
Quantum error correction (QEC)
Mermin: Miracle of quantum error correction

Surprise, since the only way to detect errors is to make a measurement,
while we are not allowed to learn information about qubit state

QEC: 1995 Peter Shor, independently Andrew Steane

QEC is necessary in a QC (makes QC less impossible), otherwise
the whole computation should be within decoherence time, that
is hard for long algorithms.

Classical computer: arbitrary long algorithms are OK using error correction.

Classical error correction

Simplest error correction: 3-bit repetitive code (think about memory)

0 → 000
1 → 111

Encoding Errors: bit flips

Decoding: all bits measured, majority, then encoding again (if need to maintain)

General approach to classical error correction:
1) detection of errors via error syndromes
2) correction: flip the wrong (flipped) bits

In 3-bit repetitive code, error syndrome is given by: parity of bits 1&2 and 2&3
(parity is sum modulo 2)

4 possible results: OK, flip bit 1, flip bit 2, flip bit 3
Protects against 1 bit flip
Probability of error: 𝑝𝑝 → 3𝑝𝑝2 1 − 𝑝𝑝 + 𝑝𝑝3 Works well if 𝑝𝑝 ≪ 1

Threshold: 𝑝𝑝 = ⁄1 2 (always helps)
Concatenation (layering): arbitrary small probability of error is possible
5-bit repetitive code protects against 2 errors, etc.

Classical error correction (cont.)

There are smarter ways for encoding (less redundancy needed), but the general
idea is the same: use redundancy and parity checks

(Simplified) idea of Hamming code

Error is evidenced by particular combination of wrong parity checks
(error syndrome), then can be corrected. Usually works well for low
probability of error 𝑝𝑝, though possible even for 𝑝𝑝 → ⁄1 2.

𝑏𝑏0𝑏𝑏1𝑏𝑏2𝑏𝑏3𝑏𝑏4𝑏𝑏5𝑏𝑏6𝑏𝑏7
𝑏𝑏0 ⊕ 𝑏𝑏1 ⊕ 𝑏𝑏2 ⊕ 𝑏𝑏3 ⊕ 𝑏𝑏4 ⊕ 𝑏𝑏5 ⊕ 𝑏𝑏6 ⊕ 𝑏𝑏7 = 𝑐𝑐0
𝑏𝑏4 ⊕ 𝑏𝑏5 ⊕ 𝑏𝑏6 ⊕ 𝑏𝑏7 = 𝑐𝑐1
𝑏𝑏2 ⊕ 𝑏𝑏3 ⊕ 𝑏𝑏6 ⊕ 𝑏𝑏7 = 𝑐𝑐2
𝑏𝑏1 ⊕ 𝑏𝑏3 ⊕ 𝑏𝑏5 ⊕ 𝑏𝑏7 = 𝑐𝑐3

Using parity check bits 𝑐𝑐0𝑐𝑐1𝑐𝑐2𝑐𝑐3, we can easily find location (and therefore
correct) one error in the bit string 𝑏𝑏0𝑏𝑏1𝑏𝑏2𝑏𝑏3𝑏𝑏4𝑏𝑏5𝑏𝑏6𝑏𝑏7

(in reality a little different, parity check bits are within the bit string,
which correspondingly has less data bits)

Only logarithmic overhead

Quantum vs classical error correction

• Quantum error correction is really necessary (classical computer can work
without error correction, usually used for memory and communication;
for nanoscale computers can be needed for logic as well)

• Only indirect checking for errors is allowed (correcting without decoding!)

• Bit flip is not the only type of errors (also phase flips (Z) and bit-phase flips (Y))

• Errors grow continuously, not really flips. Two ways to think:
1) gradual stochastic change of |𝜓𝜓〉 (not quite correct, but OK)
2) gradual entanglement with environment

We will first discuss idea of indirect checking for errors,
then discuss a code protecting from 3 types of errors (𝑋𝑋, 𝑌𝑌, 𝑍𝑍),
and then discuss why this is sufficient for continuous errors

Idea of indirect checking for errors

3-qubit code, protecting from one bit flip

We cannot clone, but still can do encoding:

𝛼𝛼 0 + 𝛽𝛽 1 → 𝛼𝛼 000 + 𝛽𝛽|111〉
(somewhat similar to repetitive code)

(operation (𝛼𝛼 0 + 𝛽𝛽 1)|00〉 → 𝛼𝛼 000 + 𝛽𝛽|111〉 is unitary)

Idea: measurement of parities (sum modulo 2) without measurement of qubits
In this way we do not learn anything about 𝛼𝛼 and 𝛽𝛽
Correction is also without decoding: just flip the flipped qubit

We need to measure operators 𝑍𝑍1𝑍𝑍0 and 𝑍𝑍2𝑍𝑍1 (numbering 𝑞𝑞2𝑞𝑞1𝑞𝑞0)
Any Hermitian operator corresponds to an observable, with
measurement results being the eigenvalues of this operator.

Operators 𝑍𝑍1𝑍𝑍0 and 𝑍𝑍2𝑍𝑍1 are Hermitian (since 𝑍𝑍 is Hermitian)
Consider 𝑍𝑍1𝑍𝑍0: 𝑍𝑍1𝑍𝑍0 2 = �1, so the eigenvalues are ±1.
+1: even parity, the same qubit states (either |00〉 or |11〉 or their superposition)
−1: odd parity, different qubit states (superposition of |01〉 and |10〉)

The same for the operator 𝑍𝑍2𝑍𝑍1

3-qubit code
The operation is similar to the classical 3-bit repetitive code

𝜓𝜓 = 𝛼𝛼 000 + 𝛽𝛽|111〉 correct (uncorrupted) state (codeword)

After flip of qubit 0 it becomes

Similarly, 𝑋𝑋1 𝜓𝜓 = 𝛼𝛼 010 + 𝛽𝛽|101〉, 𝑋𝑋2 𝜓𝜓 = 𝛼𝛼 100 + 𝛽𝛽|011〉

𝑋𝑋0 𝜓𝜓 = 𝛼𝛼 001 + 𝛽𝛽|110〉

𝑍𝑍2𝑍𝑍1 + − − +

𝑋𝑋0 𝑋𝑋1 𝑋𝑋2 �1

𝑍𝑍1𝑍𝑍0 − − + +

“+” means parity 0 (even)

“−” means parity 1 (odd)

From these results (error syndrome) we know if one qubit flipped or not,
and which one flipped. Then we can correct by flipping that qubit back.

