electrons on the right dot). This blockade physics
provides an interesting initialisation procedure of the
quantum register – when the single-electron current
stops flowing, we are confident that the two-electron
state is in a (1,1)T state, because in the absence of
spin flip processes, the tunnelling transition to the (0,
2) state is forbidden. From this configuration, it is
possible to manipulate the system by applying
electron spin resonance pulses [42], transitioning the
state to have overlap with the singlet state. Thus, the
electron on the left dot may tunnel (with rate �) to
the right dot and exit the system, giving rise to a
small electrical current at the drain when this process
is repeated many times. Of course, this will happen
with some probability controlled by the overlap of the
state with the singlet.

Drawing on our experience with the phase qubit
(see Section 3), it is clear how to devise a weak
measurement experiment and an uncollapsing experi-
ment: the allowed transition can be permitted for
a time of one’s choosing and then forbidden by
detuning the energy levels with a voltage pulse to one
of the quantum dot’s gates. In this way one can
weakly probe the two-electron state, and in the null-
result case (no single electron tunnelling) partially
collapse it to the triplet subspace. In order to propose
the uncollapse part of the experiment, it is easiest to
consider the case when the surrounding nuclear spins
[42] quickly admix the singlet state with a triplet state,
permitting the two-qubit state to encode one effective
qubit: parallel or anti-parallel spins. The weak
measurement technique described above will then
partially collapse the state toward the parallel state
under a null-measurement (no single electron tunnel-
ling). If now a p-pulse is applied to one of the spins
with electron spin resonance, followed by a second
null-measurement, this was shown to uncollapse the
state of the effective qubit [41].
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8.2. Optical polarisation qubit

Another interesting development is the experimental
implementation of wavefunction uncollapse for optical
qubits using the polarisation degree of freedom of
single photons by Kim et al. [22] The weak measure-
ment was implemented by passing the photon through
a glass plate oriented at the Brewster angle. Only the
vertical polarisation is reflected off of the glass plate
(with some probability). By placing a single-photon
detector where the photon would have gone had it
reflected, a null-click measurement partially collapses
the polarisation state to the horizontal polarisation.
The strength of the measurement can be increased by
placing a series of plates in a row, effectively increasing
the net probability of a vertically-polarised photon
reflecting at some point.

The wavefunction uncollapse is done by inserting a
half-wave plate (exchanging the amplitude of horizon-
tal with vertical polarisation), and having the same
number of plates traversed by the photon again. If
none of the single-photon detectors click, the polarisa-
tion state is uncollapsed. This has been verified [22]
with quantum state tomography (with polariser and
single-photon counter placed after all of the reflecting
plates) on the photon, conditioned on none of the
other photon detectors firing. The experiment showed
an uncollapsing fidelity of above 94% for measure-
ment strengths up to 0.9. It was also pointed out that
the information from the first weak measurement
can be used for developing guessing strategies about
the unknown initial state. Two such strategies
were presented, and one was shown to be optimal.
Of course, in the case where the measurement was
subsequently undone, these strategies did no better
than random guessing.

8.3. Decoherence suppression by uncollapsing

It has been recently shown [23] that uncollapsing can
be used to suppress qubit decoherence due to energy
relaxation at low temperature (this is a nearly
dominant decoherence process in superconducting
phase qubits [24] and the dominant process in super-
conducting ‘transmon’ qubits [47]). The proposed
procedure is very close to the existing experiment [21]
with the phase qubit. To protect the qubit state from
energy relaxation, it is first partially measured with the
strength pt ¼ 1 7 exp (7�t) (see Section 3.1), so that
in the null-result case the qubit state moves towards
the ground state j0i. The qubit is kept there during the
storage/protection period, and then it is uncollapsed in
the usual way (using a p-pulse, another null-result
partial measurement and one more p-pulse – see
Section 3.2), though the strength ~pt of the second

measurement can differ from pt. The calculations show
[23] that this procedure can significantly increase the
quantum memory fidelity, and theoretically it can be
made arbitrarily close to 100% even for a significant
energy relaxation during the storage period. This
is because the uncollapsing procedure preferentially
selects the cases without energy relaxation. For the
initial state j0i the energy relaxation is absent by itself,
while for the initial state j1i the operating principle
is the following: the first measurement keeps it as j1i,
but if the state jumps down to j0i during the storage
period, then most likely there will be tunnelling during
the second measurement, and therefore such events
will be eliminated by the selection of only null-result
cases. This is surely a simplified explanation, but the
same idea works in the rigorous calculations as well.
Notice though that stronger decoherence suppression
requires a stronger measurement and therefore a
smaller probability of selection. Estimates show that
a significant decoherence suppression by uncollapsing
can be demonstrated with present-day phase qubits.

