Predictable Shared Cache Management for Multi-Core
Real-Time Virtualization

HYOSEUNG KIM, University of California, Riverside
RAGUNATHAN (RAJ) RAJKUMAR, Carnegie Mellon University

Real-time virtualization has gained much attention for the consolidation of multiple real-time systems onto
a single hardware platform while ensuring timing predictability. However, a shared last-level cache (LLC)
on modern multi-core platforms can easily hamper the timing predictability of real-time virtualization due
to the resulting temporal interference among consolidated workloads. Since such interference caused by
the LLC is highly variable and may have not even existed in legacy systems to be consolidated, it poses
a significant challenge for real-time virtualization. In this article, we propose a predictable shared cache
management framework for multi-core real-time virtualization. Our framework introduces two hypervisor-
level techniques, vLLC and vColoring, that enable the cache allocation of individual tasks running in a virtual
machine (VM), which is not achievable by the current state of the art. Our framework also provides a cache
management scheme that determines cache allocation to tasks, designs VMs in a cache-aware manner, and
minimizes the aggregated utilization of VMs to be consolidated. As a proof of concept, we implemented
vLLC and vColoring in the KVM hypervisor running on x86 and ARM multi-core platforms. Experimental
results with three different guest OSs (i.e., Linux/RK, vanilla Linux, and MS Windows Embedded) show that
our techniques can effectively control the cache allocation of tasks in VMs. Our cache management scheme
yields a significant utilization benefit compared to other approaches while satisfying timing constraints.

CCS Concepts: « Computer systems organization — Embedded and cyber-physical systems; Embed-
ded software; Real-time systems; Real-time operating systems;

Additional Key Words and Phrases: Cache management, shared cache, multi-core architectures, virtualiza-
tion, real-time systems, cyber-physical systems

ACM Reference format:

Hyoseung Kim and Ragunathan (Raj) Rajkumar. 2017. Predictable Shared Cache Management for Multi-Core
Real-Time Virtualization. ACM Trans. Embed. Comput. Syst. 17, 1, Article 22 (December 2017), 27 pages.
https://doi.org/10.1145/3092946

1 INTRODUCTION

With the increase of core counts on modern processors, there is a high demand for consolidating
multiple real-time systems onto a single hardware platform. One of the promising solutions for
such consolidation is virtualization. With virtualization, each consolidated system is contained
within a virtual machine (VM), which is spatially isolated from other VMs by an additional
address translation layer introduced by a hypervisor. Figure 1 illustrates the three address layers

Authors’ addresses: H. Kim, Department of Electrical and Computer Engineering, University of California, 900 University
Ave, Riverside, CA 92521, USA; R. (Raj) Rajkumar, Department of Electrical and Computer Engineering, Carnegie Mellon
University 5000 Forbes Ave, Pittsburgh, PA 15213, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM 1539-9087/2017/12-ART22 $15.00

https://doi.org/10.1145/3092946

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

22

https://doi.org/10.1145/3092946
mailto:permissions@acm.org
https://doi.org/10.1145/3092946

22:2 H. Kim and R. (Raj) Rajkumar

VM1 VM2
Task 1 Task 2 Task 3 Task 4

[(TT0 [0 || [IID0 [TLT] [} ovestvirwatooses

} Guest physical pages

T

} Host physical pages

Fig. 1. Address translation layers in virtualization.

in modern virtualization platforms, such as Xen [3] and KVM [28]. Guest virtual pages for appli-
cation tasks within a VM are mapped to guest physical pages by the guest OS of that VM, and those
guest physical pages are mapped to host physical pages by the hypervisor. Using this approach,
the hypervisor ensures that any software failure in one VM does not propagate to other VMs.

The foremost requirement for real-time system virtualization is ensuring timing predictability.
Hierarchical real-time scheduling theory [12, 43, 47, 48, 59] and its implementations [25, 32, 56]
have established a good foundation for this requirement. However, shared hardware resources on
recent multi-core platforms, such as a last-level cache (LLC) and a memory bus, have not been thor-
oughly considered in the context of real-time virtualization. Since contention in those resources
can cause significant temporal interference among consolidated workloads, the requirement of
timing predictability cannot be fully satisfied without considering their effects. In this article, we
focus on the predictable management of a shared LLC in a virtualization environment.

Many previous approaches developed for nonvirtualized multi-core systems [21, 38, 52, 55] use
page coloring to address “cache interference,” which is the temporal interference caused by a shared
LLC. Page coloring is an OS-level technique to control the cache allocation of tasks in software
by assigning physical pages corresponding to specific cache sets to the tasks. Since page coloring
does not require any hardware feature beyond that available on most of today’s processors, it is
considered a practical technique. However, page coloring and cache allocation algorithms based
on it cannot function properly in a VM due to the additional address layer shown in Figure 1.
Although a guest OS selects guest physical pages for page coloring, those pages may be mapped to
host physical pages corresponding to cache sets different from the ones intended by the guest OS,
resulting in unpredictable cache allocation. Even if page coloring works in a VM, tasks running on
other guest OSs that do not support page coloring will suffer from cache interference. Also, cache
allocation algorithms developed for nonvirtualized systems cannot provide an efficient solution to
design a VM and to allocate the host machine’s LLC to VMs to be consolidated.

In this article, we propose a predictable shared cache management framework for multi-core
real-time virtualization. To address the problem of cache-to-task allocation in a VM, our framework
supports two new hypervisor-level techniques, vLLC and vColoring. vLLC is designed for a VM
that runs a guest OS with page coloring support. vLLC provides such a VM with a portion of
the host machine’s LLC in the form of a virtual LLC. Then, vLLC enables the guest OS to control
the virtual LLC by using its own implementation of page coloring. vColoring, on the other hand,
is designed for a VM that runs a guest OS having no page coloring support. vColoring allows
the hypervisor to directly assign a portion of the host LLC to a task running in a VM. Hence, with
vColoring, we can even control the cache allocation of tasks running on proprietary, closed-source
OSs that do not support page coloring. We have implemented prototypes of vLLC and vColoring
in the KVM hypervisor running on x86 and ARM multi-core platforms. Experimental results show
that vLLC and vColoring are effective in controlling cache allocation to tasks and in addressing

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

Predictable Shared Cache Management for Multi-Core Real-Time Virtualization 22:3

cache interference on both an OS with page coloring (Linux/RK [21, 39]) and OSs without page
coloring (vanilla Linux and MS Windows Embedded).

We also propose a new cache management scheme as part of our framework. Our scheme de-
termines a cache-to-task allocation that reduces taskset utilization while satisfying timing con-
straints. Our scheme designs a VM in a way that the VM’s resource demand is captured with
respect to the number of cache colors allocated to it. When VMs are consolidated into the host
machine, our scheme finds a cache-to-VM allocation that minimizes the total VM utilization. We
use randomly generated tasksets for the evaluation of our cache management scheme. Experi-
mental results indicate that our scheme yields a significant benefit in VM utilization over other
approaches.

This article is an extended version of our conference paper [24], with the following new contri-
butions: (i) an expanded description of the proof-of-concept implementation, (ii) details on han-
dling cache allocation requests under vColoring, and (iii) more extensive experimental results.

The rest of this article is organized as follows. Section 2 reviews the background. Section 3
describes the system model used. Section 4 presents our vLLC and vColoring techniques. Section 5
presents our cache management scheme. Section 6 provides detailed evaluation. Section 7 reviews
related work. Section 8 concludes the article.

2 BACKGROUND

In this section, we give a brief description on scheduling, cache interference, and address transla-
tion in a virtualization environment, and we discuss the page coloring technique. For more details,
interested readers may refer to [7, 21, 33, 34, 52, 54].

2.1 Scheduling and Cache Interference in Virtualization

Virtualization generally features a two-level hierarchical scheduling structure. Each VM has one
or more virtual CPUs (VCPUs), each of which is shown as a processing core to a guest OS. Tasks
in a VM are scheduled on the VCPUs of that VM by the guest OS, and VCPUs are scheduled on
physical CPUs (PCPUs) by the hypervisor. Note that a VCPU is the smallest schedulable entity in
the hypervisor, analogous to a task in an OS. Hence, the hypervisor can execute only one VCPU
on each PCPU at a time.

Hierarchical scheduling theories studied in the context of real-time systems [12, 31, 43, 47, 48]
are well suited to the two-level scheduling structure of virtualization. Many researchers have re-
cently applied these real-time hierarchical scheduling theories to open-source virtualization plat-
forms (e.g., Xen [56, 57], KVM [11, 25], and L4/Fiasco) [60].

Cache interference among tasks in multi-core virtualization can be categorized into two types:
inter-VCPU and intra-VCPU. Inter-VCPU cache interference happens among tasks running on dif-
ferent VCPUs. Since those VCPUs can be scheduled on different PCPUs by the hypervisor, tasks on
different VCPUs may access the LLC simultaneously. In addition, when a VCPU preempts another
VCPU, the cache contents of tasks on the preempted VCPU may be evicted by tasks on the pre-
empting VCPU. Intra-VCPU cache interference happens among tasks running on the same VCPU.
Although tasks on the same VCPU cannot access the LLC simultaneously, a task preempting an-
other task may evict the cache contents of the preempted task.

2.2 Address Translation in Virtualization

There are three types of addresses in a virtualized environment: guest virtual addresses (GVA),
guest physical address (GPA), and host physical address (HPA). Whenever a GVA is accessed, it
needs to be translated to the corresponding HPA. Shadow paging and two-dimensional paging are
techniques that do such translation in full virtualization, where unmodified guest OSs can be used.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

22:4 H. Kim and R. (Raj) Rajkumar

|l/IMU Guest OS Guest page table |LIIMU Guest OS Guest page table
——I (GVA to GPA) (GVA to GPA)
Guest page table
write- trap base addr GPA
protected]
Host Shadow page table Host Host page table
machine (GVA to HPA) machine (GPA to HPA)
Page table Host page table
base addr base addr
e
(a) Shadow paging (b) Two-dimensional paging

Fig. 2. Address translation techniques in virtualization.

Color Index

Physical address | Physical page # ! | Page offset |

Cache mapping | | Set index | Line offset |

Fig. 3. Page coloring.

Shadow paging. Figure 2(a) illustrates an example of shadow paging. Under shadow paging, the
hypervisor generates shadow page tables where GVAs are directly mapped to HPAs. Although a
guest OS still maintains its own page tables, the memory management unit (MMU) uses the shadow
page tables for address translation so that a GVA can be directly translated to its corresponding
HPA without having GVA-to-GPA translation. To maintain the validity of contents of the shadow
page tables, the hypervisor has to keep track of any change in the guest page tables. A well-known
approach to doing this is to write-protect the guest page tables. Whenever a guest OS makes a
change to a write-protected guest page table, a page fault exception that causes a “world switch”
to the hypervisor happens. Then, the hypervisor catches the exception and updates the entry of
the corresponding shadow page table, which constitutes the major overhead of shadow paging.