Now circuits

Encoding 𝛼𝛼 0 + 𝛽𝛽|1〉

0
0

𝛼𝛼 000 + 𝛽𝛽|111〉

3-qubit code (cont.)
Encoding 𝛼𝛼 0 + 𝛽𝛽|1〉

0
0

𝛼𝛼 000 + 𝛽𝛽|111〉

Error detection
and correction 𝑍𝑍2𝑍𝑍1 = −1 𝑍𝑍2𝑍𝑍1 = +1

𝑋𝑋
𝑋𝑋
𝑋𝑋or

or

or �1

𝛼𝛼 000
+𝛽𝛽|111〉

0
0

ancilla
qubits

meas.

meas.

result 𝑟𝑟1 (1 or 0)

result 𝑟𝑟2 (1 or 0)

𝑋𝑋𝑟𝑟1(1−𝑟𝑟2)

𝑋𝑋𝑟𝑟1𝑟𝑟2

𝑋𝑋(1−𝑟𝑟1)𝑟𝑟2

𝛼𝛼 000 + 𝛽𝛽|111〉

Check that works properly: error in upper qubit ⇒ upper ancilla 1 ⇒ upper qubit corrected
error in middle qubit ⇒ both ancillas 1 ⇒ middle qubit corrected
error in lower qubit ⇒ lower ancillas 1 ⇒ lower qubit corrected, no error ⇒ no correction

The same operation if entangled with other qubits: 𝛼𝛼 000 𝜙𝜙0 + 𝛽𝛽 111 |𝜙𝜙1〉

𝑍𝑍1𝑍𝑍0 = ±1

3-qubit code: automated version
Standard procedure

𝑋𝑋
𝑋𝑋
𝑋𝑋or

or
𝛼𝛼 000

+𝛽𝛽|111〉

0
0

ancilla
qubits

meas.

meas.

result 𝑟𝑟1 (1 or 0)

result 𝑟𝑟2 (1 or 0)

𝑋𝑋𝑟𝑟1(1−𝑟𝑟2)

𝑋𝑋𝑟𝑟1𝑟𝑟2

𝑋𝑋(1−𝑟𝑟1)𝑟𝑟2

𝛼𝛼 000 + 𝛽𝛽|111〉

Automated version: replace measurement with controlled operation

𝛼𝛼 000 + 𝛽𝛽|111〉

𝑋𝑋
𝑋𝑋
𝑋𝑋or

or
𝛼𝛼 000

+𝛽𝛽|111〉

0
0

ancilla
qubits

Check: if 00, then nothing, if 11, then middle qubit corrected,
if 01 or 10, then only one CNOT works, again OK

To reuse ancillas, we usually need to measure them (then the automated version is
not quite useful); however, it is possible to rely on dissipation to “dump entropy”

QEC for continuous errors

A hint why QEC works for continuous errors (not a rigorous analysis)

Suppose the middle qubit does not flip, but rotates about 𝑋𝑋-axis

𝛼𝛼 000 + 𝛽𝛽 111 → cos
𝜃𝜃
2

𝛼𝛼 000 + 𝛽𝛽 111 − 𝑖𝑖 sin
𝜃𝜃
2
𝛼𝛼 010 + 𝛽𝛽 101

When we measure parity (say, qubits 1 and 2), the system should “make a decision”,
then the state is either collapsed to the correct state (then no error syndrome)
or it choses the second term (then error syndrome 11), which we will correct.

Measurement transforms continuous errors into discrete errors (flips)

QEC should protect against rotations about any axis. As we will see later,
for that it is sufficient to protect against 𝑋𝑋, 𝑌𝑌, and 𝑍𝑍 flips.

Analysis of space dimensions for QEC

Valid (uncorrupted) codewords live in a 2D subspace of 8D Hilbert space
(here we discuss dimensions in complex spaces, not number of real parameters)

3-qubit code

After corruption due to 𝑋𝑋0, the state moves to a different (orthogonal) 2D subspace
Similarly the state moves to different subspaces after corruption due to 𝑋𝑋1 and 𝑋𝑋2
So, there will be 4 orthogonal 2D subspaces (correct and 3 with errors), which all fit
well into 8D Hilbert space. This is why we can distinguish errors and correct them.

In general, an 𝑛𝑛-qubit code, protecting against single-qubit bit-flips requires

2𝑛𝑛 ≥ 2(1 + 𝑛𝑛) This is why 𝑛𝑛 ≥ 3 is needed for bit-flips

Hilbert space (1 + 𝑛𝑛) 2D subspaces for 𝑛𝑛 possible errors

For general errors (3 kinds, will consider later)

2𝑛𝑛 ≥ 2(1 + 3𝑛𝑛) Therefore, 𝑛𝑛 ≥ 5

Such 5-qubit code really exists (will consider later)

3-qubit code protecting from one phase flip (𝑍𝑍)

0 𝐿𝐿 →
1
8

(|0〉 + |1〉)(|0〉 + |1〉) (|0〉 + |1〉)

For bit-flip it was 0 𝐿𝐿 → |000〉, 1 𝐿𝐿 → |111〉, so that 𝛼𝛼 0 𝐿𝐿 + 𝛽𝛽 1 𝐿𝐿 → 𝛼𝛼 000 + 𝛽𝛽|111〉

Now similar:

If one qubit flips the phase, |0 + |1〉) ↔ |0 − |1〉), it is possible to find which one,
and then correct it back (by applying 𝑍𝑍-gate)

1 𝐿𝐿 →
1
8

|0 − 1〉)(|0〉 − |1〉) |0 − |1〉)

logical

logical 3 physical qubits

𝛼𝛼 0 𝐿𝐿 + 𝛽𝛽 1 𝐿𝐿 →
1
8
𝛼𝛼 |0 + |1)⊗3 + 𝛽𝛽 |0 − |1〉)⊗3]

To detect a 𝑍𝑍-error, we need to measure 𝑋𝑋1𝑋𝑋0 and 𝑋𝑋2𝑋𝑋1

𝑍𝑍
𝑍𝑍
𝑍𝑍or

or

0
0

meas.

meas.

result 𝑟𝑟1 (1 or 0)

result 𝑟𝑟2 (1 or 0)

𝑍𝑍𝑟𝑟1(1−𝑟𝑟2)

𝑍𝑍𝑟𝑟1𝑟𝑟2

𝑍𝑍(1−𝑟𝑟1)𝑟𝑟2

𝐻𝐻
𝐻𝐻
𝐻𝐻

𝐻𝐻
𝐻𝐻
𝐻𝐻

or �1
𝐻𝐻
𝐻𝐻
𝐻𝐻

𝛼𝛼 0 + 𝛽𝛽|1〉

0
0

encoding possible error error detection correction

Equivalent to fit-flip code,
𝐻𝐻𝑍𝑍𝑍𝑍 = 𝑋𝑋, 𝐻𝐻2 = �1

9-qubit Shor’s code
Is it possible to protect from bit flips (𝑋𝑋), phase flips (𝑍𝑍), and bit&phase flips (𝑌𝑌)
at the same time?

