
Balancing Energy Efficiency and Real-Time
Performance in GPU Scheduling

Yidi Wang, Mohsen Karimi, Yecheng Xiang, and Hyoseung Kim
University of California, Riverside

ywang665@ucr.edu, mkari007@ucr.edu, yxian013@ucr.edu, hyoseung@ucr.edu

Abstract—General-purpose graphics processing units (GPUs)
made available on embedded platforms have gained much interest
in real-time cyber-physical systems. Despite the fact that GPUs
generally outperform CPUs on many compute-intensive tasks in
a multitasking environment, high power consumption remains a
challenging problem. In this paper, we first analyze the power and
energy consumption of GPU kernels scheduled with spatial mul-
titasking, which is found to be advantageous for schedulability in
recent studies, and prove that its use, however, degrades energy
efficiency even in the latest commercially available embedded
GPUs like NVIDIA Jetson Xavier AGX. Then, based on our
observations, we propose sBEET, a real-time energy-efficient
GPU scheduling framework that makes scheduling decisions
at runtime to optimize the energy consumption while utilizing
spatial multitasking to improve real-time performance. We eval-
uate the performance of the proposed sBEET framework using
well-known GPU benchmarks and randomly-generated timing
parameters on real hardware. The results indicate that sBEET
reduces deadline misses up to 13% when the system is overloaded,
and also achieves 15% to 21% lower energy consumption when
the tasksets are schedulable compared to the existing works.

I. INTRODUCTION

Nowadays, graphics processing units (GPUs) are already
popular due to their outstanding performance. Offloading tasks
that require a massive amount of computation and paral-
lelism to the GPUs brings a significant performance improve-
ment to cyber-physical and autonomous applications. Real-
time multitasking is an essential prerequisite for developing
such GPU-accelerated applications. For example, users can
create multiple streams and assign independent kernels to
those streams for concurrent kernel execution, in order to
achieve speed-up and improve GPU resource efficiency. Power
management is one of the major factors for the efficient use
of GPUs in an embedded environment. According to [28],
GPU power management can bring multiple benefits, such as
reducing the energy waste caused by kernel synchronization
and resource utilization, improving scalability and reliability
through reduced component temperature, and preventing the
need for extra cooling.

It is well known that each kernel may not be fully utilizing
all the internal computing units of a GPU [7]. In order to better
utilize the GPU resources and reduce the waiting time when
multiple GPU kernels are sharing a GPU, recent real-time
GPU scheduling schemes [19, 21, 31, 32] employ the spatial
multitasking approach that partitions the GPU into computing
units and enables two or more kernels to execute simultane-
ously on the GPU. While this approach is shown to improve

real-time performance and resource efficiency, there has been
little consideration of the resulting energy consumption. In
fact, as we will discuss in the paper, the energy consumption
of GPU kernels scheduled by the previous schemes using
spatial multitasking can be much worse compared to the naive
approach that executes one kernel at a time. This is due to
the lack of power gating at a granularity of computing units
in most commercially available GPUs.1 Hence, when spatial
multitasking is used, idle computing units can continue to
consume dynamic power as long as at least one computing
unit remains actively used by kernels. Meanwhile, kernels with
fewer computing units have longer execution time, thereby
further increasing energy consumption.

This paper presents sBEET, a scheduling framework that
Balances Energy Efficiency and Timeliness of GPU kernels
to address the aforementioned challenges on embedded GPUs.
This work presents a generic power model to capture the char-
acteristics of dynamic and idle power consumption of GPU
kernels, and provides an analysis of GPU energy consumption
with spatial multitasking. At runtime, sBEET makes schedul-
ing decisions about the partitioning of computing resources,
e.g., streaming multiprocessors in NVIDIA GPUs, based on
the prediction of energy consumption calculated by the power
model. This approach allows simultaneous kernel execution
to improve real-time performance while reducing the energy
consumption of the GPU.

To evaluate the performance of sBEET, we implemented
the framework on an NVIDIA Jetson Xavier AGX platform.
Experiments are conducted using randomly-generated tasksets
of well-known benchmarks to compare the schedulability
and energy consumption of our framework against several
representative existing approaches: the default First-Come-
First-Serve (FCFS) scheduling of NVIDIA GPUs [9], the
fixed-priority Rate Monotonic (RM) scheduling without spatial
multitasking, and the scheduling algorithm proposed in [31]
that uses spatial multitasking. Experimental results show that
sBEET addresses the problem of spatial multitasking by main-
taining a similar energy consumption as the non-spatial multi-
tasking approaches while reducing the occurrence of deadline
misses significantly. The results also demonstrate that sBEET
brings substantial benefits in both real-time performance and
energy saving when compared to the spatial multitasking

1Power-gating overhead is one of the major obstacles since each execution
unit of a GPU tends to idle for shorter periods than break-even time [6].



approach.
In summary, this paper makes the following contributions:
• We derive a power and energy consumption analysis

for GPU kernels scheduled with and without spatial
multitasking on the GPU, and find that the use of spatial
multitasking could result in higher energy consumption.

• We develop a runtime scheduling algorithm that reduces
deadline misses of non-preemptive GPU kernels by dy-
namically adjusting the degree of resource partitioning
and improves energy efficiency over the existing spatial
multitasking approach.

• Finally, we demonstrate the practical effectiveness of
sBEET in real-time performance and energy consumption
through a diverse set of experimental scenarios on the
latest commercially available embedded GPU platform.

II. BACKGROUND AND SYSTEM MODEL

A. Background

NVIDIA Jetson AGX Xavier. This paper considers the latest
embedded GPU platform, NVIDIA Jetson AGX Xavier. The
architecture of the System-on-Chip (SoC) used in this platform
is illustrated in Fig. 1a. The Xavier SoC features eight 64-
bit ARMv8 Carmel CPU cores running at 2265MHz with
128KB instruction and 64KB data L1 caches, 2MB of L2
cache per cluster of two cores, and a 4MB of L3 cache shared
by all CPU clusters. The SoC has an integrated 512-core
Volta GPU sharing 16GB of 2133MHz memory with the CPU
while consuming less than 30 Watts. The GPU includes eight
execution engines, also known as streaming multiprocessors
(SMs), each containing 64 CUDA cores and 8 Tensor cores.
Each SM includes a 128KB L1 cache, and all the SMs share
a 512KB L2 cache. It also comprises several other computing
elements and accelerators such as DLAs, vision accelerator,
and video encoder/decoder [1], but we primarily focus on the
energy consumption of the GPU component.

SM Organization and Kernel Execution. The CUDA pro-
gramming model provides an abstraction of the GPU archi-
tecture that the user can directly interact with. The general
steps to execute any CUDA program includes: (i) memory
allocation in both CPU and GPU side, (ii) copy the input data
from CPU memory to GPU memory, (iii) execute the GPU
program, (iv) copy the results from GPU memory to CPU
memory, and (v) free the GPU memory [9, 17, 24]. The parts
that run on the GPU are known as CUDA kernels, and each
kernel is executed by different CUDA threads in parallel. A
group of threads is called a thread block, and thread blocks are
grouped into a grid. The number of blocks and grids is defined
by the user before launching the kernel. The user can also
use CUDA streams to achieve parallel execution of multiple
CUDA kernels, and each stream manages a FIFO queue
for kernel execution. Once a kernel starts on the GPU, its
execution cannot be preempted (except by another kernel from
a stream with a higher priority). The blocks are distributed
onto SMs in a nearly round-robin manner [9, 29] and cannot
be migrated between SMs. One SM can run multiple blocks

concurrently depending on their resource demands, such as
shared memory, the number of threads, and the number of
register files, etc. By default, kernels are executed using all the
SMs of the GPU on a First-Come-First-Serve (FCFS) basis.

Power Management in Xavier AGX. Jetson AGX Xavier has
two input voltage rails: SYS VIN HV and SYS VIN MV,
each having a different range of input voltages, i.e., 9V to
19V for SYS VIN HV and 5V for SYS VIN MV, which the
device can switch between for power efficiency. The power
consumption of the rails in Fig. 1b can be measured by a built-
in power monitor which has a range up to 26V [2]. There are
some power management mechanisms related to the circuit
design that are used to optimize power efficiency when (part
of) the device is detected to be idling:
• Clock-gating: remove the clock signal.
• Power-gating: shut off the power supply to the circuits

within the rails.
• Rail-gating: shut off the power supply to the entire rail.

The GPU is both rail-gated and clock-gated, but the details
on how the circuits work are not publicly available. Nonethe-
less, as experimentally confirmed in Section V-B, SM-level
power/clock gating does not appear to exist even on the latest
Xavier AGX GPU.

B. System Model and Assumptions

We consider a taskset Γ consisting of n real-time non-
preemptive periodic tasks with constrained deadlines. We
focus on the kernel execution and memory copy operations,
and a task τi is characterized as follows:

τi := (Gi, Ti, Di)

• Gi: The cumulative worst-case execution time (WCET)
of GPU segments (including memory copies and kernels)
of a single job of τi. The duration depends on how many
SMs are assigned to a particular job.

