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Extended Reality (XR)
What is Extended Reality (XR)?

* Creates an immersive virtual-physical user experience

* Includes Virtual Reality (VR), Augmented Reality (AR), Mixed Reality (MR)
Why XR is useful?

* Intuitive control: user motion directly interact with virtual environment

* Diverse use cases: entertainment, teleoperation, accessibility, etc.

* 1Fixit, Vision Pro Teardown: Behind the Complexand Creepy Tech, https://youtu.be/JVIPAYWY8Us
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XR pipeline and challenges

How XR systems work?

: o o ~ Head-mount
User motion Sensors Perception Phase  Visualization Phase Display (HMD)
Challenges of XR systems

* Tight budget for motion display: users can sense motion misalignment in 20ms”

* Resource constraints: standalone XR devices use embedded systems with limited
computational resources

* Huzaifa, Muhammad, et al. "ILLIXR: Enabling end-to-end extended reality research."2021 IEEE International Symposium on Workload
Characterization (ISWC), 2021.
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XR Sensors

Inertial Measurement Unit (IMU):
» Sample Rate: 500Hz ~ 1000Hz

e Data: acceleration and rotation

Stereo Camera (CAM): <
* Sample Rate: 20Hz ~ 60Hz

* Data: a picture of surrounding information
(With depth information)

Apple Vision Pro sensors”

* Sarang Sheth, "Every Single Sensor inside the Apple Vision Pro and What It’s Individually Designed To Do." R. m RIVERSI DE
https://www.yankodesign.com/2023/06/07/every-single -sensor-in-the-apple-vision-pro-and-what-its -individually-designe d-to-do/ e
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User Motion
Head Motion

* Frequent rotational or small-magnitude translational
movements

* 1.€., head shaking, torso rotation, body leaning

* Can be accurately captured by IMU

Body Motion

* Less frequent but with absolute position change 1n the
environment

* 1.e., running, walking, skiing, acceleration in car

* Requires CAM to perform accurate localization




_ Background
State-of-the-art XR System Model: ILLIXR"

* Adopts a publisher-subscriber model

 Tasks: Visual Inertial Odometer (VIO}{IRMU integﬁation (IMUi),
Scene Reconstruction (SR & SRR), Asynchronous Timewarp (ATW & ATWR)

Period: 2ms 8ms 50ms Task: Periodic / Event Triggered Published Data
Image ) O
. . timer: event:

Body .
timer:50ms timer:8ms event:SR
/
timer: 8ms
— VY ] { ATWR J) q HMD
0 > > »
Head timer: 2ms event: IMU timer:8ms event: ATW
Motion Sensors Perception Visualization Display

* Huzaifa, Muhammad, et al. "[LLIXR: Enabling end-to-end extended realityresearch." 2021 IEEE International Symposium on Workload

0 Characterization (IISWC), 2021.
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Existing metric: Motion-to-Display latency (M2D)
* Time between the latest motion by the IMU and its corresponding display on HMD

* Why use M2D? Most cases users just sit or stand 1dle without body motion

Body

timer:50ms timer:8ms event:SR

—>CAM]

timer: 8ms

»
Head timer: 2ms event: IMU timer:8ms  event: ATW
Motion Sensors Perception Visualization Display

7
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What if we only optimize M2D?

 Existing work achieves less than 20ms M2D, but when large body motion involved...

. nly h‘ad motion 1s accounted for in M2D
* Body motion 1s NOT considered in M2D metric and thus not optimized

Meta Quest 3 Taking Flight* Apple Vision Pro Mountain Skiing**

Ul 1s supposed to move along with the user, but it drifts towards to edge of view!

* HistoricBeans, "Quest 3 in flight (passenger video)." https://www.reddit.com/r/OculusQuest/comments/17a8ctd/quest 3 in flight passenger video/ R-
**E. Cosner, "Snowboarding with apple vision pro - can this actually work? " https://youtu.be/LTVuGs YY2yc.

[T RIVERSIDE

Laborati)ry



Introducing: Camera-to-Display latency (C2D)
Time between the latest body motion by CAM and its corresponding display on HMD

Image

Raw Fused
Pose Pose

timer:50ms event: CAM
—pp CAM L> VIO

¢ —>j \} R—

Head timer:2ms event: IMU timer:8ms  event: ATW
Motion Sensors Perception Visualization Display

Body

timer:8ms event: SR

SR

timer: 8ms
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Our Solution: BOXR
BOXR: Body and Head Motion Optimization Framework for eXtended Reality
* Introduces the C2D metric to capture the delay from body motions
* Co-optimizes the delay from both body and head motions (M2D & C2D).

