EE201/MSE207 Lecture 6

Finite square well: scattering states

TISE $\quad-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V(x) \psi=E \psi \quad$ Now E is given (any energy is possible)

$$
\begin{aligned}
& \text { Again } 3 \text { regions: } \\
& \qquad x<-a, \quad \psi(x)=A e^{i k x}+B e^{-i k x}, \quad k=\frac{\sqrt{2 m E}}{\hbar}
\end{aligned}
$$

(definition of k as for free particle)

$$
\begin{array}{ll}
|x|<a, & \psi(x)=C \sin (l x)+D \cos (l x), \quad l=\sqrt{2 m\left(E+V_{0}\right)} / \hbar \quad \text { (as before) } \\
x>a, & \psi(x)=F e^{i k x}+G e^{-i k x}
\end{array}
$$

4 boundary conditions, 6 variables (E is given, no normalization) No hope to find unique solution. But there should not be a unique solution! Let us focus on physical meaning (important to find a proper question).

Add time dependence
 (as for free particle; different phase and group velocities, but the same direction)

Similarly for $x>a$

(if necessary, wave packets can be constructed later; in reality nobody usually does it because it is too complicated; instead, people work with unnormalized states)

Assume that the wave is incident from the left, then $G=0$

We have 5 variables (A, B, C, D, F) and 4 equations. Equations are linear.
Can express B, C, D, F as functions of A (incident amplitude).

Proper questions

Goal: find ratios $r=\frac{B}{A}$ and $t=\frac{F}{A}$ (these ratios are called reflection and transmission amplitudes)
Reflection coefficient (probability of reflection) $\quad R=|r|^{2}=\frac{|B|^{2}}{|A|^{2}}$
Transmission coefficient (probability of transmission) $\quad T=|t|^{2}=\frac{|F|^{2}}{|A|^{2}}$

$$
\text { From physical meaning } \quad T+R=1
$$

Remark 1. Definition of T is sometimes different (discuss later, $\times v_{r} / v_{l}$)
Remark 2. Terminology: Reflection/transmission amplitudes (r, t) and coefficients (R, T)

Remark 3. We defined R and T as ratios; they become probabilities for wave packets (possible to show). Quadratic because probability $\propto|\Psi|^{2}$.

Finding T and R
$x<-a, \quad \psi(x)=A e^{i k x}+B e^{-i k x}$
$|x|<a, \quad \psi(x)=C \sin (l x)+D \cos (l x)$

$x>a, \quad \psi(x)=F e^{i k x}$
Boundary conditions:

$$
\begin{aligned}
& \text { Is: } \\
& x=-a\left\{\begin{array}{l}
A e^{-i k a}+B e^{i k a}=-C \sin (l a)+D \cos (l a) \\
i k\left[A e^{-i k a}-B e^{i k a}\right]=l[C \cos (l a)+D \sin (l a)]
\end{array}\right. \\
& x=a\left\{\begin{array}{l}
C \sin (l a)+D \cos (l a)=F e^{i k a} \\
l\left[C \cos (l a)-D \sin (l a)=i k F e^{i k a}\right.
\end{array}\right.
\end{aligned}
$$

Simple to exclude C and D (similar combinations), then 2 equations with A, B, F
Finally

$$
\begin{cases}F=\frac{e^{-2 i k a}}{\cos (2 l a)-i \frac{\sin (2 l a)}{2 k l}\left(k^{2}+l^{2}\right)} A & k=\frac{\sqrt{2 m E}}{\hbar} \\ B=i \frac{\sin (2 l a)}{2 k l}\left(l^{2}-k^{2}\right) F & l=\frac{\sqrt{2 m\left(E+V_{0}\right)}}{\hbar}\end{cases}
$$

Finding T and R
$x<-a, \quad \psi(x)=A e^{i k x}+B e^{-i k x}$
$x>a, \quad \psi(x)=F e^{i k x}$

Transmission probability

$$
T=\frac{|F|^{2}}{|A|^{2}}=\frac{1}{1+\frac{V_{0}^{2}}{4 E\left(E+V_{0}\right)} \sin ^{2}\left(\frac{2 a}{\hbar} \sqrt{2 m\left(E+V_{0}\right)}\right)}
$$

Reflection probability

$$
R=1-T \quad \text { (too long from }|B|^{2} /|A|^{2} \text {) }
$$

Remark. $T=1$ if $\quad \frac{2 a}{\hbar} \sqrt{2 m\left(E+V_{0}\right)}=n \pi \quad \Leftrightarrow \quad E+V_{0}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m(2 a)^{2}}$
This is exactly the "simple" energy quantization (in infinite well).
Explanation: destructive interference of reflected waves (similar to anti-reflective coating with quarter-wavelength films).

