Balancing Energy Efficiency and Real-Time Performance in GPU Scheduling

Yidi Wang, Mohsen Karimi, Yecheng Xiang and Hyoseung Kim
University of California, Riverside
IEEE Real-Time Systems Symposium (RTSS) 2021
Introduction

- GPU power management is important in CPS
 - GPUs are designed for better performance, with dramatically increased power consumption
 - Benefits of GPU power management:
 - Reliability, feasibility, scalability, etc.

- Partitioning the GPU can improve real-time performance and resource efficiency
 - Spatial multitasking partitions the GPU into computing units, so that multiple kernels can run simultaneously
NVIDIA Jetson AGX Xavier

The GPU is rail-gated and clock-gated, but not SM level power-gated

(a) Xavier SoC Architecture
(b) Block diagram of Xavier power rails

Figure 1: Architecture and module power rails of NVIDIA Jetson AGX Xavier
Related Work

- **Temporal Multitasking on GPU** – Prior works specifically for real-time systems
 - Non-preemptive scheduling\(^1\)\(^2\): makes GPU access and blocking time predictable
 - Preemptive scheduling\(^3\)\(^4\): decomposes big kernel into smaller segments
 - GPU resources may be underutilized

- **Spatial Multitasking on GPU**\(^5\)
 - It can reduce contention on computing resources between tasks
 - It may not lead to the most energy-efficient schedule

- **Resource Allocation for GPU Energy Saving**\(^6\)\(^7\)
 - Turns off idling resources (i.e., SMs)
 - But SM-level power gating is not yet available even on the latest embedded GPUs

Contributions

We proposed sBEET:
✓ Real-time scheduling framework that \textit{Balances Energy Efficiency and Timeliness} of GPU kernels on embedded GPUs

- Derive a power and energy consumption analysis for GPU kernels scheduled w/ and w/o spatial multitasking on the GPU
- Develop a runtime scheduler that balance the deadline misses and the energy consumption of non-preemptive GPU kernels
- Implement the scheduler on NVIDIA Jetson AGX Xavier
- The proposed work outperforms the existing spatial multitasking approach in real-time performance and energy consumption
System Model

- System Model
 - A GPU containing M SMs
 - Single Memory Copy Engine

- Task Model
 - A taskset Γ consists of n periodic tasks:
 - Non-preemptive
 - W/ Constrained deadlines
 $\tau_i := (G_i, T_i, D_i)$
 WCET, period, deadline

- Job Model
 - Each task τ_i consists of a sequence of jobs $J_{i,j}$
 - Job are running exclusively on the assigned number of SMs
Power and Energy Analysis (1/5)

- Power model
 - Power model: \(P = P_s + P_d + P_{idle} \)
 - For a set of jobs \(J = \{J_1, J_2, \ldots, J_n\} \):
 \[
 P = P_s + \sum_{i=1}^{n} P_d^i(m_i) + P_{idle}(M - \sum_{i=1}^{n} m_i)
 \]
 - For a taskset \(\Gamma \), energy consumption in \([t_1, t_2]\):
 \[
 E(t_1, t_2) = \int_{t_1}^{t_2} \left(P_s + \sum_{i=1}^{n} \left(P_d^i \left(\sum_{k=1}^{M} x_{i}^{k}(t) \right) \right) + P_{idle} \left(M - \sum_{i=1}^{n} \sum_{k=1}^{M} x_{i}^{k}(t) \right) \right)
 \]

\(x_{i}^{k}(t) = \begin{cases}
0, & \text{\(\tau_i \) is not active on SM}_k \\
1, & \text{\(\tau_i \) is active on SM}_k
\end{cases} \)
Power and Energy Analysis (2/5)

- WCET and power consumption profiling
 - Obtain power parameters for each application

![Graphs showing WCET and power consumption for different applications](image)

(a) mmul (b) stereodisparity (c) hotspot (d) dxtc

(e) pathfinder (f) bfs_large (g) bfs_small (h) synthetic kernel

Figure 4: Profiling results of WCET and power consumption
Power and Energy Analysis (3/5)

Definition 1. \((m^{opt})\) The energy-optimal number of SMs \(m^{opt}\) for a task \(\tau_i\) is defined as the number of SMs that leads to the lowest energy consumption when it executes in isolation on the GPU during an arbitrary time interval.