9. Conclusion

We have reviewed and extended recent developments
in the theory (and experiment) of wavefunction
uncollapse by undoing quantum measurements. We
have formulated the problem of wavefunction uncol-
lapse in terms of a contest between the uncollapse
proponent, Plato, and the uncollapse skeptic, Socrates,
monitored by the arbiter, Aristotle. Plato claims to
have the ability to uncollapse wavefunctions, and this
ability can be tested under the rules of the contest set
forth.

We have discussed several general features of the
uncollapse process in the abstract case, such as the
upper bound on the success probability and quantum
information aspects of the problem. In order to
probabilistically undo the measurement, it is necessary
to erase the information extracted about the state in
the first measurement. This is a necessary condition
to uncollapse the wavefunction, because otherwise
various paradoxes arise. However, the information
erasure is surely not a sufficient condition: the unitary
evolution should also be properly reversed and, as the
most experimentally challenging condition, the process
should not bring decoherence, which requires a very
good (ideal) detector.

In addition to discussing the theory of wavefunc-
tion uncollapse in the abstract case, we have also
considered a variety of solid-state implementations
and specific practical strategies for wavefunction
uncollapse. The cases of the phase qubit, the charge
qubit (with and without Hamiltonian dynamics), and
many entangled charge qubits have been examined
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in detail. Additionally, we have also discussed two
experimental realisations of this physics, based on the
phase qubit and the polarisation qubit, both of which
have clearly demonstrated wavefunction uncollapse
with high fidelity.

The ideality of the detector is necessary for perfect
uncollapsing, and we have only dealt with these kinds
of detectors in the theory section of this paper (by this
we mean the detector adds no extra decoherence to the
system). If a detector is slightly non-ideal, then even a
perfectly executed uncollapse strategy will result in a
slight infidelity in the final state. This is indeed the case
in the experiments mentioned above although the
fidelity was quite high. In such a situation there are
two characteristics to contend with: the fidelity of
uncollapsing as well as the probability of claimed
success. It is an open topic for future research how
these characteristics are related.
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Notes

1. One of the possible procedures is the following. If the
post-measured state is not pure, we can apply more
measurements to make it pure, and then probabilistically
apply a unitary operation from an easily calculable set,
which creates a mixture of pure states identical to the
initial state.

2. An exception is when the initial state belongs to a very
limited set, in which the measurement result corresponds
to only one state.

3. The classical Bayes rule PðkjmÞ ¼ PðmjkÞPk=P
~k Pðmj~kÞP ~k relates the posterior probability PðkjmÞ

of a hypothesis k (after observing an event m) to the prior
probability Pk of this hypothesis and the conditional
probability PðkjmÞ of the event m. The hypotheses k
should form a complete and mutually exclusive set.

4. Strictly speaking, the QPT language may not be
applicable to the uncollapsing experiment, because it
requires linearity of the quantum operation, while after
selection of particular realisations and state normal-
isation the quantum operation is not necessarily linear.
However, the linearity is preserved when the selection
probability does not depend on the initial state, which is
exactly the case for a perfect uncollapsing – see Equation
(32). It is also possible to show that even in the imperfect
non-linear case the uncollapsing fidelity defined via the
‘naive’ QPT language practically coincides with the
rigorous definition via the average state fidelity [23].

5. We use normalisation of the shot noise, in which
SI ¼ 2eIð1� T Þ, where T is the QPC transparency.

6. In this example, Plato could change his uncollapsing
strategy to simply apply a tailored unitary to shift the
disturbed state jc1,mi back to its original state jc1i.
Under this modified strategy, the success probability will
be P, which may or may not exceed PS, depending on the
strength of the measurement. However, in this case,

Plato himself will not know whether the strategy
succeeded or not, and therefore cannot claim to have
an uncollapse procedure.