Yes! 9-qubit Shor’s code protects from one of such errors in any qubit

Idea: just concatenation of two previous codes (layering of codes)

0 𝐿𝐿 →
1
8

(|000〉 + |111〉)(|000〉 + |111〉) (|000〉 + |111〉)

1 𝐿𝐿 →
1
8

|000 − |111〉)(|000〉 − |111〉) |000 − |111〉)

One encoding deals with 𝑋𝑋-errors, the other one with 𝑍𝑍-errors,
while 𝑌𝑌-errors are taken care of automatically, since 𝑌𝑌 = −𝑖𝑖𝑖𝑖𝑖𝑖

In error correction, usually 𝑌𝑌 ≡ 𝑍𝑍𝑍𝑍 (e.g., Mermin’s book)

If a qubit suffers from bit flip (𝑋𝑋), then this changes parities within 3-qubit block

If a phase-flip of a qubit (𝑍𝑍), then changes sign (+ ↔ −) in the block

(|010〉 + |101〉)(|000〉 + |111〉) (|000〉 + |111〉)/ 8
|010 − |101〉)(|000〉 − |111〉) |000 − |111〉)/ 8

|000 − |111〉)(|000〉 + |111〉) (|000〉 + |111〉)/ 8
|000 + |111〉)(|000〉 − |111〉) |000 − |111〉)/ 8

If 𝑌𝑌-flip, then both

9-qubit Shor’s code (cont.)

𝛼𝛼 0 𝐿𝐿 + 𝛽𝛽 1 𝐿𝐿 → 𝛼𝛼 (|000〉 + |111〉)(|000〉 + |111〉) (|000〉 + |111〉)/ 8

+𝛽𝛽 |000 − |111〉)(|000〉 − |111〉) |000 − |111〉)/ 8

Error detection and correction

1) Measure parities with 3-qubit blocks: 𝑍𝑍0𝑍𝑍1, 𝑍𝑍1𝑍𝑍2, 𝑍𝑍3𝑍𝑍4, 𝑍𝑍4𝑍𝑍5, 𝑍𝑍6𝑍𝑍7, 𝑍𝑍7𝑍𝑍8
If 𝑋𝑋-error is detected in 𝑖𝑖th qubit, correct by gate 𝑋𝑋𝑖𝑖

(if bit-flips in different 3-qubit blocks, they all can be corrected)

2) Measure parities of phases of 3-qubit blocks: 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3𝑋𝑋4𝑋𝑋5, 𝑋𝑋3𝑋𝑋4𝑋𝑋5𝑋𝑋6𝑋𝑋7𝑋𝑋8
(𝑋𝑋0𝑋𝑋1𝑋𝑋2 changes sign of wavefunction if 000 − 111 and does nothing if 000 + 111,
so these products compare signs)

If Z-error is detected in 𝑗𝑗th 3-qubit block, correct by gate 𝑍𝑍 applied to any qubit in this block

In Mermin’s book a little different procedure: first detect errors, then correct.
Equivalent because step 2) is insensitive to bit flips:

For example, 𝑋𝑋0𝑋𝑋1𝑋𝑋2(|001〉 − |110〉) = |110〉 − |001〉 = −(|001〉 − |110〉)

Encoding

Shor’s code: is it optimal?

𝛼𝛼 0 𝐿𝐿 + 𝛽𝛽 1 𝐿𝐿 → 𝛼𝛼 (|000〉 + |111〉)(|000〉 + |111〉) (|000〉 + |111〉)/ 8

+𝛽𝛽 |000 − |111〉)(|000〉 − |111〉) |000 − |111〉)/ 8

8 measured operators: 𝑍𝑍0𝑍𝑍1, 𝑍𝑍1𝑍𝑍2, 𝑍𝑍3𝑍𝑍4, 𝑍𝑍4𝑍𝑍5, 𝑍𝑍6𝑍𝑍7, 𝑍𝑍7𝑍𝑍8
𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3𝑋𝑋4𝑋𝑋5, 𝑋𝑋3𝑋𝑋4𝑋𝑋5𝑋𝑋6𝑋𝑋7𝑋𝑋8

Therefore, 28 = 256 possible results

However, we need only 1 + 3 × 9 = 28 distinguishable results

(even less: 28 − 6 = 22, because 𝑍𝑍-errors may lead to the same result)
(degenerate quantum code)

⇒ 9-qubit Shor’s code is not optimal

Also, 9-qubit Hilbert space (512 dimensions) can hold 256 copies of a qubit space

Shor’s code: encoding

𝛼𝛼 0 𝐿𝐿 + 𝛽𝛽 1 𝐿𝐿 → 𝛼𝛼 (|000〉 + |111〉)(|000〉 + |111〉) (|000〉 + |111〉)/ 8

+𝛽𝛽 |000 − |111〉)(|000〉 − |111〉) |000 − |111〉)/ 8

𝛼𝛼 0 + 𝛽𝛽|1〉
0
0

𝐻𝐻

𝐻𝐻

𝐻𝐻

0
0
0
0
0
0

0 𝐿𝐿 → 000000000 →
0 + 1

2
00

0 + 1
2

00
0 + 1

2
00 →

000 + 111
2

000 + 111
2

000 + 111
2

1 𝐿𝐿 → 100100100 →
0 − 1

2
00

0 − 1
2

00
0 − 1

2
00 →

000 − 111
2

000 − 111
2

000 − 111
2

Shor’s code: syndrome extraction

8 measured operators: 𝑍𝑍0𝑍𝑍1, 𝑍𝑍1𝑍𝑍2, 𝑍𝑍3𝑍𝑍4, 𝑍𝑍4𝑍𝑍5, 𝑍𝑍6𝑍𝑍7, 𝑍𝑍7𝑍𝑍8
𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3𝑋𝑋4𝑋𝑋5, 𝑋𝑋3𝑋𝑋4𝑋𝑋5𝑋𝑋6𝑋𝑋7𝑋𝑋8

𝑍𝑍0𝑍𝑍1: as discussed before 0 meas.

Similarly for other 𝑍𝑍𝑖𝑖𝑍𝑍𝑗𝑗 (need 6 ancilla qubits for 6 operators 𝑍𝑍𝑖𝑖𝑍𝑍𝑗𝑗)

realization of X0𝑋𝑋1𝑋𝑋2𝑋𝑋3𝑋𝑋4𝑋𝑋5:

as always, operator eigenvalue +1
corresponds to measurement result 0,

eigenvalue −1 corresponds to result 1 𝐻𝐻
𝐻𝐻
𝐻𝐻
𝐻𝐻
𝐻𝐻
𝐻𝐻

𝐻𝐻
𝐻𝐻
𝐻𝐻
𝐻𝐻
𝐻𝐻
𝐻𝐻

meas.0

Easier to think that qubits are either
(|0〉 + |1〉)/ 2 or |0 − |1〉)/ 2
(i.e., eigenstates of 𝑋𝑋)

Overall need 6 + 2 = 8 ancillas

Syndrome extraction: a different way

𝑍𝑍0𝑍𝑍1 0 meas.