Two-dimensional paging. Two-dimensional paging refers to hardware-assisted address transla-
tion techniques introduced in recent processors (e.g., AMD Nested Page Tables (NPT), Intel Ex-
tended Page Tables (EPT), and ARM Stage-2 Page Tables). Under two-dimensional paging, the
MMU can traverse both guest and host page tables, as shown in Figure 2(b). Hence, when a GVA
is accessed, the MMU first translates it to a GPA by using the guest page tables and then translates
that GPA to an HPA by using the host page tables. Such two-step address translation requires more
memory accesses than the direct GVA-to-HPA translation of shadow paging, but it eliminates the
overhead of maintaining valid shadow page tables.

Neither shadow paging nor two-dimensional paging dominates the other in terms of perfor-
mance [54]. It is also currently unknown which technique is preferable for real-time virtualiza-
tion. Therefore, one of our goals in this article is to develop a cache allocation technique that is
independent of a specific address translation technique used.

2.3 Page Coloring

Page coloring is a software technique to control a physically indexed set-associative cache, which
is the case for most LLCs on modern processors. On a physically indexed cache, page coloring uses
the mapping between physical addresses and cache set indices. As shown in Figure 3, there are
overlapping bits between the physical page number and the cache set index. Those overlapping

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

Predictable Shared Cache Management for Multi-Core Real-Time Virtualization 22:5

bits are used as a color index by page coloring. Since the OS has direct control over the mapping
between physical pages and the virtual pages of an application task, it can allocate specific cache
colors to a task by providing the task with physical pages corresponding to the cache colors.

The number of cache colors available in the system is calculated as follows: n = S/(W X P),
where n is the number of cache colors, S is the cache size, W is the number of ways of the cache,
and P is the size of a page frame and is typically 4KB. Hence, if S = 256KB, W = 16 and P = 4KB,
the number of cache colors n is 4. One implicit assumption in page coloring is that the number of
cache sets is a power of two. In some architectures like Intel Sandy Bridge and Haswell, the LLC
consists of cache slices, the number of which is equal to that of physical cores [14, 30]. As shown
in Kim et al. 2012 and Ye et al. 2014 [21, 61], although the mapping between physical addresses
and cache slices is not publicly known, page coloring on such architectures can be implemented
on a per cache-slice basis. This results in the number of cache colors equal ton = S/(W X P X Np),
where Np is the number of physical cores.

Page coloring was originally developed for a nonvirtualized system. In a virtualized system, page
coloring implemented in a guest OS can no longer map a task’s virtual page to a specific cache
color due to the additional address translation at the hypervisor. One simple approach to consider
is to implement page coloring in the hypervisor and assign cache colors to VMs, as proposed in Li
et al.,, Ma et al., and Shi et al. [32, 37, 46]. However, this approach cannot allocate cache colors to
individual tasks running in a VM. In other words, all tasks within the same VM share the cache
colors assigned to the VM and will suffer from inter- and intra-VCPU cache interference.

3 SYSTEM MODEL

We consider a multi-core host machine, where each PCPU runs at the same fixed clock frequency
and the LLC is shared among all PCPUs. The host machine runs a hypervisor hosting guest VMs
in full-virtualization mode. The hypervisor implements page coloring and partitions the LLC into
cache colors. Each cache color is represented as a unique integer. Guest OSs may or may not
support page coloring. We assume that each VM has been allocated a sufficient number of host
physical pages and that page swapping does not occur at runtime. This is a reasonable assumption
in real-time virtualization because, unlike in server virtualization, memory underprovisioning is
considered to be harmful to timing predictability [27]. Also, this assumption can be easily achieved
by VM admission control at the hypervisor.

Scheduling. We focus on partitioned fixed-priority preemptive scheduling for both the hypervisor
and guest OSs due to its wide usage, such as in OKL4 [13] and QNX Hypervisor [41]. Thus, each
VCPU is statically assigned to a single PCPU and each task is statically assigned to a single VCPU.
Any fixed-priority assignment (e.g., Rate Monotonic [35]) can be used for both VCPUs and tasks.

Task model. We consider periodic tasks with constrained deadlines. A task 7; is characterized by
the following parameters:
7 := (Ci(k), T;, D;)

o C;(k): the t-case execution time (WCET) of a task 7;, when it runs alone in the system with
k cache colors assigned to it

e T;: the period of 7;

e D;: the relative deadline of 7; (D; < T;)

C;(k) values are assumed to be known ahead of time. They can be obtained by either measurement-
based or static analysis tools. Capturing the overhead of virtualization in task execution time is
beyond the scope of this article. However, we believe this does not limit the applicability of our
work because its impact is relatively small (e.g., more than 99% of native performance can be

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

22:6 H. Kim and R. (Raj) Rajkumar

achieved in full-virtualization mode with recent hardware virtualization techniques [50]). We as-
sume that C;(k) is monotonically decreasing with k, which our algorithm in Section 5.3 needs
to reduce the search space. Although the actual WCET function may not be monotonic, this as-
sumption can be easily satisfied in practice by monotonic overapproximations of WCETs with
insignificant pessimism, as discussed in Altmeyer et al. [1].

Each task 7; has a unique priority ;. An arbitrary tie-breaking rule can be used to achieve
this under fixed-priority scheduling. Tasks are assumed not to share any data with others. Also,
tasks do not make dynamic memory allocation since it is typically prohibitive in many real-time
systems [38]. Relaxing those assumptions is part of our future work.

VM resource model. Each VM is represented as follows:
VM := (vy,0s,. .. ,vaCPu)

where v; is a VCPU and Ny,¢py, is the number of VCPUs in the VM. A VCPU v is characterized by
the following parameters:
v; = (C7 (k), TY).

e C7(k): the execution budget of a VCPU v;, represented as a function of the total number of
cache colors (k) assigned to the tasks of v;
e T7:the budget replenishment period of a VCPU v;

Since task execution time is affected by the number of assigned cache colors, it is obvious that
the required budget of a VCPU is also affected by the number of colors to be used by its tasks.
With this model, the resource demand of each VM can be presented to the hypervisor and other
VMs, without revealing its task attributes. We will show in Section 5 how to find the budget of each
VCPU with respect to the number of cache colors. For the VCPU budget supply and replenishment
policies, we consider periodic server [45], sporadic server [49], and deferrable server [51] variants
because they have been widely used in real-time virtualization [25, 26, 32, 56].

In the remainder of this article, C; and C}’ may be used instead of C; (k) and C7 (k”), respectively,
when each task and VCPU is assumed to have been assigned its cache colors.

4 CACHE CONTROL IN VIRTUALIZATION

In this section, we present our vLLC and vColoring techniques. Both techniques provide a way
to allocate cache colors to individual tasks running in a VM. They do not rely on the page-fault
exception of shadow paging or the hardware support of two-dimensional paging. Our techniques
differ in their target guest OSs: vLLC is for guest OSs with page coloring (coloring-aware OSs) and
vColoring is for guest OSs without page coloring (coloring-unaware OSs).

4.1 vLLC for Coloring-Aware Guest OSs

As discussed in Section 2.3, page coloring implemented in a guest OS cannot allocate cache colors
to tasks running in a VM due to the additional address layer in the hypervisor. vLLC overcomes
this limitation. The keys to vLLC are (i) to provide a VM with “virtual LLC” information that
corresponds to the cache colors assigned to the VM and (ii) to map guest physical pages to host
physical pages corresponding to the assigned cache colors. Figure 4 illustrates an example of vLLC.
The virtual LLC provided to the VM is different from the actual LLC of the host machine in terms
of the size of a cache and the number of cache sets, which are the main factors determining the
number of available cache colors. In Figure 4, since the hypervisor assigns two colors out of four
to the guest VM, the size and the number of cache sets of the virtual LLC are each half of those
of the host LLC. Using this virtual LLC, the guest OS can identify that the number of available

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

Predictable Shared Cache Management for Multi-Core Real-Time Virtualization 22:7

Guest VM Host machine
Virtual LLC Phy. pages Phy. pages Host LLC
Color 1{ N— } Color 1
Color 2{ AN g// } Color 2
}Color 3
Page coloring \ }C0|0r4
virtual LLC Info N Host LLC Info
128KB size 256KB size
256 sets 4 512 sets
16-way h Colors 2 and 4 16-way

Fig. 4. vLLC example.

cache colors is two. The virtual LLC can be implemented by trapping and emulating cache-related
operations (e.g., executions of a CPUID instruction on x86 architectures [16] and accesses to CCSIDR
and CSSERR registers on an ARM Cortex-A15 architecture [2]).

In addition to the virtual LLC information, vLLC maps guest physical pages (GPPs) to host
physical pages (HPPs) such that guest colors are mapped to their corresponding host colors. This
can be done because the hypervisor has both the virtual LLC information and the control of the
GPP-to-HPP mapping. When a GPP needs to be mapped to an HPP, vLLC in the hypervisor checks
the guest color of the GPP, finds out the corresponding host color, and maps the GPP to an HPP
with that host color. For instance, in Figure 4, Colors 2 and 4 of the host machine are represented
as Colors 1 and 2 in the guest VM, respectively, and GPPs with Colors 1 and 2 are mapped to HPPs
with Colors 2 and 4, respectively. With this approach, a guest OS can allocate cache colors to tasks.
It is worth noting that the GPP-to-HPP mapping happens only once per GPP during the lifetime
of a VM. Therefore, once all GPPs used by a task have been populated, vLLC does not cause any
runtime overhead to that task.

There are two constraints in vLLC. First, virtual LLC information should be in accordance
with the assumption of page coloring, where the number of cache sets is a power of two. This
means that, with vLLC, the number of cache colors that can be assigned to a VM is restricted to a
power of two. Second, it cannot support a guest OS where page coloring is hard-coded (e.g., using
fixed cache parameters instead of checking them when the system boots). If these constraints be-
come a problem, one can disable the page coloring feature of the guest OS and use our vColoring
technique.

4.2 vColoring for Coloring-Unaware Guest OSs

With vColoring, a VM is assigned two sets of cache colors, default and extra. The default color
set is used whenever a GPP needs to be mapped to an HPP. The hypervisor maps a GPP to an
HPP corresponding to one of the colors in the default color set. Hence, by default, all tasks are
constrained to use only the default cache colors. The extra color set is used for explicit color al-
location requests. When a task running in a VM makes such a request, the hypervisor remaps all
GPPs used by that task to HPPs corresponding to the requested colors in the extra color set.