Figure 5: Normalized energy consumption in time window

- Linear-speedup \((m^{opt} = M)\)
- Nonlinear-speedup \((m^{opt} < M)\)
The schedule of a job set J with spatial multitasking cannot be more energy-efficient than the schedule without spatial multitasking if the jobs in J are linear-speedup jobs.

Consider two linear-speedup tasks:

<table>
<thead>
<tr>
<th>Task</th>
<th>D_i</th>
<th>$G_r^c(M)$</th>
<th>G_d^h</th>
<th>G_d^{dh}</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>12</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>τ_2</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Schedule in (b):
- Less energy efficient
- Better schedulability

Extra consumed energy due to idle SMs
The schedule of a job set J with spatial multitasking cannot be more energy-efficient than the schedule without spatial multitasking if the jobs in J are linear-speedup jobs.

Theorem 1

Theorem 1 does not necessarily hold for nonlinear-speedup jobs.

Schedule in (b):

- Less energy efficient
- Better schedulability

Lemma 2

To reduce energy consumption:

- For linear-speedup jobs, execute them as fast as possible
- For nonlinear-speedup jobs, try to assign the right number of SMs (m^{opt}) to them
Framework (1/3)

- Goals:
 - Minimize deadline misses
 - Maximize the opportunity to reduce energy consumption

- Approach:
 - A heuristic runtime scheduler:
 - Improve deadline misses by exploiting spatial multitasking technique
 - Reduce energy consumption by running each job with m^{opt} whenever possible
 - Two workers are created to parallelize the kernels
 - Motivated by hyperthreading on CPU
Framework (2/3)

- **SM allocation policy:**
 - The decision is made dynamically for each job
 - It is called when a new job arrives or a running job completes

- **When the GPU is idling:**
 - Consider all the jobs that will arrive before $f_{i,j}(m)$
 - Generate all feasible schedules
 - Choose the schedule with the minimum predicted energy consumption

- **When the GPU is partially occupied:**
 - Decide which one is more energy efficient:
 - launch the job right away
 - or wait until the current running job completes execution

Algorithm 2 SM Allocation

1. function `ALLOCATION(J_{i,j}, J_{q,r})`
2. $t_{now} \leftarrow$ current time
3. if $J_{q,r}$ is `nullptr` then
 4. for $m \leftarrow M$ to 1 do
 5. $m' \leftarrow \min(m, m_{opt})$
 6. $Q_{i,j}^w \leftarrow \{J_{k,p} \mid \forall p, (r_k \neq r_q) \wedge (r_{k,p} < f_{i,j}(m'))\}$
 7. $SCHEDEGEN(J_{i,j}, J_{q,r}, m', [t_{now}, f_{i,j}(m')], Q_{i,j}^w)$
 8. Compute $E_{pred} = E(t_{now}, f_{i,j}(m'))$ by Eq. (5)
 9. end for
10. if no generated schedule is feasible then
 11. Choose the schedule with the minimum E_{pred}
 12. else
 13. Choose the feasible schedule with the min. E_{pred}
 14. end if
15. return $S_{i,j}^{c,f}$ > the corresponding SM allocation for $J_{i,j}$
16. if $J_{q,r}$ is `nullptr` then
17. $m' \leftarrow \min(|S_{avail}|, m_{opt})$
18. else if $f_{i,j}(m') > f_{q,r} + G_{i,j}(M)$ then
19. return \emptyset > Do not run $J_{i,j}$ in parallel with $J_{q,r}$
20. else
21. $Q_{i,j}^w \leftarrow \{J_{k,p} \mid \forall p, (r_k \neq r_q) \wedge (r_{k,p} < f_{i,j}(m'))\}$
22. $SCHEDEGEN(J_{i,j}, J_{q,r}, m', [t_{now}, f_{i,j}(m')], Q_{i,j}^w)$
23. if the generated schedule is not feasible then
24. return \emptyset
25. else
26. return $S_{i,j}^{c,f}$ > the corresponding SM allocation
27. end if
28. end if
29. end if
30. end function
Framework (3/3)