• Ti: the period or the minimum inter-arrival time.
• Di: the relative deadline of each job of τi, and is smaller

than or equal to the period, i.e., Di ≤ Ti.
A task τi consists of a sequence of jobs Ji,j , where Ji,j

indicates the j-th job of task τi. Following the idea of spatial
GPU multitasking [19, 21, 31, 32], each job Ji,j of the task
τi can execute with a different number of SMs exclusively
assigned to it. Hence, we use Gi,j(m) to represent the WCET
of Ji,j , where m denotes the number of SMs used by Ji,j .
Gi,j(m) is given by the sum of the following three parameters:

Gi,j(m) = Ghdi +Gei,j(m) +Gdhi
• Ghdi : the worse-case data copy time from the host to the

device memory
• Gei,j(m): the worst-case kernel execution time of Ji,j

when m SMs are assigned to it
• Gdhi : the worse-case data copy time from the device to

the host memory
The utilization of a task τi is defined as the average

utilization when different number of SMs are assigned, and
it is computed as Ui =

∑M
m=1 Ui(m)

M , where M is the total

2



SM 0
64

CUDA 
Cores

8 
Tensor 
cores

L1 Cache

Volta GPU

…

L2 Cache

Copy Engine L2 Cache

…

Memory Controller

DRAM

SM 7
64

CUDA 
Cores

8 
Tensor 
cores

L1 Cache

Carmel CPU Complex

L2 Cache

CPU 0
L1-I L1-D

CPU 1
L1-I L1-D

CPU 6
L1-I L1-D

CPU 7
L1-I L1-D

(a) Xavier SoC Architecture

Xavier SoC

CPU

GPU

SoC

CV

DRAM

Voltage 

Regulator

Power Monitor 

sampling position

Voltage 

Regulator

External 

Power 

Supply

PMIC

External 

Power 

Supply

SYS_VIN_MV

SYS_VIN_HV

(b) Block diagram of Xavier power rails

Figure 1: Architecture and module power rails of NVIDIA Jetson AGX Xavier

number of SMs on the device and Ui(m) = Gi(m)
Ti

. It
is worth noting that Ui(M) ≤ 1; otherwise, τi is never
schedulable regardless of how many SMs are given. The total
utilization of a taskset is denoted as U =

∑
τi∈Γ Ui. Each

job is characterized by an arrival time ri,j and an absolute
deadline di,j = ri,j + Di. Without loss of generality, we
assume a discrete-time system where timing parameters can
be represented in positive integers.

Based on the kernel execution time Gei,j(m), each job Ji,j
can be categorized into either linear-speedup or nonlinear-
speedup job [32]:
• Ji,j is a linear-speedup job if Gei,j(m) is inversely propor-

tional to m, i.e., ∀m(m ≤ M), Gei,j(m) = Gei,j(1)/m.
This applies to most kernels that typically have many
thread blocks (�M ) with reasonable memory demands
because when more SMs are assigned, the thread blocks
of such kernels can be evenly distributed across the SMs
and be executed in parallel.

• Ji,j is a nonlinear-speedup job if there exists a case
where the speedup is nonlinear to the number of SMs
assigned, i.e., ∃m(m ≤ M), Gei,j(m) > Gei,j(1)/m.
This happens to kernels that have only a small number
of thread blocks or saturate the memory resources of the
GPU (e.g., bandwidth, shared memory, registers, etc.) [7].

This categorization will be used for proofs of energy con-
sumption properties in spatial multitasking (Sec. IV-A), but
our proposed runtime scheduling algorithm (Sec. IV-B) works
regardless of the kernel type.

III. RELATED WORK

Temporal Multitasking on GPU. Some prior works have
been done to improve GPU utilization in a time domain.
TimeGraph [23] is a real-time GPU task scheduler that assigns
temporal budgets to tasks with different priorities, and replen-
ishes the budgets periodically. Elliott et al. [15] modeled the
GPU as a mutually-exclusive shared resource and used real-
time synchronization protocols to integrate the GPU into real-
time multiprocessor systems. Kim et al. [24] proposed a server-
based approach to address the busy waiting and long priority
inversion problems of the synchronization-based approach.

Temporal multitasking can be divided into two types:
preemptive scheduling and non-preemptive scheduling. The
aforementioned methods [15, 23, 24] treat GPU tasks as
non-preemptive tasks, which allows a task to exclusively use
the computing units of the GPU only after the currently-
running tasks release the GPU. On the other hand, some other
works [10, 22, 42] introduce software-based mechanisms to
enable preemptive scheduling of real-time GPU tasks. The
key idea is to decompose a long-running kernel into smaller
segments so that preemption can happen at the boundaries of
these segments. However, regardless of the preemptiveness of
GPU tasks, temporal multitasking can suffer from the resource
underutilization problem given that each GPU task may not
fully utilize all the computing units of the GPU [7]. In addition,
GPU tasks can experience a long waiting time if they are
scheduled non-preemptively. The use of preemptive scheduling
can reduce this waiting time, but the implementation of the
software-based mechanisms is not trivial since they require
modifications to device drivers and the hardware-level preemp-
tions provided in recent GPUs have only a limited number of
priority levels (e.g., only two in the NVIDIA Pascal and Volta
architectures [5, 40]).
Spatial Multitasking on GPU. Spatial multitasking, also
called spatial resource sharing or GPU partitioning, focuses
on the fact that multiple tasks can execute simultaneously on
different subsets of computing units of the GPU. There are
some works done on spatial multitasking [7, 8, 19, 27, 34, 37].
Specifically, Jain et al. [19] proposed to spatially partition
computing units as well as on-board DRAM to enable parallel
kernel execution, better resource utilization, and performance
isolation. However, these works did not pay much attention to
the real-time constraints of individual GPU tasks.

Sun et al. [32] proposed algorithms to minimize the
makespan of a static schedule of GPU kernels by taking into
account the long data transfer duration prior to GPU kernel
execution and modeling kernels as moldable parallel jobs.
However, the static schedule generated by their algorithms
assumes all jobs arrive at the same time with the same
period, thereby unsuitable to periodic or sporadic real-time
tasks with arbitrary release offsets which are prevalent in

3



cyber-physical systems. Kang et al. [21] focused on mobile
latency-sensitive workloads and proposed the spatial resource
reservation technique that reserves computing units for high-
priority tasks to help reduce the blocking time of foreground
applications from background ones. Wang et al. [39] developed
a QoS mechanism that allocates resources dynamically to
meet the QoS goals of individual GPU kernels. For periodic
real-time tasks, Saha et al. [31] proposed spatial-temporal
GPU management (STGM) that combines temporal and spatial
multitasking to improve taskset schedulability under the Rate
Monotonic (RM) policy. The resource allocation algorithm of
STGM first assigns the minimum number of SMs to each task,
and if any task is unschedulable due to the long execution
time caused by a small number of SMs assigned to it, the
algorithm gives more SMs to that task. In this way, STGM
can reduce potential interference caused by SMs shared with
other tasks. However, in Section IV-A, we will analyze the
energy consumption of GPU tasks in the presence of spatial
multitasking, and such techniques cannot lead to the most
energy-efficient schedule.
Resource Allocation for GPU Energy Saving. Wang and
Ranganathan [38] developed an instruction-level prediction
mechanism to save energy by estimating the number of SMs
for a given application. Wang et al. [36] proposed power gating
strategies to turn off extra resources that are not being used.
Since the switching overhead often yields negative energy
saving, they ensure that the unused circuits remain off long
enough to compensate for the overhead. Hong and Kim [16]
put forward an integrated power and performance prediction
to improve the GPU energy efficiency by building a resource-
based power model and finding the optimal number of SMs
for each workload that leads to the highest performance-per-
Watt. They also proposed a theoretical method that the unused
SMs can be shut off by a power-gating mechanism if it is
supported at the circuit level. Aguilera et al. [8] presented
QoS-aware dynamic resource allocation and experimentally
demonstrated the effectiveness of this method in GPGPU-
Sim. Sun et al. [33] proposed a runtime QoS management
mechanism that dynamically adjusts SM allocation so that the
idle SM can be power gated to reduce energy consumption.
Zahaf et al. [41] presented a general model of energy consump-
tion and performance on heterogeneous multi-core processors
such as ARM big.LITTLE, and proposed a heuristic approach
to reduce energy consumption for soft real-time moldable
parallel tasks. Tasoulas et al. [35] categorized GPU workloads
according to their resource demands and achieved energy
savings in GPGPU-Sim by pairing the workloads and power-
gating unused SMs. However, the results cannot be directly
applied to real hardware platforms since the implementation
of per-SM power-gating is not yet available in today’s GPUs.

IV. SBEET FRAMEWORK

This section presents the sBEET framework and analysis.
We first introduce power and energy analysis, and then pro-
pose a scheduling algorithm that makes runtime scheduling
decisions and SM allocation.