4.2.1 Remapping GPPs to New HPPs. Figure 5 shows the detailed steps for remapping all the
GPPs of a task from the currently used HPPs to new HPPs for the requested colors. The first step
is to obtain the task’s page table base address (PTBA), which we will explain in detail later. Once
the PTBA is obtained, the hypervisor can traverse the task’s page tables that are maintained by
the guest OS, independently of a specific address translation technique used by the hypervisor.
The second step is to find out present and user-level accessible GPPs in the task’s page tables. This

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

22:8 H. Kim and R. (Raj) Rajkumar

Guest VM Host machine
@ Task’s page table Host physical
base address pages

Multi-level page tables : @

® : @ . Page
enTrv : . migration
: entry - (GPP
: en-try L to
: HPP

Fig. 5. Steps for remapping GPPs to new HPPs under vColoring.

can be done by checking the information bits of page table entries (PTEs). The third step is to find
an HPP mapped to each of the GPPs found in the second step. The fourth step is to migrate each
HPP obtained in the third step to a new HPP that corresponds to one of the requested colors. As
part of page migration, references to the previous HPP are also updated to the new one; under
shadow paging, shadow page tables are updated; under two-dimensional paging, host page tables
are updated. During all these steps, guest page tables are not changed at all. Therefore, the task can
be assigned its requested colors transparent to the guest OS. Note that, since the above steps remap
GPPs present at that time, we must make a cache allocation request at the end of the initialization
phase, where a real-time task typically initializes and places all the required data into memory.
Also, it is not recommended to make cache allocation requests dynamically in the runtime phase
because the remapping overhead may introduce a nontrivial amount of delay in task execution.
We will examine the remapping overhead in Section 6.1.

The hypervisor is unaware of the task and memory data structures of a guest OS, so it can-
not directly read an arbitrary task’s PTBA value. However, on many architectures, the currently
executing task’s PTBA is stored in a specific register to facilitate address translation (e.g., a CR3
register on x86 and a Translation Table Base register on ARM). We will refer to such a register as
a page table base register (PTBR). Under shadow paging, the hypervisor traps on write accesses to
the PTBR and stores the base address of the corresponding shadow page table into the PTBR. The
real PTBA value trapped by the hypervisor is stored in the hypervisor’s memory space and used to
synchronize the shadow page table with the guest page table. Under two-dimensional paging, the
MMU has two PTBRs, one for a guest PTBA and the other for a host PTBA, and the hypervisor has
access to both registers. Therefore, under both address translation techniques, the current task’s
PTBA can be obtained by the hypervisor.

4.2.2 Making Cache Allocation Requests. We now explain how a task can make a cache allo-
cation request to the hypervisor. Basically, a task needs to have a communication channel to the
hypervisor in order to deliver its cache allocation request. On x86 architectures, we propose the
use of a “hypercall” instruction (either vmcall or vmmcall) for this purpose. It can be executed by
a user-level task running in a VM and results in a world switch to the hypervisor, regardless of
whether the hardware-assisted virtualization is enabled or not [16]. The hypervisor running on
x86 architectures typically ignores a hypercall if it has been executed by a user-level task (e.g.,
both KVM and Xen do so). vColoring registers a new hypercall identifier and its handler to the
hypervisor, and it lets the hypervisor handle a hypercall with the new identifier even if it has been
executed by a user-level task. Parameters for the hypercall are (i) our new hypercall identifier and
(ii) cache colors in a bit field (e.g., 0011b for Colors 1 and 2). Once a task executes a hypercall with
those parameters, the registered handler is executed by the hypervisor. The handler can easily get
the task’s PTBA because that task is the currently executing one. Recall that only the cache colors

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

Predictable Shared Cache Management for Multi-Core Real-Time Virtualization 22:9

in the extra color set of the task’s VM are valid ones. If the requested colors are valid, the handler
allocates these colors to the task by following the remapping steps explained earlier.

When a task that has been allocated cache colors is terminating, it needs to explicitly free the
allocated colors. Otherwise, the GPPs of the task will remain mapped to the HPPs corresponding
to the colors used by the task and will possibly be reused by other tasks, resulting in unintended
cache allocation to those tasks. The task can free its colors by making a cache allocation request
with no color information (e.g., 0000b in a color bit field). Then, vColoring remaps the GPPs of the
task to the HPPs corresponding to the colors in the default cache set.

We now consider other architectures, such as ARM [2], where a user-level task is not allowed to
execute a hypercall instruction. For a guest OS that allows the addition of a new device driver, we
propose the inclusion of a simple driver that provides a user-level task with an interface to issue
a hypercall. Then, the task can make a cache allocation request through the driver interface with
the same set of hypercall parameters as in the x86 case. Since many recent real-time OSs such as
VxWorks [42] support implementing device drivers as loadable kernel modules, this approach can
be easily used for such OSs without rebuilding the entire kernel image.

It is possible that a guest OS may not allow the addition of any new device driver. If a network
device driver is embedded in such an OS image, we can use a virtual networking interface emulated
by the hypervisor as a communication channel between a task and the hypervisor. One thing to
consider is that, when the hypervisor receives a task’s cache allocation request, the corresponding
task should be executing at that time. This is because the hypervisor can only get the PTBA of the
currently executing task. Considering this constraint, we propose the use of the following steps:

(1) Set up a virtual network connection between a task 7; and the hypervisor. Then, suspend
all other tasks, except indispensable system services including networking, to minimize
temporal interference from them.

(2) Send a message from 7; to the hypervisor with a cache color allocation request. Then, let
7; busy-wait on incoming messages for T + ¢ time units, where T is the duration for the
hypervisor to check the PTBA and ¢ is an upper-bound on exchanging a message over the
virtual network interface.

(3) Once the hypervisor receives a message from z;, find a busy VCPU among all the VCPUs
of the 7;°s VM. Then, check the current PTBA value of the busy VCPU every T’ during T,
where T’ < T. The shorter T’, the more samples can be obtained.

(4) Find the most-frequently-observed PTBA value and use it for the cache allocation to 7;, as
it is likely to be the one for 7; that is busy-waiting. If the PTBA is found, the hypervisor
sends a message back to 7;. Otherwise, it does not send a message.

(5) If 7; has received a message from the hypervisor during T + €, disconnect the connection
and continue its execution. If not, redo these steps from Step 2.

Note that the above steps are not guaranteed to converge. If this happens, one may try raising
the priority of a task z; to further reduce interference from other tasks. The priority of 7; must be
reverted afterward.

4.3 Implementation in KVM/QEMU

As a proof of concept, we implemented vLLC and vColoring on the KVM hypervisor included in
the Linux 3.10.39 kernel. Note that, at the time of writing, this was the latest version supported by
our ARM platform. We chose KVM for its convenience, such as supporting various architectures
and providing both shadow paging and two-dimensional paging modes. However, it is worth not-
ing that our techniques, vLLC and vColoring, can also be implemented in other hypervisors. Our

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

22:10 H. Kim and R. (Raj) Rajkumar

gemu-system-arm -cpu cortex-al5 -smp 2 -m 512
-virtrk cache,colors=0-7,ext_mem=256,ext_colors=8-15
-virtrk vcpu, id=vcpu0, vepu=0,pcpu=0,c=5,t=10
-virtrk vcpu,id=vcpul, vcpu=1,pcpu=1,c=5,t=10

Fig. 6. Parameters of our modified QEMU for ARM architectures.

implementation supports a 64-bit x86 architecture as well as a 32-bit ARM Cortex-A15 architecture.
Along with KVM, QEMU [5] version 2.2.0 is used for device emulation.

Our techniques need page coloring implemented at the hypervisor level. For this purpose, we
used the memory reservation mechanism of Linux/RK [22, 23]. Linux/RK with version 1.5 or higher
can read the system’s LLC information and discover the number of cache colors available in the
system. Using this color information, Linux/RK categorizes unallocated physical pages according
to their corresponding cache colors and allows each application to reserve a portion of physi-
cal pages with specific cache colors. We modified QEMU to use Linux/RK such that QEMU gets
a cache color request when starting a guest VM and creates a memory reservation with the re-
quested cache colors for that VM. Therefore, during runtime, the VM uses only the cache colors
associated with physical pages in its memory reservation. We also modified QEMU to use the
CPU reservation mechanism of Linux/RK for VCPUs. Figure 6 shows the parameters of our mod-
ified QEMU. The guest VM created with these parameters is assigned a memory reservation of
512MB (-m 512) with 8 host cache colors (colors=0-7). The number of VCPUs of the VM is
two (-smp 2). Each VCPU is assigned 5 ms of budget and 10 ms of budget replenishment period
(c=5,t=10), resulting in 50% of PCPU time. In addition, each VCPU is statically allocated to one
PCPU (id=vcpu@, vcpu=0, pcpu=0 and id=vcpul,vcpu=1,pcpu=1).

On the x86 architecture, LLC information can be retrieved by executing a CPUID instruction.
As part of our vLLC implementation, we modified the CPUID trap-and-emulate handler of QEMU
so that a guest VM can see a virtual LLC corresponding to the cache colors assigned to the VM.
On the ARM Cortex-A15 architecture, LLC information can be read from the CSSERR and CCSIDR
registers, which can be trapped and emulated in KVM itself. Hence, we modified KVM to emulate
a virtual LLC on ARM. The GPP-to-HPP mapping of vLLC is implemented in the page allocation
of the Linux/RK memory reservation mechanism.

For the implementation of vColoring, we allow each VM to have two memory reservations
so that one is used for a default color set and the other is used for an extra color set. Similar
to the default memory reservation, the size and cache colors of the extra memory reservation
can also be specified in the parameters of our modified QEMU. For instance, in Figure 6, the
guest VM is assigned an extra memory reservation of 256MB (ext_mem=256) with 8 host colors
(ext_colors=8-15). The GPP remapping of vColoring is implemented as part of the Linux/RK
memory reservation mechanism. To handle cache allocation requests from tasks in guest VMs,
we registered a new hypercall handler in KVM. On x86, by modifying the Current Privilege Level
(CPL) check condition, we could make KVM handle our hypercall even if it has been executed by
a user-level task running in a VM. On ARM, we implemented a loadable device driver for tasks
running in Linux guests to make cache allocation requests. The source code of our implementation
is available at http://rtml.ece.cmu.edu/redmine/projects/rk/.

5 CACHE MANAGEMENT SCHEME

In this section, we present our cache management scheme, which (i) allocates cache colors to tasks
within a VM while satisfying timing constraints, (ii) designs a VM in a cache-aware manner so that
the VM’s resource requirement is specified with regard to the number of cache colors allocated,
and (iii) determines the allocation of cache colors to a set of VMs to be consolidated.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

http://rtml.ece.cmu.edu/redmine/projects/rk/

Predictable Shared Cache Management for Multi-Core Real-Time Virtualization 22:11

Recall that, in multi-core virtualization, there are two types of cache interference: inter- and
intra-VCPU cache interference. To avoid both types of interference, a simple approach would be
assigning each task a dedicated set of cache colors for its own exclusive use. Hence, tasks do
not share their assigned cache colors with others, resulting in no conflicts in the LLC. We will
refer to this approach as complete cache partitioning (CCP). However, due to the availability of a
limited number of cache colors, CCP may result in performance degradation. Many prior studies
in nonvirtualized environments [1, 9, 10, 21] have shown that sharing of cache colors among tasks
on the same core yields better task scheduling than doesCCP, and the resulting cache interference
can be safely upper-bounded by the notion of cache-related preemption delay (CRPD). Therefore,
our scheme builds on this idea in that (i) cache colors are not shared among tasks on different
VCPUs to prevent inter-VCPU cache interference, and (ii) cache colors can be shared among tasks
on the same core with the cost of intra-VCPU cache interference.

