
Pipelined Data-Parallel CPU/GPU Scheduling for
Multi-DNN Real-Time Inference

Yecheng Xiang and Hyoseung Kim
University of California, Riverside

yxian013@ucr.edu, hyoseung@ucr.edu

Abstract—Deep neural networks (DNNs) have been showing
significant success in various applications, such as autonomous
driving, mobile devices, and Internet of Things. Although much
research has been conducted to optimize the structure of DNNs,
limited attention has been given to their timely execution, specifi-
cally on the scheduling of real-time inference requests to various
DNN models. For instance, existing DNN frameworks, such as
Caffe, TensorFlow and Torch, only provide a single-level priority,
one-DNN-per-process execution model and sequential inference
interfaces. They can be particularly problematic when used in
edge computing and in-vehicle intelligence systems for multiple
DNNs, as response time may become unpredictably long in the
worst case while leaving system resources underutilized. This
paper presents DART, a DNN scheduling framework that offers
deterministic response time to real-time tasks and increased
throughput to best-effort tasks. DART employs a pipeline-based
scheduling architecture with data parallelism, where heteroge-
neous CPUs and GPUs are arranged into nodes with different
parallelism levels. DART also includes pipeline stage design and
node configuration schemes, admission control, execution time
profiling, and runtime enforcement techniques. We evaluated
DART on Intel x86 Xeon and Nvidia ARM platforms with
GPUs. Experimental results indicate that DART significantly
outperforms the existing approaches, by up to 98.5% shorter
worst-case response time for real-time tasks while simultaneously
achieving up to 17.9% higher throughput for best-effort tasks.

I. INTRODUCTION

Deep neural networks (DNNs) have shown great potential
for the use in many Internet of Things (IoT) and Cyber-
Physical Systems (CPS), such as autonomous driving [9, 32],
smart robotics [11], and precision agriculture [45]. Such sys-
tems often have multiple sensing tasks that capture raw sensor
data and issue DNN inference requests (jobs) to various pre-
trained DNN models in order to obtain a high-level representa-
tion of the environment. In the meanwhile, due to size, weight,
power and cost constraints, running multiple DNN applications
concurrently on a single hardware platform is gaining much
interest. To ensure the usefulness and correctness of the
obtained information, both timely and accurate response of
these DNN jobs needs to be provided. A deterministic tail
latency bound, i.e., the guaranteed worst-case response time,
is particularly important for safety-critical applications as it
is closely related to the performance, correctness, and even
safety of individual components as well as the entire system.

The current state-of-art DNN frameworks, such as Caffe [1,
22], TensorFlow [4], and Torch [3], handle inference jobs in
a sequential manner with a single process per DNN model.
This approach is useful to achieve high throughput in handling
batch jobs. However, they lack consideration for periodic
or sporadic jobs with different timing requirements, which
are crucial in many IoT and CPS applications. Moreover,

Applications

DART Framework

Hardware

Scheduling Architecture

Inter-node
Pipelining

Intra-node Data
Parallelism

Multi-class Task
Support

Resource Management

Computing Node
Configuration

DNN Workload
Partitioning

Image Classification Autonomous Driving Speech Recognition

(§IV-A)

(§IV-B)

Layer Execution
Time Profiling

Admission
Control

Task Run-time
Enforcement

(§IV-C)
Misc Components

x86 platformsARM platforms

Denver2
CPU core

Integrated
Nvidia GPU

Cortex-A57
CPU core XeonXeon Xeon Xeon

Discrete
Nvidia GPU

Fig. 1: DART framework overview

while multi-core CPUs and hardware accelerators like GPUs
have been used to improve the average-case response time
of inference jobs, they are often underutilized when multiple
DNN models are concurrently requested and their benefits in
the worst case are not as significant as in the average case.
Since recent embedded hardware platforms are increasingly
equipped with heterogeneous CPU and GPU cores, it is
important to enable scalable improvement in both the worst-
case response time and the overall throughput of DNN tasks
by utilizing all computing resources available in the system.

In this paper, we propose DART, a DNN scheduling frame-
work with Analyzable Real-Time guarantee. The primary
goals of DART are (a) to ensure the timing constraints of real-
time DNN inference tasks while minimizing their response
time, and (b) to maximize the throughput of best-effort DNN
tasks by improving the utilization of heterogeneous CPU and
GPU cores. To achieve those goals, we have designed DART
as illustrated in Fig. 1. DART provides a unified runtime
environment for the concurrent execution of tasks accessing
diverse DNN models and addresses the limitations of the state-
of-the-art. DART currently supports CPU and GPU cores on
ARM and Intel platforms, e.g., Cortex-A57, Denver, and Xeon
CPUs and Nvidia integrated and discrete GPUs, but the design
of DART can also be applied to other processor architectures.
DART consists of (i) a scheduling architecture integrating
inter-node pipelining and intra-node data parallelism with
multi-class task support, (ii) resource management with node
configuration and DNN partitioning, and (iii) other miscel-
laneous components including layer execution time profiling,
admission control, and task run-time enforcement. We will
present the details of these components in Sec. IV.

We have implemented DART on x86 and ARM platforms
equipped with Nvidia GPUs. To realize our design, we have
also developed OpenBLAS-rt, an extension of the standard
OpenBLAS library with real-time priority and CPU affinity
support. Experiments are conducted using this implementation
and the run-time overhead is found to be acceptably small.

It is worth noting that our work does not claim to over-
come timing jitters originated from underlying OS or drivers.
Instead, the notion of guarantee in this paper is the bound on
delays possibly caused by scheduling policies and resource
arbitration rules when utilizing heterogeneous processors.

Contributions. The overarching contribution of this paper
is the runtime framework design which brings algorithmic
improvements into the real-time DNN scheduling problem.
Our work extends existing knowledge in several ways: adding
new system abstractions that do not exist in the current DNN
frameworks, developing resource allocation schemes for the
proposed abstractions, and presenting analytical extensions to
bridge the gap between DNN execution and schedulability
analysis. There may be other ways to utilize heterogeneous
resources better than ours while ensuring analyzable real-time
guarantees, but to the best of our knowledge, this paper is the
first work to do so. Below are the detailed contributions:
• We introduce new abstractions to deal with the different

resource requirements of individual layers of DNNs and to
facilitate the co-utilization of CPU and GPU in inference job
execution. A subset of DNN layers is grouped into task-level
stages and allocated to node-level workers which form the
foundations to achieve pipeline and data parallelism.
• We give a systematic formulation of the real-time DNN

scheduling problem as a distributed acyclic scheduling prob-
lem. Our analysis captures DNN job execution over the
proposed abstractions of stages, nodes, and workers, and
takes into account system overheads including inter-node
communication, GPU preemption, and data copy time.
• We develop resource management algorithms that (i) create

the pipeline stages of each task in a way to balance the
contention across a given set of processors, and (ii) allo-
cate processor resources to meet timing constraints and to
minimize task response time.
• From our experimental results, we found that DART sig-

nificantly outperformed the existing representative methods,
by up to 98.5% shorter worst-case latency for real-time
tasks while simultaneously achieving up to 17.9% higher
throughput for best-effort tasks. DART also dominated the
existing methods in DNN taskset schedulability.

II. BACKGROUND AND MOTIVATION

A. Deep Neural Networks

A DNN model can be viewed as a data-flow graph, where
artificial neurons and their connections are represented in
layers. Fig. 2 illustrates a general DNN model composed of
one input layer taking raw data, one output layer extracting
inference results, and multiple hidden layers in between re-
sponsible for capturing the features of data. From a high-
level view, working with a DNN has a two-step process. First,

training a DNN: it learns weight parameters from provided
input training data and their associated output labels. Next,
running inference from the trained DNN: it uses its trained
parameters to classify, recognize, and process unknown inputs.
While training typically takes enormous time even in cloud
servers, inference from a trained model is deemed feasible and
increasingly required in embedded systems. We thus focus on
the timely execution of DNN inference jobs in this work.

...

...

...

...

Fig. 2: An example DNN
model with one input layer,
several hidden layers, and
one output layer

The execution pattern of a
DNN inference job can be
viewed as forward propagation:
input data is processed through
an input layer, hidden layers,
and an output layer in a layer-
wise manner. Note that the exe-
cution of layers during a single
inference job must be done in
order. For instance, the first hid-
den layer can only be executed
after the completion of the input layer, otherwise it would
propagate erroneous results to its subsequent layers.

B. The Status Quo and Challenges
Modern deep learning frameworks, e.g., Torch, TensorFlow,

and Caffe, have become popular in the research community
and industry due to their convenience and portability. They
handle inference jobs in a sequential manner using a separate
process per DNN model. This means, if a system uses m
distinct DNN models, at least m instances of the framework
need to be created as separate processes. Also, they do not
provide prioritization or real-time support for inference tasks.
When multiple inference tasks with different timing constraints
are given to such a framework, real-time tasks may experience
nondeterministic delay and thus the schedulability of tasks is
hard to be analyzed. This is a major limiting factor for the use
of existing frameworks in safety-critical applications where a
deadline miss may cause a huge loss in quality or stability.

