
Work-In-Progress: Understanding the Effect of
Kernel Scheduling on GPU Energy Consumption

Yidi Wang and Hyoseung Kim
University of California, Riverside

ywang665@ucr.edu, hyoseung@ucr.edu

Abstract—General-purpose graphics processing units (GPUs)
made available on embedded platforms have gained much interest
in real-time cyber-physical systems. Despite the fact that GPUs
generally outperform CPUs on many compute-intensive tasks in a
multitasking environment, higher power consumption remains a
challenging problem. This paper presents our study on the energy
consumption characteristics of an NVIDIA AGX Xavier GPU,
the latest commercially available embedded hardware, under
different concurrency levels and kernel scheduling orders. Our
findings pave the way for designing an energy efficient scheduler
for GPUs with real-time guarantees.

I. INTRODUCTION

Nowadays, GPUs are becoming popular due to their out-
standing performance. Offloading tasks that require a massive
amount of computation and parallelism to the GPUs brings
a significant performance improvement for cyber-physical
and autonomous applications. Real-time multitasking is an
essential prerequisite for developing such GPU-accelerated
applications. For example, users can create multiple streams
and assign independent kernels to those streams for concurrent
kernel execution, in order to achieve speed-up and improve
GPU resource efficiency.

Power management is one of the major factors for the
efficient use of GPUs in an embedded environment. According
to [1], GPU power management can bring multiple benefits,
such as reducing the energy waste caused by kernel syn-
chronization and resource utilization, improving scalability
and reliability through reduced component temperature, and
preventing the need for extra cooling.

Kernel scheduling order also has an important role in the
execution efficiency of GPUs. A kernel contains a set of thread
blocks (TBs), each of which has multiple threads. The number
of TBs (grid size) and the number of threads in each TB (TB
size) are given when the kernel is launched. Then, TBs are
distributed to Streaming Multiprocessors (SMs) for execution
in a near round-robin manner [2]. The amount of resources
available on each SM varies depending on the hardware
architecture. The actual start time of each TB on its assigned
SM is determined by various SM resources, such as shared
memory, number of threads, and number of registers. It has
been shown in prior work [3] that when multiple kernels are
launched concurrently, the hardware behavior and performance
may vary depending on their scheduling order.

This paper presents our experimental findings on the effect
of kernel scheduling on GPU energy consumption. Based
on the NVIDIA GPU scheduling policy that has been well

illustrated in [2], we have constructed various controlled en-
vironments with different TB sizes of synthetic kernels on the
latest Nvidia embedded GPU platform, AGX Xavier. We have
found that there is a strong relationship between the power
consumption and kernel scheduling decisions, i.e., sequential
vs. concurrent and execution order, and using such information
has the potential to build an energy-efficient real-time GPU
scheduler.

The rest of the paper is organized as follows: Section II
gives a brief summary of our experimental setup, Sections III
and IV discuss the GPU energy consumption under different
concurrency levels and kernel execution orders, and Section V
concludes the paper.

II. EXPERIMENTAL ENVIRONMENT

The experiments are done on a Jetson AGX Xavier Devel-
oper Kit using CUDA 10.0 SDK. The Xavier platform has
an integrated 512-core GPU, sharing 16GB memory with the
CPU. The GPU has 8 SMs, each containing 64 CUDA cores.
The maximum number of active threads per SM is 2048.

GPU power consumption is measured using
tegrastats [4], and the energy consumption is obtained by
integrating the power consumption records over the duration
of kernel execution. To minimize measurement inaccuracies,
we disabled the dynamic voltage/frequency scaling (DVFS)
of GPU and used a set of fixed clock frequencies during
experiments. By default, the platform is running under 15W
mode, in which the GPU clock frequency is set to 670MHz
and 4 CPU cores are enabled. The GPU can be configured
to run at other frequencies, e.g., 520, 900, and 1377MHz.
However, since the energy consumption behavior under
different frequencies has similar patterns in our experiments,
we report only the results obtained at 670MHz for simplicity.

III. EFFECT OF KERNEL CONFIGURATION AND
CONCURRENCY

To explore kernel parameters and execution modes, we have
created a set of compute-intensive synthetic kernels, each of
which has a fixed amount of workloads for each thread used.
Memory operations are not involved in these kernels in order
to limit our focus to processing elements. The number of TBs
for each kernel (grid size) is set to 8, which is equal to the total
number of SMs on the target GPU and allows all TBs to be
evenly distributed across all SMs by the hardware thread-block
scheduler [2]. For the ease of experiments, we have developed

TABLE I: Execution time of synthetic kernels (grid size = 8)

TB size Execution time (s)
1024 10.63
512 7.57
256 6.43
128 5.97
64 5.95
32 5.95
16 5.95
8 5.95

a tool that allows the user to configure the number of TBs and
the TB size of individual kernels, and to define the number of
kernels and concurrency levels in the experiment.