Now wave incident from the right

$$
\begin{array}{ll}
x<-a, & \psi(x)=B e^{-i k x} \\
x>a, & \psi(x)=F e^{i k x}+G e^{-i k x}
\end{array}
$$

Similarly, we can find transmission and reflection coefficients

$$
T_{\mathrm{r}}=\left|t_{\mathrm{r}}\right|^{2}=\frac{|B|^{2}}{|G|^{2}} \quad R_{\mathrm{r}}=\left|r_{\mathrm{r}}\right|^{2}=\frac{|F|^{2}}{|G|^{2}} \quad T_{\mathrm{r}}+R_{\mathrm{r}}=1
$$

In our case because of symmetry

$$
\begin{aligned}
& T_{\mathrm{r}}=T_{1}=T \\
& R_{\mathrm{r}}=T_{1}=R
\end{aligned}
$$

However, this is always true (for any potential $V(x)$ and possibly different masses)
T and R in general case

$$
T=\frac{|F|^{2}}{|A|^{2}} \sqrt{E-V(+\infty)} \sqrt{E-V(-\infty)} \sqrt{\left.\frac{m_{1}}{m_{2}}=\frac{|F|^{2}}{|A|^{2}} \frac{k_{2} / m_{2}}{k_{1} / m_{1}}=\frac{|F|^{2}}{\mid A v_{2}^{2}} \frac{v_{2}}{v_{1}}=|t|_{2} \frac{v_{2}}{v_{1}}\right]}
$$

Why? Probability current $J=\frac{i \hbar}{2 m}\left(\psi \frac{d \psi^{*}}{d x}-\psi^{*} \frac{d \psi}{d x}\right) \quad$ (remember that $m^{-1} \frac{d \psi}{d x}$ is If $\psi(x)=A e^{i k x}$, then $J=|A|^{2} \frac{\hbar k}{m}=|A|^{2} v$ continuous, not just $\frac{d \psi}{d x}$)

The same velocity for reflection, but may be different for transmission

Transmission/reflection for δ-potential

$$
\begin{array}{r}
\substack{\text { Integrate TISE near zero, } \\
\varepsilon \rightarrow 0} \\
\int_{-\varepsilon}^{\varepsilon} \ldots \Rightarrow \\
\frac{d \psi(+0)}{d x}-\frac{\hbar^{2}}{2 m}\left[\psi^{\prime}(\varepsilon)-\psi^{\prime}(-\varepsilon)\right]+\alpha \psi(0)=0 \\
d x
\end{array}=\frac{2 m \alpha}{\hbar^{2}} \psi(0)
$$

With δ-potential, $d \psi / d x$ has a step (not continuous).
Boundary conditions

$$
\left\{\begin{array}{l}
A+B=F+G \\
i k(F-G)-i k(A-B)=\frac{2 m \alpha}{\hbar^{2}}(A+B)
\end{array}\right.
$$

If $G=0$ (incident from the left), then

$$
\frac{B}{A}=\frac{-i \frac{m \alpha}{\hbar^{2} k}}{1+i \frac{m \alpha}{\hbar^{2} k}}, \quad \frac{F}{A}=\frac{1}{1+i \frac{m \alpha}{\hbar^{2} k}}
$$

Scattering matrix (now waves incident from both sides)

Out of 4 wave amplitudes $(A, B, F, G), 2$ free parameters, and the other 2 can be calculated (linear relations)
Why 2 free parameters? 1) it was 2 in rectangular well
2) TISE is a second-order dif. eq. $\Rightarrow 2$ boundary conditions

Suppose we found transmission/reflection amplitudes $\left(t_{l}, r_{l}\right)$ for the wave incident from the left and also from the right $\left(t_{r}, r_{r}\right)$.
It is convenient to write these 4 complex numbers as a 2×2 matrix.

$$
\begin{aligned}
& \hat{S}=\left(\begin{array}{ll}
r_{l} & t_{r} \\
t_{l} & r_{r}
\end{array}\right)=\left(\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right) \quad \text { What is the meaning? } \quad\binom{B}{F}=\hat{S}\binom{A}{G} \\
& \text { (scattering matrix) } \\
& \text { (outgoing via incoming) }
\end{aligned}
$$

Scattering matrix (S-matrix)