Front
camera

Side camera

Side camera

Rear
cameraRF

S

S

Fig. 3: A self-driving car
with front, side, rear-view
cameras and field of view

Example: Self-driving Car.
Let us consider a self-driving
car using computer vision al-
gorithms, e.g., [9, 32], where
DNNs are used to detect phys-
ical objects and lane markings
by analyzing images produced
by multiple cameras mounted
on the front, side, and rear of
the car (Fig. 3). We refer to each
task generating a DNN infer-
ence job as a sensor client and a DNN framework handing
such a job as an in-vehicle server. Once a client collects an
image from a camera, it sends an inference job to the server
and waits for the completion of the job. Timely response is
a necessity because each job has a deadline and its result is
used as input for other components of the car. Given that the
car moves forward most time, high priority can be assigned to
a task for the front camera, medium for the side ones, and low
for the rear ones. There also exist other DNN tasks running

2

with no real-time requirements, i.e., best-effort tasks, such as
for monitoring human driver’s engagement [14].

Suppose that the low-priority task for the rear-view camera
or best-effort tasks generate inference jobs in a burst manner,
and the high-priority task for the front camera issues an
inference job at the same time. Without real-time scheduling
support in the server’s framework, the response time of the
high-priority job can become unpredictably long and even miss
its deadline This can lead to a failure in the timely detection
of objects from front-road images, thereby jeopardizing the
driving context of the car. As more cameras are being used
for wider coverage and other types of DNN tasks, e.g., motion
planner [39], are introduced, such a timing problem will
become more significant in future self-driving systems.

There are also other issues with the CPU and GPU schedul-
ing of the existing frameworks, which lead to long response
time and resource underutilization. We will discuss the details
of such issues in Sec. IV-A with a comparison to our work.

III. SYSTEM MODEL

This work considers a heterogeneous multi-core system
where the main memory is shared among all CPUs. The
system R is equipped with one or more types of CPU cores
and GPU devices, i.e., R = {c1, c2, ..., cr} where ci is either a
CPU core or GPU. In such a system, our framework constructs
a set of nodes for DNN task execution. Each node pk is a
disjoint partition of R. Hence, R =

⋃
pk, and if i 6= j,

pi ∩ pj = ∅. Each node is either a CPU or GPU node.
If pk is a CPU node, it has only one type of CPU cores,
following the homogeneity assumption commonly made by
real-time parallel scheduling work [7, 26, 30].1 If pk is a
GPU node, it has one GPU as well as one CPU core to
support GPU-related operations, which will be discussed in
Sec. IV-A2. We let P denote the entire set of nodes, i.e.,
P =

⋃
{pk} = {p1, p2, ..., pk}. Given all the CPUs and GPUs

available in the system R, there can be multiple possible ways
to group them into nodes. We define each of such ways as a
node configuration P .

DNN inference tasks are characterized by the sporadic task
model [35] which is widely used and accepted in the real-
time systems community and industry. In this model, a task is
a sequence of recurring jobs with the minimum inter-arrival
time between any two consecutive jobs. We assume each task
uses one DNN model and makes one inference request per
job. If an application uses multiple DNN models, it can be
represented as multiple tasks in our system model. A task τi
is characterized by:

τi := (Ci, Ti, Di, Li)

• Ci: the worst-case execution time (WCET) of a single
job when it runs in isolation (i.e., no extrinsic temporal
interference imposed by other tasks)
• Ti: the minimum inter-arrival time

1One of the challenges is that if workload on one parallel segment is
distributed into threads on heterogeneous cores, e.g., fast and slow cores,
it is hard to predictably bound and ensure the benefit of fast cores unless
assuming that the workload can be perfectly load-balanced.

• Di: the relative deadline of each job
• Li: the number of layers of the DNN model used by τi
This work considers two types of DNN tasks: real-time (RT)
and best-effort (BE). If τi is an RT task, it has a constrained
deadline, i.e., Di ≤ Ti, and the deadline should be strictly met
all the time once the task is admitted to the system. If τi is
a BE task, its deadline may be missed by some jobs. When
there is no specific deadline required for a BE task τi, the
deadline Di can be set to ∞.

The execution of a job of τi can be decomposed into a
sequence of Li layers of the DNN model used by it. Due to
data dependency, the latter layer can be executed only after the
completion of the previous one. The execution time of each
layer depends on the node where it executes. Hence, we use
τi,j to denote the j-th layer of τi and Ci,j(pk) to represent
the execution time of τi,j on a node pk. If pk is a CPU node
consisting of more than one CPU core, BLAS multithreading
is used and Ci,j(pk) is determined by the slowest thread. If
pk is a GPU node, Ci,j(pk) is further decomposed as follows:

Ci,j(pk) := (Ghdi,j(pk), Gei,j(pk), Gmi,j(pk), Gdhi,j(pk))

• Ghdi,j(pk): the maximum memory copy time from the host
to the device before GPU kernel execution
• Gei,j(pk): the worst-case GPU kernel execution time
• Gdhi,j(pk): the maximum memory copy time from the device

to the host after GPU kernel execution
• Gmi,j(pk): the WCET of miscellaneous CPU operations in
τi,j , e.g., kernel launch preparation

This GPU execution model follows the latest real-time GPU
work [25, 38], except that we distinguish memory copy time
and miscellaneous CPU operation time. Ci,j(pk) is the sum of
all these components. Thus, Ci,j(pk) = Ghdi,j(pk)+Gei,j(pk)+
Gmi,j(pk) +Gdhi,j(pk).

The worst-case execution time of a job of a task τi is
therefore given by Ci =

∑Li

j=1 Ci,j(pki,j), where Li is the
number of layers of a DNN model used by τi and pki,j is the
node assigned for the execution of the j-th layer.

IV. DART FRAMEWORK

This section presents the detailed design of the DART
framework. We first introduce the scheduling architecture with
CPU and GPU node scheduling, and then explain the resource
management algorithms for pipeline stage design, and node
configuration and the other components including execution
time profiling, admission control and runtime enforcement.

A. Scheduling Architecture
DART introduces several system abstractions to exploit

pipeline and data parallelism over heterogeneous resources.
Hence, we begin with defining the key abstractions as follows.

Def. 1. The stage s of a task τi is a subset of consecutive
layers of the corresponding DNN model used by the job of τi.
Hence, the entire set of stages of τi includes all the layers of
τi, i.e., ∪s = ∪τi,j , and tasks may have a different number
and set of stages even if they use the same DNN model.

Def. 2. The execution pipeline of a task τi is a sequence
of stages executed over nodes following their precedence

3

Node 1 (CPU1 + CPU2) Node 2 (CPU3) Node 3 (GPU + CPU4)

RT

BE

RT Worker 2

RT BLAS
THREAD 1

RT Worker 3

CUDA HP
STREAM 1

BE Worker 1

BE BLAS
THREAD 1

BE BLAS
THREAD 2

BE Worker 2

BE BLAS
THREAD 3

BE Worker 3

CUDA LP
STREAM 1

CUDA LP
STREAM 2

Result

Priority Queue Priority Queue
Result

Priority Queue Priority Queue

DM DM

Priority Queue

EDF EDF EDF

RT Worker 1

RT BLAS
THREAD 1

RT BLAS
THREAD 1

Priority Queue

DM

RT Worker 1

RT BLAS
THREAD 1

RT BLAS
THREAD 1

Priority Queue

DM

Fig. 4: DART scheduling architecture

constraints, e.g., the next stage of a task τi on a node pk
is eligible to run once the execution of its previous stage
completes on the other node pq .

Def. 3. A worker is a scheduler unit that executes per-task
stages arriving on the corresponding node. At the same time,
the worker is a scheduling entity of the underlying OS, i.e.,
thread, meaning that the OS schedules workers on nodes.

DART partitions the DNN inference execution of each task
into stages. The stages are then assigned to different nodes and
executed by the workers of the nodes in a pipeline manner. The
main reasoning behind these abstractions is that each layer of a
DNN task may have different sensitivity to the parallelization
levels provided by heterogeneous computing resources. For
instance, within a single DNN model, some layers may gain
large performance improvement with more CPU cores and
some others may not exhibit noticeable benefits. If a task using
such a DNN model is simply allocated to only one type of
resources, which is the case of the current DNN frameworks,
the system may become underutilized and inefficient. The use
of stages gives flexibility in allocating individual layers of a
task to different resources for better utilization. The detailed
steps on node configuration, stage partitioning, and resource
allocation will be presented in the next subsection.