A. Power and Energy Analysis

Power model. Isci and Martonosi [18] introduced a general
framework originally designed for CPU power modeling,
which is also widely used as a basis for many GPU simulation
works, such as Hong and Kim’s model [16] and GPUWattch
by Leng et al. [26]. It defines the total power consumption P
as the sum of idle power P idle from idling cores (SMs in our
case), leakage power (static power) P s, and dynamic power
P d from active SMs. Following this approach, the instant
power consumption of the GPU at time t can be written as:

P = P s + P d + P idle (1)
P d is the power consumption required to execute kernels
on SMs and depends on the kernel characteristics including
memory access and the number of SMs used [16].2 Hence,
P d can be decomposed into a linear sum of per-SM power
consumed by each job. For a set of jobs J = {J1, J2, ..., Jn}3

executing simultaneously on the GPU at time t, Eq. (1) can
be rewritten as:

P = P s +

n∑
i=1

P di (mi) + P idle(M −
n∑
i=1

mi) (2)

where m1, ...,mn are the number of SMs being exclusively
used by J1, ..., Jn, respectively,4 P di (m) is the dynamic power
consumption of Ji on m active SMs, P idle(m) is the idle
power of m inactive SMs, M is the total number of SMs
on the GPU. Note that when all the SMs of the GPU are
idling (

∑n
i=1mi = 0), the GPU is power-gated and there is no

power consumption from P d and P idle, i.e.,
∑
P di (0) = 0 and

P idle(M) = 0. In addition, since the dynamic (and idle) power
consumption is linear to the number of active (and inactive)
SMs [16], the following conditions hold:

P di (m) ∝ m, and P idle(m) ∝ m (3)
Using P , the energy consumption of the GPU for the time
period [t1, t2] can be computed as follows:

E =

∫ t2

t1

Pdt (4)

Now let us consider a set of jobs J = {J1, J2, ..., Jn}
that are scheduled on the GPU during [t1, t2]. Depending
on scheduling decisions, some jobs of J may be active at
t ∈ [t1, t2] while the others may be inactive. We define a
binary indicator xki (t) that returns 1 if the k-th SM is actively
used by a job Ji at time t, and 0 otherwise. Using this, Eq. (4)
can be re-written as follows:

E(t1, t2) =

∫ t2

t1

(
P s +

n∑
i=1

(
P di (

M∑
k=1

xki (t))
)

+ P idle
(
M −

n∑
i=1

M∑
k=1

xki (t)
)) (5)

2The dynamic power characteristics of each kernel can be estimated by
either measurement-based profiling or analytical methods [16]. We use the
profiling approach in our evaluation.

3For simplicity, we omit the index j of Ji,j since we do not need to refer
to individual jobs of the same task.

4This means no shared SM between jobs, i.e., at any time instant t,∑n
i=1mi ≤ M , which is required for simultaneous execution on the GPU

with spatial multitasking.

4



The detailed methods to obtain the above power parameters
and to realize SM allocation on commodity GPU hardware
will be explained in Section V-A. Based on the above power
and energy model, we analyze the energy consumption of a
schedule with spatial multitasking in the following theorem.

Theorem 1. The schedule of a job set J with spatial multitask-
ing cannot be more energy-efficient than the schedule without
spatial multitasking if the jobs in J are linear-speedup jobs.

Proof. Consider a job set with two jobs, J = {J1, J2}, which
arrive together at time t1. For this job set, there are two
possible schedules that can be obtained with and without
spatial multitasking: (a) sequentially executing the first job J1

on M SMs and then the second job J2 on M SMs (w/o spatial
multitasking), and (b) simultaneously executing J1 on m1 SMs
and J2 on m2 SMs, where m1 + m2 = M (w/ spatial mul-
titasking). For convenience, we assume Ge1(m1) ≤ Ge2(m2),
i.e., J2 finishes later than J1. To assess the energy efficiency
of these two schedules, we consider a time interval δ = [t1, t2]
that is long enough to complete job-set execution under both
schedules. The energy consumption of the two schedules, Ea
and Eb, during δ can be respectively written as below:

Ea = P s · δ + P d1 (M) ·Ge1(M) + P d2 (M) ·Ge2(M) (6)

Eb = P s · δ
+ (P d1 (m1) + P d2 (m2)) ·Ge1(m1)

+ (P d2 (m2) + P idle(M −m2)) · (Ge2(m2)−Ge1(m1))
(7)

Recall that when the execution completes and all SMs are
idling,

∑
P di (0) = 0 and P idle(M) = 0 due to power gating.

Using Ea and Eb, we now prove the theorem by contra-
diction. Assume that there exists a case where the schedule
with spatial multitasking is more energy-efficient than that
without spatial multitasking, i.e., ∃m1∃m2, Ea > Eb. Since
we consider linear-speedup jobs here, Gei (mi) = Gei (1)/mi

where Gei (1) is assumed to be a known constant. Then,
Ea − Eb > 0

⇔ Ge1(1) · (P
d
1 (M)

M
− P d1 (m1)

m1
)

+Ge2(1) · (P
d
2 (M)

M
− P d2 (m2)

m2
)

+ P idle(M −m2) · (Ge1(m1)−Ge2(m2))

> 0

(8)

From Eq. 3, for any m, P
d
i (M)
M =

Pd
i (m)
m , so the first two terms

are 0 and we can rewrite the Eq. 8 to:
Ea − Eb > 0

⇔ P idle(M −m2) · (Ge1(m1)−Ge2(m2)) > 0
(9)

That leads to Ge1(m1) > Ge2(m2). It contradicts to our
assumption of Ge1(m1) ≤ Ge2(m2). Thus, the assumption that
Ea > Eb is false and the lemma is proved. The same approach
can used to prove the case where there are more than two
linear-speedup jobs.

Lemma 2. Theorem 1 does not necessarily hold for nonlinear-

speedup jobs.

Proof. By the definition of nonlinear-speedup jobs, ∃m(m ≤
M), Gei,j(m) > Gei,j(1)/m. Hence, P

d
i (M)
M 6= Pd

i (m)
m , and we

cannot deterministically compare Ea and Eb in Eq. 8.

Theorem 1 gives an insight that for linear-speedup jobs, the
spatial multitasking strategy unavoidably causes some SMs to
be idling while the GPU is active since GPU power is not SM-
gated; therefore, the power consumption of idle SMs affects
the overall energy consumption of the schedule which is less
energy-efficient than the schedule without spatial multitasking.
However, Lemma 2 opens a possibility that for each nonlinear-
speedup job, there may exist an optimal number of SMs that
leads to the most energy-efficient schedule.

Definition 1. The energy-optimal number of SMs mopt
i for a

task τi is defined as the number of SMs that leads to the lowest
energy consumption when it executes in isolation on the GPU
during an arbitrary time interval δ ≥ maxm≤M Gei,j(m).

The time interval δ considered for mopt
i is to take into

account the impact of idling SM time when τi does not use all
SMs. The length of the time interval does not affect the value
of mopt

i as long as the interval is greater than or equal to the
maximum GPU execution time of any job in τi, because once
τi completes execution, the GPU is power-gated and only the
static power P s contributes to the total energy consumption.

Example 1. Consider a taskset Γ with the following two
linear-speedup tasks on a GPU with M identical computing
units. The memory copy operation and GPU execution time
of these tasks are listed in Table I. The tasks are running with
different CUDA streams, so synchronized memory copy and
concurrent kernel execution are possible. An interval of inter-
est [0, 12) is considered for the following two cases: a schedule
of the two tasks with and without spatial multitasking.

Table I: Taskset in Example 1

Task Di Ge
i (M) Ghd

i Gdh
i Offset

τ1 12 6 1 1 0
τ2 7 1 1 1 1

Fig. 2a shows the schedule without spatial multitasking.
Since there are only two tasks and τ1 arrives earlier than τ2,
any work-conserving scheduling policies would yield the same
schedule. At t = 0, J1,1 is scheduled on the GPU since no
other job is ready. After memory copy, it occupies all the GPU
cores in [1, 7). The following job J2,1 arrives at t = 1, but
because of the blocking by J1,1, J2,1’s GPU execution cannot
start until t = 7 and finally it misses the deadline.

Fig. 2b shows the schedule with spatial multitasking. By
running J1,1 with 3·M

4 SMs, both jobs J1,1 and J2,1 can be
scheduled without any deadline miss. However, the energy
consumption of the schedule in Fig. 2b is greater than that
in Fig. 2a, and this can be easily derived from Theorem 1.

In summary, the above example suggests that scheduling of
GPU jobs with no spatial multitasking can cause a deadline

5



0 2 4 6 8 10 12

CPU

GPU

Job release/deadline𝐽1,1 𝐽2,1

𝜏1 𝜏2 𝜏2 Deadline 

miss 
𝜏1

𝑀

𝑀

2

0

(a) Schedule w/o spatial multitasking

0 2 4 6 8 10 12

CPU

GPU

𝜏1 𝜏2 𝜏2 𝜏1

𝑀

𝑀

2

0

(b) Schedule w/ spatial multitasking

Figure 2: Scheduling results in Example 1

miss due to the blocking time from an earlier job. While the
use of spatial multitasking addresses this problem, it could
increase energy consumption since the time for all GPU units
being idle is reduced, as given by the above analysis. Moti-
vated by this example, our goals are: (i) to minimize deadline
misses by exploiting the spatial multitasking technique, and
(ii) to maximize the opportunity to reduce energy consumption
by running each job with the optimal number of SMs (mopt

i )
whenever possible.