* Addresses unique challenges in XR systems:

= Resource contention, optimization tradeoffs, and varying execution time due to
motion and scene dynamics

Reality IMUi SR ATW VIO SRR eXtended Reality(XR)
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System bottleneck Det.2: C2D ¢
 XR adopts publisher- vVio
subseriber model 0 [ - -

* CPU tasks: VIO, IMUj, (%ISIZ ”””””””” ””I” ”I”” ””I”

SR, ATW SR l

CPU3 I I
S W W /-

VIO Visual Inertial Odometer SR Scene Reconstruction

IMUi |IMU Integration ATW | Asynchronous Timewarp
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System bottleneck Def.2: C2D <
. : _ VIO :
Wapepitier 5, —
. CPU tasks: VIO, IMUS 5“33'2 [EEHELECELEREELLR LI IIIIII|
SR, ATW
cpUs | | |
B W W M
 GPU tasks: SRR, ATWR SR%?J?NR . . .

Def1: M2D X

* Contention Between SRR and ATWR: Both tasks share the same stream and execute

sequentially 1n a first-in-first-out order
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M2D and C2D Tradeoff
SR | Scene Reconstruction
* Single Optimization of M2D: ATW | Asynchronous Timewarp
increase SR period to mitigate
contention
Y Sldemo 80
0 0
. £ 201 e
* However, C2D increases because - |
less SR 1s executed: freshness of | 457 60 O
CAM data decreases o 12 o
< g 50 <

8 12 16 20 24
SR Period (ms)

We need to consider both V2D
and C2D during optimization

13

1] [ RIVERSIDE



Introduction Background  Challenge Methodology  Evaluation

Simple Optimization of M2D and C2D does not work

M2D C2D —— Avg. M2D---- Avg. C2D—
Default |

* Adjusting both SR and ATW period to
minimize both average M2 and C2D

A
80
* But M2D and C2D fluctuations increase! € o
« Some Jobs have longer blocking time due ® A v
to contention Q A
O 30 -
©
% 20
. . ) 7
Need to have scheduling policy g |#diads s declell 14
that prevents contention! 101
0 25 50 75 C Y

Frame Index
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XR runtime characteristics

* C1: Motion-dependent Tracking: Larger speed increases VIO exec. time

* C2: Scene-dependent Rendering: More objects increase SRR exec. time (render)

60 20 1 Gldemo: render —e— reprojection—e- .. ®
'MHO1T_]  vi02lm Sponza: render --e- reprojection L
40 - L %‘l H| o -
= 1 N h T £ 10 - o
. 418 [T =
g 30 - L |Ij . RO
p ] L1~ 2 o
o [ T S s-
> 20 - 1
10 0 T T T T T T T
01 02 03 04 05 06 07 038 1 5 10 15 20 25 30
Normalized 3D speed Number of Objects

C1: VIO Execution time increases with motion C2: SRR Exe. time increases with Obj.
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BOXR Overview

Why design a scheduler and runtime adaption
* Scheduling policy can be generated during setup to avoid large runtime overhead

* Motion and scene objects can only be acquired during runtime

BOXR Scheduling policy

* Contention-preventive scheduling: Prevents contention between SRR and ATWR
while maintain the fresh raw pose information

* On-demand IMUi: Executes IMU1 only when fused pose 1s needed

BOXR Runtime Adaption
* Motion-Driven VIO: Addresses C1: motion-dependent tracking

* Scene-Dependent Foveated Rendering: Addresses C2: scene-dependent rendering
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BOXR Scheduling policy: Contention-preventive

* To avoid contention between ATWR and SRR, BOXR schedules ATW and ATWR
jobs synchronously to SR and SRR jobs

violll IMUi SRS SRR ATW ATWR
tvio = 30, tmvmui = 1,tsr = 2,tsrr = 4, taTw = 6,tATWR = 2 Ty10 = 60, TATrw = 16

cru1 I R

C P U 2 : i : 1 1 1 1 1 1 : )
30 33 45 48 60 63 75 78 90
C P U 3 : 1 1 1 I 1 1 1 1 }
0 30 37 46 52 61 67 76 82 1
GPU1! : : : : : : : : : : : : : : : : : :?
0 30 45 60 75 9
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BOXR Scheduling policy: Contention-preventive