Each CPU and GPU node supports scheduling classes for
intra-node task scheduling. DART currently has two classes,
real-time (RT) and best-effort (BE), in accordance with our
system model, but more classes can be added to achieve a
finer classification of tasks. The RT class is strictly prioritized
over the BE class. DART correspondingly creates two sets of
workers, and assigns Linux real-time priority to RT workers
and fair-share (normal) priority to BE workers. Then a pair
of RT and BE workers is statically allocated to each node
for the execution of RT and BE tasks by their respective
workers. Each worker has a priority queue for pending tasks.
In RT workers, we use the deadline-monotonic (DM) priority
assignment for the queue as it gives deterministic guarantees
even under overload conditions. In BE workers, we use the
earliest-deadline-first (EDF) policy as it is known to achieve
higher utilization than DM. While an RT worker can preempt a
BE worker on the same node at any time, task execution within
each worker is non-preemptive. The reason for the choice
of non-preemptive scheduling within a worker is primarily
due to the lack of fine-grained priority-based preemption

Worker
𝐶𝑃𝑈𝑖

Input task w

Is_rt

Target node p_k:
(𝐶𝑃𝑈𝑖 , 𝐶𝑃𝑈𝑖+1, … , 𝐶𝑃𝑈𝑖+𝑛−1)

OpenBLAS-rt

RT BE

Chooses RT/BE thread j,

where 𝑗 ∈ 𝑝𝑘 ∩ (𝑗 ≠ 𝑖)

Worker
𝐶𝑃𝑈𝑖

BLAS Thread
𝐶𝑃𝑈𝑖+1

BLAS Thread
𝐶𝑃𝑈𝑖+2

…
BLAS Thread

𝐶𝑃𝑈𝑖+𝑛−1

Worker
𝐶𝑃𝑈𝑖

Fork Join

w divided into

𝑝𝑘 = 𝑛 sub-tasks.

Fig. 5: OpenBLAS-rt workflow

support in the latest GPUs.2 Moreover, it helps reduce memory
consumption as it does not require each worker to store
intermediate computation results of multiple preempted tasks.

Fig. 4 illustrates the example of the DART scheduling
architecture. In this example, there are one RT and one BE
tasks. The RT task has two stages: the first stage is assigned
to Node 1 and the second stage to Node 3; Node 2 is not used
by the RT task. On the other hand, the BE task has three stages
and each allocated to a different node. Although Nodes 1 and
3 are used by both tasks, the RT task is not delayed by the BE
task as RT workers can preempt BE workers. Node 1 has two
CPU cores and the RT and BE workers of Node 1 each have
two BLAS threads for intra-node data parallelism. Node 2 has
only one CPU core. Node 3 is a GPU node and each worker
on Node 3 has a set of CUDA streams. We below explain
more details of CPU and GPU node scheduling in DART.

1) CPU Node Scheduling: Multi-thread BLAS libraries,
such as ATLAS and OpenBLAS, can achieve data parallelism
in DNN inference tasks, but they provide only limited control
over BLAS thread scheduling. For example, in the latest
version of OpenBLAS (v0.3.5), the number of threads and
their CPU allocation cannot be configured for individual
BLAS operations, but only the total number of threads to be
spawned can be set at the time of launching a target process.
General multi-threading libraries such as OpenMP cannot be
used since they do not support BLAS operations natively and
designers have to implement them from scratch.

To address such limitations and achieve intra-node data
parallelism in DART, we have developed OpenBLAS-rt, which
is an extension of the existing OpenBLAS library. Fig. 5
depicts how workers work with OpenBLAS-rt. OpenBLAS-
rt creates two sets of BLAS threads (RT and BE), following
the scheduling class design of DART, and assigns Linux real-
time priority to RT BLAS threads and normal priority to BE
BLAS threads. Also, for incoming BLAS requests, it provides
an interface to tell their task class and node information. With
OpenBLAS-rt, the number of BLAS threads on a node pk is
determined by the number of CPU cores of pk, and each thread
is strictly mapped to one core to prevent potential overhead
caused by thread migration.

As an example, Fig. 6 compares CPU scheduling under
three scenarios: (a) launching multiple instances of an existing

2GPUs using the Nvidia Pascal architecture, e.g., TX2 and GTX 1080,
support only two priority levels for kernel preemption.

4

Time

(a) Status quo: multi-process version

𝜏𝑅𝑇 release 𝜏𝑅𝑇 deadline

CPU 1

CPU 2

CPU 3

CPU 1

CPU 2

CPU 3

Node 2

Node 1

BE task 𝜏𝐵𝐸1RT task 𝜏𝑅𝑇

BE task 𝜏𝐵𝐸2 BE task 𝜏𝐵𝐸3

CPU 1

CPU 2

CPU 3

preempt

(b) Status quo: single-process multithreading

(c) DART: 2-node configuration

ex
ec

 t
im

e

of CPUs
1 2 3

Layer 1
(L1)5

3

1

of CPUs
1 2 3

Layer 2
(L2)10

5

ex
ec

 t
im

e

𝜏𝑅𝑇 release 𝜏𝑅𝑇 deadline

𝜏𝑅𝑇 release 𝜏𝑅𝑇 deadline

Time

Time

L1

L1

L1

L1

L2

L2

L2

L2

Fig. 6: CPU scheduling in the status quo and DART

DNN framework to utilize all CPUs in the system without
a multi-threaded BLAS library, (b) a single-process with an
existing multi-threaded BLAS library, and (c) DART with
OpenBLAS-rt. In this figure, there are four tasks, one RT
and three BE, and all of them use the same DNN model
consisting of two layers. The system has three CPUs. Layer
1 does not yield much speed-up with more CPUs but layer 2
does. Note that these reflect typical speed-up patterns of DNN
workloads which we will show in the evaluation section. All
the three BE tasks arrive at time 0. The RT task arrives at
1 and has an absolute deadline at 11. In both (a) and (b),
the RT task misses the deadline as the existing framework is
oblivious of the priority of DNN tasks. The total completion
time of all tasks in (b) is even greater than in (a), because the
existing BLAS library always uses a pre-configured number of
threads regardless of the presence of diminishing speed-ups. In
contrast, DART meets the deadline by RT worker preemption
and achieves shorter total completion time. Although DART
uses a 2-node configuration in this example, it subsumes the
other configurations used in (a) and (b) as those can be found
by the resource management schemes of DART.

2) GPU Node Scheduling: In DART, each GPU node is
configured to have one CPU core and one GPU device. The
reason for this is because a GPU needs CPU operations,
such as for launching a kernel and transmitting data, and any
unnecessary delay on the CPU side can cause long idle time to
the GPU. The workers of a GPU node makes use of the CUDA
stream prioritization and thread-level preemption of Nvidia
Pascal and later architectures. Hence, RT and BE workers use
CUDA high-priority and low-priority streams, respectively, to
execute the GPU kernels of tasks.

The RT worker executes one kernel at a time and determines
the execution order of kernels using the priority of their tasks.
This approach follows the majority of existing real-time GPU
schemes [12, 25, 38] in order not to cause nondeterministic
slowdown from concurrent kernel execution [37, 48]. Hence,
each RT worker utilizes one high-priority CUDA stream. On
the other hand, each BE worker uses multiple low-priority
streams in the same CUDA context to maximize the par-

(a) Status quo: single CUDA stream (single-process)

100%

50%

CPU

GPU

0%

GPU node

(b) Status quo: different CUDA contexts (multi-process)

100%

50%

CPU

GPU

0%

GPU node

(c) DART: shared CUDA context with stream prioritization

100%

50%

CPU

GPU

0%

GPU node 𝜏𝑅𝑇

𝜏𝑅𝑇

𝜏𝑅𝑇

BE task 𝜏𝐵𝐸1RT task 𝜏𝑅𝑇 BE task 𝜏𝐵𝐸2 BE task 𝜏𝐵𝐸3

preempt

Time

Time

Time

Time

Time

Time

Fig. 7: GPU scheduling in the status quo and DART

allelism provided by internal computing units of the GPU.
This enables multiple BE kernels to concurrently execute
as long as the GPU resources permit, thereby improving
overall throughput and GPU utilization. The number of CUDA
streams per BE worker is configurable and can be determined
by kernel parameters and the compute capability of GPU, e.g.,
thread block size and maximum resident threads.

Fig. 7 compares the GPU scheduling of DART with the
two possible cases of the status quo. For simplicity, we skip
the time for memory copies in this figure. Existing DNN
frameworks, such as Caffe [1, 22], use only one default
CUDA stream with no kernel prioritization. Hence, if one
instance of the framework is launched, which is the case (a)
in the figure, all operations on CPU and GPU are serialized.
One may launch multiple instances of the existing DNN
framework, which is the case (b). It is worth noting that this
is the only way to serve two or more DNN models using
the existing framework, including the latest real-time DNN
inference work [52]. Then some operations on the CPU side
can be overlapped with GPU kernel execution due to the CPU
concurrency provided by multiple processes. However, while
the BE kernels have low GPU utilization, e.g., only 25% of
the GPU is used by τBE2 and τBE3, this approach cannot
support the concurrent execution of the BE kernels as they
are launched from different CUDA contexts. Moreover, the
execution of the RT kernel is delayed by the BE kernels. In
case of DART, all the BE kernels run concurrently, achieving
high GPU utilization, and the RT kernel preempts the BE
kernels immediately, resulting in short response time.

One may question if the problems can be addressed in exist-
ing frameworks by simply assigning different CUDA streams
to different models. However, it does not work because CUDA
stream priority is effective only within a given context and
does not work across different contexts. In addition, kernels
from different CUDA contexts do not execute concurrently and
each CUDA context time-shares the GPU, thereby leading to
long waiting time and low utilization in GPU execution.

