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Abstract— Two-level quantum systems are important quan-
tum models that are useful for the conceptual development
and construction of quantum technologies. In this paper we
provide measurement feedback controllers for the regulation
of two-level systems to pure states in the xz qubit plane, and
the tracking control with respect to a class of reference signals.

I. INTRODUCTION

The fundamental properties of two-level systems, or
qubits, are studied because they are useful physical models
that are mathematically simple. To use qubits for quantum
technologies, we need to prepare the system in a desired
state in advance. Quantum feedback control is one of the
methods that may be used for state preparation. In particular,
it is often of interest to prepare spin systems in eigenstates
of spin operators). Measurement feedback has been used for
this purpose in several ways, see [10], [9], [4], [11].

If we control the system to be in one of eigenstates
of a measured observable, the state preparation results in
exponential decay of the mean square error to zero. However,
when the system is driven to a state that is not an eigenstate
of the measured observable, the qubit is constantly influenced
by measurement noise so while the mean square error
remains mean-square bounded, it does not tend to zero.
This means that such a desired state cannot be prepared
with probability one [7], [5]. In this case, it is important
to quantify the behavior of the error.

In general, the strength of the measurement noise is de-
termined by a coupling constant to the measurement device.
Thus, it is expected that the error probability will depend
on the coupling constant. Meanwhile, if feedback is applied,
the error will be reduced due to the noise reduction effect of
feedback.

The purpose of this paper is to investigate the problem of
regulation to states that are not eigenstates of the measured
observable. We design a regulating measurement feedback
control law and provide explicit bounds on the mean square
error. We also investigate a tracking problem where the
measurement feedback controller is designed to follow a
given reference signal.

We begin in section II by describing qubits and the Bloch
sphere, recalling the quantum filter for the problem we
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consider, and also recalling a basic stochastic stability result.
Section III contains our results on regulation, while tracking
is considered in section IV. Finally, the effect of decoherence
is discussed in section V.

II. PRELIMINARIES

A. Qubits

A qubit is a two dimensional quantum system defined on
the Hilbert space C2, the two-dimensional complex vector
space. Physical observables are represented as operators on
this Hilbert space, and are given by 2×2 Hermitian matrices.
Qubit states are described by density operators ρ, which may
be represented explicitly in the form

ρ =
1
2
(I + xσx + yσy + zσz), (1)

where I is the identity matrix, x2 + y2 + z2 ≤ 1, and

σx =
[

0 1
1 0

]
, (2)

σy =
[

0 i
−i 0

]
, (3)

σz =
[

1 0
0 −1

]
, (4)

are the Pauli matrices (these operators are the basis of the Lie
algebra su(2) and the corresponding Lie group represents the
rotation of the qubit about the x, y and z axis, respectively).
It is not difficult to see that if x2 + y2 + z2 = 1, then
the rank of ρ is one. In this case, the state is called pure,
and otherwise mixed. From the parameterization above, the
qubit is identified with a vector (x, y, z) whose elements
can be thought of as the x, y and z elements of the qubit,
respectively. A vector (x, y, z) is called a Bloch vector and
is used to represent the density operator.

B. Quantum filter

We consider a qubit that is continuously monitored. The
measurement signal may be used for feedback control. In-
deed, we suppose that the spin observable σz is measured
through a channel with coupling strength k. The measure-
ment signal ζt (which corresponds to a rescaled and inter-
grated physical signal) is given by dζt = ktr[ρtσz]dt+ dwt,
where ρt is the conditional state and wt is the innovation
process (a standard Wiener process). We also suppose that
the qubit is subject to decoherence (pure dephasing) coupled
to a noise channel via σz with strength parameter γ. The
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evolution of the conditional density matrix given the mea-
surement outcome is described by the quantum filter (also
called stochastic master equation) [2], [16], [3], [6],

dρ =
(
i[H, ρ]− k2

8
[σz, [σz, ρ]]−

γ

4
[σz, [σz, ρ]]

)
dt

+
k

2
{(σzρ+ ρσz)− 2ρTr(ρσz)}(dζt − ktr[ρtσz]dt).