$\hat{S}=\left(\begin{array}{ll}r_{l} & t_{r} \\ t_{l} & r_{r}\end{array}\right)=\left(\begin{array}{ll}S_{11} & S_{12} \\ S_{21} & S_{22}\end{array}\right) \quad$ What is the meaning? $\quad\binom{B}{F}=\hat{S}\binom{A}{G}$ (outgoing via incoming)

Suppose $G=0$, then $\binom{B}{F}=\binom{r_{l} A}{t_{l} A} \quad$ Suppose A $=0$, then $\binom{B}{F}=\binom{t_{r} G}{r_{r} G}$
$T_{l}=\left|t_{l}\right|^{2}=\left|S_{21}\right|^{2}, \quad R_{l}=\left|r_{l}\right|^{2}=\left|S_{11}\right|^{2}$
$T_{r}=\left|t_{r}\right|^{2}=\left|S_{12}\right|^{2}, \quad R_{r}=\left|r_{r}\right|^{2}=\left|S_{22}\right|^{2}$ in general case are different)

Let us prove $\quad\left\{\begin{array}{l}R_{l}=R_{r} \\ T_{l}=T_{r}\end{array} \quad\right.$ (for brevity will use notation: $t_{l}=t, r_{l}=r$)

Symmetry of the scattering matrix

Our proof will use "graphical operations" with solutions of TISE

Symmetry of the S-matrix in general case

$V(-\infty) \neq V(\infty), m_{1} \neq m_{2}$
Still $\quad r_{r}=-r^{*} \frac{t}{t^{*}}$
But $\quad t_{r}=\frac{1-|r|^{2}}{t^{*}}=\frac{|t|^{2} \frac{v_{2}}{v_{1}}}{t^{*}}=t \frac{v_{2}}{v_{1}} \quad \frac{v_{2}}{v_{1}}=\frac{k_{2} / m_{2}}{k_{1} / m_{1}}$

$$
\hat{S}=\left(\begin{array}{cc}
r & t \frac{v_{2}}{v_{1}} \\
t & -r^{*} \frac{t}{t^{*}}
\end{array}\right)
$$

Then $\quad T_{r}=\left|t_{r}\right|^{2} \frac{v_{1}}{v_{2}}=|t|^{2} \frac{v_{2}}{v_{1}}=T_{l}$

$$
R_{r}=R_{l}
$$

$$
\Rightarrow \text { still }\left\{\begin{array}{l}
T_{r}=T_{l} \\
R_{r}=R_{l}
\end{array}\right.
$$

Transfer matrix (M-matrix or T-matrix)

Sometimes instead of $\binom{B}{F}=\hat{S}\binom{A}{G}$

it is more convenient to use $\underbrace{\binom{F}{G}}_{\text {right }})=\widehat{M} \underbrace{\binom{A}{B}}_{\text {left }}$
If we know \hat{S}, then it is easy to calculate \widehat{M}, and vice versa.
Why \widehat{M} is convenient?

$$
\widehat{M}_{\text {total }}=\widehat{M}_{2} \widehat{M}_{1}
$$

For a multi-barrier structure, all \widehat{M}_{i} are similar, therefore it is simple to calculate $\widehat{M}_{\text {total }}$. (Actually, each \widehat{M}_{i} also contains a phase factor, depending on x-position.)

M-matrix: symmetries and relation to S-matrix

(simple case, $v_{1}=v_{2}$)
Symmetries of M-matrix

$$
\begin{aligned}
& \text { 1) } M_{22}=M_{11}^{*} \\
& \text { 2) } M_{12}=M_{21}^{*} \\
& \text { 3) } \operatorname{det} \widehat{M}=1
\end{aligned}
$$

(can be derived from symmetries of S-matrix)

$$
\binom{B}{F}=\left(\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right)\binom{A}{G} \quad\binom{F}{G}=\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right)\binom{A}{B}
$$

Conversion

$$
\begin{aligned}
& S_{11}=-\frac{M_{21}}{M_{22}}=-\frac{M_{12}^{*}}{M_{22}} \\
& S_{22}=\frac{M_{12}}{M_{22}} \\
& S_{12}=S_{21}=\frac{1}{M_{22}}
\end{aligned}
$$

$$
\begin{aligned}
& M_{11}=\frac{1}{S_{12}^{*}}=\frac{1}{S_{21}^{*}} \\
& M_{22}=\frac{1}{S_{12}} \\
& M_{12}=-\frac{S_{11}^{*}}{S_{12}^{*}}=\frac{S_{22}}{S_{12}} \\
& M_{21}=-\frac{S_{11}}{S_{12}}
\end{aligned}
$$