There is a different but equivalent way of measuring syndromes

=
0 meas.𝐻𝐻𝐻𝐻 𝑍𝑍𝐻𝐻𝐻𝐻 𝑍𝑍

=

0 meas.𝐻𝐻𝐻𝐻
𝑍𝑍

𝑍𝑍
= =

0 meas.𝐻𝐻𝐻𝐻
𝑍𝑍
𝑍𝑍

just a change of notation

In this way it is clear which operator is measured

Syndrome extraction: general way
Similarly, for 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3𝑋𝑋4𝑋𝑋5:

𝐻𝐻
𝐻𝐻
𝐻𝐻
𝐻𝐻
𝐻𝐻
𝐻𝐻

𝐻𝐻
𝐻𝐻
𝐻𝐻
𝐻𝐻
𝐻𝐻
𝐻𝐻

meas.0

=

𝑋𝑋
𝑋𝑋
𝑋𝑋
𝑋𝑋
𝑋𝑋
𝑋𝑋

meas.0 𝐻𝐻𝐻𝐻

This is a general way, showing directly which operator we measure

If a multi-qubit operator 𝐴𝐴 has eigenvalues ±1, then it can always be measured as

𝐴𝐴

meas.0 𝐻𝐻𝐻𝐻 0 →
0 + |1〉

2
→

0 +|1〉
2

if eigenvalue of 𝐴𝐴 is +1 |0〉

0 −|1〉
2

if eigenvalue of 𝐴𝐴 is −1 |1〉
→ →

Automated version of quantum error correction
Conditional gates can always be replaced by controlled gates
(then no measurement is needed)

Previous example (for 3-qubit code)

𝑋𝑋
𝑋𝑋
𝑋𝑋or

or
𝛼𝛼 000

+𝛽𝛽|111〉

0
0

ancilla
qubits

meas.

meas.

result 𝑟𝑟1 (1 or 0)

result 𝑟𝑟2 (1 or 0)

𝑋𝑋𝑟𝑟1(1−𝑟𝑟2)

𝑋𝑋𝑟𝑟1𝑟𝑟2

𝑋𝑋(1−𝑟𝑟1)𝑟𝑟2

𝛼𝛼 000 + 𝛽𝛽|111〉

𝛼𝛼 000 + 𝛽𝛽|111〉

𝑋𝑋
𝑋𝑋
𝑋𝑋or

or
𝛼𝛼 000

+𝛽𝛽|111〉

0
0

ancilla
qubits

Obviously the same if we measure ancilla qubits. However, no need to measure,
then coherent superposition of scenarios, but correction works for each term
(unentangled with ancilla qubits). Anyway, need to dump entropy (possibly
resetting by switching on/off energy dissipation).

Error generation
Why protecting from only 3 errors (𝑋𝑋, 𝑌𝑌, 𝑍𝑍) is sufficient?

We discussed a hint: for a small unwanted unitary evolution, measurement converts
small continuous errors into rare big errors (𝑋𝑋, 𝑌𝑌, 𝑍𝑍), otherwise restores initial state.

Now more general discussion based on interaction and entanglement with environment

𝑒𝑒 0 → 𝑒𝑒0 0 + 𝑒𝑒1 |1〉1 qubit

𝑒𝑒 1 → 𝑒𝑒2 0 + 𝑒𝑒3 |1〉
|𝑒𝑒〉 is initial state of environment
unitary interaction with environment

|𝑒𝑒𝑖𝑖〉 are not normalized (sums are normalized)
𝑒𝑒0 ≈ 𝑒𝑒3 , 𝑒𝑒0,3 ≈ 1, 𝑒𝑒1,2 ≪ 1 gradual process, |𝑒𝑒1〉 and 𝑒𝑒2 grow gradually

Then from linearity

𝑒𝑒 𝜓𝜓 → |𝑒𝑒0 �1 + 𝑒𝑒1 𝑋𝑋) 0 0 𝜓𝜓 + |𝑒𝑒2 𝑋𝑋 + 𝑒𝑒3 �1) 1 1 𝜓𝜓 =
1 + 𝑍𝑍

2 = 1 0
0 0

1 − 𝑍𝑍
2 = 0 0

0 1
projector
operators

=
𝑒𝑒0 + |𝑒𝑒3〉

2
�1 𝜓𝜓 +

𝑒𝑒1 + |𝑒𝑒2〉
2

𝑋𝑋 𝜓𝜓 +
𝑒𝑒0 − |𝑒𝑒3〉

2
𝑍𝑍 𝜓𝜓 +

𝑒𝑒1 − |𝑒𝑒2〉
2

𝑋𝑋𝑋𝑋 𝜓𝜓

|𝑑𝑑〉denote |𝑎𝑎〉 (small) |𝑏𝑏〉 (small) |𝑐𝑐〉 (small)

Error generation (cont.)

𝑒𝑒 0 → 𝑒𝑒0 0 + 𝑒𝑒1 |1〉1 qubit 𝑒𝑒 1 → 𝑒𝑒2 0 + 𝑒𝑒3 |1〉

Then

𝑒𝑒 𝜓𝜓 → |𝑑𝑑 �1 + 𝑎𝑎 𝑋𝑋 + 𝑏𝑏 𝑌𝑌 + 𝑐𝑐 𝑍𝑍) 𝜓𝜓 (here 𝑌𝑌 ≡ 𝑋𝑋𝑋𝑋 for brevity)

Small |𝑎𝑎〉, |𝑏𝑏〉, |𝑐𝑐〉, while |𝑑𝑑〉 ≈ 1,

During quantum error correction procedure, these terms are distinguished ⇒ projected
⇒ only one term remains ⇒ can correct back to |𝜓𝜓〉 (we do not care about environment)

(From Schrödinger equation, |𝑎𝑎〉, |𝑏𝑏〉, 𝑐𝑐 should grow linearly in time, then probabilities
grow as 𝑡𝑡2. Then measurement helps even without correction (quantum Zeno effect).
Unfortunately, errors usually grow linearly (not quadratically) in time, so need to correct.)