5.1 Schedulability Analysis

Before presenting our scheme, we first review VCPU and task schedulability analyses. The schedu-
lability of a VCPU v; can be determined by the following recurrence equation [18]:

M/viv,n+1 — C;U + Z

vp €P(vy) Ay > P

u,n v
W+
v
T,

v

Ch, (1)

where W”" is the worst-case response time (WCRT) of a VCPU v; at the n'” iteration (W’ = C?),
n is the priority of v;, P(v;) is the PCPU of v;, and J is a release jitter (J;' = T;” — C; for the
deferrable server policy and J;’ = 0 for the periodic and sporadic server policies [6]). It terminates
when W" o= W;", and v; is schedulable if its WCRT does not exceed its period (i.e., W”" <=
T?).
The schedulability of task r; running on a VCPU v; can be determined by:
W+ Jn Wi+ CY
Ty T?

1

Wj"“=Cj+ Z "

}(Ch + Yhj) +

} (T = C7), (2)

, € V(1j) Aty > 7j

where Wj" is the WCRT of task 7; at the n’ h jteration (WjO = Cj), m; is the priority of 7;, V(r;) is
the VCPU of 7, J; is the release jitters of a task 7, (Jy = T — C}), and yy, ; is the cache-related
preemption delay (CRPD) caused by 7, and imposed on 7;. Task ; is schedulable if its WCRT does
not exceed its deadline (i.e., Wj” <= Dj). Note that Equation (2) is based on the task schedulability
test under hierarchical scheduling given in Saewong et al. [43] but extended with CRPD [10, 21]
to bound intra-VCPU cache interference. y; ; is given by:

S; N U Sk

T €V (1) A <7 ATTg 2 705

yj’i =) A9 (3)

where S; is the set of cache colors assigned to 7;, and A is the maximum time to reload one cache
color. In case of a write-back cache, A should consider the effect of a dirty cache line that requires
two memory accesses to fetch a new cache line [44].

The utilization of a taskset I allocated to the same VCPU is calculated as follows [4, 21]:

util(r) = (i— + YT) (4

i€l

~

where n is the index of the lowest-priority task in T".

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

22:12 H. Kim and R. (Raj) Rajkumar

ALGORITHM 1: CacheToTaskAlloc(T, Negehe)

Input: T':taskset, N, qpe: # of cache colors

Output: Utilization of T if schedulable, and co otherwise
1: if Nogepe = 0 then
2: return oo

3: cache_idx « 1

4: forall 7; €T do

5: /* Find the number of cache colors for 7; */

6: S; argminlskstche(%ik) + Y’T—l")

7: /* Find cache-color indices for 7; */

8: Si <0

9: fork <« 1toS; do

10: Si « S; U {cache_idx}

11: cache_idx « (cache_idx + 1) mod N,,cpe

12: if schedulable(T') then
13: return util(T)

14: else

15: return oo

5.2 Allocating Cache Colors to Tasks

Suppose that we have a set of tasks running on the same VCPU and a set of cache colors is to
be allocated to the tasks. Our goal is to find a cache-to-task allocation that minimizes taskset
utilization while satisfying taskset schedulability. When cache sharing is allowed, the problem
of cache-to-task allocation is known to be NP-hard [9], and finding a computationally-efficient
solution has been left as future work [21]. Hence, we present in Algorithm 1 a heuristic to solve this
problem. It first checks if N 4cpe is non-zero because page coloring requires tasks to be assigned
at least one cache color [21]. Then, for each task 7;, it finds the number of cache colors, S;, that
minimizes the sum of the utilization and CRPD caused by 7; (Line 6). Since cache allocation is
not done yet, we approximate y; , by assuming that all other tasks have been allocated all N¢qcpe
colors. Once the number of colors for 7; is found, our heuristic finds color indices to be allocated
(Line 9). It records the index of the next cache color to be allocated in cache_idx and begins the
allocation starting from cache_idx, with an increment of 1 and a modulo of N, 4.p. This approach
ensures that the difference in the number of tasks sharing each color does not exceed 1.

5.3 Designing a Cache-Aware VM

The resource demand of a VM is the aggregate resource demands of all VCPUs in that VM, and it is
affected by the allocation of tasks to VCPUs. Specifically, when cache-sensitive tasks are allocated
together to the same VCPU, the benefit of cache sharing increases, thereby reducing the resource
demand. Hence, we propose a cache-aware VM designing algorithm (CAVM) that (i) allocates tasks
to VCPUs in a way to increase the benefit of cache sharing and (ii) derives each VCPU’s resource
demand with regard to the number of cache colors allocated to its taskset. CAVM can be used for
designing a new VM as well as calculating the resource demand of an existing VM.

Algorithm 2 shows the pseudocode of CAVM. It takes four input parameters: I' is a taskset to be
allocated, Ny, is the number of VCPUs in the VM, N¢4cpe is the number of available cache colors,
and T? is the VCPU period that will be assigned to the VCPUs.! CAVM initializes the budget of
each VCPU v; to be full (i.e., CY = T”) and the number of cache colors for v; (S7) to zero (Line 2).

!There are many ways to choose T?. For example, system designers may use a hyperperiod or utilize the findings in Shin
and Lee [48] to reduce the overhead of hierarchical scheduling.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

Predictable Shared Cache Management for Multi-Core Real-Time Virtualization 22:13

ALGORITHM 2: CacheAwareVM(T, Nycpu» Neaches T)

Input: T: taskset, Nycpy: # of VCPUs, Negepe: # of cache colors, T%: VCPU replenishment period
Output: Success or Fail

1

30
31

33:
34:

42

Vo {vl,vg, e aUNycpu}
Vo € VTP « TY,CY(1, ..., Negene) < T9,S7 < 0
: Nrem < Ncache /” Remaining cache colors */
: /* Phase 1: Allocate task bundles to VCPUs */
TP« 0
. while util(¢) > 1 do
(¢’,¢") < BreakBundle(¢, 1, N, 4che)
¢<_®U{(p,};(p(_(p"
: O — DU {p}
: while ® # 0 do
/* Allocate bundles */
Dpest — 0
for all ¢; € ® in decreasing order of average utilization do
(vBF, k) < BestFitWithCache(¢;, V, Nrem)
if v # invalid then
I'gr <« IBrp U i3S
else
Drest — Prest U{pi}
/* Break unallocated bundles */
® « 0;singletons « true
for all p; € ®pes; do
if |p;| > 1 then
singletons « false; size « 1 — ming, ey util(T})
(¢’,¢"") <« BreakBundle(¢;, size, Nogche)
D — DU ¢, 9"}
else
O — DU {p;}
if singletons = true then
return Fail
: /* Phase 2: Determine VCPU budget */
: forall v; € V do
C?(0) « invalid
for k < 1to N.ycphe do
if CacheToTaskAlloc(I}, k) < 1 then
SY —k
Binary search to find the minimum budget x
CY (k) «x
else
CY (k) « invalid
if Ci(k — 1) # invalid A ((C7 (k) = valid A CY (k — 1) < CY(k)) v CY (k) = invalid) then
CY (k) « CP(k-1)

: return Success

5 < Spp tkiNrem < Nrem —k

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

22:14 H. Kim and R. (Raj) Rajkumar

ALGORITHM 3: BreakBundle(g, size, Negche)

Input: ¢: a bundle to be broken, size: the size limit of the first sub-bundle, N;,cpe: # of colors
Output: (¢, ¢"’): a tuple of sub-bundles

1: (pl «— qo; qoll «— @

2: for all 7; € ¢ in increasing order of cache sensitivity do

32 @ =o' \1i;0" « ¢ Ur

4 /* Get util(¢") assuming each task uses one color */

5: if util(¢’) < size then

6: break

7: return (¢’, ")

ALGORITHM 4: BestFitWithCache(p, V, Nyem)

Input: ¢: a bundle of tasks to be allocated, V: a set of VCPUs, Ny¢pm: # of cache colors
Output: (v;, k): a tuple of the best-fit VCPU and # of cache colors needed

1: for k < 0 to Ny¢p, do

2. for all v; € V in decreasing order of util(I;) do

3: if CacheToTaskAlloc(T; U ¢, SY + k) < 1 then

4 return (v;, k)

5: return (invalid, —1)

CAVM consists of two phases. The first phase is allocating tasks to VCPUs. Our allocation strat-
egy is to group cache-sensitive tasks into a “bundle” and allocate as many tasks in the bundle as
possible onto the same VCPU. This is the key difference from prior work, [21] where tasks are
allocated individually. To do so, CAVM first groups all tasks in I into a single bundle ¢. Then, it
checks the utilization of ¢, assuming each task in ¢ uses one dedicated cache color (Line 6). If it is
greater than 1, ¢ is broken into two sub-bundles by BreakBundle() such that the size of the first
sub-bundle does not exceed 1. The pseudo-code of BreakBundle() is given in Algorithm 3. To
keep as many cache-sensitive tasks as possible in the first sub-bundle, BreakBundle() removes
tasks from the first sub-bundle in increasing order of cache sensitivity, which is calculated by
(Ci(1) = Ci(Ncache))/T;, until the size of the first sub-bundle does not exceed the given size con-
straint. When BreakBundle() returns, CAVM puts the first sub-bundle into @ that is the set of
bundles to be allocated (Line 8 of Algorithm 2), and continues to check the second bundle if it
needs to be broken. As a result, each bundle in ¢ has a utilization not exceeding 1 and is ready to
be allocated.

CAVM allocates bundles in ® to VCPUs based on the best-fit decreasing (BFD) heuristic
(Lines 13-18). We define the average utilization of a bundle ¢; as }; ¢y, ZJI:I:”;‘C”e{(CJ-(k)/Y})/
Ncache}- Bundles are sorted in descending order of average utilization, and CAVM tries to allo-
cate each bundle to a VCPU by using BestFitWithCache() given in Algorithm 4. This function
finds the best-fit VCPU that can schedule a given bundle with k additional cache colors assigned
to it, where k starts from 0 to the number of remaining cache colors (N¢n,). If a best-fit VCPU
is found (Line 15), the bundle is allocated to that VCPU, and the number of cache colors of that
VCPU (Sj ;) and the number of remaining cache colors are updated. Otherwise, the bundle is put
into ®@,.s; (Line 18).