(5)

Here we interpret stochastic differential equations in the
Ito sense. H in (5) is the qubit Hamiltonian that may be
modulated by external classical input signals. We assume
that the Hamiltonian is of the form

H =
h

2
σy +

g

2
σz, (6)

where h and g are control signals to be designed.
Let us rewrite the stochastic master equation in terms of

the Bloch vector. From (1) and (5), we have

d

 x
y
z

 =

 −k2

2 − γ g h

−g −k
2

2 − γ 0
−h 0 0

 x
y
z

 dt
+ k

 −xz
−yz

1− z2

 (dζt − ktr[ρtσz]dt). (7)

This is the system to be controlled. The diagonal elements
of the first matrix represent decoherence, and off-diagonal
elements are rotations due to control. The control input
signals h and g depend causally on the measurement signal
ζt. Assuming the initial state ρ0 is known, this may be
achieved by implementing the quantum filter (7) and driving
the filter by the measurement signal ζt. The input signals h
and g may be chosen to depend on the Bloch vector (x, y, z)
for the conditional state computed by the quantum filter (7).
This type of measurement feedback is based on feedback of
the conditional state, and is thus dynamic in nature.

We remark that (5) or (7) is a model for the physical
system being controlled, and if all parameters and the
initial condition are known, this model will coincide
with the quantum filter used in the implementation of
the controller, the later being implemented, say, in a
computer algorithm.

C. Stochastic stability

In this section, we give a well-known result on stochastic
differential equations [14] for the purpose of the spin control
problem.

Let us consider a stochastic differential equation

dξ =a(ξ)dt+ b(ξ)dw, (8)

where w is a standard Wiener process. The infinitesimal
generator for the process ξt is given by

L = LD + LS , (9)

where

LD =a(ξ)
∂

∂ξ
, (10a)

LS =
b2(ξ)

2
∂2

∂ξ2
. (10b)

Lemma 1: Assume that there exists a function V (ξ) such
that for positive constants α and β,

LV ≤ −αV + β. (11)

Then, the function V is bounded as follows:

E[V (ξt)] ≤e−αtE[V (ξ0)] +
β

α
(1− e−αt). (12)

Proof: Integrating equation (8) and taking expectations
we find that

E

[
V (ξt+h)− V (ξt) + α

∫ t+h

t

V (ξr)dr

]
≤ βh.

This implies

d

dt
E [V (ξt)] ≤ −αE [V (ξt)] + β,

from which (12) follows.
If the system has a static equilibrium at point, say ξ = 0,

i.e., a(0) = b(0) = 0, and the hypotheses of Lemma 1
are satisfied with β = 0 for a positive definite function
V (ξ) ≥ c|ξ|2 (c > 0), then Lemma 1 implies |ξt| de-
cays exponentially to zero, and this rate of convergence
is deterministic. We refer to such cases as (exponentially)
asymptotically stable in mean square. On the other hand,
if stable in mean square, b(0) 6= 0, then the system is
constantly disturbed by the stochastic noise and we have
β 6= 0 in general. In this case the trajectory remains mean-
square bounded (by a deterministic bound) but does not tend
to zero asymptotically. For a controlled system of the form
(8), it is important that the term β/α be made as small as
possible by appropriate choice of feedback control.

III. REGULATION

In this section we assume that there is no decoherence in
the system. As will be discussed later (Sec. V), in this case
any initial state becomes pure asymptotically, so here we
consider a control problem only for pure states (the length
of the spin is always maximal, i.e., x2 + y2 + z2 = 1). The
purpose of the control is to drive the spin to an arbitrary
point on the Bloch sphere in the xz-plane. It is known that
we can drive the spin to the spin-up or spin-down state with
probability 1. This is because these states are the eigenstates
of the measured observable σz , i.e., static equilibrium points
of (7). As a result, once the spin reaches one of these two
points, it is fixed there due to the projection effect of the
measurement. On the other hand, if we control the spin to
non-equilibrium points, its probability cannot be one because
the spin is subject to fluctuation. We first consider the design
of the control input, and then, give the error probability
around the target point.
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A. Description of pure states

In this section, we assume that γ = 0 in (7), which means
that there is no additional decoherence in the system (the case
of γ 6= 0 will be considered later). We set g = 0; then by
writing an equation for d(y2) from (7) it is possible to show
that the y coordinate of the Bloch vector decays to zero (at
least as a power-law, and exponentially if x2 ≥ const > 0).
In what follows we assume this has occurred.