5

(a) Pessimistic analysis

CPU

GPU

GPU node

𝐺𝑑ℎ𝐺ℎ𝑑 𝐺𝑒 𝐺𝑚

Time

Time

Layer j Layer j+1

CPU

GPU

GPU node

Time

Time

Layer j Layer j+1

(b) Improvement

Layer j+2

Layer j+2

Fig. 8: GPU stage execution time

3) Batched Execution: The batched execution of multiple
DNN requests is a well-known optimization technique to
increase throughput [28, 34, 52]. However, it is not suitable
for RT tasks since they may suffer from unpredictable delay
to fill the batch queue due to their sporadic arrival patterns.
Therefore, we allow the batched execution only for BE tasks
in DART. The batch size can be configured offline by the
user. If the batch size is greater than one, batched execution
is enabled and BE workers execute the entire batch of BE
jobs as a single large request. This approach can bring higher
throughput and better resource utilization to BE tasks, while
minimizing interference on the execution of RT workers and
the response time of RT tasks. We will discuss the effect of
batching in RT task schedulability in the next subsection and
present experimental results in Sec. VI.

B. Resource Management
The resource management scheme of the DART framework

includes two algorithms. The one is to design the stages of one
DNN task, either RT or BE, for a given node configuration, and
to allocate the stages to the nodes. Using this, the other one is
to find a node configuration that satisfies the timing constraints
of all RT tasks and minimizes their response time. We first
analyze the schedulability of RT tasks in our framework and
then present the details of the two algorithms.

1) Schedulability Analysis: Before analyzing RT task
schedulability, we define the stage execution time of a task and
the overhead incurred by our framework for stage execution.
The execution time of a stage of a task τi assigned to a node
pk, Ci,k, is the cumulative execution time of the corresponding
layers on pk plus overhead. Thus, Ci,k is given by:

Ci,k =

{ (∑
τi,j∈pk Ci,j(pk)

)
+ εi,k, : ∃τi,j ∈ pk

0 : otherwise
(1)

where τi,j ∈ pk denotes all the layers of τi execute on pk, and
εi,k is the total amount of overhead for stage execution on the
node pk (will be analyzed later).

While Eq. (1) can be used for both CPU and GPU nodes,
we can reduce pessimism on GPU nodes. Fig. 8 shows the
execution time of a GPU stage comprising three layers. Each
layer has memory copies (Ghd and Gdh), kernel execution

(Ge), and miscellaneous CPU operations (Gm). Eq. (1) cap-
tures the execution time of all these segments (shown as (a) in
the figure). However, if multiple adjacent layers are executed
on the same GPU node, the output of an intermediate layer
can remain on the GPU memory and be directly used as input
to the next layer. This eliminates the need for unnecessary
memory copy and thus reduces the stage execution time. Based
on this observation, we compute the stage execution time Ci,k
on a GPU node pk as follows:

Ci,k =
∑

τi,j∈pk

(
Gei,j(pk)+Gmi,j(pk)

)
+Ghdi,j1(pk)+Gdhi,j2(pk)+εi,k

(2)
where j1 and j2 denote the first and the last layers of τi on
the node pk, respectively.

The overhead εi,k mainly comprises four factors: (i) the
inter-node communication overhead εsi,k, which accounts for
the time for signaling from the current node pk of τi to its next
node pk′3, (ii) the CPU preemption overhead εcpk , which is the
time to preempt the BE-class worker (and OpenBLAS threads
if exist), (iii) the GPU preemption overhead εgpk for preempting
BE-class CUDA streams while they are executing kernels, and
(iv) the non-preemptive CUDA memory copy blocking time
caused by BE tasks, εgmk , since CUDA stream preemption does
not occur during memory copy. The first three factors need to
be measured from the implementation. On the other hand, the
last factor εgmk can be obtained using task parameters:

εgmk = max
τl∈pk∧τl∈ΓBE

max
1≤j≤Ll

(Gdhl,j(pk), Ghdl,j(pk)) (3)

This equation takes the longest memory copy time among
the layers of all BE tasks running on the GPU node pk
because once the memory copy that has been already exe-
cuting finishes, the CUDA stream of an RT task can start. If
batched execution is enabled, the memory copy time should be
captured as the cumulative amount of copy time for b BE tasks
where b is the batch size. Therefore, RT tasks may experience
higher overhead if a larger BE batch size is used. Based on
these, we can capture the total overhead εi,k as follows:

εi,k = εsi,k + εcpk + max(εgpk , ε
gm
k) (4)

It is worth noting that the equation takes the maximum of εgpk
and εgmk as they do not occur simultaneously.

In DART, the stages of RT tasks on each node are scheduled
non-preemptively (although they can preempt those of BE
tasks on the same node) and the execution sequence of stages
of a task across nodes can be modeled as a directed acyclic
path in a graph of nodes. Hence, we use the schedulabil-
ity analysis in [21] which is developed for non-preemptive
distributed acyclic system scheduling. This analysis is based
on the non-preemptive DAG delay composition theorem, and
reduces the DAG into an equivalent uniprocessor system [21].
The analysis bounds the worst-case response time Ri of a task
τi by the following iterative equation:

R
(0)
i = C∗e(i); R

(k)
i = C∗e(i) +

∑
τh∈hp(τi)

dR
(k−1)
i

Th
eC∗h (5)

where C∗h is the maximum stage execution time of a task τh

3εsi,k is zero if pk is the node that executes the last stage of a task τi.

6

among all of its stages (denoted as Ch,max), hp(i) is the set
of higher-priority RT tasks than τi, and C∗e(i) is given by:

C∗e(i) =
∑

τw∈hep(i)

(Cw,max + Cw,max · SMw,i)

+
∑

pk∈pathi∧
k≤NP−1

max
τu∈ΓRT

Cu,k +
∑

pk∈pathi

max
τl∈lp(i)

Cl,max
(6)

where SMw,i denotes the total number of splits-and-merges
between the paths of τw and τi, pathi is the set of nodes
visited by τi, hep(i) is the set of RT tasks with priority higher
than or equal to τi, lp(i) is the set of lower-priority RT tasks
than τi, ΓRT is the set of all RT tasks. Eq.(5) finishes when
R

(k)
i = R

(k−1)
i and the task τi is schedulable if R(k)

i ≤ Di.
2) Designing Task Pipeline Stages: Consider a task τi using

an DNN model m that has Li layers. The system has a node
configuration P consisting of NP nodes, i.e., P = ∪NP

k {pk}
where pk is the k-th node. There may be stages of other tasks
that have been already allocated to these nodes. The goal here
is to construct the stages of τi for its Li layers and to allocate
each stage to a node in P so that the utilization of NP nodes is
balanced after the allocation. The number of stages of τi can be
smaller than or equal to NP , and the stage execution order has
to be maintained due to the data dependency between layers.
The reason for balancing utilization is to reduce contention
on nodes. If one node is particularly contended for by many
DNN tasks, it can be a bottleneck in the pipeline of nodes,
thereby increasing the response time of RT tasks and reducing
the throughput of BE tasks.

To solve this problem, we present an algorithm by extending
the dynamic programming approach for the list partition
problem [41]. Our algorithm aims at minimizing the maximum
utilization of a node in the presence of other pre-allocated
tasks. Let M [n, k] denote the the utilization of the most loaded
node when the first n layers of a task τi are allocated to the
first k nodes, i.e., p1, p2, ..., pk. The recurrence of the dynamic
programming algorithm is given by:

M [n, k] =
n

min
x=0

max(M [x, k−1], w[k]+

n∑
y=x+1

Ui,y(pk)) (7)

where w[k] represents the utilization of a node pk with pre-
allocated tasks (given as input), and Ui,y(pk) is the utilization
of the layer y of τi when it executes on pk, i.e., Ui,y(pk) =
Ci,y(pk)/Ti. The initial conditions are:

M [0, k] = 0,

M [1, k] =
k

min
q=1

(w[q] + Ui,1(pq))
(8)

With Eq. (7), the stage allocation of a task τi yielding balanced
node utilization is found by M [n = Li, k = NP].

3) Finding a Node Configuration for Tasks: Alg. 1 shows
the procedure to find a node configuration for all RT and BE
tasks in the system. It takes as input a taskset, Γ, and a set
of candidate node configurations to be explored, P. For each
configuration P ∈ P, the algorithm sorts tasks in descending
order of of their average utilization, U avg

i , which is computed
as U avg

i = (1/k) ·
∑
Ui(pk). Then, it allocates the tasks to the

nodes of P by using the dynamic programming approach given

Algorithm 1 Find a Node Configuration for Tasks

Require: Γ = {τ1, τ2, τ3, ..., τn}: taskset
Require: P: a set of candidate node configurations
Ensure: P sol: a node config. found (solution); P sol = ∅, if failed.