Then, CAVM attempts to break all unallocated bundles in ®,;. If a bundle in ®,.s; has more
than one task (Line 22), it is broken into two sub-bundles by BreakBundle() such that the size
of the first sub-bundle does not exceed the remaining capacity of a VCPU having the minimum
taskset utilization. The resulting two sub-bundles are put into ® so that they can be allocated in

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

Predictable Shared Cache Management for Multi-Core Real-Time Virtualization 22:15

ALGORITHM 5: CacheToVMAlloc(V, Negche)

Input: V: a set of VCPUs of all VMs to be consolidated, N, .p,: # of available cache colors
Output: Success or Fail
: Find x; for each VCPU v; € V
Z e« YV Xi
if Negene < z then
return Fail
s Yui €V iojx — x;

Cy (0i,z)
6 U(2) & Soyev —o= /*
7. fork < z+1to Ncache do

g Wy o

U(z): total utilization */

8: U(k) « nllcm (U(k) — Cly(gi,k') - C;U(Ui,k’ +(k-k)))

Vi G(V TU

9 Yv; €V : 0 « #of colors of v; contributing to U (k)
10: Yo; €V :SY « 01 N.yone
11: return Success

the next iteration. If all unallocated bundles are singletons (Line 28), CAVM returns fail because
none of these bundles can be broken into sub-bundles.

After finishing the first phase of allocation, each VCPU vj is allocated its own taskset I;. The
second phase of CAVM determines the budget C7 (k) of a VCPU v; for all possible k values (1 < k <
Neache)- If T; with k colors is schedulable (Line 34), CAVM finds the minimum possible budget x of
v; by using a binary search between 0 and T, and sets C (k) to x. Otherwise, C{ (k) is marked as
invalid. Here, due to CRPD, C} (k — 1) can be smaller than C{ (k) or be valid while C{ (k) is invalid.
In such cases (Line 40), CAVM sets C (k) to C7 (k — 1) and lets v; use only k — 1 colors if k colors
are given. With this, CAVM can find C} (k) values that are monotonically decreasing with k.

Note that the idea of bundling tasks for task allocation has been used in prior work to address
various issues (e.g., mitigating timing penalties caused by shared resources [29] and reducing mem-
ory interference delay [20]). To extend CAVM for such issues, one may change BreakBundle() so
that it considers multiple constraints when breaking a bundle. This remains as future work.

5.4 Allocating Host Cache Colors to VMs

We now present our cache-to-VM allocation algorithm that determines the number of cache colors
for each VCPU of the VMs to be consolidated while minimizing the total utilization of those VMs.
Once cache colors are allocated, conventional bin-packing heuristics such as BFD can be used to
allocate the VCPUs of those VMs to PCPUs.

Let 0 i denote the number of cache colors assigned to v; when a total of k colors is provided in
the host machine, and let V denote a set of VCPUs of all VMs to be consolidated. Then, the total
utilization of VMs with k cache colors is given by:

CY (k)
P ©)

v; €V

To find the minimum total utilization of VMs with k cache colors, U(k), we use a dynamic pro-
gramming approach. Let x; denote the smallest number of cache colors that gives a valid budget
for v; (i.e., C7 (x;) # invalid and C} (x; — 1) = invalid), and let z denote the minimum number of
cache colors needed to schedule all VCPUs in V. Then, z is calculated by z = 3}, ¢/ x;, and o ;
is equal to x; because there is only one valid cache allocation to v; when z colors are provided.
For k < z, we represent U(k) as oo because there is no valid allocation. For k = z, U(k) can be

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

22:16 H. Kim and R. (Raj) Rajkumar

computed by Equation (5) because o, x = x;. For k = z+ 1, U(k) cannot be computed by Equa-
tion (5) because o; x is unknown. Instead, we can compute U (k) from U(z). Recall that our CAVM
algorithm given in Section 5.3 ensures that C{ (k) is monotonically decreasing with k. Hence, if
any additional cache color is assigned to v;, a non-negative utilization gain is obtainable. Based on
this observation, we can compute U(k = z + 1) by U(z) — max w, which subtracts
the maximum utilization gain made by one additional color from U(z). lWe can also find o; ;41 by

recording the number of colors of v; that leads to U(z + 1). For k = z + 2, U (k) can be calculated by
w, which subtracts the maximum gain by two

PR Cc? i,z+ -C? i,z+ . .
additional colors from U(z), and U(z + 1) — max — (o121) o (e 1+1), which subtracts the maxi-

the minimum between U(z) — max

mum gain by one additional color from U(z + 1). This appré)ach can be extended to all k > z, and
U (k) is given by the following recurrence:

oo (unschedulable) tk<z
C?(Ui,k)
U(k) = v;q/ Ti N k =z (6)

C% 0 1)—C% 0; v + (k=K'
min (U(k')—max (oK) P (oik))):k>z

z<k’<k v; €V Tl.v

Algorithm 5 shows our cache-to-VM allocation algorithm based on the recurrence in Equa-
tion (6). Our algorithm first finds z, and, if a given number of cache colors (N;4che) is smaller than
z, it returns fail (Line 4). Otherwise, it computes U (k) iteratively (Line 8) and saves o; i that leads to
U (k) (Line 9). Once the iteration completes, our algorithm sets the number of cache colors for each
VCPUto 0y N,,,,, and returns success. The time complexity of our algorithm is O((N¢ache)* - [V).

Our algorithms proposed in this section assume partitioned fixed-priority scheduling for tasks
and VCPUs, as described in Section 3. We conclude with a short discussion on their extensibility
and applicability to other scheduling policies. First, CAVM performs task-to-VCPU allocation by
checking task schedulability. If a cache-aware schedulability test for dynamic-priority task sched-
uling in a VM environment is given, we believe that it can be easily plugged into CAVM with minor
changes. If global scheduling is used, the first phase of CAVM can be removed and only the second
phase can be used to calculate VCPU budget. Second, the cache-to-VM allocation algorithm deter-
mines only the number of host cache colors for VCPUs, with no assumption on specific VCPU-to-
PCPU allocation used. Hence, it can also be used for dynamic-priority and global VCPU scheduling
policies.

6 EVALUATION

This section presents experimental results on our vLLC, vColoring, and cache management
scheme.

6.1 VvLLC and vColoring

6.1.1 Experimental Setup. We used x86 and ARM platforms as host machines in our experi-
ments. The x86 platform is equipped with an Intel i7-2600 3.4GHz quad-core processor and 16GB
of DDR3 1666MHz memory. The Intel processor has a unified 8MB shared LLC that consists of
four 2MB, 16-way set-associative cache slices. As described in Section 2.3, page coloring can be
applied to the LLC on a per cache-slice basis and yields 32 cache colors on this processor. During
all experiments, we disabled the hardware prefetcher, simultaneous multithreading, and dynamic
clock frequency scaling of the processor to reduce measurement inaccuracies.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

Predictable Shared Cache Management for Multi-Core Real-Time Virtualization 22:17

Table 1. Implementation Cost of vLLC and vColoring

Cost (ns)
Name Items x86 ARM
VLLC Virtual LLC emulation 787 12212
Color check in GPP-to-HPP 34 921
mapping
vColoring | Page migration for GPP 2359 | 31864
re-mapping

The ARM platform used is an ODROID-XU4 board manufactured by Hardkernel [15]. This board
has 2GB of LPDDR3 933MHz memory and is equipped with a Samsung Exynos 5422 SoC that com-
bines a cluster of four ARM Cortex-A15 cores with a cluster of four Cortex-A7 cores. Each cluster
has an LLC shared among cores within the same cluster. We used only the cluster of Cortex-A15
cores because the performance of the other cluster seemed inadequate to perform our experiments.
The LLC in the cluster of four Cortex-A15 cores is 2MB, 16-way set-associative and gives 32 cache
colors with page coloring. We disabled the dynamic clock frequency scaling and configured each
core to run at its maximum speed, 2GHz.

Both the x86 and ARM platforms run our modified KVM hypervisor described in Section 4.3,
with the manufacturer’s patch for ARM. We primarily use two-dimensional paging because (i) it
is the default setting of KVM, and (ii) shadow paging is not yet supported by KVM for ARM. At
the end of this subsection, we will compare the results with two-dimensional paging and shadow
paging on the x86 platform.

Since our focus is on cache interference among tasks running within a VM, each platform hosts
one VM that has four VCPUs (VCPUs 1-4). Each VCPU is allocated to a different PCPU with 100%
of budget. Hence, there is only one VCPU per PCPU on both the x86 and ARM platforms. The VM is
assigned all the 32 cache colors of the host machine. On the host side, the QEMU process and VCPU
threads are assigned real-time priorities, which prevents unexpected delays from indispensable
system services that could not be disabled.

Three different guest OSs are used in our experiments: Linux/RK and the vanilla Linux kernel
3.10.39 for x86 and ARM, and MS Windows Embedded 8.1 Industry for x86. Linux/RK supports page
coloring and is used as a guest OS to test vLLC. The vanilla Linux and MS Windows Embedded OSs
do not support page coloring and are used to test vColoring. Specifically, MS Windows Embedded
is chosen to verify that vColoring can be used for proprietary, closed-source guest OSs.

6.1.2 Implementation Overhead. Table 1 shows the computational overhead of vLLC and vCol-
oring, measured with hardware performance counters on the x86 and ARM platforms. vLLC per-
forms the virtual LLC emulation when a guest OS reads the VM’s LLC information, which is typ-
ically done during the system initialization phase. The GPP-to-HPP mapping occurs only once
per GPP, as described in Section 4.1, and the overhead added by the color check of vLLC in the
GPP-to-HPP mapping is less than 5% of the original mapping time on both platforms. Hence, we
consider that the overhead of vLLC is acceptably small. vColoring remaps GPPs when cache colors
are assigned to a task. Since the major overhead of this remapping is caused by page migration,
we present per-page migration time in Table 1.

There are other factors contributing to the GPP remapping time of vColoring, such as page-
table traversal. Hence, in Table 2, we present the GPP remapping time as the number of GPPs
changes. As can be seen, the remapping time increases linearly with the number of GPPs to be

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

22:18 H. Kim and R. (Raj) Rajkumar

Table 2. vColoring GPP Remapping Time

GPP re-mapping time (ms)
of GPPs Size (MB) x86 ARM

256 1 0.89 10.68

512 2 1.45 19.47

1024 4 2.92 36.69

2048 8 5.38 70.65

4096 16 10.48 140.92

8192 32 21.06 274.92

160] ——Linux/RK w/ vLLC 160 E ——Linux/RK w/ vLLC
$ 140 7 ——Vanilla Linux w/ vColoring <140 - —o—Vanilla Linux w/ vColoring
o 120 ,, -6-MS Windows w/ vColoring 120
£ 100 : £1
S 80 - 5
5] 5
g > g
g 20 - % \
2) e ——————— ESNN N B A 6 a0 0000000004
0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32
of cache colors # of cache colors
(a) x86 platform (b) ARM platform

Fig. 7. Execution time of the latency task.

mapped. Since the GPP remapping can suspend the corresponding VCPU, the dynamic allocation
of cache colors after the initialization phase needs a careful attention, just like dynamic memory
allocation in real-time systems [23, 38]. If vColoring needs to be used for a task that requests cache
allocation after the initialization phase, one may take into account the GPP remapping time as a
blocking term in the schedulability analysis for hierarchical real-time scheduling, such as in Kim
et al. and Shin and Lee [25, 48].