- High-level idea of the scheduler:
 - generates the possible schedules
 - Then choose the one with minimum energy consumption and w/o deadline violation

- Time complexity: $O(n \log n)$
Evaluation

- **Experiment Setup**
 - NVIDIA Jetson AGX Xavier with Ubuntu 18.04 and CUDA 10.0
 - 670 MHz GPU clock frequency
 - All CPU cores are enabled
 - GPU power consumption is measured from the built-in power sensor

- **Scheduling Approaches**
 - **sBEET:**
 - the proposed approach
 - **FCFS, RM:**
 - temporal-multitasking
 - **STGM¹:**
 - temporal-multitasking and spatial-multitasking

The average error is 5.93%.
R2 score is 0.87.

Figure 6: Error of predicted GPU power consumption
Overhead Measurement

- The overhead comes from the decision-making of the scheduler
- A taskset of total utilization of 1.0 is executed for 10 minutes

(a) Overhead of Alg. 1 (b) Overhead of Alg. 2 and 3

Figure 7: Runtime overhead w.r.t number of tasks

✓ The overhead is acceptable for our target embedded platform
To see the schedulability and energy consumption of different approaches when the system is overloaded

Taskset generation
- 1,000 randomly-generated tasksets
- Running for 10 secs on real hardware

- sBEET has the lowest deadline miss ratio
- When the utilization gets larger, the energy consumption of sBEET becomes the highest due to the use of spatial multitasking and sBEET has more completed jobs than others

Figure 8: Runtime results w.r.t. the utilization of taskset
Effect of Heavy/Light Task Ratio

- Heavy tasks are likely to have negative impact on schedulability
- Task categorization
 - Heavy tasks: MMUL, Stereodisparity, DXTC
 - Light tasks: Hotspots, Pathfinder, BFS, the synthetic kernel

☑️ sBEET is better at meeting the deadlines since the long blocking by heavy tasks can be avoided

Figure 9: Runtime deadline miss ratio of light tasks w.r.t. ratio of heavy tasks
Effect of Spatial Multitasking

- Focus on the energy efficiency with spatial-multitasking
- All the tasksets can pass the original STGM offline schedulability test which guarantees no deadline miss

☑ Both have 0% deadline miss ratio
☑ sBEET can save up to 21% of the energy

![Figure 10: Comparison of runtime energy consumption of STGM and the proposed work](image)

1/12/22
Discussion

- Shared memory resource contention
 - Co-scheduled kernels may experience additional timing interference due to contention on shared memory resources of the GPU
 - We did not observe any discernible slowdown:
 - The target platform has a small number of SMs and a high memory bandwidth
 - Can be co-used with *Fractional GPUs¹*

- Energy consumed by other hardware components
 - Including CPU, memory, etc.
 - It will be more challenging to optimize the energy consumption of the whole hardware

1/12/22
Conclusion and Future Work

- **Conclusion**
 - Our power and energy analysis shows that spatial multitasking on the GPU benefits schedulability, but may lead to energy inefficiency due to the energy consumed by idle SMs.
 - The proposed runtime scheduler balances the schedulability and energy efficiency.
 - We implemented the scheduler on NVIDIA Jetson AGX Xavier.
 - Experimental results show that the proposed scheduler can achieve better energy efficiency in meeting tasks’ deadlines.

- **Future work**
 - Extend the current work to more powerful GPUs.
 - Consider heterogeneous multi-GPU systems.
 - Consider the energy consumption of the whole hardware.
 - Extend our idea to other systems, e.g., DNN inference servers and autonomous driving.
Balancing Energy Efficiency and Real-Time Performance in GPU Scheduling

Yidi Wang, Mohsen Karimi, Yecheng Xiang and Hyoseung Kim

Thank you!