B. Scheduling Framework

sBEET consists of one server and multiple worker threads.
Similar to MPS [4], the server receives the jobs of GPU tasks
so that they share a single CUDA context, and dispatches
the jobs to the worker threads for execution with separate
CUDA streams on the GPU. In this way, sBEET enables
spatial multitasking for parallel kernel execution when it is
needed, and the decision on when to use spatial multitasking
is made by our scheduling algorithm presented later. One of
the important design issues is the number of worker threads
that determines how many kernels can run concurrently on the
GPU. In this work, we limit the number of workers to two due
to the following reasons: (i) the use of more workers can lead
to more SM going idle at different times, which increases
energy consumption as discussed in Section IV-A (also see
results in Fig. 10); (ii) more workers mean more combinations
of SM allocation available for each kernel launched by each
worker, and the overhead from increased computational com-
plexity may become unacceptable for the runtime framework
running on embedded platforms; (iii) more workers may
increase contention on shared resources as reported in [7];
and (iv) based on our observation, creating more workers
does not necessarily contribute to reducing deadline misses
on embedded GPUs.

During the initialization phase, the server creates two
worker threads as well as two CUDA streams, and each worker
is bonded to one of the streams. When a job is offloaded to
the worker, it runs on the corresponding CUDA stream. The
workers communicate with each other via a global shared data
structure which is also created during the initialization phase.

Algorithm 1 Runtime Scheduler
Input: Ji,j : the first job in the ready queue
Input: Savail: the set of currently available SMs

1: procedure SCHEDULER(Ji,j , Savail)
2: if |Savail| =M then . GPU is idling
3: Scfg

i,j ← ALLOCATION(Ji,j , nullptr) . Alg. 2
4: if Scfg

i,j 6= ∅ then
5: Execute Ji,j with Scfg

i,j ; remove Ji,j from ready queue
6: end if
7: else if 0 < |Savail| < M then
8: Jq,r ← currently running job
9: Scfg

i,j ← ALLOCATION(Ji,j , Jq,r) . Alg. 2
10: if Scfg

i,j 6= ∅ then
11: Execute Ji,j with Scfg

i,j ; remove Ji,j from ready queue
12: end if
13: end if
14: if Savail = ∅ or Scfg = ∅ then . Ji,j not executed
15: Repeat the procedure for the next jobs in the ready queue

until Savail = ∅ or every job has been visited
16: end if
17: end procedure

The WCET profile, power consumption profile and mopt for
each task are also stored in the server.

During the runtime phase, the server keeps track of the
status of SMs, which are updated at the release and completion
of every job. The server also maintains two containers: a ready
queue to keep track of ready jobs and a run queue for currently
executing jobs. We sort jobs in the ready queue based on their
deadlines, but other policies can also be used, e.g., FCFS
or criticality if exists. A set Savail keeps the SMs that are
not being used by any job. Whenever a new job arrives, the
server invokes the scheduler (explained below) to let it decide
whether the server should offload the job to one of the workers
right away or leave it in the ready queue. The scheduler is
also invoked when a currently running job completes. The
worker on which the job was executing notifies the server
via the global data structure and the server marks the worker
thread as “vacant”. Then the SMs that were used by the job
are returned back to Savail and the scheduler is invoked to
make a scheduling decision for ready jobs.

Based on this framework design, below we present our
runtime scheduling algorithms.

1) Runtime Scheduler: The scheduler of sBEET is given in
Alg. 1. It is invoked by the server when a new job arrives or a
current job finishes. The scheduler determines up to two jobs
to execute simultaneously on different sets of SMs to avoid the
unpredictable delay that can be caused when the two CUDA
kernels compete for the same set of SMs. When a new job
arrives, it is pushed into the ready queue, and the first job Ji,j
in the queue is passed to the scheduler. The scheduler first
checks the currently available SM set Savail. If the GPU is
idling (|Savail| = M , where M is the total number of SMs
on the GPU), it calls the SM allocation algorithm (Alg. 2) to
obtain the SM allocation Scfgi,j for Ji,j . If the GPU is partially
utilized (0 < |Savail| < M ), the scheduler passes the new
job Ji,j along with the currently-running job Jq,r to the SM
allocation algorithm so that it can give Scfgi,j to Ji,j based on

6



Algorithm 2 SM Allocation
1: function ALLOCATION(Ji,j , Jq,r)
2: tnow ← current time
3: if Jq,r is nullptr then . =⇒ GPU is idling
4: for m←M to 1 do
5: m′ ← min(m,mopt

i )
6: Qw

i,j ← {Jk,p | ∀p, (τk 6= τq) ∧ (rk,p < fi,j(m
′))}

7: SCHEDGEN(Ji,j , Jq,r , m′, [tnow, fi,j(m
′)], Qw

i,j)
8: Compute Epred = E(tnow, fi,j(m

′)) by Eq. (5)
9: end for

10: if no generated schedule is feasible then
11: Choose the schedule with the minimum Epred

12: else
13: Choose the feasible schedule with the min. Epred

14: end if
15: return Scfg

i,j . the corresponding SM allocation for Ji,j
16: else . the GPU is partially occupied
17: m′ ← min(|Savail|,mopt

i )
18: if fi,j(m′) > fq,r +Ge

i,j(M) then
19: return ∅ . Do not run Ji,j in parallel with Jq,r
20: else
21: Qw

i,j ← {Jk,p | ∀p, (τk 6= τq) ∧ (rk,p < fi,j(m
′))}

22: SCHEDGEN(Ji,j , Jq,r , m′, [tnow, fi,j(m
′)], Qw

i,j)
23: if the generated schedule is not feasible then
24: return ∅
25: else
26: return Scfg

i,j . the corresp. SM allocation
27: end if
28: end if
29: end if
30: end function

Algorithm 3 Schedule Generation
1: function SCHEDGEN(Ji,j , Jq,r , m′, [tnow, tfin], Qw

i,j)
2: /* Generate a schedule for [tnow, tfin] */
3: Place Ji,j with m′ SMs at tnow

4: if Jq,r = nullptr then
5: tnext ← tnow . Start time for the next job Jk,p ∈ Qw

i,j

6: else
7: Place Jq,r from tnow to fq,r
8: tnext ← min(fi,j(m

′), fq,r) . Ji,j or Jq,r’s finish time
9: end if

10: /* Consider other jobs in Qw
i,j */

11: Srem ← # of remaining (unused) SMs at tk,p
12: for Jk,p ∈ Qw

i,j in ascending order of arrival time do
13: m′′ ← min(Srem,m

opt
k )

14: if m′′ = 0 then
15: continue . Ignore this job from parallel exec.
16: end if
17: Place Jk,p with m′′ SMs at tnext

18: tnext ← fk,p(m
′′)

19: if tnext ≥ tfin then
20: break . Stop schedule generation
21: end if
22: end for . Schedule generation done
23: end function

the information of Jq,r. If no valid SM allocation is found
(Scfgi,j = ∅) or all SMs are busy (Savail = ∅), the scheduler
puts Ji,j in the ready queue and iteratively checks the next
job in the ready queue with the same procedure.

As discussed in Section. IV-A, the energy consumption
may increase when spatial multitasking is used. To make a
trade-off between schedulability and energy efficiency, our SM

allocation algorithm adopts the following heuristic strategy:

SM Allocation. The proposed SM allocation algorithm uses a
job set Qwi,j for a given job Ji,j ∈ τi to check all the jobs of
other tasks that are expected to arrive during Ji,j’s execution.
Formally, Qwi,j := {Jk,p | ∀p, (Jk,p ∈ τk) ∧ (τk 6= τi) ∧
(rk,p < fi,j(m

′))}, where fi,j(m′) is the expected finish time
of Ji,j if it begins execution at the current time tnow with m′

dedicated SMs. The algorithm considers a possible schedule
of Ji,j ∪Qwi,j for each m′, and chooses the one that leads to
the minimum predicted energy consumption in an interval of
[tnow, fi,j(m′)]. Note that the decision made by the algorithm
for Ji,j does not affect the currently running job Jq,r since it
does not assign SMs that are not in Savail.

Alg. 2 depicts the pseudocode of our SM allocation. It
takes the jobs passed by Alg. 1 (Ji,j : the job that needs to
be executed, Jq,r: the currently running job), and returns an
SM allocation Scfgi,j for Ji,j . The detailed steps depend on
whether the GPU is idling or not:
• (Alg. 2 line 3 to 15) If the GPU is idling, the algorithm

iterates through m from M to 1. For each m, it assigns
m′ = min(m,mopt

i ) SMs to Ji,j , and checks if there
is any job that is expected to arrive before fi,j(m′), and
adds such jobs into Qwi,j in an ascending order of arriving
time. Then the algorithm calls the SchedGen function
in Alg. 3 (explained below) to generate a schedule
of Ji,j ∪ Qwi,j for a time interval [tnow, fi,j(m′)]. The
algorithm predicts the energy consumption Epred of the
generated schedule by Eq. 5 (line 5 to 8). After this
iteration, if none of the generated schedule is feasible,
the algorithm chooses the one with the minimum energy
consumption. Otherwise, the algorithm chooses the most
energy-efficient feasible schedule (line 10 to 14). Finally,
the algorithm returns the corresponding SM configuration
Scfgi,j for Ji,j (line 15).