Error generation: several qubits
This idea can be generalized to several qubits

𝑒𝑒 Ψ 𝑛𝑛 → �
𝜇𝜇1=0

3

�
𝜇𝜇2=0

3

. . . �
𝜇𝜇𝑛𝑛=1

3

|𝑒𝑒𝜇𝜇1𝜇𝜇2...𝜇𝜇𝑛𝑛〉 𝑈𝑈𝜇𝜇1
(1)𝑈𝑈𝜇𝜇2

(2) . . . 𝑈𝑈𝜇𝜇𝑛𝑛
(𝑛𝑛) Ψ 𝑛𝑛

where 𝑈𝑈0
(𝑘𝑘) = �1𝑘𝑘, 𝑈𝑈1

(𝑘𝑘) = 𝑋𝑋𝑘𝑘, 𝑈𝑈2
(𝑘𝑘) = 𝑌𝑌𝑘𝑘, 𝑈𝑈3

(𝑘𝑘) = 𝑍𝑍𝑘𝑘, acting on 𝑘𝑘th qubit

This formula is exact. If errors are small and independent for each qubit, then
the terms with more than 1 error are small

𝑒𝑒 Ψ 𝑛𝑛 → ≈ 𝑑𝑑 �1 + �
𝑖𝑖=1

𝑛𝑛

𝑎𝑎𝑖𝑖 𝑋𝑋𝑖𝑖 + 𝑏𝑏𝑖𝑖 𝑌𝑌𝑖𝑖 + 𝑐𝑐𝑖𝑖 𝑍𝑍𝑖𝑖 Ψ 𝑛𝑛

This is why protection against 3 types of one-qubit errors is sufficient.

(Obviously, not always the case. For example, if two qubits couple to the same environment,
then errors are correlated. But this is a much harder case, so people usually consider
independent errors.)

The next group of terms: two errors (in two qubits), then three errors, etc.
If a code can correct for 2 or more errors, then correlation problem can be solved,
and we can also afford to do the procedure less often.

Stabilizer codes
General idea:

Single-qubit errors 𝑋𝑋𝑖𝑖, 𝑌𝑌𝑖𝑖 , 𝑍𝑍𝑖𝑖 move encoded states into different orthogonal
subspaces. Making certain measurements, we distinguish these subspaces, and
therefore find which error has occurred. Then we correct by applying 𝑋𝑋𝑖𝑖, 𝑌𝑌𝑖𝑖 , or 𝑍𝑍𝑖𝑖.

Then for a code encoding one logical qubit into 𝑛𝑛 physical qubits and protecting
from any one-qubit error, we need

2𝑛𝑛 ≥ 2 (1 + 3𝑛𝑛)
dimension of
Hilbert space

each
subspace

of scenarios

⇒ 𝑛𝑛 ≥ 5

More general, for a code encoding 𝑘𝑘 logical qubits into 𝑛𝑛 physical qubits, and
correcting up to 𝑡𝑡 errors, we need

2𝑛𝑛 ≥ 2𝑘𝑘�
𝑗𝑗=0

𝑡𝑡
𝑛𝑛
𝑗𝑗 3𝑗𝑗 Quantum Hamming bound

(Actually, this bound can be violated in degenerate codes,
when different errors lead to the same state)

Stabilizer codes are similar to classical linear codes (also Calderbank-Shor-Steane codes)

Stabilizer codes: syndrome measurement
To distinguish subspaces, we measure a set of commuting operators 𝐴𝐴𝑖𝑖. They are
constructed as direct products of Pauli operators, and for each of them 𝐴𝐴𝑖𝑖2 = �1;
therefore eigenvalues are ±1.

Examples: 𝑍𝑍0𝑍𝑍1, 𝑍𝑍1𝑍𝑍2, 𝑋𝑋0𝑋𝑋1𝑋𝑋2𝑋𝑋3𝑋𝑋4𝑋𝑋5, etc.

Since 𝐴𝐴𝑖𝑖 are commuting, we can measure them simultaneously or in any sequence.
Subspaces corresponding to different measurement results are orthogonal.

Art of design: measured operators (and corresponding subspaces)
should be able to diagnose errors in qubits

Measurement of any such operator 𝐴𝐴 projects a state in the Hilbert space into
one of two subspaces, corresponding to eigenvalues 𝜆𝜆 = +1 and 𝜆𝜆 = −1

𝜆𝜆 = +1 (usually measurement result 0) ↔ projector Ρ0𝐴𝐴 = (�1 + 𝐴𝐴)/2
𝜆𝜆 = −1 (usually measurement result 1) ↔ projector Ρ1𝐴𝐴 = (�1 − 𝐴𝐴)/2

Check: Ρ0𝐴𝐴
2 = ⁄�1 + 𝐴𝐴 2 4 = ⁄(�1 + �1 + 2𝐴𝐴) 4 = ⁄�1 + 𝐴𝐴 2 = Ρ0𝐴𝐴, similar for Ρ1𝐴𝐴

If 𝐴𝐴 𝜓𝜓 = +1|𝜓𝜓〉, then
�1+𝐴𝐴
2

𝜓𝜓 = |𝜓𝜓〉, while
�1−𝐴𝐴
2

𝜓𝜓 = 0.

Similarly, if 𝐴𝐴 𝜓𝜓 = −1|𝜓𝜓〉, then
�1−𝐴𝐴
2

𝜓𝜓 = |𝜓𝜓〉, while
�1+𝐴𝐴
2

𝜓𝜓 = 0

Measurement of operators 𝐴𝐴𝑖𝑖
We already discussed this previously.

𝐴𝐴

meas.0 𝐻𝐻𝐻𝐻
0 →

0 + |1〉
2

→
0 +|1〉

2
if 𝜆𝜆 = +1 |0〉

0 −|1〉
2

if 𝜆𝜆 − 1 |1〉
→

Formally 0 + |1〉
2

𝜓𝜓 →
0 𝜓𝜓 + |1〉(𝐴𝐴|𝜓𝜓〉)

2
→

|𝜓𝜓〉

→
(|0〉 + |1〉) |𝜓𝜓〉 + (0 − |1〉)(𝐴𝐴 |𝜓𝜓〉)

2 = 0
�1 + 𝐴𝐴

2 𝜓𝜓 + 1
�1 − 𝐴𝐴

2 |𝜓𝜓〉

Ρ0𝐴𝐴 Ρ1𝐴𝐴
measurement selects one of two terms

5-qubit code
25 = 32 dimensions in Hilbert space
3 × 5 = 15 possible errors

2 × 1 + 15 = 32: all dimensions should be used

Need to distinguish 16 scenarios ⇒ 4 operators 𝐴𝐴𝑖𝑖 (they are usually called 𝑀𝑀𝑖𝑖)

𝑀𝑀0 = 𝑍𝑍1𝑋𝑋2𝑋𝑋3𝑍𝑍4
𝑀𝑀1 = 𝑍𝑍2𝑋𝑋3𝑋𝑋4𝑍𝑍0
𝑀𝑀2 = 𝑍𝑍3𝑋𝑋4𝑋𝑋0𝑍𝑍1
𝑀𝑀3 = 𝑍𝑍4𝑋𝑋0𝑋𝑋1𝑍𝑍2

qubit numbering: 𝑘𝑘 = 0, 1, 2, 3, 4

𝑀𝑀𝑖𝑖𝑀𝑀𝑗𝑗 = 𝑀𝑀𝑗𝑗𝑀𝑀𝑖𝑖 (commute) because 𝑋𝑋𝑘𝑘𝑍𝑍𝑘𝑘 = −𝑍𝑍𝑘𝑘𝑋𝑋𝑘𝑘,
and exactly two pairs of anticommuting operators