Observation 1. The execution time of a kernel does not
decrease linearly with the TB size.

We first measured the execution time of individual kernels
with different TB size (# of threads per TB) since the exe-
cution time is assumed to be directly related to the energy
consumption. Table I shows the results. It is worth noting
that in this table, the TB size value represents the relative
amount of computational workloads of the corresponding
kernel because each thread performs the same operations and
all other parameters are the same across the kernels. The
execution time reduces with the TB size and plateaus when
the TB size gets smaller than 128. This implies that the GPU
cannot parallelize well when the number of threads is too
small, thereby likely leading to resource underutilization.

To understand the relation between concurrency level and
energy consumption, we run a set of synthetic kernels under
two execution modes: sequential and concurrent. In sequential
mode, the next kernel in the set is launched only when
the previous kernel has completed. On the other hand, in
concurrent mode, the launch requests of all kernels in the set
are submitted to the GPU at once, each with a separate CUDA
stream.

TABLE II: Completion time of 16 kernels (grid size = 8)

TB size Seq. (s) Con. (s) Con./Seq. (%)
1024 170.59 157.62 92.40
512 121.28 78.83 65.00
256 103.23 39.67 38.42
128 95.36 19.66 20.61
64 95.37 10.20 10.69
32 95.36 7.28 7.63
16 95.41 6.64 6.96
8 95.43 6.65 6.97

TABLE III: Energy consumption of 16 kernels (grid size = 8)

TB size Seq. (J) Con. (J) Con./Seq.(%)
1024 636.53 641.70 100.81
512 346.27 324.88 93.82
256 231.49 162.96 70.40
128 175.19 78.59 44.86
64 146.35 40.44 27.63
32 131.92 22.45 17.02
16 131.48 18.71 14.23
8 117.25 16.57 14.13

Observation 2. For a given number of kernels, the concurrent
execution mode improves the execution time and energy con-
sumption compared to the sequential mode, but the amount of
the improvement varies depending on the TB size.

Tables II and III compare the completion time and energy
consumption of a set of 16 kernels under the sequential and
concurrent execution modes. All kernels have the same grid
size (# of TBs per kernel). In general, the concurrent mode
gives a large improvement when the TB size is small because
many of such small TBs can execute concurrently on the same
SM. Reducing the TB size by half, however, does not lead to
half the execution time or energy consumption, e.g., the TB
size from 512 to 256 under concurrent execution. Also, the
ratio of improvement in time and energy differs.

K1 execution K2, K3 execution

K1 completes,
K2 and K3 start

K1 starts

K2 and K3
complete

Idle

Fig. 1: Power consumption curve of three identical kernels

Observation 3. GPU power consumption is affected by the
concurrency level, but not proportional to the amount of
workloads.

Fig. 1 shows an example power consumption curve when
we launch three identical kernels, K1, K2, and K3. Each kernel
has a TB size of 32 and a grid size of 8. We first launch K1 at
time 0 (Phase 1), and right after K1 finishes, launch K2 and
K3 concurrently (Phase 2). The curve represents the instant
power consumption obtained from the tegrastats utility,
and the dashed line indicates the time when each phase ends.

As shown in Fig. 1, at the beginning, when the kernel
instance is about to be launched, power consumption is as
low as about 600 mW. Note that this is due to static power
consumption and cannot be zero. As soon as the first kernel
starts, the power consumption increases to a relatively high
level. Then, when the two concurrent kernels start, the power
consumption goes even higher because more GPU resources
are utilized. Finally, after the completion of all the kernels,
the power consumption is returned to the initial level. It is
interesting to note that, the power consumption difference
between Phase 1 and Phase 2 is merely about 150 mW, but the
difference between the initial state and Phase 1 is significantly
higher, about 750 mW.

TABLE IV: The results of sequential execution (TB size = 32)

Number of kernels Duration (s) Power (mW) Energy (J)
1 5.95 1373 8.49
2 11.92 1377 16.79
4 23.85 1377 33.21
8 47.70 1377 66.02
16 95.36 1377 131.92
32 190.87 1377 263.23
64 381.55 1377 525.78

128 762.98 1377 1051.14

TABLE V: The results of concurrent execution (TB size = 32)

Number of kernels Duration (s) Power (mW) Energy (J)
1 5.95 1373 8.49
2 5.96 1530 9.54
4 5.97 1836 11.34
8 6.28 2294 14.60
16 7.28 3212 22.45
32 14.45 3212 45.32
64 29.17 3212 90.06

128 58.32 3212 178.93

Observation 4. For a set of identical kernels, the total
completion time is not linear to the number of kernels under
the concurrent execution mode.