1: function FIND NODE CONFIGURATION(Γ, P)
2: P sol = ∅ /* initialization */
3: W sol =∞ /* weighted response time of RT tasks for P sol

4: for all P ∈ P do
5: NP = |P |
6: Initialize w[1...NP]
7: for all τi ∈ Γ in descending order of U avg

i do
8: Li = the number of layers of τi
9: Compute M [Li, NP] for τi by Eq. (7)

10: Store the stage-to-node allocation of τi
11: Update w[1...NP] with τi
12: ΓRT = a set of all RT tasks in Γ
13: if ∀τi ∈ ΓRT passes the schedulability test of Eq. (5) then
14: ∀τi ∈ ΓRT, Ri = worse-case response time of τi
15: W =

∑
τi∈ΓRT (πi/|ΓRT|)∗(Ri/Di) /* πi: priority */

16: if W < W sol then
17: P sol = P
18: W sol = W

return P sol

19: end function

Algorithm 2 Generate Candidate Node Configurations

Require: R = {c1...cn}: a set of available CPUs and GPUs
Require: Nmax

P : the maximum number of nodes per config P
Ensure: P: a set of node configurations

1: function GENERATE CANDIDATE CONFIGURATIONS(P)
2: P = ∅
3: V = permutations of R with duplicate core types
4: for all V ∈ V do
5: for k = 1 to Nmax

P do /* number of nodes per config */
6: for all case Θ of

(|V |
k−1

)
do /* split V into k nodes */

7: Θ = {θ1, θ2, ..., θk−1}
8: /* each bracket [] in P indicates a node */
9: P = {[c1...cθ1−1], [cθ1 ...cθ2−1], ..., [cθk−1 ...c|V |]}

10: if all nodes ∈ P satisfies the system model then
11: P = P ∪ P

return P
12: end function

in (7) (line 9 of Alg. 1), and updates the w array based on the
resulting allocation of each task. The algorithm checks if all
RT tasks can meet their deadlines under this configuration,
by using the schedulability test given by Eq. (5). If they
pass the test, it computes the sum of the weighted worst-
case response time of all RT tasks (line 15). The weight is
a normalized weight computed as πi/|ΓRT|, where πi is the
relative order of τi’s real-time priority and |ΓRT| is the number
of RT tasks. The algorithm uses this weight to better represent
the relative importance of each RT task’s response time and to
quantitatively compare different node configurations. Finally,
the algorithm chooses the one with the minimum sum of
weight response time and returns it. If it cannot find any
configuration that satisfies the schedulability of RT tasks, an
empty set is returned as failure.

To generate candidate node configurations, P, we present
Alg. 2 which takes two input parameters: R, a set of CPU
cores and GPU devices available in the system, and Nmax

P , the
maximum number of nodes allowed for each configuration. In

7

R, each GPU has been already paired with one CPU core and
that CPU core is not present. Nmax

P can be chosen considering
system parameters, e.g., the number of CPU clusters and the
number of GPUs. However, since the delay caused by lower-
priority tasks in non-preemptive scheduling is proportional to
the the number of nodes (not the number of lower-priority
tasks) [21], it is better not to use an overly large Nmax

P . The
algorithm first obtains distinct permutations of R considering
the same type of CPU cores as duplicates. For example, for
an Nvidia TX2 platform with 1 GPU pre-paired with 1 A57
core, 3 other A57 cores, and 2 Denver cores, the number of
permutations is (1 + 3 + 2)!/(3! · 2!) = 60. Then, for each
permutation V , it splits V into k nodes, where 1 ≤ k ≤ Nmax

P ,
by considering the combinations of k − 1 partitions between
nodes (line 6). If the resulting node configuration P satisfies
our system model where a CPU node has only one type of
cores and a GPU node has no other CPU core rather than its
pre-paired one, P is considered legal and added to P.

DART uses the above two algorithms in the initialization
phase with a static taskset. In the runtime phase, DART can
accept new tasks via admission control, but does not change
the node configuration, as doing so may cause excessive
overhead and affect other tasks being executed. To reduce such
overhead and enable runtime node re-configuration, one may
consider other heuristics or manual tuning, instead of Alg. 2.

C. Other Miscellaneous Components

1) Layer-wise Execution Time Profiling: To perform re-
source management and check task schedulability, the worst-
case execution time (WCET) of individual layers of DNN
models on each node needs to be estimated. DART takes a
measurement-based approach for WCET estimation using a
layer-wise profiling mechanism. Fig. 9 illustrates the procedure
of the profiling mechanism. When DART starts, it first checks
if a profile database exists for all DNN models it supports.
If not, it executes all the supported models on all nodes of
candidate node configurations (from Alg. 2), and measures
their execution time by running n times that the user can
choose. Then it estimates the WCET by taking the maximum
among the observed execution time history. After this, DART
enters the runtime phase and starts accepting inference jobs.

Note that the WCET estimated by the above procedure may
be violated at any time when longer execution time is ob-
served. To mitigate this problem, DART continuously updates
the profile database at runtime. Upon the completion of each
layer execution, DART checks if the execution time exceeds
the WCET observed before. If so, DART updates the WCET
for that layer and triggers run-time task enforcement. The
profiling mechanism of DART also allows using more robust
WCET estimation methods, e.g., extreme value theory [31],
as it stores historical execution time data in the database. This
is an interesting topic but beyond the scope of this paper.

2) Admission Control: DART includes an admission con-
trol mechanism to ensure that all accepted RT tasks can meet
their deadlines. The schedulability of RT tasks is analyzed
by using Eq. (5), and it is used by Alg. 1 to find a node
configuration for a static taskset during the initialization phase.

Profile DB
exists?

No
Start

Measure exec. time of each
layer on all nodes

Create profile DB and take
the maximum as WCET

Yes

Exec. time
> WCET?

Monitor exec. time

No
Update WCET in DB

Yes

Init Phase

Runtime

Fig. 9: Procedure of layer-wise execution time profiling

At runtime, when there is a new task, the admission control
first determines the stage-to-node allocation of the new task
using Eq. 7, and then checks if the new task is RT or BE.
In case of RT, the task is accepted only when all RT tasks
including the new one are schedulable. In case of BE, it is
accepted as long as its longest GPU memory copy time is
smaller than or equal to the existing εgkm value, because the
other parts of the BE task will not delay existing RT tasks due
to the scheduling class design of DART. It is worth noting that
the runtime admission control executes with normal priority
and thus does not interfere with RT workers.

3) Run-time Task Enforcement: The execution time of each
layer is monitored at runtime by the profiling mechanism. If
it exceeds the WCET previously recorded in the database and
is caused by an RT task, DART immediately demotes the task
to BE and executes the subsequent layers of that task in the
BE scheduling class. If the WCET exceedance is caused by a
BE task, its deadline is changed to infinite so as to minimize
the negative impact on other BE tasks. Then DART performs
the schedulability test of RT tasks with the new WCET value.
If all RT tasks remain schedulable, the task demoted to the
BE class is recovered to the RT class. Otherwise, the user is
alerted that the system can no longer meet the deadlines of all
RT tasks and needs to be reconfigured.

V. IMPLEMENTATION

DART is implemented for Intel Xeon and Nvidia TX2
platforms running Ubuntu 16.04. We used Caffe v1.0 [1, 22]
as our implementation basis and CUDA 9.0 for GPU pro-
gramming4. The WCET database of the profiling mechanism,
taskset information, and node configurations are managed in
the JSON format for convenience.

The stock version of Caffe allocates memory for a Net
instance, which stores trained network model parameters and
intermediate computation results together in the same data
structure. When multiple tasks use the same DNN model, each
task needs to have its own Net instance, but it causes memory
wastage because multiple copies of the same model parameters
are created. To address this issue, our implementation intro-
duces a new dataNet class that allows the separation of the
computation results from the model parameters. Hence, for
tasks using the same DNN model, only one memory instance

4We have chosen Caffe to implement DART as Caffe has been one of the
most widely used frameworks driven by academia. It is implemented in C++.
It also has less dependencies compared to Tensorflow or Pytorch.

8

of model parameters can be allocated and shared by the tasks,
thereby saving memory.

We designed a custom application-level messaging protocol
based on TCP/IP so that DART can accept new tasks at
runtime and receive inference jobs of admitted RT/BE tasks.
With this protocol, both local and remote tasks can be served
by DART. The protocol includes: i) messages sent from tasks
to DART for timing constraints, DNN models to use, and
input data for inference, and ii) messages sent from DART
to tasks for admission control results, inference output, and
plain text for user alerts. For the synchronization of work-
ers, we implemented an event notification mechanism using
condition_variable from C++11 std library.