6.1.3 Results with Synthetic Tasks. As the first step of our experiments, we check if vLLC and
vColoring can correctly assign cache colors to a task running in a VM. We use the latency task [62]
which traverses a randomly ordered linked list. The execution time of the latency task highly
depends on the memory access time due to the data dependency of pointer-chasing operations in
linked-list traversals. To make the latency task cache-sensitive, we configured the working set size
of the latency task to be half of the LLC of each platform (i.e., 4MB on x86 and 1MB on ARM). We
compiled this task for both Linux and MS Windows guests on x86, and for Linux on ARM.

Figure 7 compares the maximum observed execution time of the latency task when it runs
alone in each VM with different numbers of cache colors assigned to it. The x-axis of each graph
denotes the number of cache colors assigned to the task. The y-axis shows the execution time
normalized to the case where the task runs with one cache color. On both x86 and ARM platforms,
the execution time of the task begins to plateau after more than 16 cache colors are assigned to
it. This is because the entire working set of the task can fit into the LLC after that point. On each
platform, a very similar execution time pattern is observed although different guest OSs are used.
This shows that both vLLC and vColoring work as expected.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

Predictable Shared Cache Management for Multi-Core Real-Time Virtualization 22:19

600 - 1600 -
_] [D Baseline [l w/viiC B w/ vCoIoring] — 1400 E [|:| Baseline [l w/vilC BB w/ vCoIoring]
K500 + 4719 475.2 &
¥ 2438 2 1200 | 1209.6 1203.9
g 400 T £ 1000 +
c c]
S300 S 800 +
3 3 600
2 200 % i
w =N
: 101.5 100.3 . ‘s 400 3
£ 100 E 00 &
s 5] 101.1 102.1
0 Z o
Linux/RK Vanilla Linux MS Windows Linux/RK Vanilla Linux
(a) x86 platform (b) ARM platform

Fig. 8. Execution time of the latency task when other task instances run on different VCPUs simultaneously.

Recall that, in virtualization, cache interference can be categorized into inter-VCPU and intra-
VCPU cache interference. We first evaluate if vLLC and vColoring can be used to protect a task
from inter-VCPU cache interference. We execute four instances of the latency task on four different
VCPUs simultaneously. Then we measure the execution time of the instance running on VCPU 1
to identify the impact of inter-VCPU interference caused by other instances. When our techniques
are not used, all the four instances share the 32 cache colors of the VM. We will refer to this case as
“Baseline.” It is worth noting that previous work focusing on software-based cache management
in a virtualization environment [17, 32, 37] falls into this case because the previous work cannot
assign different cache colors to individual tasks running in a VM. When our techniques are used,
we dedicate 31 colors to the instance running on VCPU 1 for its private use and let the other
instances share the remaining 1 color. Note that this is an extreme cache configuration because
the other three tasks will suffer severely from fewer shared cache colors. The reasons for doing so
are (i) to segregate the cache behavior of the instance on VCPU 1 from the others, (ii) to make the
instance on VCPU 1 have enough cache space to keep its working set within the cache, and (iii) to
observe how much cache isolation can be achieved in such an extreme configuration.

Figure 8 illustrates the execution time of the instance assigned to VCPU 1 while the other three
instances run on different VCPUs in parallel. The x-axis shows the guest OS used, and the y-axis
shows the execution time normalized to the case when the latency task runs alone in the VM with
32 cache colors. When our techniques are not used (Baseline), all the instances compete for the
LLC, resulting in significant increase in execution time. For example, we observed more than 4x
increase in task execution time on x86 and 12X increase on ARM, which are very close to the
case where the latency task is assigned only 1 cache color. When our techniques are used, the
execution time is almost unaffected. The results of this experiment clearly show the benefit of
vLLC and vColoring in preventing inter-VCPU cache interference.

We now evaluate the effects of our proposed techniques on intra-VCPU cache interference by
executing multiple task instances on the same VCPU. In Linux guests, the SCHED_RR policy with
time quanta of 10 ms and 30 ms is used to time-share the single VCPU. Hence, any task instance
is preempted by another instance every time quantum. In a guest using MS Windows, we use the
default time-sharing scheduling policy that has 30 ms of time quantum. We first execute one in-
stance of the latency task along with three instances of the busyloop task on the same VCPU and
measure the response time of the latency task instance. The busyloop task continuously consumes
CPU time with no memory access. Therefore, it does not cause any intra-VCPU cache interference
to the instance of latency although preemption happens. We will refer to the response time of the
latency task measured in this case as the ideal response time because it is unaffected by cache in-
terference. Then, we execute four instances of the latency task on the same VCPU and measure the

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

22:20 H. Kim and R. (Raj) Rajkumar

180 180 + - -
ID Baseline [w/vLLC B w/ vColoring -] “:‘ Baseline Ml w/vilC BB w/ VC°|°””€I
K160] 160
£ GE) 139.7 140.1
E 140 £ 140 :
2 a]
§120 £ 120 +
& 2 i 101.1
& 100 c 100 +
£ £ i
s 80 5 80
z Linux/RK Vanilla Linux Vanilla Linux MS Windows z Linux/RK Vanilla Linux
(g=10ms) (q=10ms) (g=30ms) (g=30 ms) (g=10 ms) (9=10 ms)
(a) x86 platform (b) ARM platform

Fig. 9. Response times of the latency task when other task instances are scheduled on the same VCPU.

140%

[[Baseline M w/ vLLC]

130%

120%]

110%

100% -
90%

Norm. Execution Time (%)

80% -
black- body- canneal ferret fluid- freq- ray- stream- swap- vips x264
scholes track animate mine trace cluster tions

Fig. 10. Execution time of the PARSEC benchmarks when synthetic tasks run on different VCPUs in parallel.

response time of one instance with and without our techniques. As in the inter-VCPU experiment,
when our techniques are used, the instance to be measured is assigned 31 private cache colors and
the other three instances are assigned 1 shared cache color.

Figure 9 shows the response times of the latency task instance when other instances are sched-
uled on the same VCPU. The y-axis denotes the response time normalized to the ideal response
time described earlier. When our techniques are not used, we observed up to 1.5X of response
time increase on the x86 platform and 1.4X increase on the ARM platform. When our techniques
are used, the observed response time is close to the ideal response time. Therefore, we conclude
that both vLLC and vColoring are effective in preventing intra-VCPU cache interference as well
as inter-VCPU cache interference in a virtualization environment.

6.1.4 Results with PARSEC Benchmarks. We use the PARSEC benchmarks [8], which are closer
to the memory access patterns of real applications compared to the synthetic task, latency. A total
of eleven PARSEC benchmarks are used. We have excluded two PARSEC benchmarks, dedup and
facesim, due to their excessive disk accesses for data files. Since we have shown in the previous
subsection that vLLC and vColoring are equivalent in preventing cache interference on x86 and
ARM platforms, we use only vLLC on x86 for simplicity.

We first identify the impact of inter-VCPU cache interference on the PARSEC benchmarks. Each
benchmark is assigned to VCPU 1, and the three instances of the latency task are assigned to the
other VCPUs to generate interfering cache requests. When vLLC is not used, the benchmark and
the three instances share all 32 cache colors. When vLLC is used, our objective here is to protect
the cache behavior of the benchmark from the three instances of latency. Hence, with vLLC, each
benchmark is assigned 31 private cache colors and the three instances share the remaining 1 color.

Figure 10 compares the execution time of each PARSEC benchmark with and without vLLC. The
x-axis denotes the benchmark names, and the y-axis shows the execution time of each benchmark
normalized to the case when it runs alone in the VM with 32 cache colors. When vLLC is not used

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

Predictable Shared Cache Management for Multi-Core Real-Time Virtualization 22:21

__130%

X l [Baseline [w/vLLC]

g 120%

IS

2 110% N [

c

]

& 100% |

Q

o«

g 90% -

2

80% - A .

black- body- canneal ferret fluid- freq- ray- stream- swap- vips x264
scholes track animate mine trace cluster tions

Fig. 11. Response times of the PARSEC benchmarks when synthetic tasks are scheduled on the same VCPU.

__130%

l [0 Two-dimensional paging (TDP) [l Shadow paging (SP)]

120%

110%

100% -

90%

Norm. Execution Time (%,

80% -
black- body- canneal ferret fluid- freq- ray- stream- swap- vips x264
scholes track animate mine trace cluster tions

Fig. 12. Execution times of the PARSEC benchmarks under TDP and SP.

(Baseline), there is up to a 30% increase in execution time. When vLLC is used, only streamcluster
has an execution time increase of 2%, and the other benchmarks have no noticeable difference.
The reason for the increase in streamcluster’s execution time is due to the fact that it is assigned a
smaller number of cache colors when vLLC is used compared to when vLLC is not used.

Next, we explore the impact of intra-VCPU cache interference on the PARSEC benchmarks.
Each benchmark and the three instances of the latency task are assigned to the same VCPU, and
the SCHED_RR policy with a time quantum of 10 ms is used to time-share that VCPU. When vLLC is
used, the benchmark is assigned 31 private cache colors and the three instances share 1 remaining
cache color, as in the inter-VCPU interference experiment.

Figure 11 shows the response time of each benchmark when the three instances of latency are
scheduled on the same VCPU. The response time of a benchmark is normalized to the case when
it is scheduled on the same VCPU with three instances of a busyloop task. busyloop runs an empty
infinite while loop, thereby causing no cache interference. When vLLC is not used, the response
time increases by up to 15%. When vLLC is used, all the benchmarks except streamcluster have
no noticeable difference in their response times. The increase in streamcluster’s execution time is
again because a smaller number of cache colors is assigned to the benchmark when vLLC is used.
To summarize, the results with the PARSEC benchmarks show that both inter- and intra-VCPU
cache interference can significantly degrade task performance, and our techniques are effective in
allocating cache colors to tasks running in a VM.

6.1.5 Two-Dimensional Paging vs. Shadow Paging. Our experiments so far have been conducted
with two-dimensional paging (TDP). Since our techniques can also be used with shadow paging
(SP), we now compare the execution times of the PARSEC benchmarks under TDP and SP. Each
PARSEC benchmark is executed alone in a VM with all the 32 cache colors assigned to it. Hence,
there is no inter- and intra-VCPU cache interference in this experiment. Figure 12 shows the re-
sults. The y-axis denotes the execution time normalized to the TDP case. As can be seen, neither
TDP nor SP dominates the other in terms of execution time. We have also measured with different

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

22:22 H. Kim and R. (Raj) Rajkumar

Table 3. Parameters for Taskset Generation

Type Parameters Values Type Parameters Values
System| Number of PCPUs 4 Taskset | Total number of tasks [10, 15]
Number of VMs 2 Taskset util. 3.0
(Utaskset)
Number of VCPUs per 4 WCET | Memory accesses per [10, 10°]
VM job
VCPU replenishment [1, 10] ms Neighborhood size [16, 64]
period
Cache (LLC) size 2048 KB Locality [1.5,3.0]
of cache colors 32 Task memory usage [8,40] MB
(Ncache)
Cache hit / miss delay | 26 / 202 ns “Resulting [64 KB, 40 MB]
working-set size
Cache color reload 207 us “Resulting WCET [8.47, 202.02] ms
time (A)

numbers of cache colors on each benchmark, but could not find any case where one technique
dominates the other. Although our techniques are independent of a specific address translation
technique used, identifying the performance characteristics of TDP and SP in the context of real-
time virtualization is an interesting topic that remains as future work.