• (Alg. 2 line 16 to 29) If the GPU is partially occupied
(Jq,r 6= nullptr), the scheduler decides whether Ji,j
should be dispatched to the worker thread right away.
This can be done by comparing the expected finish time
of Ji,j in two cases: (1) executing Ji,j with m′ =
min(|Savail|,mopt

i ) SMs at tnow (i.e., fi,j(m′)), and (2)
waiting until Jq,r completes and then executing Ji,j with
all M SMs (i.e., fq,r + Gei,j(M)). If case 2 finishes
earlier, the algorithm returns ∅ (line 19) so that Ji,j is
put back to the ready queue. This is because in this case,
executing Ji,j with m′ SMs not only takes longer but
also likely causes more SMs left idle later. Otherwise,
following the same approach as when the GPU is idling,
the algorithm calls SchedGen and returns Scfgi,j when the
generated schedule is feasible (line 20 to 28).

Schedule Generation. Alg. 3 generates a schedule for Ji,j ∪
Qwi,j for a given time interval [tnow, tfin]. The way it generates
a schedule is straightforward given that: the server can execute
only up to 2 kernels at a time, Ji,j starts at tnow, and the
time interval finishes when Ji,j completes execution (tfin =
fi,j(m

′)). Hence, at first, the function places Ji,j (and Jq,r if

7



0 2 4 6 8 10 12

CPU

GPU

Job release/deadline𝐽1,1 𝐽2,1

𝜏1 𝜏2 𝜏2 Deadline 

miss 
𝜏3

𝑀

𝑀

2

0

𝐽3,1

14 16

𝜏3 𝜏1

18

(a) Case 1 (w/o spatial multitasking)

0 2 4 6 8 10 12

CPU

GPU

𝜏1 𝜏2 𝜏2 𝜏3

𝑀

𝑀

2

0

14 16

𝜏3 𝜏1

18

(b) Case 2

0 2 4 6 8 10 12

CPU

GPU

𝜏1 𝜏2 𝜏2 𝜏3

𝑀

𝑀

2

0

14 16

𝜏3 𝜏1

18

(c) Case 3

0 2 4 6 8 10 12

CPU

GPU

𝜏1 𝜏2 𝜏2 𝜏3

𝑀

𝑀

2

0

14 24

𝜏3 𝜏1

26

Deadline 

miss 

(d) Case 4

Figure 3: Scheduling results in Example 3

exists) in the schedule (line 3 to 9). Then, at the time tnext
when one of the jobs finishes execution, it places Jk,p ∈ Qwi,j
in their arrival order by using remaining SMs (Srem), until
the schedule reaches tfin (line 11 to 22). Note that if there is
no remaining SM left, Jk,p will be ignored from the schedule
generation, assuming it can be executed later (line 14 to 16).

In the following example, we illustrate how the scheduler
works at runtime.

Example 2. Consider a taskset Γ of three linear-speedup tasks
and a GPU with M SMs. The memory copy operation and
GPU execution time of the tasks are listed in Table II. Fig. 3a
shows the schedule without spatial multitasking. Under any
work-conserving scheduling policies such as FCFS and RM,
at t = 0, J1,1 is scheduled since none of jobs of other tasks
are ready. After memory copy, it occupies all the SMs in [1,
7). The following job J2,1 is released at t = 1, but because
of the blocking by J1,1, J2,1 cannot execute until t = 7 and
misses the deadline.

The proposed scheduler considers possible future schedules
resulted by the SM allocation to the job of interest until
this job finishes execution. When J1,1 arrives, the scheduler
first considers the schedule in Fig. 3a during an interval of
Ge1,1(M). The scheduler can find that J2,1 and J3,1 will arrive

Table II: Taskset in Example 2

Task Di Ge
i (M) Ghd

i Gdh
i Offset

τ1 14 6 1 1 0
τ2 7 1 1 1 1
τ3 10 1 1 1 2

during this interval based on the information of their periods
and offsets, and J2,1 will miss the deadline due to the blocking
from J1,1. Next, the scheduler considers the schedule shown
in Fig. 3b where 3·M

4 SMs is assigned to J1,1. In this case,
since fewer SMs are given to J1,1, an interval of Ge1,1( 3·M

4 )
is considered, and all of the three jobs are expected to meet
their deadlines. The same procedure is conducted with other
SM allocations to J1,1, e.g., Fig. 3c and Fig. 3d. The schedule
in Fig. 3d executes J1,1 on just a single SM and results
in a deadline miss. After those schedules are generated, the
scheduler predicts the energy consumption of each schedule
that does not miss any deadline during the interval of interest.
In this scenario, all the jobs can meet the deadline in both
Fig. 3b and 3c. Hence, the scheduler selects the schedule in
Fig. 3b since it has a lower energy consumption computed by
the approach in Theorem. 1.

2) Time Complexity Analysis: Here we discuss the time
complexity of sBEET. Suppose we have n tasks in the taskset,
and at most K jobs can be released by each task during
an interval considered by the SM allocation algorithm. The
number of jobs considered for each schedule generation (line
12 of Alg. 3) is upper-bounded by nK. The procedure to
check deadline miss and compute the energy consumption for
each schedule is also upper-bounded by nK. The number of
generated schedules is a constant (= M , line 4 of Alg. 2)
because it depends on the total number of SMs on the target
GPU. So it takes a constant time to select the schedule with the
best energy consumption. In order to maintain the ready queue
in the server, it takes O(nK · log(nK)) to sort the ready jobs
in an order of their deadlines. Therefore, the whole procedure
of Alg. 1, 2 and 3 takes O(nK) + O(nK · log(nK)) =
O(nK · log(nK)). If K can be bound to a constant, which is
reasonable since the size of K is constrained by task utilization
and job’s WCET, the time complexity can be expressed as
O(n · log(n)).

3) Offline Schedule Generation: With the algorithms given
in Alg. 1 and Alg. 2, we can also generate an offline schedule
to statically analyze the schedulability of a given taskset.
The offline schedule can be generated for one hyperperiod
of the given taskset by simulating job arrivals and their SM
allocations using the proposed runtime scheduler. Then, the
occurrence of deadline misses can be easily detected from the
generated schedule. In order to preserve the execution order of
jobs found in the offline schedule at runtime, the jobs should
be executed in a non-work-conserving manner; hence, even
if the previous job finishes earlier than its expected finish
time based on the WCET, the next job should begin execution
according to its start time recorded in the offline schedule.
For sporadic tasks, we consider the minimum inter-arrival time
as periods. However, unlike the runtime scheduler, the offline

8



schedule is generated based on the WCETs of tasks, and can
be less energy-efficient due to possible idle times that are only
observable at runtime.

V. EVALUATION

In this section, we first present the profiling results of
WCET and power consumption, and evaluate the accuracy
of our power model. We then check the runtime overhead
of sBEET implemented on Xavier AGX. Finally, we conduct
experiments to evaluate the effectiveness of sBEET on schedu-
lability and energy consumption compared against existing
approaches.

A. Experiment Setup

The experiments are done on a Jetson AGX Xavier De-
veloper Kit using CUDA 10.0 SDK, running on Ubuntu
18.04. GPU power consumption is measured using the built-
in power sensor at the GPU power supply rail every 1 ms,
and the energy consumption is estimated by integrating the
power consumption records over the duration of GPU taskset
execution. To minimize measurement inaccuracy, we fixed the
GPU clock frequency to 670 MHz and enabled all CPU cores.

Since the Xavier platform features shared memory between
the CPU and the GPU, we ignored the energy consumption
during data transfer between the host and the device and
limited our focus to processing elements. According to the
temperature reported by the built-in sensor during profiling, the
observed change in temperature is insignificant during kernel
execution on this low-power platform; hence, the potential
impact of chip temperature on power consumption is not
considered in this work.

Obtaining Power Parameters. The power parameters P s,
P d and P idle are obtained using the average of 10-minute
measurements from the built-in power sensor under different
conditions. P s was directly measured from the sensor when
the GPU is completely idle, i.e., no active SM at all. For
P d(m), P d(m = M) was first obtained by P d(M) = P −P s
when all SMs are utilized. For P d(m < M), Eq. 3 holds [16];
therefore it was estimated by P d(m) = (P−P s)∗m

M . Lastly,
with P s and P d(m) for each application, we could get P idle

for different numbers of SMs by Eq. 2.

Benchmarks Selection. In the evaluation, We consider
eight different GPU benchmarks whose execution time is
not too short (> 100µs) so that the overlapped kernel ex-
ecution and its power consumption can be observed: mmul,
stereodisparity, dxtc are selected from Nvidia CUDA
10.0 sample programs [3], hotspot, pathfinder, bfs
(two benchmarks with different input size) are from the Ro-
dinia GPU benchmark suite [13], and one synthetic computing-
intensive kernel which performs vector norm in double preci-
sion. CUDA streams are used for asynchronous data transfer
and concurrent kernel execution.