We also discuss the impact of the number of kernels when
all the kernels are identical. Tables IV and V show the
completion time (duration), power, and energy consumption of
a given number of kernels under different execution modes.
Under the sequential mode (Table IV), power consumption
remains always the same regardless of the number of kernels.
This is obvious since this mode executes only one kernel at a
time. Energy consumption is given as a linear function of the
execution time. However, a completely different observation
is made under the concurrent mode. The power consumption
increases with the number of kernels sub-linearly until the
number becomes 16. In case of the energy consumption,
it increases only marginally until 16 (e.g., the increase in
the number of kernels from 1 to 8 causes only about 70%
energy increase), and then increases linearly with the number
of kernels. In other words, under the concurrent execution
mode, power and energy consumption do not necessarily grow
proportionally to the number of kernels.

Observation 5. Concurrent execution mode generally outper-
forms sequential mode in terms of energy consumption.

This observation is supported by all the above results
comparing the energy consumption of the two modes. Except
for one case (TB size = 1024 in Table III), a considerable
amount of energy is saved under the concurrent execution
mode. This effect is significant particularly when the TB size
gets smaller and the number of kernels is large, up to 83%
energy is saved in our experimental results.

IV. EFFECT OF KERNEL SCHEDULING

Based on the aforementioned results, further experiments
are done to show that the energy consumption also differs
when the kernel scheduling order is changed. As listed in
Table VI, we use 40 independent kernels, K1, K2, ..., K40,

TABLE VI: Info of kernels used in the example

Group Kernel ID TB size Exec. time (s)

1 1, 6, 11, 16, 21, 26, 31, 36
2, 7, 12, 17, 22, 27, 32, 37 128 5.95

2 3, 8, 13, 18, 23, 28, 33, 38 256 6.42

3 4, 9, 14, 19, 24, 29, 34, 39
5, 10, 15, 20, 25, 30, 35, 40 1024 10.62

which fall into 3 groups based on their TB size, 128, 256, and
1024. The grid size of each kernel is chosen to be 8, which is
the number of SMs on the Xavier GPU as mentioned earlier.
This allows us to easily keep track of the TB execution on
each SM. Each kernel is assigned a separate CUDA stream.

For this configuration, the following three kernel scheduling
approaches are considered: (i) sequential, (ii) concurrent, and
(iii) partially concurrent scheduling. First, sequential schedul-
ing serializes all kernel execution and launches the kernels
in their ID order. Secondly, concurrent scheduling reorders
kernels to maximize the concurrency and utilization of the
GPU. Lastly, partially concurrent scheduling allows concurrent
kernel execution but limits the number of concurrent kernels
to two at any time.

Fig. 2 illustrates the execution timeline of TBs of all kernels
under the three scheduling approaches. For simplicity, we only
show the results from the first SM of the GPU, SM 0, but the
other SMs have the same results since all SMs are assigned
the same number of TBs for each kernel. In this figure, Ki:j

denotes the j-th TB of a kernel Ki. The x-axis is time, and
the y-axis represents the number of active threads on that
SM. Note that the maximum number of active threads per
SM supported by the Xavier GPU is 2048.

As can be seen, sequential scheduling (Fig. 2a) executes
only one kernel at a time and yields the longest completion
time. In contrast, concurrent scheduling (Fig. 2c) gives the
shortest completion time by launching the kernels in the order
of groups 3, 2, and 1. For kernels in Group 3, each kernel
has 1 TBs with 1024 threads, and two of them thus fully
occupy all the available threads of an SM. Then, 8 kernels in
Group 2 execute simultaneously, and all 16 kernels of Group
1 do the same. Partially concurrent scheduling (Fig. 2b) shows
mixed results. Its completion time is longer than the concurrent
but shorter than the sequential scheduling approach due to its
limited concurrency level.

TABLE VII: Results of kernel scheduling approaches

Scheduling Duration (s) Idling time (s) SM util. Energy (J)
Sequential 316.52 3.48 30.76% 931.14
Concurrent 196.91 123.09 90.50% 867.98

Partially concurrent 211.67 108.33 45.98% 851.36

Table VII summarizes the experimental results under the
three scheduling approaches. We choose an observation win-
dow of 320s, which is slightly larger than the longest comple-
tion time among three scheduling method, in order to take into
account the impact of idle time in the energy consumption of
given workloads. The duration in the table means the actual
execution time of kernels, and the idling time is the remaining

K1:00

1024

2048

512

1536

K3:0

...

4 8 12 16 20 24 28 284 288 292 296...