There is no 𝑀𝑀4 = 𝑍𝑍0𝑋𝑋1𝑋𝑋2𝑍𝑍3
because 𝑀𝑀4 = 𝑀𝑀0𝑀𝑀1𝑀𝑀2𝑀𝑀3

𝑀𝑀𝑖𝑖
2 = �1 for all of them because 𝑋𝑋𝑘𝑘2 = 𝑍𝑍𝑘𝑘2 = �1

Encoding:

0 𝐿𝐿 = 1
4
�1 + 𝑀𝑀0 �1 + 𝑀𝑀1 �1 + 𝑀𝑀2 �1 + 𝑀𝑀3 00000

1 𝐿𝐿 = 1
4
�1 + 𝑀𝑀0 �1 + 𝑀𝑀1 �1 + 𝑀𝑀2 �1 + 𝑀𝑀3 11111

States 0 𝐿𝐿 and 1 𝐿𝐿 are orthogonal to each other because 0 𝐿𝐿 is a superposition of terms
with odd number of 0s and even number of 1s, while for 1 𝐿𝐿 it is even number of 0s and
odd number of 1s (each 𝑀𝑀𝑖𝑖 flips 2 qubits). Possible to check that 0 𝐿𝐿, 1 𝐿𝐿 are normalized.

5-qubit code (cont.)
𝑀𝑀0 = 𝑍𝑍1𝑋𝑋2𝑋𝑋3𝑍𝑍4
𝑀𝑀1 = 𝑍𝑍2𝑋𝑋3𝑋𝑋4𝑍𝑍0
𝑀𝑀2 = 𝑍𝑍3𝑋𝑋4𝑋𝑋0𝑍𝑍1
𝑀𝑀3 = 𝑍𝑍4𝑋𝑋0𝑋𝑋1𝑍𝑍2

0 𝐿𝐿 and 1 𝐿𝐿 are eigenstates of all 𝑀𝑀𝑖𝑖 with eigenvalue +1; this is because
all 𝑀𝑀𝑖𝑖 commute and 𝑀𝑀𝑖𝑖 �1 + 𝑀𝑀𝑖𝑖 = �1 + 𝑀𝑀𝑖𝑖.

0 𝐿𝐿 = 1
4
�1 + 𝑀𝑀0 �1 + 𝑀𝑀1 �1 + 𝑀𝑀2 �1 + 𝑀𝑀3 00000

1 𝐿𝐿 = 1
4
�1 + 𝑀𝑀0 �1 + 𝑀𝑀1 �1 + 𝑀𝑀2 �1 + 𝑀𝑀3 11111

Therefore, measurement of 𝑀𝑀𝑖𝑖 does not disturb superposition
𝜓𝜓 = 𝛼𝛼 0 𝐿𝐿 + 𝛽𝛽 1 𝐿𝐿 (it is also an eigenvector with eigenvalue +1).

It is possible to check that if we apply 𝑋𝑋𝑘𝑘 (or 𝑌𝑌𝑘𝑘 or 𝑍𝑍𝑘𝑘) to one qubit, then 𝑋𝑋𝑘𝑘 𝜓𝜓 , 𝑌𝑌𝑘𝑘 𝜓𝜓 ,
and 𝑍𝑍𝑘𝑘 𝜓𝜓 are also eigenvectors of all 𝑀𝑀𝑖𝑖, but with different sets of eigenstates.

𝑀𝑀0 𝑀𝑀1 𝑀𝑀2 𝑀𝑀3

𝜓𝜓 + + + +

𝑋𝑋0 𝜓𝜓 + − + +

𝑌𝑌0 𝜓𝜓 + − − −

Full table:

(and all other cases)

5-qubit code: circuits
Encoding

𝛼𝛼 0 + 𝛽𝛽|1〉
𝛼𝛼 0 𝐿𝐿
+𝛽𝛽 1 𝐿𝐿

Measurement of
error syndrome

𝑀𝑀0 = 𝑍𝑍1𝑋𝑋2𝑋𝑋3𝑍𝑍4
𝑀𝑀1 = 𝑍𝑍2𝑋𝑋3𝑋𝑋4𝑍𝑍0
𝑀𝑀2 = 𝑍𝑍3𝑋𝑋4𝑋𝑋0𝑍𝑍1
𝑀𝑀3 = 𝑍𝑍4𝑋𝑋0𝑋𝑋1𝑍𝑍2

0

0
0
0

𝜓𝜓

meas.

meas.

meas.

meas. 𝑀𝑀0

𝑀𝑀1

𝑀𝑀2

𝑀𝑀3

(not easy to understand)

7-qubit code (Steane)

Why do we need it? 5-qubit code is shorter! (9-qubit code is not useful
though easy to understand)

7-qubit code is quite popular because it is good for “fault-tolerant” QC:
Several important logic operations can be done without decoding
(so far we considered only “memory”, it is also good for “logic”)

7 qubits ⇒ 1 + 3 × 7 = 22 scenarios ⇒ need at least 5 operators 𝐴𝐴𝑖𝑖 (25 = 32)

However, this code uses 6 operators for error syndrome:

𝑀𝑀0 = 𝑋𝑋0𝑋𝑋4𝑋𝑋5𝑋𝑋6
𝑀𝑀1 = 𝑋𝑋1𝑋𝑋3𝑋𝑋5𝑋𝑋6
𝑀𝑀2 = 𝑋𝑋2𝑋𝑋3𝑋𝑋4𝑋𝑋6

𝑁𝑁0 = 𝑍𝑍0𝑍𝑍4𝑍𝑍5𝑍𝑍6
𝑁𝑁1 = 𝑍𝑍1𝑍𝑍3𝑍𝑍5𝑍𝑍6
𝑁𝑁2 = 𝑍𝑍2𝑍𝑍3𝑍𝑍4𝑍𝑍6

Up to renumbering, this is
the classical Hamming code

(different notation in N-C book)

6 5 4 3 2 1 0

X X X X

X X X X

X X X X

The same combinations for 𝑀𝑀𝑖𝑖 and 𝑁𝑁𝑖𝑖, only 𝑋𝑋 ↔ 𝑍𝑍

For all of them 𝑀𝑀𝑖𝑖
2 = 𝑁𝑁𝑖𝑖2 = �1, so eigenvalues ±1

All of them commute with each other
([𝑀𝑀𝑖𝑖,𝑀𝑀𝑗𝑗] = 0 trivially, [𝑁𝑁𝑖𝑖, 𝑁𝑁𝑗𝑗] = 0 trivially,
[𝑀𝑀𝑖𝑖, 𝑁𝑁𝑗𝑗] = 0 because even number of anticommuting pairs)

Since all of them commute, they divide 27-dim. Hilbert space into 26 = 64 2D subspaces