7. It is easy to generalise Equations (44)–(47) to include the
detector non-ideality and cross-correlation between the
output and back-action noises (as in [13]). Non-ideality
leads to the extra dephasing term 7gds12 in Equation
(47) for s

:
12, while the cross-correlation brings the term

iK[I(t) 7 I0]s12 into the same equation. The formulation
of Equations (44)–(47) corresponds to the approach
developed in [39].
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Büttiker, Efficiency of mesoscopic detectors, Phys.
Rev. Lett. 89 (2002), 200401; A.A. Clerk, S.M.
Girvin, and A.D. Stone, Quantum-limited measure-
ment and information in mesoscopic detectors, Phys.
Rev. B 67 (2003), 165324; D.V. Averin, Continuous
weak measurement of the macroscopic quantum
coherent oscillation, in Exploring the Quantum-Clas-
sical Frontier: Recent Advances in Macroscopic and
Mesoscopic Quantum Phenomena, J.R. Friedman and
S. Han, eds., Nova Science, Huntington, NY, 2003,
preprint (2000). Available at arXiv:cond-mat/
0004364; A. Shnirman, D. Mozyrsky, and I. Martin,
Output spectrum of a measuring device at arbitrary
voltage and temperature, Europhys. Lett. 67 (2004),
p. 840; A.A. Clerk and A.D. Stone, Noise and
measurement efficiency of a partially coherent meso-
scopic detector, Phys. Rev. B 69 (2004), 245303; A.N.

144 A.N. Jordan and A.N. Korotkov

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
a
l
i
f
o
r
n
i
a
,
 
R
i
v
e
r
s
i
d
e
]
 
A
t
:
 
2
0
:
0
0
 
1
8
 
F
e
b
r
u
a
r
y
 
2
0
1
0
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Appendix 1: Application of first passage theory to the

uncollapse time statistics

In this Appendix, using the methods of first passage theory
[34], we rederive Equation (15) for the uncollapse success
probability for the unevolving charge qubit, and also obtain
the distribution of the waiting time for the uncollapse
strategy of Section 4.2. This method has recently been used
to investigate entanglement dynamics of jointly measured
qubits [48].

It is convenient to scale time in units of the measurement
time, t: t/TM; then the probability distributions (8) take the
simple form

P1;2ðr; tÞ ¼
1

2pt

� �1=2

exp �ðr� tÞ2

2t

 !
; ð64Þ

after changing variables from �I to r. These are the solutions
of two different classical random walks with dimensionless
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drift velocity ṽ1,2 ¼ +1 and dimensionless diffusion
coefficient D̃ ¼ 1/2 described by the Fokker–Planck
equations,

@tPiðr; tÞ ¼ �~vi@rPi þ ~D@2r Pi: ð65Þ

In order to solve the first passage problem, we solve first for
the Green functions G(r,t) of the above equations starting
from the initial condition r ¼ r0. The solutions from the
different drift velocities will be weighted with probabilities
~p1,2. These Green function equations are supplemented with
an absorbing boundary condition at the origin (r ¼ 0),

Giðr ¼ 0; tÞ ¼ 0; ð66Þ

in order to account for the statistics of random walks that
cross this point at least once. Let us again start by assuming
r0 4 0 and consider the other case later. The solution of
Equation (65) subject to the condition (66) is most easily
found by guessing:

Giðr; tÞ ¼
1

ð4p ~DtÞ1=2
exp �ðr� r0 � ~vitÞ2

4 ~Dt

" # 

� exp �~vir0= ~D
	 


exp �ðrþ r0 � ~vitÞ2

4 ~Dt

" #!
: ð67Þ

In the form written above, it is obvious that the solution
obeys the equation of motion (65) and has the correct initial
condition r0 at t ¼ 0 (because the absorbing boundary
condition only permits r � 0 solutions). Further inspection
of the solution is facilitated by factoring out the free
Green function, Gfree(r,t) ¼ exp [7(r7r07ṽit)

2/(4D̃t)]/4p1/2

to write the solution as

Giðr; tÞ ¼ Gfreeðr; tÞ 1� exp � r r0
~Dt

� �� �
: ð68Þ

One can now explicitly see that the absorbing boundary
condition (66) is satisfied, and the solution is completely
positive (as it must be to represent a probability density).