SM Allocation. The SM allocation is implemented by using
persistent threads, as done in other previous works [14, 20,
31] on spatial multitasking GPUs. Specifically, when a job is

released, the scheduler decides the target SMs that should be
assigned to the job. If a thread block is launched on a non-
target SM, the thread block stops execution immediately so
that non-target (unassigned) SMs can idle without spinning
and be ready for other kernels. On the other hand, the thread
blocks on the target SMs become persistent; they keep running
on the target SMs for the whole lifetime of the kernel in order
to finish the work that should have been done by the stopped
thread blocks. We use the default number of threads per thread
block given by the CUDA code of the benchmarks.

B. WCET and Power Consumption Profiling

To explore how the number of active SMs affects the GPU
power consumption, we conduct experiments using the afore-
mentioned benchmarks. We first profile the cumulative WCET
of GPU segments of each benchmark with a different number
of SMs since the execution time is directly related to the
energy consumption. We then profile the power consumption
of benchmarks by taking the average of the measured power
by executing each benchmark continuously for 10 minutes.
We consider the maximum observed execution time as the
WCET. Fig. 4 shows an increase in power consumption and
a decrease in WCET as the number of active SMs increases.
Three observations can be made here: (i) the WCET of mmul,
stereodisparity, hotspot, dxtc, pathfinder and
bfs_large is inversely proportional to the number of SMs
assigned to it, thereby following the linear-speedup model, (ii)
for bfs_small and the synthetic kernel, there exists m that
assigning more than m SMs does not benefit execution time,
following the nonlinear-speedup model, and (iii) the power
consumption increases sublinearly with the number of SMs.

C. Energy Consumption in an Observation Window

To find out mopt
i in Def. 1, we have observed the energy

consumption of each benchmark with a different number of
SMs, as shown in Fig. 5. For each benchmark, we choose an
observation window which is slightly larger than the WCET of
the benchmark when only 1 SM is assigned. As we previously
mentioned, the sampling rate of the built-in power sensor
is relatively low, possibly causing inaccurate readings when
the measuring interval is short. Thus we compute the energy
consumption of each schedule during this time interval with
different number of SMs by Eq. 5 using the profiling results
in Section V-B. For mmul, stereodisparity, hotspot,
dxtc, pathfinder and bfs_large, which are linear-
speedup tasks, the minimum energy consumption is observed
when all 8 SMs are assigned, i.e., mopt

k = M . Whereas for
bfs_small and the synthetic kernel, mopt

k < M leads to the
best energy consumption.

D. Prediction of Power Consumption

We evaluate the accuracy of the power model in this section.
Since sBEET allows at most two jobs to run on the GPU
simultaneously, we create pairs of benchmarks and consider
all possible combinations of SM allocations for each pair on
the target platform, i.e., m1 idle SMs, m2 SMs for the first

9



1 2 3 4 5 6 7 8
Number of active SMs

0

50

100

150

200

250

W
C

E
T 

on
 G

PU
 (m

s)

WCET

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Po
w

er
 (W

)

Power

(a) mmul

1 2 3 4 5 6 7 8
Number of active SMs

0

50

100

150

200

250

300

350

W
C

E
T 

on
 G

PU
 (m

s)

WCET

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Po
w

er
 (W

)

Power

(b) stereodisparity

1 2 3 4 5 6 7 8
Number of active SMs

0

2

4

6

8

10

W
C

E
T 

on
 G

PU
 (m

s)

WCET

0.0
0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0

Po
w

er
 (W

)

Power

(c) hotspot

1 2 3 4 5 6 7 8
Number of active SMs

0

20

40

60

80

100

W
C

E
T 

on
 G

PU
 (m

s)

WCET

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Po
w

er
 (W

)

Power

(d) dxtc

1 2 3 4 5 6 7 8
Number of active SMs

0

2

4

6

8

10

12

W
C

E
T 

on
 G

PU
 (m

s)

WCET

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Po
w

er
 (W

)

Power

(e) pathfinder

1 2 3 4 5 6 7 8
Number of active SMs

0

5

10

15

20

25

W
C

E
T 

on
 G

PU
 (m

s)

WCET

0.0

0.5

1.0

1.5

2.0

2.5

Po
w

er
 (W

)

Power

(f) bfs large

1 2 3 4 5 6 7 8
Number of active SMs

0.0
0.25

0.5
0.75

1.0
1.25

1.5
1.75

2.0

W
C

E
T 

on
 G

PU
 (m

s)

WCET

0.0
0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0

Po
w

er
 (W

)

Power

(g) bfs small

1 2 3 4 5 6 7 8
Number of active SMs

0

10

20

30

40

50

W
C

E
T 

on
 G

PU
 (m

s)

WCET

0.0
0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0

Po
w

er
 (W

)

Power

(h) synthetic kernel

Figure 4: Profiling results of WCET and power consumption

0.5

0.6

0.7

0.8

0.9

1.0
mmul stereodisplarity hotspot dxtc

1 2 3 4 5 6 7 8

0.5

0.6

0.7

0.8

0.9

1.0
pathfinder

1 2 3 4 5 6 7 8

bfs_large

1 2 3 4 5 6 7 8

bfs_small

1 2 3 4 5 6 7 8

synthetic kernel

Number of active SMs

N
or

m
. e

ne
rg

y

Figure 5: Normalized energy consumption in time window

benchmark of the pair, and m3 for the second one such that
m1 +m2 +m3 = 8. We then measure the power consumption
from the built-in sensor and compare it against the predicted
value by our power model. Fig. 6 depicts the variance of the
error between the measured (observed) and predicted power
consumption for each pair of benchmarks. The arithmetic
mean of error in power prediction is 5.93% and the average
R-squared value (coefficient of determination) of correlation
between the measured and predicted power is shown to be
0.87. Since the internal power sensor is used to collect the
power consumption, and it has a relatively low sampling
rate, which may cause inaccurate readings [12] for the GPU
kernels with short duration such as hotspot, pathfinder
and bfs, thus resulting in relatively larger modeling error.
However, this is not related to the soundness of our power
model, as evidenced by the results of the other kernels.

E. System Evaluation

In this section, we compare the performance of sBEET
against the following three approaches: (i) FCFS - the default
FCFS scheduling policy of NVIDIA GPU without spatial
multitasking, (ii) RM - Rate-Monotonic scheduling of GPU
tasks without spatial multitasking (RM), and (iii) STGM - the
latest GPU scheduling algorithm proposed in [31] that uses
both spatial and temporal multitasking. Under both FCFS and
RM, each task uses all eight SMs of the GPU. Under STGM,

m
m

ul
+

st
er

eo
di

sp
ar

ity
m

m
ul

+
ho

ts
po

t
m

m
ul

+
dx

tc
m

m
ul

+
pa

th
fin

de
r

m
m

ul
+

bf
s_

la
rg

e
m

m
ul

+
bf

s_
sm

al
l

m
m

ul
+

sy
nt

he
tic

st
er

eo
di

sp
ar

ity
+

ho
ts

po
t

st
er

eo
di

sp
ar

ity
+

dx
tc

st
er

eo
di

sp
ar

ity
+

pa
th

fin
de

r
st

er
eo

di
sp

ar
ity

+
bf

s_
la

rg
e

st
er

eo
di

sp
ar

ity
+

bf
s_

sm
al

l
st

er
eo

di
sp

ar
ity

+
sy

nt
he

tic
ho

ts
po

t+
dx

tc
ho

ts
po

t+
pa

th
fin

de
r

ho
ts

po
t+

bf
s_

la
rg

e
ho

ts
po

t+
bf

s_
sm

al
l

ho
ts

po
t+

sy
nt

he
tic

dx
tc

+
pa

th
fin

de
r

dx
tc

+
bf

s_
la

rg
e

dx
tc

+
bf

s_
sm

al
l

dx
tc

+
sy

nt
he

tic
pa

th
fin

de
r+

bf
s_

la
rg

e
pa

th
fin

de
r+

bf
s_

sm
al

l
pa

th
fin

de
r+

sy
nt

he
tic

bf
s_

la
rg

e+
bf

s_
sm

al
l

bf
s_

la
rg

e+
sy

nt
he

tic
bf

s_
sm

al
l+

sy
nt

he
tic

0
5

10
15
20
25
30
35
40

M
od

el
in

g 
er

ro
r 

%

Figure 6: Error of predicted GPU power consumption

3 4 5 6 7 8 9 10
Number of tasks

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

O
ve

rh
ea

d 
(

s)

(a) Overhead of Alg. 1

3 4 5 6 7 8 9 10
Number of tasks

0

5

10

15

20

25

O
ve

rh
ea

d 
(

s)

(b) Overhead of Alg. 2 and 3

Figure 7: Runtime overhead w.r.t number of tasks

the SM allocation for each task is statically determined by its
offline algorithm. In order to compare the runtime performance
of STGM in diverse scenarios, we replaced the pessimistic
response-time-based schedulability test of STGM’s SM alloca-
tion algorithm with a simple version that only checks whether
the total utilization of the given taskset exceeds 1.0 so that
more tasksets are admitted to run. When U > 1.0, STGM falls
back to RM because STGM cannot find SM allocation for such
a taskset. We consider a unified experimental setup to evaluate
the runtime performance of various scheduling approaches,
with the deadline miss ratio and the energy consumption as
evaluation metrics.