VI. EVALUATION

A. Experiment Setup
We evaluate DART against two baselines: BaseCPU and

BaseGPU. These represent the state-of-the-art DNN inference
frameworks supporting multiple DNNs, such as TensorRT
Inference Server5 and Tensorflow Serving6, which are front-
end services using Caffe or Tensorflow as back-end. BaseCPU
and BaseGPU each have a single run queue for each model
to distribute workload across different processors. To make a
fair comparison with DART, we also add priority queues to the
two baselines, so that when multiple tasks are waiting for the
start of execution, real-time tasks can be prioritized over best-
effort ones. Then we create one process for each DNN model
used since the state-of-the-art frameworks support one DNN
model per process by default.7 BaseCPU performs all of its
operations on CPUs by the multi-thread OpenBLAS library,
and BaseGPU uses the GPU. The two baselines are imple-
mented based on stock Caffe V1.0. We evaluate DART and
the two baselines on Intel Xeon and Nvidia TX2 platforms.
The Xeon platform has an 8-core 2.1GHz Intel Xeon E2620
v4 CPU and an Nvidia GTX 1080 discrete GPU. The TX2
platform is equipped with an SoC that has a quad-core ARM
Cortex-A57 CPU cluster, a dual-core Denver CPU cluster, and
an integrated GPU. Four DNN models are considered in the
evaluation: Alexnet [28], LeNet [29], VGGnet [2], for object
classification, and Pilotnet [9], for self-driving. All the CPUs
and GPUs on both platforms are configured to run at their
maximum clock frequency. Unrelated system services, e.g.
WiFi and lightDM, are disabled to avoid potential interference.
Runtime Overhead. Recall that, under DART, when the
execution flow moves from one stage to another one, only
a signal is sent to the next node. There is no performance loss
due to cache refills since each node executes different part of
layers and does not reuse the cache blocks of the previous
node. Switching from CPU to GPU nodes requires memory
copy, which is captured in our system model and in Eq. (2).

The major runtime overhead introduced by DART is there-
fore the time for synchronization and communication among

5https://github.com/NVIDIA/tensorrt-inference-server
6https://github.com/tensorflow/serving
7This is the case for the latest version of TensorRT Inference Server. While

it allows creating more processes per model for better throughput, doing so
may negatively affect the latency of other models.

TABLE I: Inter-node communication overhead on TX2
Time (us) A57-A57 A57-Den Den-A57 Den-Den
Average 20.83 36.33 42.58 51.45
Maximum 48 69 82 102

TABLE II: CUDA stream kernel preemption overhead
Time (us) GTX 1080 TX2
Average 17.87 28.76
Maximum 52 121

nodes. This overhead may vary depending on the architecture
type of CPU cores. Hence, we measured the overhead on the
TX2 platform which has two different core types. The results
are shown in Table I. We hypothesized that the communication
overhead between different types of cores would be larger than
that between the same type of cores, but it turned out the time
between two Denver cores were the highest. However, these
costs are acceptably small or marginal, compared with the typ-
ical layer execution time of DNN tasks and the improvement
achieved by DART. Table II shows the GPU kernel preemption
overhead caused by CUDA priority stream. We observe that
such preemption overhead is relatively small, yet we already
take into account by modeling it as the εgp term in Eq. (4).

B. DNN Execution Time Profiling

For all the DNN models used for evaluation, we have
estimated the worst-case execution time of each layer under
different node configurations by using the profiling mechanism
of DART. Due to the space limit, we report only one of the
results, LeNet on TX2, in Fig. 10. Three ARM A57 cores are
shown here as one ARM core is paired with the GPU. The
execution time of layers 1, 7, 8, and 9 are too small, compared
to the others, and not discernible in this figure. We observe that
the speed-up from an increased number of CPU cores varies
significantly by layers. For example, layers 3 and 5 do not
gain any noticeable benefit by increasing the number of A57
cores from one to three; on the other hand, layers 2 and 4 have
speedups with more CPUs. In general, the speedup gradually
diminishes on both Xeon and TX2 platforms as the number
of cores increases. We also observe the performance charac-
teristics of different types of processors. On both platforms,
the GPU takes much less execution time than CPUs on most
layers, but there are cases where the GPU is only < 2 times
faster than CPUs, e.g., ARM*3 for layer 2 in the figure. Denver
CPU cores overall perform better than ARM A57 CPUs. The
results show the potential resource inefficiency that can be
caused when resources are assigned blindly, and thus motivate
the support for heterogeneous resources provided by DART.

C. Schedulability Experiments

Based on the collected layer WCET profiles, we have con-
ducted schedulability experiments using randomly-generated
bi-modal tasksets. The parameters we consider to generate
tasksets are the number of tasks, periods (= deadlines), DNN
models, and the ratio of tasks using heavy models to all tasks
in a taskset. Based on the execution time measurement of the
DNN model, we consider tasks using VGGnet and Alexnet
as heavy-model tasks, and those using Pilotnet and LeNet
as light-model tasks. Since our focus is on schedulability,

9

https://github.com/NVIDIA/tensorrt-inference-server
https://github.com/tensorflow/serving

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9

W
o

rs
t-

ca
se

 E
xe

c.
 T

im
e

(m
s)

Layer Index

ARM * 1 ARM * 2 ARM * 3 Denver * 1 Denver * 2 GPU

Fig. 10: LeNet layer execution time profile on TX2

only RT tasks are considered and no BE tasks are used here.
The two baselines are both single-node systems and thus can
be modeled as uni-processor systems with faster processors.
Hence, we apply the standard iterative response time test to
check schedulability of the taskset. For DART, we apply the
schedulability analysis introduced in the previous section.

0

10

20

30

40

50

60

70

80

90

100

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

P
ER

C
EN

TA
G

E
O

F
SC

H
ED

U
LA

B
LE

TA

SK
SE

TS

RATIO OF HEAVY-MODEL TASKS

DART BaseCPU BaseGPU

(a) Xeon Platform

0

10

20

30

40

50

60

70

80

90

100

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

P
ER

C
EN

TA
G

E
O

F
SC

H
ED

U
LA

B
LE

TA

SK
SE

TS

RATIO OF HEAVY-MODEL TASKS

DART BaseCPU BaseGPU

(b) TX2 Platform

Fig. 11: Schedulability w.r.t. the ratio of heavy-model tasks

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 1 0 1 1 1 2

P
ER

C
EN

TA
G

E
O

F
SC

H
ED

U
LA

B
LE

TA

SK
SE

TS

NUMBER OF TASKS

DART BaseCPU BaseGPU

(a) Xeon platform

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9

P
ER

C
EN

TA
G

E
O

F
SC

H
ED

U
LA

B
LE

TA

SK
SE

TS

NUMBER OF TASKS

DART BaseCPU BaseGPU

(b) TX2 platform

Fig. 12: Schedulability w.r.t. the number of tasks
We first show the schedulability of tasksets with different

ratios of heavy-model tasks. Fig. 11 shows the results on

Xeon and TX2 platforms. The task deadlines are randomly
chosen between 300 and 500 ms. Each taskset has 10 RT
tasks. We observe that, with higher heavy-model task ratios,
the percentage of schedulable tasksets decreases for all the
three approaches since the tasks with longer execution time
are harder to meet deadlines. Xeon has higher schedulability
than TX2 because the same taskset parameters are used on
both platforms and Xeon is more computationally powerful
than TX2. However, DART dominates the other two in all
experimental conditions. Specifically, on Xeon with the ratio
of 0.6, DART schedules about 90% of tasksets while the
other two schedule none of them. We then change the number
of tasks per taskset and compare the taskset schedulability.
Fig. 12 depict the results on Xeon and TX2. As can be seen,
tasksets become harder to schedule as more tasks exist in
the system. DART, however, still always outperforms the two
baselines. The results indicate that DART effectively utilizes
given CPU and GPU resources and its benefit is significant in
scheduling real-time DNN tasks.

D. Response Time and Throughput

To understand the performance characteristics of DNN
frameworks in response time and throughput, we have con-
ducted a case study with a mixture of real-time (RT) and
best-effort (BE) tasks on Xeon and TX2 platforms. The taskset
we used is given in Table III. There are four RT tasks, two
using pilotnet and the other two using alexnet. The deadlines
of the RT tasks are set equal to their periods, and with tie-
breaking, pilot_rt_1 has the highest priority. There are
also three BE tasks, each of which uses a different DNN
model. The jobs of the BE tasks arrive in a back-to-back
manner, i.e., a new job arrives as soon as the previous one
finishes, in order to overload the system. All the BE and
RT tasks are located in different machines and make requests
to the system running a DNN framework over an Ethernet-
based local area network (LAN). Note that the amount of
input data and output results are considerably small compared
to the bandwidth of the network (< 1%). We also consider
batched execution with the representative batch sizes of 8,
16 and 32 to evaluate their effects in response time and
throughput. The batch size n is denoted as a suffix _bn
in the label, e.g., BaseGPU_b1 and BaseGPU_b16 mean
BaseGPU without batching and with the batch size of 16,
respectively. For BaseCPU, we present only the results without
batched execution as we observed inappreciable improvement
in throughput but significant deterioration in response time
when batching was enabled.