6.2 Cache Management Scheme

6.2.1 Experimental Setup. We randomly generated 10,000 tasksets with the parameters in Ta-
ble 3. Cache hit/miss delay and cache color reload time (A) were obtained by measurement on
our ARM platform. To generate a WCET function (C;(k)) for each task 7;, we use the method
described in Bach et al. [9]. This method first calculates a cache miss rate for given cache size,
neighborhood size, locality, and task memory usage by using the analytical cache behavior model
proposed in Thiebault et al. [53]. It then generates an execution time with the calculated cache miss
rate, the timing delay of a cache miss, and the number of memory accesses. With this method,
we were able to generate WCETs with different cache sensitivities. Then, the total taskset uti-
lization (U;gskser) is split into n random-sized pieces, where n is the total number of tasks. The
size of each piece represents the utilization of the corresponding task when one cache color is
assigned to it. The period of a task 7; is calculated by dividing C;(1) by its utilization. Once a
taskset is generated, they are randomly distributed to two VMs, each of which has four VC-
PUs. The priorities of tasks and VCPUs are assigned by the Rate-Monotonic Scheduling (RMS)
policy [35], with an arbitrary tie-breaking. The sporadic server policy is used for VCPU budget
replenishment.

6.2.2 Results. For comparison with our scheme, we consider variants of the best-fit decreas-
ing (BFD), worst-fit decreasing (WFD), and first-fit decreasing (FFD) heuristics. Each heuristic is
used for task-to-VCPU allocation within a VM and combined with two different cache-to-task
allocation policies: complete cache partitioning (CCP) and complete cache sharing (CCS). CCP al-
locates private cache colors to tasks in proportion to their working-set sizes. On the other hand,
CCS lets tasks on the same VCPU share all their cache colors. Hence, we compare our scheme
against a total of six approaches: BFD+CCP, WFD+CCP, FFD+CCP, BFD+CCS, WFD+CCS, and
FFD+CCS. For each approach, k cache colors, where 1 < k < N 4cpe, are evenly distributed to all

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

Predictable Shared Cache Management for Multi-Core Real-Time Virtualization 22:23

w
«
w
~

' —4—Ours ——Ours
— B e I e — =
g SCBFDCCP | 535 iyt B —-BFD+CCP
8 —~-WFD+CCP| S5, lo—6 —o—WFD+CCP
-1 B3 o605 So6-o0o0o0o©°
;z.s ~A-FFD+CCP ; BB BRI E Ry o g | BFFDHCCP
s PR MRS S == == S oSS SN g
g 2 -6~ WFD+CCS 52,9 4—¢ | —©-WFD+CCS
1 ——FFD+CCS . ——FFD+CCS
" 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 " 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Number of cache colors Number of cache colors
(a) VM utilization (A = 207 pus) (b) VM utilization (A = 10 ms)

Fig. 13. VM utilization with regard to the number of cache colors.

VCPUs of the two VMs such that the difference in the number of cache colors of each VCPU does
not exceed 1. Tasks are sorted in decreasing order of utilization with regard to the number of
cache colors per VCPU. Once task-to-VCPU allocation is done, we determine the budget of each
VCPU by the binary search approach used in the Phase 2 of our CAVM algorithm given in Al-
gorithm 2. Finally, we calculate the total utilization of VMs by summing up the utilization of all
VCPUs.

Figure 13(a) shows the total VM utilization as the number of cache colors increases. Since CCP
cannot find a schedulable allocation if the number of colors is smaller than that of tasks, we com-
pare only the cases where the number of cache colors is greater than 15. Our scheme outperforms
all other approaches, yielding 1.19% to 1.55X lower utilization. This is because our scheme allo-
cates cache-sensitive tasks together to the same VCPU to increase the benefit of cache sharing and
finds the minimum total VM utilization for a given number of cache colors. The heuristics with
CCS perform better than the ones with CCP. This is because A obtained from our ARM platform
is relatively small so that the reduction in task execution time from cache sharing is larger than
the resulting CRPD in our experiments.

Figure 13(b) shows the total VM utilization when A is 10 ms. This experiment is to evaluate our
scheme when CRPD is extremely high. Overall, the benefit of using more cache colors is smaller
compared with the previous experiment. Our scheme outperforms other approaches because it
can balance between the utilization gain and CRPD from cache sharing. The heuristics with CCS
perform worse than the ones with CCP due to the high CRPD. In case of BFD+CCS and FFD+CCS,
the utilization even increases as more cache colors are provided. WFD+CCS is affected less by
the high CRPD compared with BFD+CCS and FFD+CCS because WFD results in a fewer number
of tasks per VCPU. Based on these results, we conclude that our scheme allocates cache colors
efficiently in virtualization and yields a significant utilization benefit.

7 RELATED WORK

Predictable cache management schemes have been extensively studied in the context of non-
virtualized systems. Page coloring [33] was first used to prevent cache interference from other
tasks on a single-core platform. For multi-core platforms, page coloring was used to implement
various cache partitioning schemes [34]. Specifically, Mancuso et al. [38] developed Colored Lock-
down, which combines page coloring and cache lockdown to keep frequently accessed pages in a
cache. Ward et al. [55] focused on cache management in mixed-criticality systems and proposed
cache locking and scheduling techniques with page coloring. Ye et al. [61] developed COLORIS,
which implements dynamic cache partitioning with page coloring. Bui et al. [9] developed a ge-
netic algorithm to find a near-optimal cache allocation, and Paolieri [40] proposed IA® to partition
a shared cache among CPU cores in a heuristic manner. With our proposed techniques, those prior
schemes could possibly be applied to virtualization on a per-VCPU basis. For instance, once prior

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

22:24 H. Kim and R. (Raj) Rajkumar

work determines cache allocation for VCPUs, just like for tasks in a nonvirtualized environment,
vLLC and vColoring can realize the allocation by assigning cache colors to the tasks of each VCPU.
Our task schedulability analysis given in Section 5.1 can be used to bound intra-VCPU cache in-
terference. However, prior work cannot determine the budget of VCPUs and the number of cache
colors for VMs, which our proposed algorithms do.

There also exist many research efforts on taking into account cache interference delay in the
schedulability analyses. Altmeyer et al. [1] compared the performance of cache partitioning and
cache-related preemption delay (CRPD) analysis on a single-core platform. Xu et al. [59] extended
multi-core compositional analysis to incorporate cache interference delay, assuming that there is
no shared cache. Lunniss et al. [36] extended CRPD analysis to single-core hierarchical schedul-
ing. However, these approaches have not focused on the problem of a shared cache in multi-core
virtualization, which our work addresses.

Prior work on software-based cache management for virtualization [32, 37, 46] implements page
coloring in the hypervisor and allocates cache colors to VMs. This approach, however, cannot ad-
dress cache interference among tasks running in the same VM, as we discussed in Section 2.3.
Kim et al. [19] proposed a hardware-based solution to enable page coloring implemented in a
guest OS to work. Recently, Xu et al. [58] proposed a cache management approach using In-
tel’s CAT virtualization. Those hardware-based approaches are alternatives to vLLC and vCol-
oring. One advantage of vColoring over them is that it can be used for unmodified guest OSs.
Our proposed cache management algorithms can be used together with those hardware-based
approaches.

8 CONCLUSION

In this article, we present our proposed predictable shared cache management framework for
multi-core real-time virtualization. Our framework provides vLLC and vColoring, which are
hypervisor-level techniques to enable the cache allocation of individual tasks running in a VM.
We implemented vLLC and vColoring on the KVM hypervisor running on x86 and ARM plat-
forms. Experimental results with three different guest OSs show that both vLLC and vColoring
can effectively control the cache allocation of tasks in a VM. Our framework also supports a cache
management scheme that determines cache-to-task allocation, designs a VM in the presence of
cache interference, and minimizes the total utilization of VMs to be consolidated into the host
machine. Experimental results with randomly generated tasksets show that our scheme yields a
significant utilization benefit compared to other approaches. As future work, we plan to explore
other heuristics to improve cache management and address interference caused by contention in
main memory in the context of real-time virtualization.

REFERENCES

[1] Sebastian Altmeyer, Roeland Douma, Will Lunniss, and Robert I. Davis. 2014. Evaluation of cache partitioning for
hard real-time systems. In Euromicro Conference on Real-Time Systems (ECRTS).

[2] ARM. 2016. ARM Cortex-A15 Reference Manual. (2016). Retrieved Dec. 14, 2016 from http://arm.com.

[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew
Warfield. 2003. Xen and the art of virtualization. ACM Operating Systems Review 37, 5 (2003), 164-177.

[4] Swagato Basumallick and Kelvin Nilsen. 1994. Cache issues in real-time systems. In ACM Workshop on Language,
Compiler, and Tools for Real-Time Systems.

[5] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator. In USENIX Annual Technical Conference (USENLX
ATC).

[6] Guillem Bernat and Alan Burns. 1999. New results on fixed priority aperiodic servers. In IEEE Real-Time Systems
Symposium (RTSS).

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

http://arm.com

Predictable Shared Cache Management for Multi-Core Real-Time Virtualization 22:25

(7]
(8]

(9]

[10]
(11]
(12]

(13]

(18]
(19]

[20]

[21]

[22]

(23]
[24]
[25]

[26]

Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. 2008. Accelerating two-dimensional page
walks for virtualized systems. ACM Operating Systems Review 42, 2 (2008), 26-35.

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The PARSEC benchmark suite: Characteriza-
tion and architectural implications. In International Conference on Parallel Architectures and Compilation Techniques
(PACT).

Bach D. Bui, Marco Caccamo, Lui Sha, and Joseph Martinez. 2008. Impact of cache partitioning on multi-tasking
real time embedded systems. In IEEE Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA).

José V. Busquets-Mataix, Juan José Serrano, and Andy Wellings. 1997. Hybrid instruction cache partitioning for pre-
emptive real-time systems. In Euromicro Workshop on Real-Time Systems (ECRTS).

Tommaso Cucinotta, Gaetano Anastasi, and Luca Abeni. 2009. Respecting temporal constraints in virtualised services.
In IEEE International Computer Software and Applications Conference (COMPSAC).