For a pure state in the xz-plane, the Bloch vector is
represented in polar coordinates as

x = sin θ, (13a)
z = cos θ. (13b)

Then the system is described in these coordinates as

dθ =
[
h− k2

2
sin θ cos θ

]
dt− k sin θ dw, (14)

where the innovation process (a standard Weiner process)
is given by

dwt = dζt − ktr[ρtσz]dt.

Our purpose is to drive the spin to a point on the Bloch
sphere in the xz-plane θ = θ0 by designing h(θ). Let us
introduce a transform

ξ =θ − θ0. (15)

Then, the system is expressed as

dξ =
[
h(ξ)− k2

4
sin 2(ξ + θ0)

]
dt− k sin(ξ + θ0) dw.

(16)

Since there is no static equilibrium for θ0 6= 0, no control
can achieve exponential decay to zero of the mean square
error. Our purpose is now to reduce the deviation of the
Bloch vector from the desired angle θ0.

B. Feedback law

To control the Bloch vector, we consider a control input
of the form

h(ξ) =− h0 sin
ξ

2
, (17)

where h0 is a positive constant (notice a discontinuity of the
control at ξ = ±π).

Theorem 1: Consider a two level system described by
(16). If we use a control input (17) with h0 > k2, then
we have

E
[
1− cos

ξt
2

]
≤e−(h0−k2)t/2E

[
1− cos

ξ(0)
2

]
+

k2

2(h0 − k2)

[
sin2 θ0 +

1
2
| sin 2θ0|

]
× [1− e−(h0−k2)t/2]. (18)

Proof: For the system (16) with feedback (17), the
infinitesimal generators (10) are given as

LD =
[
−h0 sin

ξ

2
− k2

4
sin 2(ξ + θ0)

] ∂
∂ξ
, (19a)

LS =
1
2

[
k sin(ξ + θ0)

]2 ∂2

∂ξ2
. (19b)

Let

V = 1− cos
ξ

2
. (20)

Then, we have

(LD + LS)V ≤− h0

2
sin2 ξ

2
+
k2

2
cos2

ξ

2
sin2 ξ

2

+
k2

4
sin2 θ0 +

k2

8
| sin 2θ0|. (21)

Now, we want to find α and β such that

− h0

2
sin2 ξ

2
+
k2

2
cos2

ξ

2
sin2 ξ

2
+
k2

4
sin2 θ0 +

k2

8
| sin 2θ0|

≤ −α
(
1− cos

ξ

2

)
+ β. (22)

Let cos(ξ/2) = 1 − ε (0 < ε < 1). Then, it is sufficient to
find α and β such that

1
2
(h0 − k2)ε2 − (h0 − k2 − α)ε

+
k2

4
sin2 θ0 +

k2

8
| sin 2θ0| − β ≤ 0. (23)

If h0 > k2, this is satisfied when

k2

4
sin2 θ0 +

k2

8
| sin 2θ0| − β ≤ 0, (24)

− 1
2
(h0 − k2) + α+

k2

4
sin2 θ0 +

k2

8
| sin 2θ0| − β ≤ 0.

(25)

If α ≥ (h0− k2)/2 then the ratio β/α is bounded below by

k2

2(h0 − k2)

(1
2

sin2 θ0 +
1
4
| sin 2θ0|

)
≤β
α
. (26)

Equality is obtained with the choice

α =
h0 − k2

2
, (27)

β =
k2

4
sin2 θ0 +

k2

8
| sin 2θ0|. (28)

Now applying Lemma 1 yields the inequality (18).
From inequality (18), one can see that for large t

E
[
1− cos

ξt
2

]
≤ k2

2(h0 − k2)

[
sin2 θ0 +

1
2
| sin 2θ0|

]
, (29)

and so the feedback law (17) is stable in mean square. If
the feedback gain is sufficiently large, i.e., k2 � h0, then
the system is stabilized well around the target point θ =
θ0 (ξ = 0) and the error can be sufficiently small after a long
time. If this is the case, the function V can be approximately
expressed as

V ∼ ξ2

8
, (30)
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and the control input is

h ∼ −h0ξ

2
, (31)

which is simply proportional to the error, as usually consid-
ered in linear stabilizing problems. Then, the mean square
error can be asymptotically given as

E[ξ2t ] ≤
4k2

h0 − k2

[
sin2 θ0 +

1
2
| sin 2θ0|

]
. (32)

In the case θ0 = 0,±π, the asymptotic bound on the mean
square error is zero. That is to say, the system can be
stabilized at these two points with probability one, [10]. This
is a natural result because these states are the eigenstates of
the measured observable.