In this environment, we measure the end-to-end response
time of RT tasks and the throughput of BE tasks under the

10

101 102 103

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

DART_b1
DART_b8
DART_b16
DART_b32
BaseCPU
BaseGPU_b1
BaseGPU_b8
BaseGPU_b16
BaseGPU_b32

(a) CDF of pilot rt 2

101 102 103

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F DART_b1

DART_b8
DART_b16
DART_b32
BaseCPU
BaseGPU_b1
BaseGPU_b8
BaseGPU_b16
BaseGPU_b32

(b) CDF of alexnet rt 2

Fig. 13: Response time CDF of real-time tasks on Xeon

101 102 103

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

DART_b1
DART_b8
DART_b16
DART_b32
BaseCPU
BaseGPU_b1
BaseGPU_b8
BaseGPU_b16
BaseGPU_b32

(a) CDF of pilot rt 2

101 102 103

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F DART_b1

DART_b8
DART_b16
DART_b32
BaseCPU
BaseGPU_b1
BaseGPU_b8
BaseGPU_b16
BaseGPU_b32

(b) CDF of alexnet rt 2

Fig. 14: Response time CDF of real-time tasks on TX2

0

1000

2000

3000

4000

alexnet_be_1 pilot_be_1 lenet_be_1

Jo
b
s/
M
in

DART_b1 DART_b8 DART_b16 DART_b32 BaseCPU BaseGPU_b1 BaseGPU_b8 BaseGPU_b16 BaseGPU_b32

(a) Xeon

0

500

1000

1500

2000

alexnet_be_1 pilot_be_1 lenet_be_1

Jo
b
s/
M
in

DART_b1 DART_b8 DART_b16 DART_b32 BaseCPU BaseGPU_b1 BaseGPU_b8 BaseGPU_b16 BaseGPU_b32

(b) TX2
Fig. 15: Throughput of BE tasks

three different DNN frameworks. Fig. 13 and Fig. 14 show the
response time CDF of pilot_rt_2 and alexnet_rt_2
on Xeon and TX2, respectively (x-axis in log scale). These
tasks have the second highest and lowest real-time priority
in the taskset, which are good to demonstrate the impact of
interference from higher-priority RT tasks and other BE tasks.
Overall, DART gives much smaller tail latency than the others
at the respective batch size. The tail latency increases with the
batch size under all approaches, but such slowdown is much
less in DART than BaseGPU. In case of alexnet_rt_2 on
TX2 with the batch size of 32, DART achieves 98.5% reduc-
tion in the maximum observed response time over BaseGPU.
This is not only due to the RT and BE worker design of
DART, but also due to its GPU node scheduling which uses
separate streams for RT and BE kernels with CUDA stream
prioritization. Conversely, under BaseGPU, an RT job may
need to wait until the batch is filled up, and RT kernels may
be delayed by BE kernels that have arrived earlier and been
already executing. Even without batching, DART achieves
89.9% reduction in the maximum observed response time.

We have also measured the throughput of the BE tasks
while the above four RT tasks are concurrently running in

TABLE III: Taskset information on Xeon and TX2
Task name DNN model Deadline Class RT Prio

pilot_rt_1 Pilotnet 150 ms RT 90
pilot_rt_2 Pilotnet 150 ms RT 89

alexnet_rt_1 Alexnet 200 ms RT 88
alexnet_rt_2 Alexnet 200 ms RT 87
pilot_be_1 Pilotnet – BE -

alexnet_be_1 Alexnet – BE -
lenet_be_1 LeNet – BE -

the same environment. Fig. 15 shows the throughput of each
BE task on Xeon and TX2. Batched execution significantly
improves the throughput under both DART and BaseGPU.
However, the improvement diminishes after the batch size
reaches 16. For all the BE tasks, DART gives the highest
throughput, with as much as 17.9% higher throughput than
BaseGPU for lenet_be_1 on TX2 with the batch size of
32. This improvement of DART comes from two factors: the
use of CPU cores together with the GPU for DNN inference
tasks, and the use of multiple CUDA streams for concurrent
kernel execution. In summary, the results give strong evidence
that the efficient utilization of heterogeneous CPU and GPU
resources is crucial in both low latency and high throughput.
DART achieves these two simultaneously and dominates the
other baselines that are representative of the state-of-the-art.

11

VII. RELATED WORK

DNN Inference Frameworks. As DNNs have been widely
adopted in real-time applications such as [9, 11, 43, 45],
much effort has been invested in improving the performance
of DNN inference. DeepSense [50] utilizes a GPU to speed up
DNN computation. Glimpse [10] and MCDNN [16] are real-
time mobile DNN frameworks collaborating with the cloud.
Neurosurgeon [23] is a distributed inference framework with
a light-weight scheduler, which partitions DNN computation
between local and cloud machines in a layer granularity
to improve latency. DART can be extended for such edge-
computing scenarios by modeling a remote machine or cloud
server as yet another node, but network delay needs to be
taken into account. DeepEye [34] is developed to achieve
DNN inference on a memory-limited embedded device by
using model-compression and layer-interleaving. DeepMon
[18] implements layer caching, decomposition and multipli-
cation techniques to achieve a low-latency mobile-GPU DNN
framework. S3DNN [52] is developed for real-time workloads
and improves average-case response time by applying super-
vised streaming and scheduling on GPUs. The work in [49]
recently presents a case study on pipelining, parallelism, and
image composition techniques for autonomous driving DNN
applications. Note that both [52] and [49] assume only one
type of DNN model, YOLO, and thus can be subject to
the same problem as the status quo, when multiple DNN
models are concurrently used. While all of the aforementioned
frameworks have targeted on lowering inference latency, they
do not focus on ensuring the timing constraints of DNN
tasks in the worst-case scenario. In other words, they are
not amenable to real-time schedulability analysis and do not
offer deterministic worst-case response time while improving
throughput. These limitations are addressed in this paper.
DNN Optimization Techniques. Much work has focused on
compressing DNN models or layers [13, 15, 27, 46, 51]. They
are motivated by trading-off output accuracy for performance
gain. Some of these techniques achieve great speed-up, e.g.,
a 94.5% improvement in execution time without significant
loss of accuracy [51]. Such optimization techniques can also
be applied to DART to achieve shorter execution time of
each DNN model and a more balanced pipeline, which helps
improve latency and throughput.
Pipeline and GPU Scheduling. Jayachandran et al. proposed
the delay composition theorem to analyze real-time pipelines
under preemptive and non-preemptive scheduling [20] and
then later extended it to DAG tasks [21]. DART utilizes
the DAG-version of the theorem to check the schedulability
of real-time tasks. However, other approaches, such as local
deadline assignment [17], can also be potentially used in our
framework and we wish to investigate it in the future.

Real-time GPU scheduling has been extensively investigated
in the literature. Many earlier schemes [12, 25, 38] launch one
kernel at a time to guarantee bounded response time. Recent
studies [37, 48] report that the concurrent execution of multiple
kernels can improve throughput and GPU utilization, but at the
cost of predictability. To achieve better performance isolation,

techniques to split a GPU into multiple partitions have been
proposed [19, 40]. Nvidia Multi-Process Service (MPS) [36]
is a middleware that facilitates concurrent kernel execution
when kernels are launched from different processes or CUDA
contexts. However, at the time of writing, it is available only
on x86 architectures and does not provide a direct control
over the CUDA stream priority of real-time kernels. The GPU
node scheduling of DART is designed to take the best of both
predictability- and throughput-oriented approaches.

Memory-induced Interference. Temporal interference caused
by shared memory resources, such as caches, DRAM, and
memory buses, has been considered a serious problem in
multi-core real-time systems [6, 24, 33, 42, 44, 47]. Recent
work [5] reports that such memory-induced interference can
cause as much as 3× slowdown to GPU kernel execution in
CPU-GPU integrated SoCs like Nvidia TX2, when memory-
bandwidth-intensive synthetic tasks are co-scheduled on CPUs.
In this paper, we did not focus on this problem since our
primary goal was to establish a real-time DNN framework with
improvements on scheduling algorithms and abstractions. We
also did not observe any significant slowdown of DNN tasks in
our experiments. However, due to the increasing complexity
of DNN models, memory interference may soon become a
limiting factor in real-time DNN systems. We believe a more
sophisticated system addressing such issues can be built upon
DART. For instance, software techniques to protect against
DoS attacks on the last-level cache shared among CPUs [8]
and to partition the compute and memory resources of GPUs
including streaming multiprocessors, caches, and DRAM [19]
can be integrated into the CPU and GPU nodes of DART to
achieve a higher degree of performance isolation.

VIII. CONCLUSIONS

In this paper, we presented DART, a real-time DNN frame-
work that offers deterministic response time to real-time
DNN inference tasks and supports concurrent execution of
various types of DNN models. We have implemented the
scheduling architecture of DART and its key components,
including pipeline stage design, node configuration, execution
time profiling, admission control, and runtime enforcement,
on Intel Xeon and Nvidia TX2 platforms. Experiment results
show that DART yields significant improvement in the max-
imum response time and throughput over the status quo, and
gains substantial benefit from heterogeneous CPU and GPU
resources.

The inter-node pipelining and intra-node parallelism design
of DART offers several interesting directions for future work.
First, remote machines can be modeled as one of the nodes in
the pipeline and can be utilized to address the computational
limit of local hardware. Second, other types of hardware
accelerators, such as FPGAs, can be co-used with CPUs and
GPUs for larger DNNs. Third, shared memory resources,
such as caches and memory buses, and their performance
interference are worth investigating to improve performance
isolation in CPU and GPU parallelization. We plan to explore
these topics in the future.

12

REFERENCES

[1] Caffe. http://caffe.berkeleyvision.org. Accessed: 2019-03-30.
[2] Ilsvrc-2014 model (vgg team) with 16 weight layers.

https://gist.github.com/ksimonyan/211839e770f7b538e2d8#
file-readme-md. Accessed: 2019-03-30.

