Virt/RK: A Real-Time Virtualization Framework
for Multi-Core Platforms

Hyoseung Kim and Ragunathan (Raj) Rajkumar

Electrical and Computer Engineering
Carnegie Mellon University

ectrical & Computer
€ ENGINEERING

Benefits of Multi-Core Platforms Real-Time System Virtualization
» Workload consolidation onto a multi-core CPU * Barriers to consolidation: R ——
— Applications are typically developed JNTEGRIT
iIndependently by different vendors
* Bare-metal, proprietary OS VxWorks
o . ety
Workload Linux, Androia Bﬁ_\ QNX" Neutrino”
Consolidation 5 —IP and licensing considerations
Multi-core platform * Consolidation via virtualization Virtualization |
— Each application can maintain R
Single-core Platforms Its own Implementation a,_ez f_: ; =
— Minimizes re-certification process O E: i \E 5
. . . > L&) 7TJLE,
* Reduces the number of CPUs and wiring harnesses among them — |P protection and license segregation
 Leads to a significant reduction Iin size, weight, power and cost requirements — Fault isolation

Virt/RK Cache Interference within a VM

- Real-time virtualization with resource kernel approach * Problem: cache interference among tasks within the same VM
— CPU reservation for VCPUs + Memory reservation for VMs — Each VM can be assigned private cache partitions
M1 | — But, those cache partitions are shared among tasks running in the VM
_____________________________________ VM Resource Reservation - (1) (2)
[Task | [Task |} i Task | [Task] Teirter cache, colora=0-7, oxt. mem-256, ext. colors=8-15 - % WUTT VI
| h I R ZERE ~virtrk 1:{-:1::1_1;;9:.=1e::1::u'3,m:-::.;ju='3,_p-:;3u=_ﬂ;;-:=5;§=1'E [Task | [Task | | [Task | [Task || (1) Intra-VCPU cache interference:
Taksche“er l | “virtrk “CP”;TF‘!ZP”L“C?FLIF“:?”:-*C:E*-=1'* Tll le Tls Tl4 tasks running on the same VCPU
 VCPU1/2: 50% of physical CPU { Task scheduler JJ Task Scheduler § (2) Inter-VCPU cache interference:
- . 0 . ! ; ! ; . -
VM. éi?hgfgogéxamboggvggmtiOning i tasks running on different VCPUs

Prevents inter-VM interference

— Current implementation: Virt/RK::KVM-x86, VIirt/RK::KVM-ARM
—VIr/RK::L4 under development

» Solutions: VLLC & vColoring, hypervisor-level methods to manage
the cache allocation of individual tasks running in a VM
— Supports proprietary, closed-source guest OSs

Experimental Results Demonstration

» Experimental Setup » Virtualization of the driving context of an autonomous vehicle*”
— X86: Intel 17-2600 four cores, ARM: Exynos 5422 (four ARM Cortex-Al5 cores)
— Guest OSs: Linux/RK, Vanilla Linux, MS Windows Embedded (x86 only)

* Inter-VCPU Interference among cache-sensitive tasks within a VM

600 - : 1600 -
N - @ Baseline [[] w/vLLC B w/ vColoring 1400 B Baseline [w/vLLC & w/ vColoring
X 500 + < 1
< S00 © 471 .89 pIERES 443.83 S 1209.60 1203.85
GE)] ¢1200]
(&)]]
® 300 - o 800 -
LL . |_|>j 600 .
£ 200 =
o : S 400 -
Z 100 - z :
; 200 7 102.13
0 - . ' S ' . 0 - '
Linux/RK Vanilla Linux MS Windows Linux/RK Vanilla Linux

* C. Urmson et al., “Autonomous Driving in Urban Environments: Boss and the Urban Challenge”, Field and

: : : : : L Robotics, 2008.
[VIrt/RK with VLLC & vColoring effectively prevents cache interference inside a VMJ t J. Wei et al., “Towards a Viable Autonomous Driving Research Platform”, In IEEE Intelligent Vehicles

Symposium (1V), 2013.

Carnegie Mellon University