7-qubit code (cont.)
𝑀𝑀0 = 𝑋𝑋0𝑋𝑋4𝑋𝑋5𝑋𝑋6
𝑀𝑀1 = 𝑋𝑋1𝑋𝑋3𝑋𝑋5𝑋𝑋6
𝑀𝑀2 = 𝑋𝑋2𝑋𝑋3𝑋𝑋4𝑋𝑋6

𝑁𝑁0 = 𝑍𝑍0𝑍𝑍4𝑍𝑍5𝑍𝑍6
𝑁𝑁1 = 𝑍𝑍1𝑍𝑍3𝑍𝑍5𝑍𝑍6
𝑁𝑁2 = 𝑍𝑍2𝑍𝑍3𝑍𝑍4𝑍𝑍6

6 5 4 3 2 1 0
X X X X
X X X X
X X X X

Encoding
0 𝐿𝐿 = 1

8
�1 + 𝑀𝑀0 �1 + 𝑀𝑀1 �1 + 𝑀𝑀2 0000000

1 𝐿𝐿 = 1
8
�1 + 𝑀𝑀0 �1 + 𝑀𝑀1 �1 + 𝑀𝑀2 1111111

Orthogonal because 0 𝐿𝐿 contains terms with odd number of 0s , while even for 1 𝐿𝐿

𝜓𝜓 = 𝛼𝛼 0 𝐿𝐿 + 𝛽𝛽 1 𝐿𝐿 is an eigenvector of all 𝑀𝑀𝑖𝑖 and 𝑁𝑁𝑖𝑖 with eigenvalues +1
(because 𝑀𝑀𝑖𝑖 �1 + 𝑀𝑀𝑖𝑖 = �1 + 𝑀𝑀𝑖𝑖, also 𝑁𝑁𝑖𝑖 commute with (�1 + 𝑀𝑀𝑗𝑗),

and 0 7 and 1 7 are eigenstates of 𝑁𝑁𝑖𝑖 with eigenvalue +1)

All 21 errors and correct codeword are distinguishable (states after errors are still eigenstates
of 𝑀𝑀𝑖𝑖 and 𝑁𝑁𝑖𝑖 because 𝑋𝑋𝑘𝑘, 𝑌𝑌𝑘𝑘, 𝑍𝑍𝑘𝑘 either commute or anticommute with 𝑀𝑀𝑖𝑖 and 𝑁𝑁𝑖𝑖)
If 𝑋𝑋𝑘𝑘 error occurs, then all 𝑀𝑀𝑖𝑖 are still +1 (because commute with 𝑋𝑋𝑘𝑘), while one or two
or three 𝑁𝑁𝑖𝑖 become −1 (easy to see). From “pattern”, we find qubit 𝑘𝑘 affected by error.

Similarly, if 𝑍𝑍𝑘𝑘 error occurs, then 𝑁𝑁𝑖𝑖 are still +1, but some 𝑀𝑀𝑖𝑖 change to −1
If 𝑌𝑌𝑘𝑘 = 𝑍𝑍𝑘𝑘𝑋𝑋𝑘𝑘 error occurs, then both 𝑀𝑀𝑖𝑖 and 𝑁𝑁𝑖𝑖 change (the same pattern)

After detecting the error, we correct it by applying 𝑋𝑋𝑘𝑘, 𝑌𝑌𝑘𝑘, 𝑍𝑍𝑘𝑘 (or nothing)

7-qubit code (cont.)
𝑀𝑀0 = 𝑋𝑋0𝑋𝑋4𝑋𝑋5𝑋𝑋6
𝑀𝑀1 = 𝑋𝑋1𝑋𝑋3𝑋𝑋5𝑋𝑋6
𝑀𝑀2 = 𝑋𝑋2𝑋𝑋3𝑋𝑋4𝑋𝑋6

𝑁𝑁0 = 𝑍𝑍0𝑍𝑍4𝑍𝑍5𝑍𝑍6
𝑁𝑁1 = 𝑍𝑍1𝑍𝑍3𝑍𝑍5𝑍𝑍6
𝑁𝑁2 = 𝑍𝑍2𝑍𝑍3𝑍𝑍4𝑍𝑍6

6 5 4 3 2 1 0
X X X X
X X X X
X X X X

Encoding
0 𝐿𝐿 = 1

8
1 + 𝑀𝑀0 1 + 𝑀𝑀1 1 + 𝑀𝑀2 0000000

1 𝐿𝐿 = 1
8

1 + 𝑀𝑀0 1 + 𝑀𝑀1 1 + 𝑀𝑀2 1111111

Not all 26 = 64 combinations of the error syndrome are used (only 1 + 3 × 7 = 22).
Remaining 42 combinations correspond to two-qubit errors 𝑋𝑋𝑖𝑖𝑍𝑍𝑗𝑗 (7 × 6 = 42);
this is useful, but not quite, because errors 𝑍𝑍𝑖𝑖𝑍𝑍𝑗𝑗, 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗, etc. are not dealt with.

7-qubit code: encoding circuit

Encoding

𝛼𝛼 0 + 𝛽𝛽|1〉 𝛼𝛼 0 𝐿𝐿 +𝛽𝛽 1 𝐿𝐿

0 𝐿𝐿 = 1
8

1 + 𝑀𝑀0 1 + 𝑀𝑀1 1 + 𝑀𝑀2 0000000

1 𝐿𝐿 = 1
8

1 + 𝑀𝑀0 1 + 𝑀𝑀1 1 + 𝑀𝑀2 1111111

(not very easy to understand, but not very difficult either)

7-qubit code: circuit for error syndrome

𝑀𝑀0 = 𝑋𝑋0𝑋𝑋4𝑋𝑋5𝑋𝑋6
𝑀𝑀1 = 𝑋𝑋1𝑋𝑋3𝑋𝑋5𝑋𝑋6
𝑀𝑀2 = 𝑋𝑋2𝑋𝑋3𝑋𝑋4𝑋𝑋6

𝑁𝑁0 = 𝑍𝑍0𝑍𝑍4𝑍𝑍5𝑍𝑍6
𝑁𝑁1 = 𝑍𝑍1𝑍𝑍3𝑍𝑍5𝑍𝑍6
𝑁𝑁2 = 𝑍𝑍2𝑍𝑍3𝑍𝑍4𝑍𝑍6

Measurement of
error syndrome

(usual idea)

0
0
0

0
0

0

|𝜓𝜓〉

meas.

meas.

meas.

meas.

meas.

meas. 𝑁𝑁0
𝑁𝑁1

𝑁𝑁2

𝑀𝑀0

𝑀𝑀1

𝑀𝑀2

7-qubit code: direct operations on 7-qubit codewords
Now discuss why 7-qubit code is so popular: it allows some logic operations to be done
directly on the encoded 7-qubit state (without decoding)

Several important gates on logic qubits are realized as tensor products of gates
on physical qubits (“transversal gates”, “bitwise”)

1. 𝑋𝑋-operation on logic qubit ↔ 𝑋𝑋⊗7 on physical qubits
𝑋𝑋
𝑋𝑋

𝑋𝑋
. . . .