10



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Utilization of taskset

0

10

20

30

40

50
D

ea
dl

in
e 

m
is

s 
ra

tio
 % FCFS RM STGM sBEET

(a) Deadline miss ratio

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Utilization of taskset

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

N
or

m
. e

ne
rg

y

FCFS RM STGM sBEET

(b) Overall energy consumption

Figure 8: Runtime results w.r.t. the utilization of taskset

1) Overhead Measurement: We measured the runtime over-
head of sBEET and the results are shown in Fig. 7. Note that
the measured overhead of the scheduler (Alg. 1) excludes the
overhead of SM allocation (Alg. 2) and SchedGen (Alg. 3).
The same experiment setups are used here as stated in Sec-
tion V-A. To obtain the overheads of the proposed runtime
algorithms in Section IV-B , we randomly generated tasksets
consisting of various number of tasks from the benchmark
pool. The total utilization of each taskset is set to be 1.0, and
the running duration is set to 10 minutes. Since the proposed
scheduler makes an SM allocation decision at each job arrival,
the increase of the number of tasks does not necessarily
leads to the increase of overheads. Since the maximum total
overhead of the algorithms is much less than 100 µs, we
conclude that the sBEET framework is suitable to use on
embedded platforms at runtime.

2) Effect of Taskset Utilization: We generate 1,000 ran-
dom tasksets for each experiment and execute them on real
hardware. The following parameters are considered for each
task generation: workload type (one of the six benchmarks
mentioned before), task utilization (defined in Sec. II-B and
determined by the UUniFast algorithm [11]), and the initial
release offset ([0, Ti

2 ]). Once the workload type is chosen
randomly among the benchmarks, the WCET of the task is
determined automatically from the profiles, and the period
(equal to deadline, i.e., Ti = Di) is obtained by dividing
its WCET by utilization. For each generated taskset, we run
FCFS, RM, STGM, and sBEET each for 10 seconds (we
did not observe a meaningful difference in deadline miss
ratios even if the scheduler runs for a longer time). For
FCFS and RM, the tasks run on a single stream with only
one worker since they do not use spatial multitasking, and
it represents the synchronization-based real-time GPU access
approach [15, 24, 30]. For STGM, eight workers are created
since STGM does not limit the number of jobs that can run

simultaneously on the GPU.
In Fig. 8, we show the performance of the four scheduling

approaches for various utilization settings. Fig. 8a presents the
deadline miss ratio under the four approaches, and sBEET has
the lowest deadline miss ratio among them. Note that, when
U ≤ 0.7, the performance of STGM is the worst among the
four approaches. This happens because the blocking time by a
GPU kernel under STGM is likely to be longer than that under
RM when the SMs are not fully utilized. When U ≥ 0.8, FCFS
becomes the worst among the four approaches. The curves
of STGM and RM overlap due to the fallback mentioned in
Section V-E.

Fig. 8b shows the runtime energy consumption of the four
approaches, normalized to the case of FCFS. We observe
that, when U ≤ 0.7, STGM has the biggest overall energy
consumption because it first assigns the minimum possible
number of SMs to each task and incrementally increases the
number only for those showing a large reduction in task
utilization. As U gets larger, the energy consumption of FCFS,
RM, and STGM becomes slightly lower than our proposed
scheduler because ours use spatial multitasking to achieve
better schedulability, the use of which inevitably increases
energy consumption as stated in Section IV-A. Another reason
is that FCFS, RM and STGM have higher deadline miss ratios,
as can be seen in Fig. 8a. In other words, during the same
observation interval, they have fewer completed jobs compared
to sBEET.

3) Effect of Heavy/Light Task Ratios: In order to better
understand the schedulability characteristics of sBEET for
light tasks that can suffer from long blocking time caused
by heavy tasks released earlier [25], we conduct experiments
using randomly-generated bi-modal tasksets. Based on the
WCET profiles of each benchmark, we consider hotspot,
pathfinder, bfs and the synthetic kernel as light tasks,
and mmul, stereodisparity, and dxtc as heavy tasks.
We keep the same total utilization of U = 0.9 for each taskset.
The light and heavy tasks are generated according to the
ratio of the heavy tasks until the total utilization exceeds the
target utilization. The utilization of each light task is randomly
selected between [0.2, 0.4] and heavy tasks between [0.05,
0.2]. Fig. 9 demonstrates the runtime deadline miss ratio of
light tasks as the percentage of heavy tasks increases in a
taskset. Since sBEET takes into account tasks’ possible future
arrivals to find the right number of SMs and decide when
to launch the jobs in a non-work-conserving manner, long
blocking time from other jobs can be minimized, as shown in
Fig. 2. Therefore, sBEET has a better performance in meeting
the deadlines of light tasks than the other approaches.

4) Effect of Spatial Multitasking: Finally, we conduct ad-
ditional experiments to compare the energy consumption of
STGM and sBEET since they both use spatial multitasking.
We use the tasksets that are said schedulable by the STGM’s
offline schedulability test (Eq. 9 in [31]), which guarantees no
deadline miss at runtime. We randomly select tasks from our
benchmark pool and choose periods within a range of [100,
500] ms to generate each taskset with a fixed number of tasks.

11



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ratio of heavy tasks

0

5

10

15

20

25
D

ea
dl

in
e 

m
is

s 
ra

tio
 % FCFS RM STGM sBEET

Figure 9: Runtime deadline miss ratio of light tasks w.r.t. ratio
of heavy tasks

2 3 4 5 6 7
Number of tasks

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

N
or

m
. e

ne
rg

y

STGM sBEET

Figure 10: Comparison of runtime energy consumption of
STGM and the proposed work

The measurement results of runtime energy consumption are
shown in Fig. 10. Compared to STGM that does not limit the
number of workers to two, sBEET can save 15% to 21% of
energy in actual measurement while also having a 0% deadline
miss ratio. These results are consistent with the analysis in
Section IV-A, and also supports the reasoning that having
more workers may not help improve energy consumption and
schedulability.

F. Discussion

While experimental results have demonstrated the benefit
and effectiveness of our scheduler, there are some limitations
that we would like to discuss. At first, co-scheduled kernels
may experience additional timing interference due to con-
tention on shared memory resources of the GPU, which our
work does not take into account. Although we did not observe
any discernible slowdown of co-scheduled kernels in our
experimental setup, probably due to a relatively small number
of SMs and the high memory bandwidth of Xavier AGX (58.4
GB/s), the negative impact of memory interference can be a
serious problem on GPUs with a large number of SMs or low
memory bandwidth. However, our work can be co-used with
GPU cache and DRAM partitioning methods [19], which can
significantly reduce memory interference and achieve better
performance isolation.

Another limitation is that our work considers only the en-
ergy consumption of the GPU, although GPU kernel execution
draws power from CPUs and other hardware components
for data copy and miscellaneous operations. It will be more
challenging to optimize the energy consumption of the whole
hardware platform including GPU, CPU, memory, etc. We
leave this as part of future work.

VI. CONCLUSION

In this paper, we first presented the analysis of GPU energy
consumption in the presence of spatial multitasking which
allows simultaneous execution of multiple GPU kernels. Our
analysis suggests that, although spatial multitasking benefits
schedulability, its use can lead to energy inefficiency due to the
power consumption of idling SMs. Based on this analysis, we
then proposed sBEET, a runtime scheduler that balances en-
ergy efficiency and real-time performance by utilizing spatial
multitasking and predicting the resulting energy consumption.
Experimental results using our implementation on real hard-
ware indicate that sBEET reduces deadline misses significantly
compared to the other approaches while consuming energy
similar to the non-spatial multitasking methods, and achieves
better energy efficiency than the others for tasks that satisfy
their deadlines.

As GPUs are increasingly required in cyber-physical sys-
tems, the high energy consumption of GPUs is becoming an
important issue. Our results can serve as a basis to extend the
energy-efficient scheduling approach to more powerful, high-
end GPUs on which the performance trend of the workloads
might be different, and we also plan to consider heterogeneous
multi-GPU systems in the future.

ACKNOWLEDGMENT

This work is supported by the National Science Foundation
(NSF) grants 1943265 and 1955650.

REFERENCES

[1] Jetson AGX Xavier developer kit. https://developer.nvidia.com/
embedded/jetson-agx-xavier-developer-kit.

[2] Jetson AGX Xavier thermal design guide. https:
//static5.arrow.com/pdfs/2018/12/12/12/22/1/565659/nvda /
manual/jetson agx xavier thermal design guide v1.0.pdf.

[3] Nvidia CUDA samples. https://github.com/NVIDIA/
cuda-samples.

[4] Nvidia multi-process service. https://docs.nvidia.com/deploy/
pdf/CUDA Multi Process Service Overview.pdf.