Even though in this paper we assume a perfect
knowledge of the qubit model, let us briefly discuss
what happens if we use a wrong initial state. Then Eq.
(14) describes the evolution of actual angle θ, while the
evolution of our imperfectly known angle θ̃ (as computed
within the controller) is given by equation

dθ̃ =
[
h− k2

2
sin θ̃ cos θ̃

]
dt

−k sin θ̃
[
dw + k(cos θ − cos θ̃) dt

]
. (33)

Therefore, the inaccuracy evolves as

d(θ̃ − θ) = −k2 sin
θ̃ − θ

2

(
cos θ cos

θ̃ + θ

2

+ sin θ̃ sin
θ̃ + θ

2

)
dt− k(sin θ̃ − sin θ) dw. (34)

Brief analysis of this equation shows that small inaccuracy
decreases exponentially (assuming sin2 θ ≥ const > 0),
while evolution of an initially large inaccuracy requires a
more detailed analysis. Most importantly, this shows that our
feedback procedure is robust at least against small inaccuracy
of the initial state.

IV. TRACKING

In the previous section, we considered a spin control
problem to stabilize at a fixed point on the Bloch sphere
in the xz-plane. In this section, we assume that the control
target is time varying in the θ coordinate. Our purpose is
to drive spin to a moving target as close as possible via
feedback. Suppose that the reference signal to be tracked
θ0(·) is described by

dθ0(t)
dt

=f(θ0(t), t). (35)

Let us define an error as

ξ =θ − θ0. (36)

Theorem 2: Consider an input

h(ξ, t) = −h0 sin
ξ

2
+ f(θ0(t), t) (h0 > k2) (37)

for a two level system described by (16) and a target (35).
Then, we have

E
[
1− cos

ξt
2

]
<e−(h0−k2)t/2E

[
1− cos

ξ(0)
2

]
+

k2q

2(h0 − k2)
[1− e−(h0−k2)t/2], (38)

where q ≡ maxt(sin2 θ0(t) + | sin 2θ0(t)|/2).
Proof: The error is given by

dξ =
[
h(ξ, t)− k2

2
sin(ξ + θ0) cos(ξ + θ0)− f(θ0, t)

]
dt

− k sin(ξ + θ0)dw. (39)

The infinitesimal generators for this system are given as

LD =
[
h(ξ, t)− k2

2
sin(ξ + θ0) cos(ξ + θ0)

− f(θ0, t)
] ∂
∂ξ
, (40a)

LS =
1
2

[
k sin(ξ + θ0)

]2 ∂2

∂ξ2
. (40b)

Let

V = 1− cos
ξ

2
. (41)

Then, we have

LV =h(ξ, t) sin ξ +
k2

2
sin(ξ + θ0) sin θ0

− f(θ0, t) sin ξ. (42)

For the input (37),

LV ≤− h0 − k2

2
sin2 ξ

2
+
k2q

4
. (43)

Now, we want to find α and β such that

−h0 − k2

2
sin2 ξ

2
+
k2q

4
≤ −α

(
1− cos

ξ

2

)
+ β. (44)

As in the proof of Theorem 1, the ratio β/α is bounded
below as

k2q

2(h0 − k2)
≤β
α
, (45)

and the equality is attained when α = (h0 − k2)/2. Lemma
1 yields the inequality (18).

From inequality (38), one can see that for large t

E
[
1− cos

ξt
2

]
<

k2q

2(h0 − k2)
. (46)

For the same reason as in the previous section, the system is
driven to the target well if the feedback gain h0 is sufficiently
large, i.e., h0 � k2. Then, the mean square error is bounded
for large t

E[ξ2t ] <
4k2q

h0 − k2
, (47)

and the control input is approximately expressed as

h(ξ, t) =− h0ξ

2
+ f(θ0(t), t). (48)
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If we construct a control input simply proportional to the
error ξ alone as we did in the previous section, i.e.,

h(ξ) =− h0ξ

2
, (49)

then the bound is given by

E
[
1− cos

ξt
2

]
<

k2q + 2r
2(h0 − k2)

, (50)

where r ≡ maxt |f(θ0(t), t)|. This bound is larger by the
additional term depending on r. The system can still be well
controlled by a large gain feedback. However, if the target is
rapidly changing i.e., r � h0, then it becomes more difficult
to track the reference signal. The input of the form (37) is
designed in such a way that this does not happen.