[3] Torch. http://torch.ch. Accessed: 2019-03-30.
[4] M. Abadi et al. TensorFlow: Large-scale machine learning

on heterogeneous systems, 2015. Software available from
tensorflow.org.

[5] W. Ali and H. Yun. Protecting real-time GPU applications on
integrated CPU-GPU SoC platforms. In Euromicro Conference
on Real-Time Systems (ECRTS), 2017.

[6] B. Andersson, H. Kim, D. D. Niz, M. Klein, R. R. Rajkumar,
and J. Lehoczky. Schedulability analysis of tasks with corunner-
dependent execution times. ACM Transactions on Embedded
Computing Systems (TECS), 17(3):71, 2018.

[7] P. Axer et al. Response-time analysis of parallel fork-join
workloads with real-time constraints. In Euromicro Conference
on Real-Time Systems (ECRTS), 2013.

[8] M. Bechtel and H. Yun. Denial-of-service attacks on shared
cache in multicore: Analysis and prevention. In IEEE Real-
Time and Embedded Technology and Applications Symposium
(RTAS), 2019.

[9] M. Bojarski et al. End to end learning for self-driving cars.
CoRR, abs/1604.07316, 2016.

[10] T. Y.-H. Chen et al. Glimpse: Continuous, real-time object
recognition on mobile devices. In ACM Conf. on Embedded
Networked Sensor Systems (SenSys), 2015.

[11] J. S. Dyrstad and J. R. Mathiassen. Grasping virtual fish:
A step towards robotic deep learning from demonstration in
virtual reality. In IEEE Conference on Robotics and Biomimetics
(ROBIO), 2017.

[12] G. Elliott et al. GPUSync: A framework for real-time GPU
management. In IEEE Real-Time Systems Symposium (RTSS),
2013.

[13] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for
efficient dnns. CoRR, abs/1608.04493, 2016.

[14] M. Hajinoroozi et al. Prediction of driver’s drowsy and
alert states from EEG signals with deep learning. In IEEE
Workshop on Computational Advances in Multi-Sensor Adaptive
Processing, 2015.

[15] S. Han et al. Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding.
CoRR, abs/1510.00149, 2015.

[16] S. Han et al. MCDNN: An approximation-based execution
framework for deep stream processing under resource con-
straints. In International Conference on Mobile Systems, Ap-
plications, and Services (MobiSys), 2016.

[17] S. Hong et al. Meeting end-to-end deadlines through distributed
local deadline assignments. In IEEE Real-Time Systems Sym-
posium (RTSS), 2011.

[18] L. N. Huynh et al. DeepMon: Mobile GPU-based deep learning
framework for continuous vision applications. In International
Conference on Mobile Systems, Applications, and Services
(MobiSys), 2017.

[19] S. Jain, I. Baek, S. Wang, and R. Rajkumar. Fractional GPUs:
Software-based compute and memory bandwidth reservation for
GPUs. In IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2019.

[20] P. Jayachandran and T. Abdelzaher. Delay composition in
preemptive and non-preemptive real-time pipelines. Real-Time
Systems, 40(3):290–320, Dec 2008.

[21] P. Jayachandran and T. Abdelzaher. Transforming distributed
acyclic systems into equivalent uniprocessors under preemptive
and non-preemptive scheduling. In Euromicro Conference on
Real-Time Systems (ECRTS), 2008.

[22] Y. Jia et al. Caffe: Convolutional architecture for fast feature
embedding. In ACM International Conference on Multimedia

(MM), 2014.
[23] Y. Kang et al. Neurosurgeon: Collaborative intelligence between

the cloud and mobile edge. SIGARCH Comput. Archit. News,
45(1):615–629, Apr. 2017.

[24] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and
R. R. Rajkumar. Bounding memory interference delay in cots-
based multi-core systems. In IEEE Real-Time Technology and
Applications Symposium (RTAS), 2014.

[25] H. Kim et al. A server-based approach for predictable GPU
access control. In RTCSA, 2017.

[26] J. Kim, H. Kim, K. Lakshmanan, and R. Rajkumar. Parallel
scheduling for cyber-physical systems: Analysis and case study
on a self-driving car. In IEEE/ACM International Conference
on Cyber-Physical Systems (ICCPS), 2013.

[27] Y. Kim et al. Compression of deep convolutional neural
networks for fast and low power mobile applications. CoRR,
abs/1511.06530, 2015.

[28] A. Krizhevsky et al. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information
processing systems, 2012.

[29] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-
based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[30] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah.
Analysis of federated and global scheduling for parallel real-
time tasks. In Euromicro Conference on Real-Time Systems
(ECRTS), pages 85–96. IEEE, 2014.

[31] G. Lima, D. Dias, and E. Barros. Extreme value theory for
estimating task execution time bounds: A careful look. In
Euromicro Conference on Real-Time Systems (ECRTS), 2016.

[32] S.-C. Lin et al. The architectural implications of autonomous
driving: Constraints and acceleration. In International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2018.

[33] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and
R. Pellizzoni. Real-time cache management framework for
multi-core architectures. In IEEE Real-Time Technology and
Applications Symposium (RTAS), 2013.

[34] A. Mathur et al. DeepEye: Resource efficient local execution
of multiple deep vision models using wearable commodity
hardware. In Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2017.

[35] A. K. Mok. Fundamental design problems of distributed systems
for the hard real-time environment. PhD Thesis, Massachusetts
Institute of Technology, 1983.

[36] Nvidia. Multi-process service. https://docs.nvidia.com/deploy/
pdf/CUDA Multi Process Service Overview.pdf. Accessed:
2019-08-20.

[37] N. Otterness et al. An evaluation of the NVIDIA TX1 for
supporting real-time computer-vision workloads. In IEEE Real-
Time and Embedded Technology and Applications Symposium
(RTAS), 2017.

[38] P. Patel et al. Analytical enhancements and practical insights for
MPCP with self-suspensions. In IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2018.

[39] M. Pfeiffer et al. From perception to decision: A data-driven
approach to end-to-end motion planning for autonomous ground
robots. In IEEE Conference on Robotics and Automation
(ICRA), 2017.

[40] S. K. Saha, Y. Xiang, and H. Kim. STGM : Spatio-Temporal
GPU Management for Real-Time Tasks. In RTCSA, 2019.

[41] S. S. Skiena. The algorithm design manual. Springer, 1998.
[42] N. Suzuki, H. Kim, D. de Niz, B. Andersson, L. Wrage,

M. Klein, and R. R. Rajkumar. Coordinated bank and cache
coloring for temporal protection of memory accesses. In IEEE
International Conference on Embedded Software and Systems
(ICESS), 2013.

[43] F. Tang et al. On removing routing protocol from future wireless

13

http://caffe.berkeleyvision.org
https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-md
https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-md
http://torch.ch
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

networks: A real-time deep learning approach for intelligent
traffic control. IEEE Wireless Communications, 25(1):154–160,
February 2018.

[44] P. K. Valsan, H. Yun, and F. Farshchi. Taming non-blocking
caches to improve isolation in multicore real-time systems. In
IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2016.

[45] D. Vasisht et al. Farmbeats: An IoT platform for data-driven
agriculture. In NSDI, 2017.

[46] Y. Wang et al. CNNPack: Packing convolutional neural
networks in the frequency domain. In Advances in neural
information processing systems, 2016.

[47] M. Xu, L. Thi, X. Phan, H.-Y. Choi, and I. Lee. vCAT: Dynamic
cache management using CAT virtualization. In IEEE Real-
Time and Embedded Technology and Applications Symposium
(RTAS), 2017.

[48] M. Yang et al. Avoiding pitfalls when using Nvidia GPUs
for real-time tasks in autonomous systems. In Euromicro
Conference on Real-Time Systems, 2018.

[49] M. Yang et al. Re-thinking CNN frameworks for time-sensitive
autonomous-driving applications: Addressing an industrial chal-
lenge. In RTAS, 2019.

[50] S. Yao et al. Deepsense: A unified deep learning frame-
work for time-series mobile sensing data processing. CoRR,
abs/1611.01942, 2016.

[51] S. Yao et al. Compressing deep neural network structures for
sensing systems with a compressor-critic framework. CoRR,
abs/1706.01215, 2017.

[52] H. Zhou, S. Bateni, and C. Liu. S3DNN: Supervised streaming
and scheduling for GPU-accelerated real-time DNN workloads.
In IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2018.

14

	Introduction
	Background and Motivation
	Deep Neural Networks
	The Status Quo and Challenges

	System Model
	DART Framework
	Scheduling Architecture
	CPU Node Scheduling
	GPU Node Scheduling
	Batched Execution

	Resource Management
	Schedulability Analysis
	Designing Task Pipeline Stages
	Finding a Node Configuration for Tasks

	Other Miscellaneous Components
	Layer-wise Execution Time Profiling
	Admission Control
	Run-time Task Enforcement

	Implementation
	Evaluation
	Experiment Setup
	DNN Execution Time Profiling
	Schedulability Experiments
	Response Time and Throughput

	Related Work
	Conclusions