[5] Volta tuning guide. https://docs.nvidia.com/cuda/
volta-tuning-guide/index.html.

[6] M. Abdel-Majeed, D. Wong, and M. Annavaram. Warped
gates: Gating aware scheduling and power gating for GPGPUs.
In 2013 46th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 111–122. IEEE, 2013.

[7] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte. The
case for GPGPU spatial multitasking. In IEEE International
Symposium on High-Performance Comp Architecture, pages 1–
12, 2012.

[8] P. Aguilera, K. Morrow, and N. S. Kim. QoS-aware dynamic
resource allocation for spatial-multitasking GPUs. In 2014 19th
Asia and South Pacific Design Automation Conference (ASP-
DAC), pages 726–731, 2014.

[9] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D.
Smith. GPU scheduling on the NVIDIA TX2: Hidden details
revealed. In 2017 IEEE Real-Time Systems Symposium (RTSS),
pages 104–115, 2017.

[10] C. Basaran and K. Kang. Supporting preemptive task executions
and memory copies in GPGPUs. In 2012 24th Euromicro
Conference on Real-Time Systems, pages 287–296, 2012.

[11] E. Bini. Measuring the performance of schedulability tests.
Real-Time Systems, 30:129–154, 05 2005.

12

https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://static5.arrow.com/pdfs/2018/12/12/12/22/1/565659/nvda_/manual/jetson_agx_xavier_thermal_design_guide_v1.0.pdf
https://static5.arrow.com/pdfs/2018/12/12/12/22/1/565659/nvda_/manual/jetson_agx_xavier_thermal_design_guide_v1.0.pdf
https://static5.arrow.com/pdfs/2018/12/12/12/22/1/565659/nvda_/manual/jetson_agx_xavier_thermal_design_guide_v1.0.pdf
https://github.com/NVIDIA/cuda-samples
https://github.com/NVIDIA/cuda-samples
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/cuda/volta-tuning-guide/index.html
https://docs.nvidia.com/cuda/volta-tuning-guide/index.html


[12] R. A. Bridges, N. Imam, and T. M. Mintz. Understanding gpu
power. a survey of profiling, modeling, and simulation methods.
ACM Computing Surveys, 49(3), 9 2016.

[13] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee,
and K. Skadron. Rodinia: A benchmark suite for heterogeneous
computing. In 2009 IEEE International Symposium on Work-
load Characterization (IISWC), pages 44–54, 2009.

[14] G. Chen, Y. Zhao, X. Shen, and H. Zhou. Effisha: A software
framework for enabling effficient preemptive scheduling of
GPU. Proceedings of the 22nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2017.

[15] G. Elliott and J. Anderson. Globally scheduled real-time
multiprocessor systems with GPUs. Real-Time Systems, 48:34–
74, 05 2012.

[16] S. Hong and H. Kim. An integrated GPU power and perfor-
mance model. ACM SIGARCH Computer Architecture News,
38:280, 2010.

[17] S. Hosseinimotlagh and H. Kim. Thermal-aware servers for
real-time tasks on multi-core GPU-integrated embedded sys-
tems. In 2019 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 254–266. IEEE, 2019.

[18] C. Isci and M. Martonosi. Runtime power monitoring in
high-end processors: methodology and empirical data. In
Proceedings. 36th Annual IEEE/ACM International Symposium
on Microarchitecture, 2003. MICRO-36., pages 93–104, 2003.

[19] S. Jain, I. Baek, S. Wang, and R. Rajkumar. Fractional GPUs:
Software-based compute and memory bandwidth reservation for
GPUs. In 2019 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 29–41, 2019.

[20] J. Janzén, D. Black-Schaffer, and A. Hugo. Partitioning gpus
for improved scalability. In 2016 28th International Symposium
on Computer Architecture and High Performance Computing
(SBAC-PAD), pages 42–49, 2016.

[21] Y. Kang, W. Joo, S. Lee, and D. Shin. Priority-driven spatial
resource sharing scheduling for embedded graphics processing
units. Journal of Systems Architecture, 76:17–27, 2017.

[22] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa,
and R. Rajkumar. RGEM: A responsive GPGPU execution
model for runtime engines. In 2011 IEEE 32nd Real-Time
Systems Symposium, pages 57–66, 2011.

[23] S. Kato, C. M. University, T. U. of Tokyo, K. Lakshmanan,
R. Rajkumar, and Y. Ishikawa. Timegraph: GPU scheduling for
real-time multi-tasking environments. In 2011 USENIX Annual
Technical Conference (USENIX ATC 11), Portland, OR, 2011.
USENIX Association.

[24] H. Kim, P. Patel, S. Wang, and R. R. Rajkumar. A server-based
approach for predictable GPU access with improved analysis.
Journal of Systems Architecture, 88:97–109, 2018.

[25] H. Lee and J. Lee. Limited non-preemptive EDF scheduling for
a real-time system with symmetry multiprocessors. Symmetry,
12:172, 01 2020.

[26] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. Kim,
T. Aamodt, and V. Janapa Reddi. Gpuwattch: enabling energy
optimizations in gpgpus. ACM SIGARCH Computer Architec-
ture News, 41, 07 2013.

[27] Y. Liang, H. P. Huynh, K. Rupnow, R. S. M. Goh, and D. Chen.
Efficient GPU spatial-temporal multitasking. IEEE Transactions
on Parallel and Distributed Systems, 26(3):748–760, 2015.

[28] S. Mittal and J. Vetter. A Survey of Methods For Analyzing and
Improving GPU Energy Efficiency. ACM Computing Surveys,
47, 04 2014.

[29] I. S. Olmedo, N. Capodieci, J. L. Martinez, A. Marongiu, and
M. Bertogna. Dissecting the CUDA scheduling hierarchy: a
performance and predictability perspective. In 2020 IEEE Real-
Time and Embedded Technology and Applications Symposium
(RTAS), pages 213–225, 2020.

[30] P. Patel, I. Baek, H. Kim, and R. Rajkumar. Analytical enhance-

ments and practical insights for MPCP with self-suspensions.
In IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2018.

[31] S. Saha, Y. Xiang, and H. Kim. Stgm: Spatio-temporal gpu man-
agement for real-time tasks. In 2019 IEEE 25th International
Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), pages 1–6, 2019.

[32] J. Sun, J. Li, Z. Guo, A. Zou, X. Zhang, K. Agrawal, and
S. Baruah. Real-time scheduling upon a host-centric acceler-
ation architecture with data offloading. In 2020 IEEE Real-
Time and Embedded Technology and Applications Symposium
(RTAS), pages 56–69, 2020.

[33] Q. Sun, Y. Liu, H. Yang, Z. Luan, and D. Qian. Smqos:
Improving utilization and energy efficiency with qos awareness
on gpus. In 2019 IEEE International Conference on Cluster
Computing (CLUSTER), pages 1–5, 2019.

[34] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and
M. Valero. Enabling preemptive multiprogramming on GPUs.
In 2014 ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA), pages 193–204, 2014.

[35] Z.-G. Tasoulas and I. Anagnostopoulos. Improving GPU perfor-
mance with a power-aware streaming multiprocessor allocation
methodology. Electronics, 8(12), 2019.

[36] P.-H. Wang, C.-L. Yang, Y.-M. Chen, and Y.-J. Cheng. Power
gating strategies on GPUs. TACO, 8:13, 10 2011.

[37] Y. Wang and H. Kim. Work-in-progress: Understanding the
effect of kernel scheduling on gpu energy consumption. In
2019 IEEE Real-Time Systems Symposium (RTSS), pages 584–
587, 2019.

[38] Y. Wang and N. Ranganathan. An instruction-level energy esti-
mation and optimization methodology for GPU. In 2011 IEEE
11th International Conference on Computer and Information
Technology, pages 621–628, 2011.

[39] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and
M. Guo. Quality of service support for fine-grained sharing
on gpus. pages 269–281, 06 2017.

[40] Y. Xiang and H. Kim. Pipelined data-parallel CPU/GPU
scheduling for multi-DNN real-time inference. In 2019 IEEE
Real-Time Systems Symposium (RTSS), pages 392–405. IEEE,
2019.

[41] H. E. Zahaf, A. Benyamina, R. Olejnik, and G. Lipari. Energy-
efficient scheduling for moldable real-time tasks on heteroge-
neous computing platforms. Journal of Systems Architecture,
74, 01 2017.

[42] H. Zhou, G. Tong, and C. Liu. GPES: a preemptive execution
system for GPGPU computing. In 21st IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 87–
97, 2015.

13


	Introduction
	Background and System Model
	Background
	System Model and Assumptions

	Related Work
	sBEET Framework
	Power and Energy Analysis
	Scheduling Framework
	Runtime Scheduler
	Time Complexity Analysis
	Offline Schedule Generation


	Evaluation
	Experiment Setup
	WCET and Power Consumption Profiling
	Energy Consumption in an Observation Window
	Prediction of Power Consumption
	System Evaluation
	Overhead Measurement
	Effect of Taskset Utilization
	Effect of Heavy/Light Task Ratios
	Effect of Spatial Multitasking

	Discussion

	Conclusion