7

Easy to see that 𝑋𝑋⊗7 0 𝐿𝐿 = 1 𝐿𝐿, 𝑋𝑋⊗7 1 𝐿𝐿 = 0 𝐿𝐿 (because
all 𝑋𝑋𝑖𝑖 commute and construction of 0 𝐿𝐿 and 1 𝐿𝐿 uses only 𝑋𝑋𝑖𝑖)

0 𝐿𝐿 = 1
8
�1 + 𝑀𝑀0 �1 + 𝑀𝑀1 �1 + 𝑀𝑀2 0000000

1 𝐿𝐿 = 1
8
�1 + 𝑀𝑀0 �1 + 𝑀𝑀1 �1 + 𝑀𝑀2 1111111

𝑀𝑀0 = 𝑋𝑋0𝑋𝑋4𝑋𝑋5𝑋𝑋6
𝑀𝑀1 = 𝑋𝑋1𝑋𝑋3𝑋𝑋5𝑋𝑋6
𝑀𝑀2 = 𝑋𝑋2𝑋𝑋3𝑋𝑋4𝑋𝑋6

2. Similarly, 𝑍𝑍-operation on logic qubit ↔ 𝑍𝑍⊗7 on physical qubits

To prove, we need to show that 𝑍𝑍⊗7 0 𝐿𝐿 = 0 𝐿𝐿 and 𝑍𝑍⊗7 1 𝐿𝐿 = − 1 𝐿𝐿 (then linearity)

This is because 𝑍𝑍⊗7 commutes with 𝑀𝑀𝑖𝑖 (4 anticommuting pairs),
while 𝑍𝑍⊗7 0000000 = |0000000〉 and 𝑍𝑍⊗7 1111111 = −|1111111〉

7-qubit code: transversal gates

1. 𝑋𝑋-operation on logic qubit ↔ 𝑋𝑋⊗7 on physical qubits, 𝑋𝑋𝐿𝐿 = 𝑋𝑋⊗7

2. 𝑍𝑍-operation on logic qubit ↔ 𝑍𝑍⊗7 on physical qubits, 𝑍𝑍𝐿𝐿 = 𝑍𝑍⊗7

3. The same for 𝑌𝑌-operation since 𝑌𝑌 = 𝑍𝑍𝑍𝑍 (composition), 𝑌𝑌𝐿𝐿 = 𝑌𝑌⊗7

(Actually, the same for 5-qubit code: logic 𝑋𝑋, 𝑌𝑌, and 𝑍𝑍 are easy to implement)

4. The same for Hadamard: 𝐻𝐻𝐿𝐿 = 𝐻𝐻⊗7 (not possible in 5-qubit code)

(Proof is not very short, will not discuss).

5. Most importantly, CNOT can also be implemented qubit-by-qubit

logic
qubit 1

logic
qubit 2

7-qubit code: transversal CNOT

logic
qubit 1

logic
qubit 2

𝑀𝑀0 = 𝑋𝑋0𝑋𝑋4𝑋𝑋5𝑋𝑋6
𝑀𝑀1 = 𝑋𝑋1𝑋𝑋3𝑋𝑋5𝑋𝑋6
𝑀𝑀2 = 𝑋𝑋2𝑋𝑋3𝑋𝑋4𝑋𝑋6

0 𝐿𝐿 = 1
8
�1 + 𝑀𝑀0 �1 + 𝑀𝑀1 �1 + 𝑀𝑀2 0000000

1 𝐿𝐿 = 1
8
�1 + 𝑀𝑀0 �1 + 𝑀𝑀1 �1 + 𝑀𝑀2 1111111

Not too hard to see why it works:

0 𝐿𝐿 and 1 𝐿𝐿 (and their superpositions) are not changed by operators 𝑀𝑀𝑖𝑖 (eigenvalue 1).

Therefore, if control is 0 𝐿𝐿 = 1
8
��1 + 𝑀𝑀0 + 𝑀𝑀1 + 𝑀𝑀2 + 𝑀𝑀0𝑀𝑀1 + 𝑀𝑀0𝑀𝑀2 + 𝑀𝑀1𝑀𝑀2 +

Now, if control is 1 𝐿𝐿 = 𝑋𝑋⊗7 0 𝐿𝐿, then extra flip of each target qubit;
since any 𝑋𝑋𝑖𝑖 commutes with any 𝑀𝑀𝑗𝑗, this is equivalent to the flip 0 𝐿𝐿 ↔ 1 𝐿𝐿 for target.

Fault-tolerant QC

So, we can do logical operations without decoding, and error correction can be
used at each step. We can correct faulty gates as well (if only one works
incorrectly); this works for one-qubit gates and also for CNOT (then errors are in
two blocks and can both be corrected).

These are main requirements of a “fault-tolerant” QC

Again, 1) do logic without decoding, 2) correct faulty gates, single-qubit errors
do not become multi-qubit errors.

Fault tolerance: failure of a component leads to at most one error in each encoded block

Many tricks to make each step of a QC operation fault-tolerant, including
production of ancillas, measurement, gates, “wires”, etc.

Recently much attention to topological codes: toric code (Kitaev), surface codes,
color codes, etc.

Example: Surface code for superconducting qubits

A.G. Fowler, M. Mariantoni, J.M. Martinis,
and A.N. Cleland, PRA 86, 032324 (2012)

4-qubit operators measured
Data qubits and ancilla qubits
Only nearest neighbors involved

Threshold theorem

Threshold theorem: If error correction lowers error probability and everything is
fault-tolerant, then concatenation makes error probability arbitrarily small.

More quantitatively, if 𝑝𝑝 < 𝑝𝑝𝑡𝑡𝑡 (𝑝𝑝 is failure probability for a component, 𝑝𝑝𝑡𝑡𝑡 is a threshold),
then an ideal circuit with 𝑀𝑀(𝑛𝑛) gates can be realized with error probability < 𝜀𝜀 by a circuit
with 𝑂𝑂[𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 log𝑀𝑀 𝑛𝑛 𝑝𝑝𝑡𝑡𝑡

𝜀𝜀
𝑀𝑀 𝑛𝑛] gates. (A big overhead is possible, but it is not exponential.)

polynomial of a fixed degree

Problem: the threshold 𝑝𝑝𝑡𝑡𝑡 is usually low, because we need many qubits
for error correction, and this increases the error probability

Currently 𝑝𝑝𝑡𝑡𝑡 ∼ 10−6 − 10−2 for different codes (surface codes claim 𝑝𝑝𝑡𝑡𝑡 ∼ 10−2)

Often people crudely say 𝑝𝑝𝑡𝑡𝑡 ∼ 10−4

This is what makes QC potentially possible

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39