* To maintain raw pose data freshness, BOXR determines the SR period that ensures
each C2D sequence (Vio—IMUi—»SR—SRR—ATW—ATWR) completes with no temporal overlap

[wo- IMUi srRIN SRR ATW ATWR }
6

tvio = 30, timui = 1,tsr = 2,tsrr = 4, taTw = 6,2aTWR = 2 Tvio = 60, TxrTtw = 1

cru1 I R

CPU2; mi - ;5. + 5’0. + ?5. + J;)
CPU3; — — — — 2
GPU1— | | | —— —t— —— —t— —b
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BOXR Scheduling policy: On-demand IMUi

* To avoid wasted IMU1 jobs, BOXR schedules IMU1 to run only at the beginning

of SR or ATW jobs
violll IMUi SR SRR ATW ATWR
tvio = 30, tmvqui = 1,tsr = 2,tsrr = 4, taTw = 6,tAaTWR = 2 Tyi0 = 60, ThArw = 16

cru1 NN K
CPU2, I il i [N K

30 33 45 48 60 63 75 78 90

CPU3L

1 1 1 I 1 1 1 1 k
30 37 46 52 61 67 76 82 é’ll

GPU'Ié : : : : : : : : : : : : : : : : : 90)

30 45 60 75
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Runtime Adaption: Motion-Driven VIO

Goal: Manage the varying execution 3 T 1R KR s o \
time of VIO while minimizing pose o - 3 .
quality degradation

* Image cropping: when motion 1s
large, crop the image input

(Ground Truth- - Initial Pose ® Corrected pose®|

* Level of pyramid adjustment: adjust
the pyramid level in the VIO’s Multi-
state Kalman Filter w.r.t motion

* Error bounding: leverage the previous
raw pose to calculate the maximum
possible displacement. Bound the
output pose within the displacement.

., -
S

prev raw pose

new groud truth
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Runtime Adaption: Scene-Dependent Foveated Render

Goal: Control varying SRR execution
time by scene-adaptive foveation

* Dynamic foveation area: reduce
the peripheral resolution when more

objects are in the viewport . c2
« Dynamic Objects Centroid: fix the T
center of foveation to the objects’ _
centroid to effectively reduce render inner area
time
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Evaluation and Baselines Setup

Setup:

 Hardware Platform: PC,
NVIDIA AGX Xavier,
NVIDIA Orin Nano

* XR applications: Table I
* Trajectory: Table II

Baselines:

e [LLIXR: Pub-Sub model

Introduction Background  Challenge Methodology  Evaluation
TABLE I: Evaluated XR Applications
Sponza(Spon) | Materials(Mat) Gldemo(Gl) | Platformer(Plat)
Object 32 81 7 3014
Vertex 192870 62826 54760 26168
Texture 33 24 8 4

TABLE II: EuRoc MAV Dataset Categorization

No Motion | Small Motion | Med. Motion | Large Motion
vzp(m/s) 0,0.1) 0.1, 1) 1, 2) 2, 00)
Perc(%) 10.62 66.75 20.30 2.33

* [ILLIXR-OP: Optimized with SR and ATW periodicities changes

* BOXR-S: Static BOXR only implements the BOXR scheduler

* BOXR: Complete framework with both scheduler and runtime adaption
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Efficiency: Low Runtime Overhead

* BOXR runtime adaption only results up to 0.6% of system overhead

MVIO
IMUI
SR
ATW

SFR

ATWR | i | | | | | | i | : |

BOXR 10.06(0.3%); = |013(0.4%) @ 0.31(0.6%) . .
0o 2 4 6 8 10 120 4 8 12 16 20 0 8 16 24

PC Exe. Time (ms) Xavier Exe. Time (ms) Nano Exe. Time (ms)

23




BOXR General
Effectiveness:

e Xavier: on
average 37%
M2D and 27%
C2D reduction

e Real-world
Gaming: BOXR
reduces M2D
and C2D miss
rate by 69.2%
and 34.1%

respectively

24

M2D and C2D (ms)

Effectiveness: M2D and C2D Reduction

[ ILLIXR ILLIXR-OPmS BOXR-S BOXRm™ | [ ILLIXR ILLIXR-OPME BOXR-Sm= BOXREE |
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Conclusion

* Discovers the C2D metric and co-optimize both M2D and C2D for both body and head motion
* Addresses resource contention and increased execution time due to motion and objects

GitHub Link Paper Link
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