To calculate the first passage time distribution, we first
note that the total survival probability that the random
walker will be in the interval r e (0, ?) at time t is given by
PsurðtÞ ¼

R1
0 drGðr; tÞ. However, the only place for the

particle to be lost from the system is at the origin.
Therefore, the first passage time distribution P

ðiÞ
fpt is given by

P
ðiÞ
fpt ¼ �@tPsur ¼ �

Z 1
0

dr@tGiðr; tÞ: ð69Þ

The next step is to note that the Fokker–Planck equation (65)
may be rewritten as a continuity equation, @tGi þ @r Ji ¼ 0.
This simply means that locally, probability is conserved.
The probability current in the continuity equation is Ji ¼
7D̃@rGi þ ṽiGi from (65). Substituting this into (69) we find
the general result

P
ðiÞ
fptðtÞ ¼

Z 1
0

dr@rJi ¼ Jið1Þ � Jið0Þ ¼ �Jið0Þ; ð70Þ

because the probability current at infinity vanishes. Applied
to our problem, we find

P
ðiÞ
fptðtÞ ¼

r0

ð4p ~Dt3Þ1=2
exp �ðr0 þ ~vitÞ2=ð4 ~DtÞ

h i
: ð71Þ

The probability PC that the point r ¼ 0 is ever crossed is
found by integrating (71) over all positive time to obtain

PC ¼ exp ð�~v1r0= ~DÞ ¼ exp ð�2r0Þ; i ¼ 1;
1; i ¼ 2:

�
ð72Þ

This result may be understood intuitively because if the state
is in i ¼ 2 then the drift ṽ2 ¼ 71 causes r(t) to evolve from r0
to 7? and therefore must cross 0 at some time, while if the
system is in state i ¼ 1 then the drift ṽ1 ¼ 1 causes r(t) to
evolve from r0 to þ?. Therefore, in order to cross r ¼ 0, the
noise term must fight against the drift, causing a successful
crossing only occasionally.

In order to obtain the normalised first passage dis-
tribution (conditioned on crossing), we divide (71) by the
probabilities (72) to obtain

P
ðiÞ
fptðtjCÞ ¼

r0

ð4p ~Dt3Þ1=2
exp �ðr0 � j~vijtÞ2=ð4 ~DtÞ

h i
: ð73Þ

The mean first passage time may also be calculated from (73)
to obtain tc,i ¼ r0/jṽij ¼ r0.

Obtaining analogous results for r0 5 0 is straightforward
because the Green function for the Fokker–Planck equation
(65) is invariant under the transformation {r!7r, r0!7r0,
ṽi ! 7ṽi (or 1 $ 2)} which is also reflection symmetry
about the origin. Therefore, results (71), (72) and (73) can be
extended using this symmetry. Combining results, we can now
calculate the total uncollapsing probability, Ps ¼ ~p1PC,1 þ
~p2PC,2 to obtain the result (15) in this new,more powerful way.

In addition to the probability of success, the complete
solution of the first-passage problem given above now allows

Figure 4. Probability distribution of the time required to
undo the measurement. Different plots are for different
values of r0
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us to specify further information about the uncollapsing
process. In particular, an important question for an
experimental implementation of this idea is how long it is
necessary to wait.

Since the distribution of the first passage time (73) does
not depend on the bit state, it directly gives the distribution
of the waiting time to uncollapse any qubit state. Therefore,
rescaling back the time axis in Equation (73), we find the
waiting time distribution is

PwaitðtÞ ¼
jr0j

ð2pt3=TMÞ1=2
exp

�ðjr0j � t=TMÞ2

2t=TM

" #
: ð74Þ

This distribution is normalised, since we consider only
successful attempts of uncollapsing. The fact that the
distribution is independent of the initial qubit state is not
surprising, since otherwise a successful uncollapsing instance
would give us an information about the qubit state (see
discussion in Section 5.3).

Using the distribution (74), we can find the mean waiting
time to uncollapse

Twait ¼ TM jr0j; ð75Þ

the standard deviation

DTwait ¼ TMðjr0jÞ1=2; ð76Þ

and the most likely waiting time (which maximises Pwait)

Tl ¼ TM ðr20 þ 9=4Þ1=2 � 3=2
� �

: ð77Þ

The distribution (74) of the waiting time is plotted in
Figure 4 for several values of r0. Note that it has a long tail,
which makes the average value Twait to be longer than the
most likely value Tl.
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