V. INFLUENCE OF DECOHERENCE

In this section, we consider a case where the system is
subject to decohering influences, γ 6= 0. Decoherence may
destroy the purity of the state, which means that the state is
in the interior and not on the surface of the Bloch sphere.
Thus decoherence may shorten the length of the spin state
vector, and so we need to consider the time evolution of the
length of the spin state vector explicitly. The recovery of the
spin vector length strongly depends on the direction of the
spin.

If the system is in a mixed state, it is described in xz-plane
as

dp =
[
−γp sin2 θ +

k2

2
1− p2

p
sin2 θ

]
dt

+ k(1− p2) cos θdw, (51)

dθ =
[
−γ sin θ cos θ +

k2

2
sin θ cos θ

2− 3p
p2

+ h
]
dt

− k

p
sin θdw, (52)

where p is the length of the Bloch vector (the qubit purity
is usually defined as Trρ2 = (1 + p2)/2). For this system,
the infinitesimal operators are given as

LD =
[
−γp sin2 θ +

k2

2
1− p2

p
sin2 θ

] ∂
∂p

+
[
−γ sin θ cos θ +

k2

2
sin θ cos θ

2− 3p
p2

+ h
] ∂
∂θ
,

(53)

LS =
k2

2
(1− p2)2 cos2 θ

∂2

∂p2

− k2

p
(1− p2) sin θ cos θ

∂2

∂θ∂p
+

k2

2p2
sin2 θ

∂2

∂θ2
.

(54)

Let us consider a Lyapunov function

V =
p2

2
. (55)

This yields

LV =
k2

2
(1− p2)(1− p2 cos2 θ)− γp2 sin2 θ. (56)

Note that dependence on the control input h comes here only
via the angle θ. If the state is mixed (p < 1) and there is no
decoherence in the system (γ = 0), then for all θ

LV > 0, (57)

which indicates that the system always becomes pure asymp-
totically. In this case, if we want to drive the system to
(p, θ) = (1, θ0) via feedback, we only need to control θ as we
did in the previous sections. However, the convergence rate
(purity change) of the system is dependent on θ. Obviously,
LV is the largest (for γ = 0) when θ = ±π/2 [8], [12].
On the other hand, it has been shown that the average time
to reach a given purity is minimized along θ = 0, π [13].
This θ-dependency of the purity change becomes critical if
γ 6= 0.

In the case γ 6= 0 the purity factor p becomes a fluctuating
quantity. However, at small γ it is still distributed in the
vicinity of p = 1 asymptotically, because of the first term in
Eq. (56). Therefore, the results of Secs. III and IV should
remain approximately valid for a small decoherence γ.

VI. CONCLUSION

We have considered the design of feedback control to drive
the spin to an arbitrary point on the Bloch sphere in the xz-
plane. In general it is impossible to asymptotically stabilize
such a point because the spin is continually influenced by
the measurement noise. However, we provided bounds on the
mean square deviation from the desired reference state, en-
suring mean square stability of the error. In the special cases
θ = 0,±π, the feedback control can asymptotically stabilize
the spin, meaning the error tends to zero asymptotically.
This technique was applied to a tracking problem where the
reference signal is time varying. In this case, we can see that
the reference signal model forms part of the controller. More
general regulation and tracking control designs will be given
in a future publication, together with detailed analysis.

In this paper we mostly considered a rather idealized case
when there is no decoherence, all the system parameters
and the initial state are perfectly known, and monitoring
of the qubit state is also perfect. It would be important to
check that our results remain approximately valid when these
assumptions are slightly violated. Even though we do not
prove this assertion explicitly, we are practically confident in
it because of the following. Small decoherence was discussed
in Sec. V and should not drastically change the results of
Secs. III and IV. As was discussed in Sec. III, a small
inaccuracy of the initial state decreases exponentially in the
course of the feedback control. A small inaccuracy of the
parameters k and h would lead to a slow deviation of our
estimated state from the actual state (still within the xz-
plane); however, this deviation is constantly decreased by
the same mechanism as for an inaccurate initial state. Small
non-zero parameter g would lead to a gradually accumulating
y-coordinate; however, the attraction to the xz-plane due
to measurement (mentioned in Sec. III) constantly moves y
towards zero. As a result, our results should be robust against
small imperfections of state monitoring and parameters.
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