Robert I. Davis and Alan Burns. 2005. Hierarchical fixed priority pre-emptive scheduling. In IEEE Real-Time Systems
Symposium (RTSS).

General Dynamics. 2016. OKL4 Microvisor. (2016). Retrieved Dec. 14, 2016 from https://gdmissionsystems.com/cyber/
products/trusted-computing-cross-domain/microvisor-products/.

Per Hammarlund. 2013. 4th generation Intel core processor, codenamed haswell. In Hot Chips: A Symposium on High
Performance Chips (HC25).

Hardkernel. 2016. ODROID. (2016). Retrieved Dec. 19, 2016 from http://www.hardkernel.com.

Intel. 2016. Intel 64 and IA-32 Developer’s Manual. (2016). Retrieved Dec. 14, 2016 from http://intel.com.

Xinxin Jin, Haogang Chen, Xiaolin Wang, Zhenlin Wang, Xiang Wen, Yingwei Luo, and Xiaoming Li. 2009. A simple
cache partitioning approach in a virtualized environment. In IEEE Symposium on Parallel and Distributed Processing
with Applications.

Mathai Joseph and Paritosh K. Pandya. 1986. Finding response times in a real-time system. Computer Journal 29, 5
(1986), 390-395.

Daehoon Kim, Hwanju Kim, and Jachyuk Huh. 2014. vCache: Providing a transparent view of the LLC in virtualized
environments. Computer Architecture Letters 13, 2 (2014), 109-112.

Hyoseung Kim, Dionisio de Niz, Bjorn Andersson, Mark Klein, Onur Mutlu, and Ragunathan Rajkumar. 2016. Bound-
ing and reducing memory interference in COTS-based multi-core systems. Real-Time Systems 52, 3 (2016), 356~
395.

Hyoseung Kim, Arvind Kandhalu, and Ragunathan (Raj) Rajkumar. 2013. A coordinated approach for practical OS-
level cache management in multi-core real-time systems. In Euromicro Conference on Real-Time Systems (ECRTS).
Hyoseung Kim and Ragunathan Rajkumar. 2012. Shared-page management for improving the temporal isolation of
memory reservations in resource kernels. In IEEE Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA).

Hyoseung Kim and Ragunathan Rajkumar. 2014. Memory reservation and shared page management for real-time
systems. Journal of Systems Architecture (JSA) 60, 2 (2014), 165-178.

Hyoseung Kim and Ragunathan Rajkumar. 2016. Real-time cache management for multi-core virtualization. In ACM
International Conference on Embedded Software (EMSOFT).

Hyoseung Kim, Shige Wang, and Ragunathan Rajkumar. 2014. vMPCP: A synchronization framework for multi-core
virtual machines. In IEEE Real-Time Systems Symposium (RTSS).

Hyoseung Kim, Shige Wang, and Ragunathan Rajkumar. 2015. Responsive and enforced interrupt handling for real-
time system virtualization. In IEEE Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA).

Jan Kiszka. 2009. Towards Linux as a real-time hypervisor. In Real-Time Linux Workshop (RTLWS).

Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. KVM: The Linux virtual machine monitor.
In Linux Symposium, Vol. 1. 225-230.

Karthik Lakshmanan, Dionisio de Niz, and Ragunathan Rajkumar. 2009. Coordinated task scheduling, allocation and
synchronization on multiprocessors. In IEEE Real-Time Systems Symposium (RTSS).

Oded Lempel. 2011. 2nd generation Intel core processor family: Intel core i7, i5 and i3. In Hot Chips: A Symposium on
High Performance Chips (HC23).

Hennadiy Leontyev and James H. Anderson. 2009. A hierarchical multiprocessor bandwidth reservation scheme with
timing guarantees. Real-Time Systems 43, 1 (2009), 60-92.

Ye Li, Richard West, and Eric Missimer. 2014. A virtualized separation kernel for mixed criticality systems. In ACM
Conference on Virtual Execution Environments (VEE).

Jochen Liedtke, Hermann Hartig, and Michael Hohmuth. 1997. OS-Controlled cache predictability for real-time sys-
tems. In IEEE Real-Time Technology and Applications Symposium (RTAS).

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

https://gdmissionsystems.com/cyber/products/trusted-computing-cross-domain/microvisor-products/
http://www.hardkernel.com
http://intel.com

22:26 H. Kim and R. (Raj) Rajkumar

(34]

[35]
[36]
(37]

(38]

[39]
[40]
[41]
[42]
(43]
[44]
(45]
[46]
(47]
(48]
(49]
[50]
[51]

[52]

[53]
[54]
[55]
[56]
[57]
(58]
[59]

[60]

Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and P. Sadayappan. 2008. Gaining insights into
multicore cache partitioning: Bridging the gap between simulation and real systems. In IEEE Symposium on High-
Performance Computer Architecture (HPCA).

C. L. Liu and James W. Layland. 1973. Scheduling algorithms for multiprogramming in a hard-real-time environment.
Journal of the ACM 20, 1 (1973), 46-61.

Will Lunniss, Sebastian Altmeyer, Giuseppe Lipari, and Robert 1. Davis. 2014. Accounting for cache related pre-
emption delays in hierarchical scheduling. In International Conference on Real-Time and Network Systems (RTNS).
Ruhui Ma, Wei Ye, Alei Liang, Haibing Guan, and Jian Li. 2013. Cache isolation for virtualization of mixed general-
purpose and real-time systems. Journal of Systems Architecture 59, 10 (2013), 1405-1413.

Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Caccamo, and Rodolfo Pellizzoni. 2013. Real-
time cache management framework for multi-core architectures. In IEEE Real-Time Technology and Applications Sym-
posium (RTAS).

Shuichi Oikawa and Ragunathan Rajkumar. 1998. Linux/RK: A portable resource kernel in Linux. In IEEE Real-Time
Systems Symposium (RTSS) Work-In-Progress.

Marco Paolieri, Eduardo Quifiones, Francisco J Cazorla, Robert I. Davis, and Mateo Valero. 2011. IA3: An interfer-
ence aware allocation algorithm for multicore hard real-time systems. In IEEE Real-Time Technology and Applications
Symposium (RTAS).

QNX. 2017. QNX Hypervisor. (2017). Retrieved Apr. 14, 2017 from http://www.qnx.com.

Wind River. 2016. VxWorks. (2016). Retrieved Dec. 14, 2016 from http://www.windriver.com.

Saowanee Saewong, Mark H. Klein, Ragunathan Rajkumar, and John P. Lehoczky. 2002. Analysis of hierarchical
fixed-priority scheduling. In Euromicro Conference on Real-Time Systems (ECRTS).

Filip Sebek. 2001. Cache memories and real-time systems. Technical Report. Médlardalen University. Retrieved Dec. 14,
2016 from http://www.es.mdh.se/publications/290-.

Lui Sha, John P. Lehoczky, and Ragunathan Rajkumar. 1986. Solutions for some practical problems in prioritized
preemptive scheduling. In IEEE Real-Time Systems Symposium (RTSS).

Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang. 2011. Limiting cache-based side-channel in multi-tenant cloud
using dynamic page coloring. In Dependable Systems and Networks Workshops (DSN-W).

Insik Shin, Arvind Easwaran, and Insup Lee. 2008. Hierarchical scheduling framework for virtual clustering of mul-
tiprocessors. In Euromicro Conference on Real-Time Systems (ECRTS).

Insik Shin and Insup Lee. 2008. Compositional real-time scheduling framework with periodic model. ACM Transac-
tions on Embedded Computing Systems (TECS) 7, 3 (2008), 30.

Brinkley Sprunt, Lui Sha, and John Lehoczky. 1989. Aperiodic task scheduling for hard-real-time systems. Real-Time
Systems 1, 1 (1989), 27-60.

Udo Steinberg and Bernhard Kauer. 2010. NOVA: A microhypervisor-based secure virtualization architecture. In ACM
European Conference on Computer Systems (EuroSys).

Jay K. Strosnider, John P. Lehoczky, and Lui Sha. 1995. The deferrable server algorithm for enhanced aperiodic re-
sponsiveness in hard real-time environments. IEEE Transactions on Computing 44, 1 (1995), 73-91.

Noriaki Suzuki, Hyoseung Kim, Dionisio de Niz, Bjorn Andersson, Lutz Wrage, Mark Klein, and Ragunathan
Rajkumar. 2013. Coordinated bank and cache coloring for temporal protection of memory accesses. In IEEE Inter-
national Conference on Embedded Software and Systems (ICESS).

Dominique Thiebaut, Joel L. Wolf, and Harold S. Stone. 1992. Synthetic traces for trace-driven simulation of cache
memories. [EEE Transactions on Computers 41, 4 (1992).

Xiaolin Wang, Jiarui Zang, Zhenlin Wang, Yingwei Luo, and Xiaoming Li. 2011. Selective hardware/software memory
virtualization. ACM SIGPLAN Notices 46, 7 (2011), 217-226.

Bryan C. Ward, Jonathan L. Herman, Christopher J. Kenna, and James H. Anderson. 2013. Making shared caches more
predictable on multicore platforms. In Euromicro Conference on Real-Time Systems.

Sisu Xi, Justin Wilson, Chenyang Lu, and Christopher Gill. 2011. RT-Xen: Towards real-time hypervisor scheduling
in Xen. In ACM International Conference on Embedded Software (EMSOFT).

Sisu Xi, Meng Xu, Chenyang Lu, Linh TX Phan, Christopher Gill, Oleg Sokolsky, and Insup Lee. 2014. Real-time
multi-core virtual machine scheduling in xen. In ACM International Conference on Embedded Software (EMSOFT).
Meng Xu, Linh TX Phan, Hyon-Young Choi, and Insup Lee. 2017. vCAT: Dynamic cache management using CAT
virtualization. In IEEE Real-Time Technology and Applications Symposium (RTAS).

Meng Xu, Linh TX Phan, Insup Lee, Oleg Sokolsky, Sisu Xi, Chenyang Lu, and Christopher Gill. 2013. Cache-aware
compositional analysis of real-time multicore virtualization platforms. In IEEE Real-Time Systems Symposium (RTSS).
Jungwoo Yang, Hyungseok Kim, Sangwon Park, Changki Hong, and Insik Shin. 2011. Implementation of composi-
tional scheduling framework on virtualization. ACM SIGBED Review 8, 1 (2011), 30-37.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

http://www.qnx.com
http://www.windriver.com
http://www.es.mdh.se/publications/290-

Predictable Shared Cache Management for Multi-Core Real-Time Virtualization 22:27

[61] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. 2014. COLORIS: A dynamic cache partitioning system using page
coloring. In International Conference on Parallel Architectures and Compilation Techniques.
[62] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. 2014. PALLOC: DRAM bank-aware memory

allocator for performance isolation on multicore platforms. In IEEE Real-Time Technology and Applications Symposium
(RTAS).

Received December 2016; revised April 2017; accepted May 2017

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 1, Article 22. Publication date: December 2017.