Time	(seconds)

#	
of
	a
ct
iv
e	
th
re
ad
s

Kernel	in	Group	1 Kernel	in	Group	2 Kernel	in	Group	3

300

K4:0

K2:0

K5:0

32 36
K36:0 K38:0

K39:0

K37:0

K40:0

316312308304284

(a) Sequential scheduling

K3:0
0

1024

2048

512

1536

4 8 12 16 160

Time	(seconds)

#	
of
	a
ct
iv
e	
th
re
ad
s

144 148 152 156

K4:0

K1:0
K2:0
K6:0
K7:0
K11:0
K12:0
K16:0
K17:0
K21:0

Kernel	in	Group	1 Kernel	in	Group	2 Kernel	in	Group	3

164 168

...

...

K39:0

172 176 180 184 188 192 196

K22:0
K26:0
K27:0
K31:0
K32:0
K36:0
K37:0

K5:0 K40:0

K8:0

K13:0

K23:0

K33:0

K18:0

K28:0

K38:0

(b) Concurrent scheduling

K1:0
0

1024

2048

512

1536

4 8 12 16
Time	(seconds)

#	
of
	a
ct
iv
e	
th
re
ad
s

28 32 36 40 ...

K3:0

...

Kernel	in	Group	1 Kernel	in	Group	2 Kernel	in	Group	3

K2:0
K6:0
K7:0

K8:0

K4:0 K4:0 K4:0 K4:0

20 24 44 48 52 164160156 168 172 176 180 184 188 192 196 200 204
K31:0

K33:0

K32:0
K36:0
K37:0

K38:0

K34:0 K35:0 K39:0 K40:0

208 212

(c) Partial concurrent scheduling

Fig. 2: Kernel execution timeline on Xavier GPU SM 0

time during which no active thread is running on the GPU and
only static power consumption exists. SM utilization means the
average thread occupancy during the execution of all kernels,
and is calculated by:∑

(ti × TBi × ni)

Sthread × ttotal

where ttotal is the total duration of kernel execution, ti is the
execution time of an individual kernel Ki, TBi is the TB size
of Ki, ni is the number of TBs per SM for Ki, and Sthread

is the maximum number of active threads per SM supported
by the GPU (= 2048 on Xavier).

While the partially concurrent scheduling does not give the
shortest completion time, interestingly, it yields the lowest
energy consumption among all three approaches in this experi-
ment (1.91% reduction from concurrent scheduling, and 8.57%
reduction from sequential scheduling). The trend may vary
depending on kernel configurations and concurrent scheduling
can outperform the other two in other cases. Nevertheless,
our experimental results encourage the development of a new
scheduler design for optimal GPU energy consumption.

V. CONCLUSION

This paper presents the GPU energy consumption behavior
with different concurrency levels and kernel scheduling orders.
We have demonstrated that concurrent kernel scheduling has
the potential to improve execution time and energy consump-
tion, but maximizing the concurrency level does not lead
to the most energy-efficient schedule. Therefore, it is worth

comparing different kernel schedules with respect to energy
consumption, as long as they meet real-time requirements.

It should be, however, noted that we used independent
CUDA kernels and no memory operations were involved in our
experiments. Although we have not verified experimentally,
it is expected that transferring data and accessing memory
will create indirect dependency among logically-independent
kernels due to shared memory resources (e.g., copy engines,
buses, and caches) and may lead to different observations.

For future work, we plan to investigate the energy con-
sumption of kernels with memory operations, take into account
temporal dependency among kernels due to shared resources,
and develop an energy-efficient real-time GPU scheduler. We
believe our findings in this paper serve as a good starting point
for these directions.

REFERENCES

[1] S. Mittal and J. Vetter, “A Survey of Methods For Analyzing and
Improving GPU Energy Efficiency,” ACM Computing Surveys, vol. 47,
04 2014.

[2] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith, “GPU
Scheduling on the NVIDIA TX2: Hidden Details Revealed,” in 2017
IEEE Real-Time Systems Symposium (RTSS), Dec 2017, pp. 104–115.

[3] R. A. Cruz, C. Bentes, B. Breder, E. Vasconcellos, E. Clua,
P. M. de Carvalho, and L. M. Drummond, “Maximizing the
GPU resource usage by reordering concurrent kernels submission,”
Concurrency and Computation: Practice and Experience, vol. 31,
no. 18, p. e4409, 2019, e4409 cpe.4409. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4409

[4] “NVIDIA Xavier - JetPack 4.1 - Performance Tuning - Evaluating
Performance kernel description,” https://developer.ridgerun.com/wiki/
index.php?title=Xavier/JetPack 4.1/Performance Tuning/Evaluating
Performance.

